JP2018043206A - Electric type deionized water production device and operational method thereof - Google Patents

Electric type deionized water production device and operational method thereof Download PDF

Info

Publication number
JP2018043206A
JP2018043206A JP2016180614A JP2016180614A JP2018043206A JP 2018043206 A JP2018043206 A JP 2018043206A JP 2016180614 A JP2016180614 A JP 2016180614A JP 2016180614 A JP2016180614 A JP 2016180614A JP 2018043206 A JP2018043206 A JP 2018043206A
Authority
JP
Japan
Prior art keywords
treated water
chamber
operation mode
water
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016180614A
Other languages
Japanese (ja)
Other versions
JP6777480B2 (en
Inventor
慶介 佐々木
Keisuke Sasaki
慶介 佐々木
日高 真生
Masanari Hidaka
真生 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2016180614A priority Critical patent/JP6777480B2/en
Publication of JP2018043206A publication Critical patent/JP2018043206A/en
Application granted granted Critical
Publication of JP6777480B2 publication Critical patent/JP6777480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PROBLEM TO BE SOLVED: To provide an electric type deionized water production device and an operational method thereof, which can solve a problem of the rise of water quality of treatment water, which may occur at the time of device start, while suppressing useless consumption of water or energy.SOLUTION: An electric type deionized water production device 10 includes: a desalination chamber D located between an anode 11 and a cathode 12 and partitioned by an anion exchange membrane a1 and a cation exchange membrane c1; and a pair of concentration chambers C1 and C2 arranged on both sides of the desalination chamber D. The electric type deionized water production device 10 is provided with a controller 3 in which an operation is switched between a first operational mode for storing treatment water obtained by conducting water to be treated to the desalination chamber D and a second operation mode for circulating by refluxing the treatment water obtained by conducting water to be treated to the desalination chamber D or for externally discharging the treatment water. In the second operational mode, an amount of water conducted to the desalination chamber D is less than in the first operational mode, and a current value that flows between the anode 11 and the anode 12 is the same as in the first operational mode or less than in the first operational mode.SELECTED DRAWING: Figure 1

Description

本発明は、電気式脱イオン水製造装置およびその運転方法に関する。   The present invention relates to an electric deionized water production apparatus and an operation method thereof.

電気式脱イオン水製造装置は、カチオン(陽イオン)のみを透過させるカチオン交換膜とアニオン(陰イオン)のみを透過させるアニオン交換膜との間に配置され、イオン交換体(アニオン交換体とカチオン交換体との少なくとも一方)が充填された脱塩室と、脱塩室の両側でカチオン交換膜およびアニオン交換膜の外側にそれぞれ配置された濃縮室とを基本構成として備えた装置である。脱塩室は、脱塩室と陽極との間にアニオン交換膜が位置し、脱塩室と陰極との間にカチオン交換膜が位置するように、陽極と陰極との間に配置されている。   The electric deionized water production apparatus is arranged between a cation exchange membrane that allows only cations (cations) to pass therethrough and an anion exchange membrane that allows only anions (anions) to pass through, and an ion exchanger (anion exchanger and cation). It is an apparatus comprising as basic components a desalting chamber filled with at least one of the exchangers, and concentrating chambers arranged on both sides of the desalting chamber and outside the cation exchange membrane and the anion exchange membrane, respectively. The desalting chamber is disposed between the anode and the cathode such that an anion exchange membrane is located between the desalting chamber and the anode, and a cation exchange membrane is located between the desalting chamber and the cathode. .

このような電気式脱イオン水製造装置において、陽極と陰極との間に直流電圧を印加した状態で脱塩室に被処理水を通水すると、被処理水中のイオン成分は脱塩室内のイオン交換体に捕捉される。それと同時に、脱塩室内では、イオン交換膜とイオン交換体との界面またはイオン交換体同士の界面で生じる電位差により、水の解離反応が進行し、水素イオン(H)と水酸化物イオン(OH)が生成される。そして、この生成された水素イオンと水酸化物イオンとによって、先にイオン交換体に補足されていたイオン成分はイオン交換され、イオン交換体から遊離する。遊離したイオン成分のうちカチオンは、直流電流によって駆動されてイオン交換体内を移動し、さらにカチオン交換膜を通過して陰極側の濃縮室に移動する。同様に、遊離したイオン成分のうちアニオンは、直流電流によって駆動されてイオン交換体内を移動し、さらにアニオン交換膜を通過して陽極側の濃縮室に移動する。こうして、脱塩室に供給された被処理水中のイオン成分が濃縮室に移動し、脱塩室から脱イオン水が得られるとともに、脱塩室のイオン交換体も再生される。一方で、イオン成分が移動してきた濃縮室には水を流すことで、そのイオン成分を濃縮水として外部に排出することができる。 In such an electrical deionized water production apparatus, when water to be treated is passed through the desalting chamber with a DC voltage applied between the anode and the cathode, ionic components in the water to be treated are ions in the desalting chamber. Captured by the exchanger. At the same time, in the desalting chamber, the dissociation reaction of water proceeds due to the potential difference generated at the interface between the ion exchange membrane and the ion exchanger or between the ion exchangers, and hydrogen ions (H + ) and hydroxide ions ( OH ) is produced. Then, the ion component previously captured in the ion exchanger is ion-exchanged by the generated hydrogen ions and hydroxide ions, and is released from the ion exchanger. Of the liberated ionic components, the cations are driven by a direct current to move in the ion exchanger, and further pass through the cation exchange membrane and move to the concentration chamber on the cathode side. Similarly, of the released ionic component, the anion is driven by a direct current and moves in the ion exchanger, and further passes through the anion exchange membrane and moves to the concentration chamber on the anode side. In this way, the ion component in the for-treatment water supplied to the desalting chamber moves to the concentration chamber, and deionized water is obtained from the desalting chamber, and the ion exchanger in the desalting chamber is also regenerated. On the other hand, the ionic component can be discharged to the outside as concentrated water by flowing water into the concentration chamber where the ionic component has moved.

