JP2012083293A - Hot water quality measurement device - Google Patents

Hot water quality measurement device Download PDF

Info

Publication number
JP2012083293A
JP2012083293A JP2010231335A JP2010231335A JP2012083293A JP 2012083293 A JP2012083293 A JP 2012083293A JP 2010231335 A JP2010231335 A JP 2010231335A JP 2010231335 A JP2010231335 A JP 2010231335A JP 2012083293 A JP2012083293 A JP 2012083293A
Authority
JP
Japan
Prior art keywords
hot water
water quality
deionization
water
quality sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010231335A
Other languages
Japanese (ja)
Other versions
JP5516309B2 (en
Inventor
Kuniyuki Takahashi
邦幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010231335A priority Critical patent/JP5516309B2/en
Publication of JP2012083293A publication Critical patent/JP2012083293A/en
Application granted granted Critical
Publication of JP5516309B2 publication Critical patent/JP5516309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot water quality measurement device that cleans a water quality sensor with hot water obtained by eliminating ions without the provision of cleaning liquid from the outside of the device.SOLUTION: A hot water quality measurement device includes a water quality sensor 2 that measures the quality of hot water, and a deionization part 11 that produces deionized hot water by eliminating ions in the hot water. The hot water quality measurement device cleans the water quality sensor 2 with the deionized hot water.

Description

本発明は、溶存イオン濃度が高い熱水の水質を測定する水質センサを洗浄する機構を備えた熱水水質測定装置に関する。   The present invention relates to a hot water / water quality measuring apparatus having a mechanism for cleaning a water quality sensor that measures the quality of hot water having a high dissolved ion concentration.

特許文献1は、供給される水を所定pH値のイオン水に電解する電解槽と、前記電解槽の排水路に配置されたpHセンサと、前記pHセンサを洗浄するセンサ洗浄部とを設けたことを特徴とするpHセンサを備えたイオン水生成器を開示している。 Patent Document 1 includes an electrolytic cell that electrolyzes supplied water to ionized water having a predetermined pH value, a pH sensor disposed in a drainage channel of the electrolytic cell, and a sensor cleaning unit that cleans the pH sensor. The ion water generator provided with the pH sensor characterized by this is disclosed.

特開2001−235443号公報JP 2001-235443 A

地熱発電所では、地下から噴出する蒸気と熱水の混合流体を気液分離器で蒸気と熱水に分離後、蒸気をタービン発電機に導入し地熱発電を行っている。従来、気液分離器で分離された熱水は、還元井に戻されていた。近年では、発電に用いられていなかった高温熱水を熱源として、低沸点媒体を用いて発電を行うバイナリー発電の導入が検討されている。バイナリー発電では、使用後の熱水の温度はさらに低下するので、シリカ等のスケール源が過飽和状態になり、スケールが析出することがある。pH計やシリカ濃度計のセンサ部にスケールが析出すると、計測が不能になったり、計測精度が悪化したり、計測器の応答速度が遅くなったりする。このスケールを除去するために、メンテナンス頻度を増加しなければならず、メンテナンス費用が増加してしまうという問題があった。   At a geothermal power plant, a mixed fluid of steam and hot water ejected from the underground is separated into steam and hot water by a gas-liquid separator, and then the steam is introduced into a turbine generator for geothermal power generation. Conventionally, hot water separated by a gas-liquid separator has been returned to the reduction well. In recent years, introduction of binary power generation in which high-temperature hot water that has not been used for power generation is used as a heat source and power is generated using a low-boiling point medium has been studied. In binary power generation, the temperature of hot water after use is further lowered, so that a scale source such as silica becomes supersaturated, and scale may be deposited. If a scale is deposited on the sensor of a pH meter or silica concentration meter, measurement may become impossible, measurement accuracy may deteriorate, and the response speed of the measuring device may slow. In order to remove this scale, the maintenance frequency has to be increased, and there has been a problem that maintenance costs increase.

そこで、熱水に硫酸等を添加してpH5〜6程度に制御し、シリカの重合速度を低下させることでメンテナンス周期を長期化し、メンテナンス費用の低減を図っている。熱水の水質は日々変化するため、変化幅に対して十分余裕のある硫酸を常に添加すると、ランニングコストが増大するため、最適な硫酸量の制御が求められている。そのため、pHやシリカ濃度を測定した結果に基づいて硫酸添加量を制御している。   Therefore, sulfuric acid or the like is added to hot water to control the pH to about 5 to 6, and the maintenance rate is extended by reducing the polymerization rate of silica, thereby reducing maintenance costs. Since the quality of hot water changes from day to day, running sulfuric acid increases when sulfuric acid having a sufficient margin with respect to the range of change is constantly added, so that an optimal amount of sulfuric acid is required to be controlled. Therefore, the amount of sulfuric acid added is controlled based on the results of measuring the pH and silica concentration.