上述したように、電気式脱イオン水製造装置では、イオン交換体への不純物イオンの吸着とそのイオン交換体の電気的な再生、不純物イオンの濃縮室への移動という複数の過程によって、被処理水中の不純物イオンが除去される。このため、一般的なイオン交換樹脂を用いた吸着装置に比べ、装置起動時の処理水(脱イオン水)の水質の立ち上がりに時間がかかる傾向がある。特に、装置を一定時間運転した後で停止した場合、運転再開時の水質の立ち上がりに長時間かかることがある。これは、電気式脱イオン水製造装置が、その構成として、イオン成分が除去されイオン濃度が低減される脱塩室と、この脱塩室とイオン交換膜を挟んで配置され、脱塩室から移動してきたイオン成分によってイオン濃度が高められる濃縮室とを備えることから、装置の運転を停止したことで陽極と陰極との間に電圧が印加されていないとしたときに、濃縮室と脱塩室とのイオン濃度の勾配に基づいて濃縮室からイオン成分が脱塩室に拡散し、それが脱塩室内のイオン交換体に吸着してしまうためである。すなわち、脱塩室内のイオン交換体に不純物イオンが吸着された状態で装置を起動しても、その吸着された不純物イオンを再び濃縮室まで移動させる工程が必要になるためである。一例では、装置の運転停止前の状態に戻るまでに数時間から数十時間の時間を要するケースもある。   As described above, in the electric deionized water production apparatus, the process is performed by a plurality of processes including adsorption of impurity ions to the ion exchanger, electrical regeneration of the ion exchanger, and movement of impurity ions to the concentration chamber. Impurity ions in the water are removed. For this reason, compared with the adsorption apparatus using a general ion exchange resin, there exists a tendency for the rise of the quality of the treated water (deionized water) at the time of apparatus start-up to take time. In particular, when the apparatus is stopped after operating for a certain time, it may take a long time for the water quality to rise when the operation is resumed. This is because an electric deionized water production apparatus is arranged with a demineralization chamber in which an ionic component is removed and an ion concentration is reduced, and a demineralization chamber and an ion exchange membrane sandwiched between And a concentration chamber in which the ion concentration is increased by the ion component that has moved, so that when the apparatus is stopped, no voltage is applied between the anode and the cathode. This is because the ion component diffuses from the concentration chamber to the desalting chamber based on the gradient of the ion concentration with the chamber and is adsorbed by the ion exchanger in the desalting chamber. That is, even if the apparatus is started in a state where the impurity ions are adsorbed on the ion exchanger in the desalting chamber, a process for moving the adsorbed impurity ions to the concentration chamber again is required. In one example, it may take several hours to several tens of hours to return to the state before the operation of the apparatus is stopped.

以上の点を考慮すると、運転再開時の水質の立ち上がり時間を短縮する方法としては、装置の運転を停止する際に、電極への直流電圧の印加を停止した後も濃縮室への通水を継続して行い、濃縮室内に滞留して不純物イオンを多く含む水を外部に排出する(ブローする)ことが考えられる。しかしながら、この方法は、濃縮室でのスケールの発生を抑制するとともに運転電圧を低減するために濃縮室にイオン交換樹脂が充填されている場合(例えば、特許文献1参照)には有効ではない。すなわち、濃縮室にイオン交換樹脂が充填されている場合、上述のブロー運転を行ったとしても、濃縮室内のイオン交換樹脂に吸着したイオン成分は外部に排出されず、さらには徐々に脱塩室に拡散してしまい、運転再開時の水質の立ち上がりの問題を回避することは困難である。   Considering the above points, as a method of shortening the rise time of water quality at the time of restarting operation, when stopping the operation of the apparatus, water supply to the concentrating chamber is allowed even after the application of DC voltage to the electrode is stopped. It is conceivable to continue and to discharge (blow) water containing a large amount of impurity ions while staying in the concentration chamber. However, this method is not effective when the concentration chamber is filled with an ion exchange resin in order to suppress the generation of scale in the concentration chamber and reduce the operating voltage (see, for example, Patent Document 1). That is, when the ion exchange resin is filled in the concentrating chamber, the ionic components adsorbed on the ion exchange resin in the concentrating chamber are not discharged to the outside even if the above-described blow operation is performed. It is difficult to avoid the problem of rising water quality when restarting operation.

そこで、この水質の立ち上がりの問題を回避する別の方法として、特許文献2に記載されているように、ユースポイントで処理水の需要がないときにも、処理水を脱塩室に還流させて循環させることで、電気式脱イオン水製造装置の運転を停止させずに継続して行うことが考えられる。   Therefore, as another method for avoiding the problem of rising water quality, as described in Patent Document 2, even when there is no demand for treated water at the point of use, the treated water is returned to the desalination chamber. By circulating, it can be considered that the electric deionized water production apparatus is continuously operated without stopping the operation.

特開2001−259646号公報JP 2001-259646 A 特開平9−57271号公報JP-A-9-57271

しかしながら、特許文献2に記載の方法は、処理水の循環運転を行うことや直流電源を常時作動させることに伴う消費電力が無視できず、省エネルギーの観点から好ましくない。また、処理水の循環運転の間にも、濃縮室でイオン成分を取り込んだ濃縮水を外部に排出する必要があるが、処理水の循環運転が長期間にわたると、その排出量も無視できなくなる。   However, the method described in Patent Document 2 is not preferable from the viewpoint of energy saving because the power consumption associated with the circulating operation of the treated water and the constant operation of the DC power supply cannot be ignored. In addition, it is necessary to discharge the concentrated water that has taken in the ionic components in the concentration chamber during the circulation operation of the treated water, but if the circulation operation of the treated water takes a long time, the amount of discharge cannot be ignored. .

そこで、本発明の目的は、エネルギーや水の無駄な消費を抑制しながら、装置起動時に発生し得る処理水の水質の立ち上がりの問題を回避する電気式脱イオン水製造装置およびその運転方法を提供することである。   Accordingly, an object of the present invention is to provide an electric deionized water production apparatus and a method for operating the same, which avoids the problem of rising of the quality of treated water that may occur when the apparatus is started up while suppressing wasteful consumption of energy and water. It is to be.

上述した目的を達成するために、本発明の電気式脱イオン水製造装置は、陽極と陰極との間に位置し、陽極側のアニオン交換膜と陰極側のカチオン交換膜とで区画され、カチオン交換体とアニオン交換体との少なくとも一方が充填された脱塩室と、アニオン交換膜およびカチオン交換膜を介して脱塩室の両側に配置された一対の濃縮室とを備えた電気式脱イオン水製造装置であって、電気式脱イオン水製造装置の運転を、被処理水を脱塩室に通水して得られた処理水を処理水タンクに貯留する第1の運転モードと、被処理水を脱塩室に通水して得られた処理水を脱塩室に還流させて循環させるか、または処理水を外部に排出する第2の運転モードとに切り替える制御部を有し、第2の運転モードでは、脱塩室への通水量が第1の運転モードよりも少なく、陽極と陰極との間に流れる電流値が第1の運転モードと同じか、または第1の運転モードよりも小さい。   In order to achieve the above-described object, the electric deionized water production apparatus of the present invention is located between an anode and a cathode, and is partitioned by an anion exchange membrane on the anode side and a cation exchange membrane on the cathode side. Electrical deionization comprising a demineralization chamber filled with at least one of an exchanger and an anion exchanger, and a pair of concentration chambers arranged on both sides of the demineralization chamber via an anion exchange membrane and a cation exchange membrane A water production apparatus comprising: a first operation mode in which operation of the electric deionized water production apparatus is performed by storing treated water obtained by passing treated water through a desalting chamber in a treated water tank; A control unit for switching the treatment water obtained by passing the treatment water to the desalting chamber to be circulated by refluxing the desalination chamber or switching to the second operation mode for discharging the treated water to the outside; In the second operation mode, the water flow rate to the desalination chamber is the same as in the first operation mode. Even less, the same or not the current value in the first operation mode which flows between the anode and the cathode, or less than the first operation mode.

また、本発明の電気式脱イオン水製造装置の運転方法は、陽極と陰極との間に位置し、陽極側のアニオン交換膜と陰極側のカチオン交換膜とで区画され、カチオン交換体とアニオン交換体との少なくとも一方が充填された脱塩室と、アニオン交換膜およびカチオン交換膜を介して脱塩室の両側に配置された一対の濃縮室とを備えた電気式脱イオン水製造装置の運転方法であって、被処理水を脱塩室に通水して得られた処理水を処理水タンクに貯留する第1の工程と、被処理水を脱塩室に通水して得られた処理水を脱塩室に還流させて循環させるか、または処理水を外部に排出する第2の工程と、を含み、第2の工程では、脱塩室への通水量を第1の工程よりも少なくし、陽極と陰極との間に流す電流値を第1の工程と同じにするか、第1の工程よりも小さくする。   Further, the operation method of the electric deionized water production apparatus of the present invention is located between the anode and the cathode, and is partitioned by the anion exchange membrane on the anode side and the cation exchange membrane on the cathode side, and the cation exchanger and the anion An electric deionized water production apparatus comprising a demineralization chamber filled with at least one of an exchanger and a pair of concentration chambers disposed on both sides of the demineralization chamber via an anion exchange membrane and a cation exchange membrane It is an operation method, and is obtained by passing the treated water through the desalting chamber, the first step of storing the treated water obtained by passing the treated water through the desalting chamber in the treated water tank. A second step of circulating the treated water to the desalting chamber and circulating it or discharging the treated water to the outside. In the second step, the amount of water flow to the desalting chamber is set to the first step. The current value flowing between the anode and the cathode is the same as in the first step, or the first process To be smaller than.

このような電気式脱イオン水製造装置によれば、第2の運転モード(第2の工程)における消費電力および外部への排水量を、第1の運転モード(第1の工程)と同じ条件(脱塩室への通水量および電極間の電流値)で第2の運転モード(第2の工程)を行った場合に比べて削減することができる。その結果、装置起動時に発生し得る処理水の水質の立ち上がりの問題を回避するために装置の継続運転を行った場合でも、消費電力および外部への排水量を削減することができる。   According to such an electrical deionized water production apparatus, the power consumption and the amount of discharged water in the second operation mode (second step) are the same as those in the first operation mode (first step) ( The amount of water passing through the desalting chamber and the current value between the electrodes) can be reduced compared to the case where the second operation mode (second step) is performed. As a result, even when the apparatus is continuously operated in order to avoid the problem of rising water quality of the treated water that may occur at the time of starting the apparatus, the power consumption and the amount of drainage to the outside can be reduced.

以上、本発明によれば、水やエネルギーの無駄な消費を抑制しながら、装置起動時に発生し得る処理水の水質の立ち上がりの問題を回避することできる。   As described above, according to the present invention, it is possible to avoid the problem of rising of the quality of the treated water that may occur when the apparatus is started up while suppressing wasteful consumption of water and energy.

本発明の第1の実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る電気式脱イオン水製造装置の概略構成図である。It is a schematic block diagram of the electrical deionized water manufacturing apparatus which concerns on the 4th Embodiment of this invention.

以下、図面を参照して、本発明の実施の形態について説明する。ただし、以下に示す実施形態は、本発明を説明するための例示的なものであり、本発明を制限するものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below is an example for explaining the present invention, and does not limit the present invention.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る電気式脱イオン水製造装置の概略構成図である。なお、図示した構成は、あくまで一例であって、例えば、各室の構成(数、配置など)を変更したり、バルブや計測器などを追加したりするなど、装置の使用目的や用途、要求性能に応じて適宜変更可能であることは言うまでもない。
(First embodiment)
FIG. 1 is a schematic configuration diagram of an electric deionized water production apparatus according to the first embodiment of the present invention. The illustrated configuration is merely an example. For example, the configuration (number, arrangement, etc.) of each room is changed, or a valve, a measuring instrument, or the like is added. Needless to say, it can be appropriately changed according to the performance.