しかし、センサ部の洗浄を人の手により行う場合は、人件費がかかる。また、センサ部の汚れを物理的にこすり落とす方法は、センサを損傷しやすい。酸洗浄では有機物や酸に溶解性の高い物質の汚れは落とせるが、シリカなど酸への溶解性の低い物質は洗浄困難である。また、pH計においては酸洗浄後に純水等で洗浄に用いた酸を十分に洗い流す必要がある。アルカリによる洗浄ではシリカを溶解しやすいが、汚れのみでなくガラス電極も溶解してしまうため、電極の寿命が短くなるという問題がある。また洗浄に用いたアルカリを十分に洗い流す必要がある。洗浄に酸やアルカリを用いる場合には河川放流や下水に直接放流することはできず、中和等の廃液処理が必要となり、コストが増加する。また、地熱発電所は山岳地に設置されるケースが多く、センサ洗浄用の純水を大量に保有し消費するには、純水の輸送コストがかかり経済的ではないという問題点があった。洗浄液のpHの違いによるスケールの溶解性は、スケールの組成によって異なる。例えば、シリカはアルカリ性溶液に溶けやすいが、炭酸カルシウム等カルシウム系のスケールは酸性溶液に溶けやすい。   However, when the sensor unit is manually cleaned, labor costs are incurred. Further, the method of physically rubbing off the dirt on the sensor part easily damages the sensor. Acid cleaning can remove stains from organic substances and substances that are highly soluble in acids, but it is difficult to wash substances that are poorly soluble in acids such as silica. Further, in the pH meter, it is necessary to sufficiently wash away the acid used for washing with pure water after the acid washing. Silica is easily dissolved by washing with alkali, but not only dirt but also a glass electrode is dissolved, which causes a problem that the life of the electrode is shortened. Moreover, it is necessary to wash away the alkali used for washing sufficiently. When acid or alkali is used for washing, it cannot be discharged directly into rivers or sewage, and waste liquid treatment such as neutralization is required, which increases costs. In addition, geothermal power plants are often installed in mountainous areas, and holding a large amount of pure water for sensor cleaning has a problem that it is not economical because of the transportation cost of pure water. The solubility of the scale due to the difference in pH of the cleaning liquid varies depending on the composition of the scale. For example, silica is easily dissolved in an alkaline solution, but calcium-based scale such as calcium carbonate is easily dissolved in an acidic solution.

上記特許文献1のpHセンサでは、イオンが存在する水を電解した強酸性水を洗浄液としているが、溶存イオン濃度が高濃度である場合、飽和イオン濃度に対する溶存イオン濃度の割合が高くなり、pHセンサに付着したスケールの溶解に寄与できる濃度差が小さいもしくは洗浄液が過飽和の場合スケールを溶解する能力がないという問題があった。   In the pH sensor of Patent Document 1, strong acidic water obtained by electrolyzing water in which ions are present is used as a cleaning solution. However, when the dissolved ion concentration is high, the ratio of the dissolved ion concentration to the saturated ion concentration increases, and There is a problem that the concentration difference that can contribute to dissolution of the scale attached to the sensor is small, or the ability to dissolve the scale is not available when the cleaning liquid is supersaturated.

本発明者は、純水を用いればどちらに対しても溶解性を得られるので、イオンを除去された熱水を洗浄液として用いれば、飽和溶解度と溶存イオン濃度の濃度差を大きくでき、温度が高いことにより、飽和溶解度がより高く、かつ、スケールの溶解速度が促進されることに着目して本発明を生み出した。   Since the present inventor can obtain solubility in both cases using pure water, if hot water from which ions have been removed is used as a washing liquid, the difference in concentration between the saturated solubility and the dissolved ion concentration can be increased, and the temperature can be increased. Focusing on the fact that the higher the saturation solubility is higher and the dissolution rate of the scale is accelerated, the present invention was created.

上記の課題を解決するべく、本発明は、イオンを除去した熱水で水質センサを洗浄し、外部から洗浄液を供給することなく水質センサを洗浄できる熱水水質測定装置を提供することを目的とする。   In order to solve the above problems, the present invention has an object to provide a hot water / water quality measuring apparatus that can clean a water quality sensor without supplying cleaning liquid from the outside by washing the water quality sensor with hot water from which ions have been removed. To do.