電気式脱イオン水製造装置10は、電気泳動と電気透析とを組み合わせた装置であり、イオン交換体による被処理水の脱イオン化(脱塩)処理と、イオン交換体の再生処理とを同時に行う装置である。電気式脱イオン水製造装置10には、電気式脱イオン水製造装置10に供給される被処理水を貯留する被処理水タンク1と、電気式脱イオン水製造装置10で製造された処理水(脱イオン水)を貯留する処理水タンク2とが接続されている。   The electric deionized water production apparatus 10 is a combination of electrophoresis and electrodialysis, and simultaneously performs deionization (desalting) treatment of water to be treated with an ion exchanger and regeneration treatment of the ion exchanger. Device. The electric deionized water production apparatus 10 includes a treated water tank 1 for storing treated water supplied to the electric deionized water production apparatus 10 and treated water produced by the electric deionized water production apparatus 10. A treated water tank 2 for storing (deionized water) is connected.

電気式脱イオン水製造装置10は、陽極11を備えた陽極室E1と、陰極12を備えた陰極室E2と、陽極室E1と陰極室E2との間に設けられた脱塩室Dと、脱塩室Dの両側に配置された一対の濃縮室C1,C2であって、脱塩室Dの陽極11側で、アニオン交換膜a1を介して脱塩室Dと隣接する陽極側濃縮室C1と、脱塩室Dの陰極12側で、カチオン交換膜c1を介して脱塩室Dと隣接する陰極側濃縮室C2とを含む一対の濃縮室C1,C2と、を有している。陽極側濃縮室C1は、カチオン交換膜c2を介して陽極室E1と隣接し、陰極側濃縮室C2は、アニオン交換膜a2を介して陰極室E2と隣接している。   The electric deionized water production apparatus 10 includes an anode chamber E1 including an anode 11, a cathode chamber E2 including a cathode 12, a demineralization chamber D provided between the anode chamber E1 and the cathode chamber E2, A pair of concentrating chambers C1 and C2 disposed on both sides of the desalting chamber D, the anode side concentrating chamber C1 adjacent to the desalting chamber D via the anion exchange membrane a1 on the anode 11 side of the desalting chamber D And a pair of concentrating chambers C1 and C2 including the desalting chamber D and the adjacent cathode-side concentrating chamber C2 via the cation exchange membrane c1 on the cathode 12 side of the desalting chamber D. The anode enrichment chamber C1 is adjacent to the anode chamber E1 via the cation exchange membrane c2, and the cathode enrichment chamber C2 is adjacent to the cathode chamber E2 via the anion exchange membrane a2.

脱塩室Dには、カチオン交換体とアニオン交換体との少なくとも一方が充填され、好ましくは、カチオン交換体とアニオン交換体との混合物が充填されている。すなわち、カチオン交換体とアニオン交換体とがいわゆる混床形態で充填されていることが好ましい。カチオン交換体としては、カチオン交換樹脂、カチオン交換繊維、モノリス状多孔質カチオン交換体等が挙げられ、最も汎用的なカチオン交換樹脂が好適に用いられる。カチオン交換体の種類としては、弱酸性カチオン交換体、強酸性カチオン交換体等が挙げられる。アニオン交換体としては、アニオン交換樹脂、アニオン交換繊維、モノリス状多孔質アニオン交換体等が挙げられ、最も汎用的なアニオン交換樹脂が好適に用いられる。アニオン交換体の種類としては、弱塩基性アニオン交換体、強塩基性アニオン交換体等が挙げられる。   The desalting chamber D is filled with at least one of a cation exchanger and an anion exchanger, and preferably a mixture of a cation exchanger and an anion exchanger. That is, it is preferable that the cation exchanger and the anion exchanger are packed in a so-called mixed bed form. Examples of the cation exchanger include a cation exchange resin, a cation exchange fiber, and a monolithic porous cation exchanger, and the most versatile cation exchange resin is preferably used. Examples of the cation exchanger include weakly acidic cation exchangers and strongly acidic cation exchangers. Examples of the anion exchanger include anion exchange resins, anion exchange fibers, and monolithic porous anion exchangers, and the most general anion exchange resin is preferably used. Examples of the anion exchanger include weakly basic anion exchangers and strong basic anion exchangers.

陽極側濃縮室C1および陰極側濃縮室C2は、脱塩室Dから排出されるアニオン成分およびカチオン成分をそれぞれ取り込み、それらを濃縮水によって外部に排出するために設けられている。電気式脱イオン水製造装置10の電気抵抗を抑えるために、各濃縮室C1,C2にはイオン交換体が充填されていることが好ましい。   The anode-side enrichment chamber C1 and the cathode-side enrichment chamber C2 are provided to take in the anion component and the cation component discharged from the desalting chamber D and discharge them to the outside with concentrated water, respectively. In order to suppress the electric resistance of the electric deionized water production apparatus 10, it is preferable that each of the concentrating chambers C1 and C2 is filled with an ion exchanger.

陽極室E1には、金属の網状体あるいは板状体からなる陽極11が収容されている。陰極室E2には、金属の網状体あるいは板状体からなる陰極12が収容されている。電気式脱イオン水製造装置1の電気抵抗を抑えるために、陽極室E1および陰極室E2にはイオン交換体が充填されていることが好ましい。   The anode chamber E1 accommodates an anode 11 made of a metal net or plate. The cathode chamber E2 contains a cathode 12 made of a metal net or plate. In order to suppress the electric resistance of the electric deionized water production apparatus 1, it is preferable that the anode chamber E1 and the cathode chamber E2 are filled with an ion exchanger.

脱塩室Dは、流路f1を介して被処理水タンク1に接続され、流路f2を介して処理水タンク2に接続されている。流路f1には、被処理水を送出するためのポンプ13が設けられ、流路f2には、バルブ14と、流路f2を流れる処理水の水質(例えば、導電率、比抵抗など)を計測するための水質計15とが設けられている。被処理水タンク1からの流路f1は、途中で分岐して、各濃縮室C1,C2と陰極室E2にも接続されている。各濃縮室C1,C2には、流路f1を通じて供給される濃縮水を外部に排出するための流路f3が接続されている。陰極室E2は、流路f4を介して陽極室E1に接続され、陽極室E1には、陽極室E1および陰極室E2に供給される電極水を外部に排出するための流路f5が接続されている。なお、流路f1が陽極室E1に接続され、流路f5が陰極室E2に接続されていてもよい。また、流路f2から分岐して被処理水タンク1に接続された流路f6が設けられ、流路f6には、バルブ16が設けられている。   The desalting chamber D is connected to the treated water tank 1 via the flow path f1, and is connected to the treated water tank 2 via the flow path f2. The flow path f1 is provided with a pump 13 for delivering the water to be treated. The flow path f2 is provided with a valve 14 and the quality of treated water flowing through the flow path f2 (for example, conductivity, specific resistance, etc.). A water quality meter 15 for measurement is provided. The flow path f1 from the to-be-processed water tank 1 branches in the middle, and is connected also to each concentration chamber C1, C2 and the cathode chamber E2. A flow path f3 for discharging concentrated water supplied through the flow path f1 to the outside is connected to each of the concentration chambers C1 and C2. The cathode chamber E2 is connected to the anode chamber E1 through a flow channel f4, and the anode chamber E1 is connected to a flow channel f5 for discharging electrode water supplied to the anode chamber E1 and the cathode chamber E2 to the outside. ing. The channel f1 may be connected to the anode chamber E1, and the channel f5 may be connected to the cathode chamber E2. Further, a flow path f6 branched from the flow path f2 and connected to the water tank 1 to be treated is provided, and a valve 16 is provided in the flow path f6.

被処理水タンク1には、流路f7が接続され、被処理水として、好ましくは逆浸透(RO)膜やイオン交換樹脂で前処理した水(導電率が0.1〜100μS/cmの水)が必要に応じて供給されるようになっている。処理水タンク2は、配管(図示せず)を介してユースポイントに接続され、処理水タンク2内の処理水をユースポイントに供給することができる。処理水タンク2には、処理水タンク2内の水位を計測するための水位計17が設けられている。   A flow path f7 is connected to the water tank 1 to be treated, and the water to be treated is preferably water pretreated with a reverse osmosis (RO) membrane or an ion exchange resin (water having a conductivity of 0.1 to 100 μS / cm). ) Is supplied as needed. The treated water tank 2 is connected to a use point via a pipe (not shown), and the treated water in the treated water tank 2 can be supplied to the use point. The treated water tank 2 is provided with a water level meter 17 for measuring the water level in the treated water tank 2.

さらに、電気式脱イオン水製造装置10は、電気式脱イオン水製造装置10の運転を2つの運転モードに切り替える制御部3を有している。以下、本実施形態の電気式脱イオン水製造装置の2つの運転モード、すなわち、採水運転モードと循環運転モードについて説明する。   Furthermore, the electric deionized water production apparatus 10 has a control unit 3 that switches the operation of the electric deionized water production apparatus 10 to two operation modes. Hereinafter, two operation modes of the electric deionized water production apparatus of the present embodiment, that is, a water sampling operation mode and a circulation operation mode will be described.

採水運転モード(第1の運転モード)は、電気式脱イオン水製造装置10の通常運転時に行われる運転モードである。この採水運転モードでは、ユースポイントで使用される処理水を補充するために、被処理水を脱塩室Dに通水して得られた処理水を処理水タンク2に貯留する工程が行われる。   The water sampling operation mode (first operation mode) is an operation mode performed during normal operation of the electric deionized water production apparatus 10. In this water sampling operation mode, the process of storing the treated water obtained by passing the treated water through the desalting chamber D in the treated water tank 2 is performed in order to replenish the treated water used at the use point. Is called.

採水運転モードが開始されると、流路f2のバルブ14が開放され、流路f6のバルブ16が閉鎖される。そして、定電流運転が行われ、すなわち、陽極11、陰極12間には、両極11,12間に流れる電流値が所定の値になるように直流電圧が印加され、脱塩室Dには、ポンプ13の作動により、流路f1を通じて被処理水タンク1から被処理水が供給される。このとき、陽極側濃縮室C1および陰極側濃縮室C2には、被処理水の一部が濃縮水として供給され、同様に、陽極室E1および陰極室E2には、被処理水の一部が電極水として供給されている。被処理水中のカチオン成分およびアニオン成分は、被処理水が脱塩室Dを通過する際に、脱塩室Dに充填されたカチオン交換体およびアニオン交換体にそれぞれ吸着されて除去される。こうして、カチオン成分およびアニオン成分が除去された被処理水は、処理水(脱イオン水)として、処理室Dから流路f2を通じて処理水タンク2に貯留される。   When the water sampling operation mode is started, the valve 14 of the flow path f2 is opened, and the valve 16 of the flow path f6 is closed. Then, a constant current operation is performed, that is, a direct current voltage is applied between the anode 11 and the cathode 12 so that a current value flowing between the two electrodes 11 and 12 becomes a predetermined value. By the operation of the pump 13, the water to be treated is supplied from the water tank 1 to be treated through the flow path f1. At this time, a part of the water to be treated is supplied as concentrated water to the anode side concentrating chamber C1 and the cathode side concentrating chamber C2, and similarly, a part of the water to be treated is supplied to the anode chamber E1 and the cathode chamber E2. It is supplied as electrode water. When the water to be treated passes through the desalting chamber D, the cation component and the anion component in the water to be treated are adsorbed and removed by the cation exchanger and the anion exchanger filled in the desalting chamber D, respectively. Thus, the treated water from which the cation component and the anion component have been removed is stored in the treated water tank 2 from the treatment chamber D through the flow path f2 as treated water (deionized water).

一方で、脱塩室Dでは、水が水素イオン(H)と水酸化物イオン(OH)とに解離する水解離反応が、連続的に進行している。Hはカチオン交換体に吸着したカチオン成分と交換され、OHはアニオン交換体に吸着したアニオン成分と交換される。こうして、脱塩室Dに充填されたカチオン交換体およびアニオン交換体がそれぞれ再生される。 On the other hand, in the desalting chamber D, a water dissociation reaction in which water is dissociated into hydrogen ions (H + ) and hydroxide ions (OH ) proceeds continuously. H + is exchanged with a cation component adsorbed on the cation exchanger, and OH is exchanged with an anion component adsorbed on the anion exchanger. Thus, the cation exchanger and the anion exchanger filled in the desalting chamber D are regenerated.