上記課題を解決するため、本発明に係る熱水水質測定装置は、熱水の水質を測定する水質センサと、前記熱水のイオンを除去して脱イオン熱水を生成する脱イオン部とを備え、前記脱イオン熱水で前記水質センサを洗浄することを特徴とする。   In order to solve the above problems, a hydrothermal water quality measuring apparatus according to the present invention includes a water quality sensor that measures the quality of hot water, and a deionization unit that generates deionized hot water by removing ions of the hot water. And the water quality sensor is washed with the deionized hot water.

また、本発明の熱水水質測定装置において、前記熱水が通流する主配管に設けられた水質センサと、前記熱水のイオンを除去して脱イオン熱水を生成する脱イオン部と、前記水質センサより下流側の主配管に分岐配管および第2切り替え弁を設け、前記分岐配管の一端を前記脱イオン部に接続し、前記水質センサより上流側の主配管に第1切り替え弁を設け、前記脱イオン部と前記第1切り替え弁を接続する返送配管と、前記脱イオン熱水を前記水質センサおよび前記脱イオン部の間を循環流通させる循環ポンプとを備えることを特徴とする。   Moreover, in the hot water quality measuring device of the present invention, a water quality sensor provided in a main pipe through which the hot water flows, a deionization unit that generates deionized hot water by removing ions of the hot water, A branch pipe and a second switching valve are provided in the main pipe downstream from the water quality sensor, one end of the branch pipe is connected to the deionization section, and a first switching valve is provided in the main pipe upstream from the water quality sensor. A return pipe that connects the deionization unit and the first switching valve, and a circulation pump that circulates and distributes the deionized hot water between the water quality sensor and the deionization unit.

また、本発明の熱水水質測定装置において、前記脱イオン部に前記熱水を供給する前に前記熱水を加熱または冷却する温度調整器を備えることを特徴とする熱水水質測定装置。
また、本発明のいずれか一項に記載の熱水水質測定装置において、前記脱イオン部がイオン交換樹脂であることを特徴とする。
The hot water / water quality measuring apparatus according to the present invention further comprises a temperature regulator for heating or cooling the hot water before supplying the hot water to the deionization unit.
Moreover, the hydrothermal water quality measuring apparatus according to any one of the present invention is characterized in that the deionization part is an ion exchange resin.

また、本発明のいずれか一項に記載の熱水水質測定装置において、前記脱イオン部が電気再生式脱イオン装置であることを特徴とする。
また、本発明のいずれか一項に記載の熱水水質測定装置において、前記水質センサが、pH計またはシリカ濃度計であることを特徴とする。
Moreover, the hydrothermal water quality measuring apparatus according to any one of the present invention is characterized in that the deionization unit is an electric regeneration type deionization apparatus.
Moreover, the hot water / water quality measuring apparatus according to any one of the present invention is characterized in that the water quality sensor is a pH meter or a silica concentration meter.

また、本発明のいずれか一項に記載の熱水水質測定装置において、前記第1切り替え弁と前記第2切り替え弁の開閉、および、前記脱イオン部の起動停止とを制御する制御部を備え、定期的に前記水質センサを自動洗浄することを特徴とする。   The hot water / water quality measuring apparatus according to any one of the present invention further includes a control unit that controls opening and closing of the first switching valve and the second switching valve and starting and stopping of the deionization unit. The water quality sensor is automatically cleaned periodically.

本発明によれば、イオンを除去した熱水で水質センサを洗浄し、外部から洗浄液を供給することなく水質センサを洗浄できる熱水水質測定装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the water quality sensor which can wash | clean a water quality sensor without supplying a washing | cleaning liquid from the outside can be provided by wash | cleaning a water quality sensor with the hot water from which ion was removed.

本発明の第1の実施形態に係る概略構成図である。1 is a schematic configuration diagram according to a first embodiment of the present invention. 本発明の第2の実施形態に係る概略構成図である。It is a schematic block diagram which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る概略構成図である。It is a schematic block diagram which concerns on the 3rd Embodiment of this invention.

以下、本発明に係る熱水水質測定装置の実施形態を図面を参照しながら説明する。同一の構成要素については、同一の符号を付け、重複する説明は省略する。なお、本発明は、下記の実施形態に限定されるものではなく、その要旨を変更しない範囲内で適宜変形して実施することができるものである。   Hereinafter, an embodiment of a hot water quality measuring apparatus according to the present invention will be described with reference to the drawings. About the same component, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted. In addition, this invention is not limited to the following embodiment, In the range which does not change the summary, it can implement suitably.