脱塩室Dのカチオン交換体から遊離したカチオン成分は、陽極11、陰極12間の電位差によって、陰極12側に引き寄せられ、カチオン交換膜c1を通過して陰極側濃縮室C2に移動する。陰極側濃縮室C2に移動したカチオン成分は、陰極側濃縮室C2に供給される濃縮水に取り込まれ、濃縮水と共に流路f3を通じて外部に排出される。脱塩室Dのアニオン交換体から遊離したアニオン成分は、陽極11、陰極12間の電位差によって、陽極側11に引き寄せられ、アニオン交換膜a1を通過して陽極側濃縮室C1に移動する。陽極側濃縮室C1に移動したアニオン成分は、陽極側濃縮室C1に供給される濃縮水に取り込まれ、濃縮水と共に流路f3を通じて外部に排出される。   The cation component liberated from the cation exchanger in the desalting chamber D is attracted to the cathode 12 side by the potential difference between the anode 11 and the cathode 12, passes through the cation exchange membrane c1, and moves to the cathode concentration chamber C2. The cation component moved to the cathode side concentrating chamber C2 is taken into the concentrated water supplied to the cathode side concentrating chamber C2, and is discharged to the outside through the flow path f3 together with the concentrated water. The anion component liberated from the anion exchanger in the desalting chamber D is attracted to the anode side 11 by the potential difference between the anode 11 and the cathode 12, passes through the anion exchange membrane a1, and moves to the anode concentration chamber C1. The anion component that has moved to the anode-side concentration chamber C1 is taken into the concentrated water supplied to the anode-side concentration chamber C1, and is discharged to the outside through the flow path f3 together with the concentrated water.

循環運転モード(第2の運転モード)は、例えばユースポイントで処理水の需要がないときなど、処理水タンク2内の処理水の未使用時に行われる運転モードである。この循環運転モードでは、被処理水を脱塩室Dに通水して得られた処理水を処理水タンク2に貯留させずに、脱塩室Dに還流させて循環させる工程が行われる。   The circulation operation mode (second operation mode) is an operation mode performed when the treated water in the treated water tank 2 is not used, for example, when there is no demand for treated water at the use point. In this circulation operation mode, a process is performed in which treated water obtained by passing the treated water through the desalting chamber D is recirculated to the desalting chamber D without being stored in the treated water tank 2.

循環運転モードでは、通常運転時のモードと同様の脱塩処理が行われるが、循環運転モードが開始されると、流路f2のバルブ14が閉鎖され、流路f6のバルブ16が開放される。そのため、脱塩室Dを流出した処理水は、流路f2から流路f6に流入し、被処理水タンク1から流路f1を通じて再び脱塩室Dに流入する。こうして、脱塩室Dから流出した処理水が被処理水タンク1を介して脱塩室Dに還流することで、処理水の循環運転が行われる。   In the circulation operation mode, the same desalination treatment as that in the normal operation mode is performed, but when the circulation operation mode is started, the valve 14 of the flow path f2 is closed and the valve 16 of the flow path f6 is opened. . Therefore, the treated water that has flowed out of the desalting chamber D flows from the flow path f2 into the flow path f6, and flows again from the treated water tank 1 into the desalting chamber D through the flow path f1. Thus, the treated water flowing out from the desalting chamber D is returned to the desalting chamber D through the water tank 1 to be treated, whereby the circulating operation of the treated water is performed.

一方、循環運転モードでは、ポンプ13の出力が制御され、脱塩室Dへの通水量が採水運転モードよりも少なくなるように設定される。それに応じて、陽極11と陰極12との間に流れる電流値も採水運転モードと同じか、それよりも小さくなるように設定される。その結果、循環運転モードでは、採水運転モードと同じ条件(脱塩室Dへの通水量および電極11,12間の電流値)で処理水の循環運転を行った場合に比べて、ポンプ13の出力を下げるとともに、電流値を同じかまたは小さくすることができ、装置全体の消費電力を削減することができる。また、循環運転モードでは、脱塩室Dへの通水量が少なくなるため、濃縮室C1,C2への濃縮水の通水量も少なくて済み、それにより、外部への排水量も削減することができる。すなわち、装置起動時に発生し得る処理水の水質の立ち上がりの問題を回避するための継続運転として、本実施形態の循環運転モードで運転を行うことで、装置全体の消費電力および外部への排水量を削減することが可能になる。   On the other hand, in the circulation operation mode, the output of the pump 13 is controlled, and the amount of water flow to the desalination chamber D is set to be smaller than that in the water sampling operation mode. Accordingly, the value of the current flowing between the anode 11 and the cathode 12 is set to be the same as or smaller than the water sampling operation mode. As a result, in the circulation operation mode, the pump 13 is compared with the case where the treatment water circulation operation is performed under the same conditions as in the water sampling operation mode (the amount of water passing through the desalination chamber D and the current value between the electrodes 11 and 12). And the current value can be made the same or smaller, and the power consumption of the entire apparatus can be reduced. Further, in the circulation operation mode, since the amount of water flow to the desalination chamber D is reduced, the amount of concentrated water to the concentration chambers C1 and C2 can be reduced, thereby reducing the amount of drainage to the outside. . That is, as a continuous operation for avoiding the problem of rising of the quality of treated water that may occur at the time of starting the device, by operating in the circulating operation mode of the present embodiment, the power consumption of the entire device and the amount of discharged water to the outside are reduced. It becomes possible to reduce.

電極11,12間の電流値の引き下げ率(採水運転モードにおける電流値に対する循環運転モードにおける電流値の割合)は、脱塩室Dへの通水量の引き下げ率(採水運転モードにおける通水量に対する循環運転モードにおける通水量の割合)と同じであることが好ましい。これは、循環運転モードにおいて、採水運転モードと同じ電流効率となり、同じ処理水質を維持できるためである。   The reduction rate of the current value between the electrodes 11 and 12 (ratio of the current value in the circulation operation mode to the current value in the water sampling operation mode) is the reduction rate of the water flow rate to the desalination chamber D (water flow rate in the water sampling operation mode). Is preferably the same as the ratio of the water flow rate in the circulation operation mode). This is because the circulation operation mode has the same current efficiency as the water sampling operation mode and can maintain the same treated water quality.