本発明に係る第1の実施形態について、図面を用いて説明する。図1は、第1の実施形態における熱水水質測定装置の概略構成図である。本発明の熱水水質測定装置は、熱水が通流する主配管1に設けられた水質センサ2と、前記熱水のイオンを除去して脱イオン熱水を生成する脱イオン部5と、前記水質センサ2より下流側の主配管1に分岐配管7および第2切り替え弁4を設け、前記分岐配管の一端を前記脱イオン部5に接続し、前記水質センサ2より上流側の主配管1に第1切り替え弁3を設け、前記脱イオン部5と前記第1切り替え弁3を接続する返送配管8と、前記脱イオン熱水を前記水質センサ2および前記脱イオン部5の間を循環流通させる循環ポンプ6とを備える。水質センサ2の種類に限定は無く、pH計やシリカ計や他の水質計であってもよいが、図1では例としてpH計とした。電気伝導度計9は必須ではないが、脱イオン部5のイオン交換樹脂のイオン吸着能力をチェックする観点から備えることがより望ましい。イオン交換樹脂を着脱可能なカートリッジに収納しておき、イオン交換樹脂のイオン吸着能力が低下したら新しいイオン交換樹脂を入れたカートリッジに交換する。イオン交換樹脂としては、熱水の水質に応じて強酸性陽イオン交換樹脂と強塩基性イオン交換樹脂の使用量を調整することとすればイオン交換樹脂の交換頻度を低減できるが、概ね1対1の体積割合で供えておくことでもよい。脱イオン熱水が循環通流する配管の容積が大きいほど脱イオン部5への負荷が大きくなり、イオン交換樹脂の交換頻度が短くなってしまうので、この容積をなるべく小さくすることでランニングコストを低減できる。   A first embodiment according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a hot water quality measuring apparatus according to the first embodiment. The hot water quality measuring device of the present invention includes a water quality sensor 2 provided in a main pipe 1 through which hot water flows, a deionization unit 5 that generates deionized hot water by removing ions of the hot water, A branch pipe 7 and a second switching valve 4 are provided in the main pipe 1 on the downstream side of the water quality sensor 2, one end of the branch pipe is connected to the deionization unit 5, and the main pipe 1 on the upstream side of the water quality sensor 2. 1 is provided with a first switching valve 3 for circulating the deionized hot water between the water quality sensor 2 and the deionizing unit 5 through the return pipe 8 connecting the deionized unit 5 and the first switching valve 3. A circulation pump 6 to be provided. The type of the water quality sensor 2 is not limited, and may be a pH meter, a silica meter, or another water quality meter. In FIG. 1, a pH meter is used as an example. Although the electric conductivity meter 9 is not essential, it is more preferable to provide it from the viewpoint of checking the ion adsorption ability of the ion exchange resin of the deionization part 5. The ion exchange resin is stored in a removable cartridge, and when the ion adsorption capacity of the ion exchange resin is lowered, the ion exchange resin is replaced with a cartridge containing a new ion exchange resin. As the ion exchange resin, if the amount of the strongly acidic cation exchange resin and the strongly basic ion exchange resin is adjusted according to the quality of the hot water, the exchange frequency of the ion exchange resin can be reduced. It may be provided at a volume ratio of 1. The larger the capacity of the piping through which the deionized hot water circulates, the greater the load on the deionization section 5 and the shorter the exchange frequency of the ion exchange resin. Therefore, the running cost can be reduced by making this volume as small as possible. Can be reduced.

図1では第2切り替え弁4と脱イオン部5の間を接続する分岐配管7の途中に温度調整器10を設けたが、必須ではない。しかし、主配管1を通流する熱水の温度が脱イオン部5のイオン交換樹脂の耐熱温度より高い場合は、温度調整器10を設け、イオン交換樹脂の耐熱温度以下まで熱水を冷却する。多くのイオン交換樹脂では耐熱温度が50℃程度なので、50℃以下に冷却する。温度調整器10の例としては、配管を長くして外気で配管を冷却する構成としてもよいし、この配管にフィンを設けて伝熱を促進する構造としてもよいし、ペルチェ素子を用いて配管を冷却してもよい。   Although the temperature regulator 10 is provided in the middle of the branch pipe 7 that connects the second switching valve 4 and the deionization unit 5 in FIG. 1, it is not essential. However, when the temperature of the hot water flowing through the main pipe 1 is higher than the heat resistance temperature of the ion exchange resin of the deionization part 5, a temperature regulator 10 is provided to cool the hot water to a temperature lower than the heat resistance temperature of the ion exchange resin. . Many ion exchange resins have a heat-resistant temperature of about 50 ° C., so they are cooled to 50 ° C. or lower. As an example of the temperature regulator 10, it is good also as a structure which lengthens piping and cools piping with external air, it is good also as a structure which provides a fin in this piping and accelerates | stimulates heat transfer, and piping using a Peltier device May be cooled.

主配管1を通流する熱水の温度が脱イオン部5のイオン交換樹脂の耐熱温度より低い場合は、温度調整器10を設けることは必須ではないが、脱イオン部5のイオン交換樹脂の耐熱温度より低くかつなるべく高い温度にする方が望ましい。なぜなら、熱水の飽和溶解度と溶存イオン濃度の濃度差を大きくでき、温度が高いことにより、飽和溶解度がより高く、かつ、スケールの溶解速度が促進されるからである。   When the temperature of the hot water flowing through the main pipe 1 is lower than the heat resistant temperature of the ion exchange resin of the deionization part 5, it is not essential to provide the temperature regulator 10, but the ion exchange resin of the deionization part 5 is not essential. It is desirable that the temperature be lower than the heat resistant temperature and as high as possible. This is because the concentration difference between the hot water saturation solubility and the dissolved ion concentration can be increased, and the higher temperature increases the saturation solubility and accelerates the dissolution rate of the scale.

制御部16は、水質センサ2、電気伝導時計9と信号線で接続されており、データが制御部に入力される。また、制御部16は、第1切り替え弁3、第2切り替え弁4および循環ポンプ6と電気的に接続されており、弁の流路の切り替えや循環ポンプの流量が制御されている。制御部16は必ずしも必須ではなく各機器を人が手動で操作することも可能であるが、制御部16で自動制御することが望ましい。   The control unit 16 is connected to the water quality sensor 2 and the electric conduction timepiece 9 through a signal line, and data is input to the control unit. Moreover, the control part 16 is electrically connected with the 1st switching valve 3, the 2nd switching valve 4, and the circulation pump 6, and the switching of the flow path of a valve and the flow volume of a circulation pump are controlled. The control unit 16 is not necessarily essential, and each device can be manually operated by a person. However, it is desirable that the control unit 16 automatically controls the device.

次に本装置の動作について説明する。水質センサ2による水質測定時は、主配管1のみに熱水が通流するように第1切り替え弁3と第2切り替え弁4をそれぞれ切り替える。測定が終了したら、水質センサ2と脱イオン部5との間を脱イオン熱水が循環して通流するように第1切り替え弁3と第2切り替え弁4をそれぞれ切り替える。   Next, the operation of this apparatus will be described. At the time of water quality measurement by the water quality sensor 2, the first switching valve 3 and the second switching valve 4 are switched so that hot water flows only through the main pipe 1. When the measurement is completed, the first switching valve 3 and the second switching valve 4 are switched so that deionized hot water circulates between the water quality sensor 2 and the deionization unit 5 and flows therethrough.

洗浄終了の判定は、単にタイマーで洗浄時間を予め決めておく方式(例:5分測定、55分洗浄)でもよいし、電気伝導度計9の指示値が下がり、安定したら、洗浄完了とみなす制御を行ってもよい。洗浄が完了したら主配管1のみに熱水が通流するように第1切り替え弁3と第2切り替え弁4をそれぞれ切り替えて、水質センサ2を測定状態に戻すか、もしくは、次の測定のタイミングまで通水をストップする。   The determination of the end of cleaning may be a method in which the cleaning time is simply determined in advance by a timer (for example, measurement for 5 minutes, cleaning for 55 minutes), or when the indicated value of the conductivity meter 9 decreases and stabilizes, it is considered that the cleaning is completed. Control may be performed. When cleaning is completed, the first switching valve 3 and the second switching valve 4 are switched so that hot water flows only through the main pipe 1 to return the water quality sensor 2 to the measurement state, or the timing of the next measurement Stop water flow until.