なお、ユースポイントで処理水の需要があり、処理水タンク2内の処理水が使用されている場合であっても、その使用量によっては、処理水タンク2内の水位が満水に近くなることがある。その場合には、採水運転モードから循環運転モードへの切り替えは、処理水タンク2内の処理水の使用の有無にかかわらず、処理水タンク2内の水位に基づいて行うようになっていてよい。すなわち、水位計17により計測された処理水タンク2内の水位が所定の水位を上回った場合に、採水運転モードから循環運転モードへの切り替えを行うようになっていてよい。また、採水運転モードから循環運転モードへの切り替えは、得られる処理水の水質に基づいて行うようになっていてもよい。すなわち、水質計15により計測された処理水の水質が所望の水質を下回った場合に、採水運転モードから循環運転モードへの切り替えを行い、所望の処理水質が得られるまで処理水の循環運転を行うようになっていてもよい。   Even if there is demand for treated water at the point of use and treated water in the treated water tank 2 is used, the water level in the treated water tank 2 may become nearly full depending on the amount of use. There is. In this case, switching from the water sampling operation mode to the circulation operation mode is performed based on the water level in the treated water tank 2 regardless of whether or not the treated water in the treated water tank 2 is used. Good. That is, when the water level in the treated water tank 2 measured by the water level meter 17 exceeds a predetermined water level, switching from the water sampling operation mode to the circulation operation mode may be performed. The switching from the water sampling operation mode to the circulation operation mode may be performed based on the quality of the treated water obtained. That is, when the water quality of the treated water measured by the water quality meter 15 is lower than the desired water quality, the water sampling operation mode is switched to the circulating operation mode, and the treated water circulation operation is performed until the desired treated water quality is obtained. You may come to do.

上述した実施形態では、脱塩室は1つだけ設けられているが、脱塩室は2つ以上設けられていてもよい。この場合、脱塩室と濃縮室とは、カチオン交換膜またはアニオン交換膜を介して交互に設けられ、最も陽極側に位置する濃縮室が陽極室と隣接し、最も陰極側に位置する濃縮室が陰極室と隣接することになる。一方で、陽極室に隣接する濃縮室を省略して、陽極室と脱塩室とを隣接させたり、陰極室に隣接する濃縮室を省略して、陰極室と脱塩室とを隣接させたりすることもできる。この場合、陽極室および陰極室が濃縮室を兼ねることになり、すなわち、陽極室または陰極室に隣接する脱塩室で除去された被処理水中のイオン成分が、陽極室または陰極室に移動して、電極水と共に外部に排出されるようになる。このような構成は、脱塩室の数にかかわらず適用可能であり、上述した脱塩室が1つだけ設けられている場合にも適用可能である。いずれの場合であっても、各脱塩室は、陽極と陰極との間に位置し、陽極側のアニオン交換膜と陰極側のカチオン交換膜とで区画されている。   In the embodiment described above, only one desalting chamber is provided, but two or more desalting chambers may be provided. In this case, the desalting chamber and the concentrating chamber are provided alternately via a cation exchange membrane or an anion exchange membrane, the concentrating chamber located closest to the anode side is adjacent to the anode chamber, and the concentrating chamber located closest to the cathode side. Will be adjacent to the cathode chamber. On the other hand, the concentration chamber adjacent to the anode chamber is omitted, the anode chamber and the desalination chamber are adjacent, or the concentration chamber adjacent to the cathode chamber is omitted, and the cathode chamber and the desalination chamber are adjacent. You can also In this case, the anode chamber and the cathode chamber also serve as the concentration chamber, that is, ionic components in the water to be treated removed in the desalting chamber adjacent to the anode chamber or the cathode chamber move to the anode chamber or the cathode chamber. As a result, it is discharged to the outside together with the electrode water. Such a configuration is applicable regardless of the number of desalting chambers, and is also applicable when only one desalting chamber is provided. In any case, each desalting chamber is located between the anode and the cathode, and is partitioned by the anion exchange membrane on the anode side and the cation exchange membrane on the cathode side.

また、脱塩室は、中間イオン交換膜によって直流電流の通電方向に2つに分割されていてもよい。この場合、それら2つの小脱塩室は、直列流路を形成し、アニオン交換膜と隣接する陽極側の小脱塩室には、少なくともアニオン交換体が充填され、カチオン交換膜と隣接する陰極側の小脱塩室には、少なくともカチオン交換体が充填されている。中間イオン交換膜は、被処理水の水質や処理水(脱イオン水)に求められる水質、各小脱塩室に充填されるイオン交換体の種類などを考慮して選択することができ、例えば、アニオン交換膜またはカチオン交換膜の単一膜であってもよく、あるいはバイポーラ膜であってもよい。   Further, the desalting chamber may be divided into two in the direction of direct current application by an intermediate ion exchange membrane. In this case, these two small desalting chambers form a series channel, and the small desalting chamber on the anode side adjacent to the anion exchange membrane is filled with at least an anion exchanger, and the cathode adjacent to the cation exchange membrane. The small desalting chamber on the side is filled with at least a cation exchanger. The intermediate ion exchange membrane can be selected in consideration of the quality of the water to be treated and the water quality required for the treated water (deionized water), the type of ion exchanger filled in each small desalting chamber, for example, A single membrane of an anion exchange membrane or a cation exchange membrane or a bipolar membrane may be used.

(第2の実施形態)
図2は、本発明の第2の実施形態に係る電気式脱イオン水製造装置の概略構成図である。以下、第1の実施形態と同様の構成については、図面に同じ符号を付してその説明を省略し、第1の実施形態と異なる構成のみ説明する。
(Second Embodiment)
FIG. 2 is a schematic configuration diagram of an electric deionized water production apparatus according to the second embodiment of the present invention. Hereinafter, the same reference numerals are given to the same components as those in the first embodiment, the description thereof is omitted, and only the components different from those in the first embodiment will be described.