図2は、本発明の第2の実施形態に係る概略構成図である。第2の実施形態は、上記第1の実施形態の脱イオン部11をイオン交換樹脂から電気再生式脱イオン装置(EDI:Electric deionization)へ変更した例である。熱水は、イオン交換樹脂(カチオン交換樹脂とアニオン交換樹脂の混相が一般的)が充填してある脱塩室に導入される。脱塩室は、陰極室12と陽極室14の間に設けられており、陰極室と脱塩室の間に陽イオン交換膜を、陽極室と脱塩室の間に陰イオン交換膜をそれぞれ設置されている。陰極室12内には陰極、陽極室14内には陽極が備えられている。陰極室12の一端と返送配管を接続する配管を設け、その途中に流量調整弁17を設ける。陰極室12の他端と陽極室の一端を接続する配管を設ける。陽極室の他端から外部に濃縮液を排出する配管を設ける。陽極と陰極は図示しない電源に接続されており、制御部16の指令により陰極と陽極に電圧を印加すると、陽イオンは陰極へ、陰イオンは陽極へそれぞれ移動し、脱塩室内からナトリウムイオンや塩化物イオンなどのイオンを陰極室12および陽極室14へ移動できる。水の電気分解や電離により生成する水素イオンや水酸化物イオンにより脱塩室内のイオン交換樹脂が連続的に再生される。   FIG. 2 is a schematic configuration diagram according to the second embodiment of the present invention. The second embodiment is an example in which the deionization unit 11 of the first embodiment is changed from an ion exchange resin to an electric regeneration type deionization apparatus (EDI). Hot water is introduced into a desalting chamber filled with an ion exchange resin (a mixed phase of a cation exchange resin and an anion exchange resin is generally used). The desalting chamber is provided between the cathode chamber 12 and the anode chamber 14, and a cation exchange membrane is provided between the cathode chamber and the desalting chamber, and an anion exchange membrane is provided between the anode chamber and the desalting chamber. is set up. The cathode chamber 12 is provided with a cathode, and the anode chamber 14 is provided with an anode. A pipe that connects one end of the cathode chamber 12 and the return pipe is provided, and a flow rate adjusting valve 17 is provided in the middle thereof. A pipe connecting the other end of the cathode chamber 12 and one end of the anode chamber is provided. A pipe for discharging the concentrate from the other end of the anode chamber is provided. The anode and the cathode are connected to a power source (not shown), and when a voltage is applied to the cathode and the anode according to a command from the control unit 16, the cation moves to the cathode and the anion moves to the anode, respectively. Ions such as chloride ions can be moved to the cathode chamber 12 and the anode chamber 14. The ion exchange resin in the desalting chamber is continuously regenerated by hydrogen ions and hydroxide ions generated by water electrolysis and ionization.

濃縮液が外部に排出されることによる液量減少を補う方法としては、第1切り替え弁3より上流側の主配管1から配管を分岐させ、脱イオン部11の上流側または温度調整器10の上流側の分岐配管7に接続する方法がある。   As a method of compensating for the decrease in the liquid volume due to the concentrated liquid being discharged to the outside, the pipe is branched from the main pipe 1 on the upstream side of the first switching valve 3, and the upstream side of the deionization unit 11 or the temperature regulator 10. There is a method of connecting to the branch pipe 7 on the upstream side.

他の方法としては、第1切り替え弁3から濃縮液の流量分だけа−b方向に原水である熱水を補給するように調節する方法がある。
さらに他の方法としては、分岐配管の途中に図示していないバッファータンクを設け、脱イオン部11で外部に排出される濃縮液の量より多い熱水を貯留することにしてもよい。この場合、次の手順で行う。測定終了後、第1切り替え弁3をа−b方向に通流するようにし、第2切り替え弁4をa−c方向に通流するように切り替える。循環ポンプ6を起動しバッファータンクに熱水を貯留する。バッファータンクには水位計を設けておき、水位計が上限値に達したら、第1切り替え弁3をc−b方向に通流するように切り替え、上述の手順と同様に脱イオン熱水を循環させる。この際、濃縮液として排出された液量分だけバッファータンクの水位が減少することになる。水位計が下限値に達した場合は、第1切り替え弁3をа−b方向に通流するようにし、再度バッファータンクに熱水を貯留する。
As another method, there is a method in which the first switching valve 3 is adjusted so as to supply hot water as raw water in the direction a-b by the flow rate of the concentrated liquid.
As another method, a buffer tank (not shown) may be provided in the middle of the branch pipe, and hot water larger than the amount of the concentrated liquid discharged to the outside by the deionization unit 11 may be stored. In this case, the following procedure is performed. After the measurement is completed, the first switching valve 3 is switched to flow in the a-b direction, and the second switching valve 4 is switched to flow in the a-c direction. The circulation pump 6 is started and hot water is stored in the buffer tank. A water level gauge is provided in the buffer tank, and when the water level gauge reaches the upper limit value, the first switching valve 3 is switched to flow in the cb direction, and deionized hot water is circulated in the same manner as described above. Let At this time, the water level in the buffer tank decreases by the amount of liquid discharged as the concentrated liquid. When the water level gauge reaches the lower limit value, the first switching valve 3 is caused to flow in the direction a-b, and hot water is stored again in the buffer tank.

図3は、本発明の第3の実施形態に係る概略構成図である。第2の実施形態に記載の内容に対して、水質センサ2の熱水と接する部分に対向する位置に超音波発生器の出力部を設け、水質センサ2に超音波を当てることにより、純水による洗浄効果をより高めている。この超音波発生器の設置は、第1の実施形態にも適用することができる。   FIG. 3 is a schematic configuration diagram according to the third embodiment of the present invention. With respect to the content described in the second embodiment, an output unit of an ultrasonic generator is provided at a position facing a portion of the water quality sensor 2 that contacts the hot water, and the water quality sensor 2 is irradiated with ultrasonic waves to obtain pure water. The cleaning effect by is further enhanced. This installation of the ultrasonic generator can also be applied to the first embodiment.

1 主配管
2 水質センサ
3 第1切り替え弁
4 第2切り替え弁
5 脱イオン部(イオン交換カートリッジ)
6 循環ポンプ
7 分岐配管
8 返送配管
9 電気伝導度計
10 温度調整器
11 脱イオン部(電気再生式脱イオン装置)
12 陰極室
13 脱塩室
14 陽極室
15 超音波発生器
16 制御部
17 流量調整弁
DESCRIPTION OF SYMBOLS 1 Main piping 2 Water quality sensor 3 1st switching valve 4 2nd switching valve 5 Deionization part (ion exchange cartridge)
6 Circulation pump 7 Branch piping 8 Return piping 9 Electrical conductivity meter 10 Temperature regulator 11 Deionization part (electric regeneration type deionization device)
DESCRIPTION OF SYMBOLS 12 Cathode chamber 13 Desalination chamber 14 Anode chamber 15 Ultrasonic generator 16 Control part 17 Flow control valve

Claims (7)

熱水の水質を測定する水質センサと、前記熱水のイオンを除去して脱イオン熱水を生成する脱イオン部とを備え、前記脱イオン熱水で前記水質センサを洗浄することを特徴とする熱水水質測定装置。   A water quality sensor for measuring the quality of the hot water; and a deionization unit for generating deionized hot water by removing ions of the hot water, wherein the water quality sensor is washed with the deionized hot water. Hot water quality measuring device. 請求項1に記載の熱水水質測定装置において、前記熱水が通流する主配管に設けられた水質センサと、前記熱水のイオンを除去して脱イオン熱水を生成する脱イオン部と、前記水質センサより下流側の主配管に分岐配管および第2切り替え弁を設け、前記分岐配管の一端を前記脱イオン部に接続し、前記水質センサより上流側の主配管に第1切り替え弁を設け、前記脱イオン部と前記第1切り替え弁を接続する返送配管と、前記脱イオン熱水を前記水質センサおよび前記脱イオン部の間を循環流通させる循環ポンプとを備えることを特徴とする熱水水質測定装置。   The hot water / water quality measuring apparatus according to claim 1, wherein a water quality sensor is provided in a main pipe through which the hot water flows, and a deionization unit that generates deionized hot water by removing ions of the hot water. The branch pipe and the second switching valve are provided in the main pipe downstream from the water quality sensor, one end of the branch pipe is connected to the deionization section, and the first switch valve is provided in the main pipe upstream from the water quality sensor. And a return pipe for connecting the deionization part and the first switching valve, and a circulation pump for circulating the deionized hot water between the water quality sensor and the deionization part. Water quality measuring device. 請求項1または2に記載の熱水水質測定装置において、前記脱イオン部に前記熱水を供給する前に前記熱水を加熱または冷却する温度調整器を備えることを特徴とする熱水水質測定装置。   The hydrothermal water quality measurement apparatus according to claim 1 or 2, further comprising a temperature regulator that heats or cools the hot water before supplying the hot water to the deionization unit. apparatus. 請求項1ないし3のいずれか一項に記載の熱水水質測定装置において、前記脱イオン部がイオン交換樹脂であることを特徴とする熱水水質測定装置。   The hot water / water quality measuring apparatus according to claim 1, wherein the deionization part is an ion exchange resin. 請求項1ないし3のいずれか一項に記載の熱水水質測定装置において、前記脱イオン部が電気再生式脱イオン装置であることを特徴とする熱水水質測定装置。   The hot water / water quality measuring apparatus according to claim 1, wherein the deionizing unit is an electric regeneration type deionizing apparatus. 請求項1ないし5のいずれか一項に記載の熱水水質測定装置において、前記水質センサが、pH計またはシリカ濃度計であることを特徴とする熱水水質測定装置。   The hot water / water quality measuring apparatus according to claim 1, wherein the water quality sensor is a pH meter or a silica concentration meter. 請求項1ないし6のいずれか一項に記載の熱水水質測定装置において、前記第1切り替え弁と前記第2切り替え弁の開閉、および、前記脱イオン部の起動停止とを制御する制御部を備え、定期的に前記水質センサを自動洗浄することを特徴とする熱水水質測定装置。   The hot water and water quality measuring apparatus according to any one of claims 1 to 6, further comprising: a control unit that controls opening and closing of the first switching valve and the second switching valve and starting and stopping of the deionization unit. And a hot water quality measuring device that automatically cleans the water quality sensor periodically.
JP2010231335A 2010-10-14 2010-10-14 Hot water quality measuring device Active JP5516309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010231335A JP5516309B2 (en) 2010-10-14 2010-10-14 Hot water quality measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231335A JP5516309B2 (en) 2010-10-14 2010-10-14 Hot water quality measuring device

Publications (2)

Publication Number Publication Date
JP2012083293A true JP2012083293A (en) 2012-04-26
JP5516309B2 JP5516309B2 (en) 2014-06-11

Family

ID=46242303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231335A Active JP5516309B2 (en) 2010-10-14 2010-10-14 Hot water quality measuring device

Country Status (1)

Country Link
JP (1) JP5516309B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4098993A1 (en) 2021-05-31 2022-12-07 NGK Spark Plug Co., Ltd. Liquid quality measurement apparatus and liquid quality measurement system
WO2024057966A1 (en) * 2022-09-12 2024-03-21 富士電機株式会社 pH ESTIMATION DEVICE AND pH ESTIMATION METHOD FOR SILICA-OVERSATURATED FLUID

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783805A (en) * 1993-09-11 1995-03-31 Horiba Ltd Method for supplying zero water for far ultraviolet ray absorbance meter
WO2010038479A1 (en) * 2008-10-03 2010-04-08 富士電機システムズ株式会社 Steam characteristics automatic measuring device and geothermal power generating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783805A (en) * 1993-09-11 1995-03-31 Horiba Ltd Method for supplying zero water for far ultraviolet ray absorbance meter
WO2010038479A1 (en) * 2008-10-03 2010-04-08 富士電機システムズ株式会社 Steam characteristics automatic measuring device and geothermal power generating device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013058724; 山田茂登ら、: '地熱開発システムの取組と最新技術' 富士技報 Vol.83, No.3, 201005, p.196-200 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4098993A1 (en) 2021-05-31 2022-12-07 NGK Spark Plug Co., Ltd. Liquid quality measurement apparatus and liquid quality measurement system
WO2024057966A1 (en) * 2022-09-12 2024-03-21 富士電機株式会社 pH ESTIMATION DEVICE AND pH ESTIMATION METHOD FOR SILICA-OVERSATURATED FLUID

Also Published As

Publication number Publication date
JP5516309B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP3273718B2 (en) Method for treating water to be treated by electrodeionization and apparatus used for the method
JP6109708B2 (en) Electric deionized water production apparatus and operation method thereof
JP5768961B2 (en) Water treatment equipment
JP4909648B2 (en) Circulating ozone water production apparatus and method of operating the apparatus
JP2004190924A (en) Water heater
KR20150113118A (en) Rechargeable electrochemical cells
JP5516309B2 (en) Hot water quality measuring device
JP2010172806A (en) Pure water production system
JP2001176535A (en) Water treatment device of fuel cell power generator and its operating method
JP5987286B2 (en) Water treatment method
KR20150084475A (en) An Apparatus for reducing impurity inflow and removing impurities in stator cooling water
JP5190674B2 (en) Operation method of boiler system
JP2012145244A (en) Scale component removing device for water heater
EP2980027A1 (en) Operating an apparatus for removal of ions with warm and cold water
JP6158681B2 (en) Deionized water production system and operation method thereof
JP2004033977A (en) Operation method of electrically deionizing apparatus
KR100698580B1 (en) Device for circulation the electrode water for electrodeionization apparatus
US20200284742A1 (en) Method and system for measuring conductivity of decationized water
JP2016142451A (en) Heat exchanger for power generation system, binary power generation system with heat exchanger and control method for heat exchanger for power generation system
JP4662277B2 (en) Electrodeionization equipment
JP2018043206A (en) Electric type deionized water production device and operational method thereof
JP2010235430A (en) Method and apparatus for producing dealkalized silicate aqueous solution of sodium silicate aqueous solution
JP7530639B2 (en) Cooling water purification device that can be connected to a cooling tower
JP3301678B2 (en) Ion water generator
JP2007260633A (en) Water treatment system and control method of water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5516309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250