本実施形態は、第1の実施形態に対して、循環運転モードにおける処理水の循環経路を変更した変形例である。第1の実施形態では、処理室Dと処理水タンク2とを接続する流路f2から分岐して被処理水タンク1に接続された流路f6が設けられているが、本実施形態では、処理水タンク2と流路f1とを接続する流路f8が設けられている。流路f8には、処理水を送出するためのポンプ18と、バルブ19とが設けられ、これに応じて、流路f1には、新たにバルブ20が設けられている。また、本実施形態では、流路f2に設けられていたバルブ14は設けられていない。   This embodiment is a modification in which the circulation path of the treated water in the circulation operation mode is changed with respect to the first embodiment. In the first embodiment, a flow path f6 branched from the flow path f2 connecting the treatment chamber D and the treated water tank 2 and connected to the treated water tank 1 is provided, but in this embodiment, A flow path f8 that connects the treated water tank 2 and the flow path f1 is provided. The flow path f8 is provided with a pump 18 for sending treated water and a valve 19, and in response thereto, a new valve 20 is provided in the flow path f1. In the present embodiment, the valve 14 provided in the flow path f2 is not provided.

本実施形態の採水運転モードでは、流路f1のバルブ20が開放されて、第1の実施形態と同様の運転が行われ、処理水が処理水タンク2に貯留される。一方で、循環運転モードでは、流路f1のバルブ20が閉鎖されるとともに、流路f8のバルブ19が開放される。そして、ポンプ13の作動が停止し、ポンプ18が作動することで、処理水タンク2内の処理水が流路f1に流入する。こうして、脱塩室Dから流出した処理水が処理水タンク2を介して脱塩室Dに還流することで、処理水の循環運転が行われる。   In the water sampling operation mode of the present embodiment, the valve 20 of the flow path f1 is opened, the same operation as that of the first embodiment is performed, and the treated water is stored in the treated water tank 2. On the other hand, in the circulation operation mode, the valve 20 of the flow path f1 is closed and the valve 19 of the flow path f8 is opened. And the operation | movement of the pump 13 stops and the pump 18 operates, and the treated water in the treated water tank 2 flows into the flow path f1. In this way, the treated water flowing out from the desalting chamber D is returned to the desalting chamber D via the treated water tank 2 so that the circulating operation of the treated water is performed.

本実施形態においても、循環運転モードでは、装置全体の消費電力および外部への排水量が削減されるように、脱塩室Dへの通水量が採水運転モードよりも少なくなるように設定され、陽極11と陰極12との間に流れる電流値も採水運転モードと同じか、それよりも小さくなるように設定される。なお、本実施形態の循環運転モードでは、被処理水として処理水タンク2内の処理水が脱塩室Dに供給されるため、脱塩室Dで脱塩処理が行われなくてもよく、電極11,12間に流れる電流値は0であってもよい。   Also in the present embodiment, in the circulation operation mode, the water flow rate to the desalination chamber D is set to be smaller than that in the water sampling operation mode so that the power consumption of the entire apparatus and the amount of drainage to the outside are reduced. The value of the current flowing between the anode 11 and the cathode 12 is also set to be the same as or smaller than the water sampling operation mode. In the circulation operation mode of the present embodiment, since the treated water in the treated water tank 2 is supplied to the desalting chamber D as the treated water, the desalting treatment may not be performed in the desalting chamber D. The current value flowing between the electrodes 11 and 12 may be zero.

(第3の実施形態)
本発明の第3の実施形態は、処理水タンク2内の処理水の未使用時に、循環運転モードの代わりに、被処理水を脱塩室Dに通水して得られた処理水を外部に排出するブロー運転モードが実行される点で、第1の実施形態と異なっている。以下、図3(a)および図3(b)を参照して、本実施形態の電気式脱イオン水製造装置について説明する。図3(a)および図3(b)は、それぞれ本実施形態の電気式脱イオン水製造装置の採水運転モードおよびブロー運転モードにおける流路構成を示す概略図である。以下、上述した実施形態と同様の構成については、図面に同じ符号を付してその説明を省略し、上述した実施形態と異なる構成のみ説明する。
(Third embodiment)
In the third embodiment of the present invention, when the treated water in the treated water tank 2 is not used, treated water obtained by passing the treated water through the desalting chamber D instead of the circulation operation mode is supplied to the outside. This is different from the first embodiment in that a blow operation mode for discharging is performed. Hereinafter, with reference to Fig.3 (a) and FIG.3 (b), the electrical deionized water manufacturing apparatus of this embodiment is demonstrated. Fig.3 (a) and FIG.3 (b) are schematic which shows the flow-path structure in the water sampling operation mode of the electric deionized water manufacturing apparatus of this embodiment, and a blow operation mode, respectively. Hereinafter, with respect to the same configuration as that of the above-described embodiment, the same reference numerals are given to the drawings and the description thereof will be omitted, and only the configuration different from the above-described embodiment will be described.

本実施形態では、流路f2から分岐した流路f6が、第1の実施形態とは異なり、被処理水タンク1にではなく流路f1に接続されている。これに応じて、流路f1には、新たにバルブ21が設けられている。   In the present embodiment, unlike the first embodiment, the flow path f6 branched from the flow path f2 is connected to the flow path f1 instead of the water tank 1 to be treated. Accordingly, a valve 21 is newly provided in the flow path f1.

本実施形態の採水運転モードでは、図3(a)に示すように、流路f1のバルブ21と流路f2のバルブ14が開放され、流路f6のバルブ16が閉鎖されて、第1の実施形態と同様の運転が行われ、処理水が処理水タンク2に貯留される。   In the water sampling operation mode of the present embodiment, as shown in FIG. 3A, the valve 21 of the flow path f1 and the valve 14 of the flow path f2 are opened, the valve 16 of the flow path f6 is closed, and the first The same operation as in the embodiment is performed, and the treated water is stored in the treated water tank 2.

一方、ブロー運転モード(第2の運転モード)が開始されると、図3(b)に示すように、流路f1のバルブ21と流路f2のバルブ14が閉鎖され、流路f6のバルブ16が開放される。このため、流路f1を通じて被処理水タンク1から供給される被処理水は、流路f6を通じて脱塩室Dに流入し、採水運転モードとは反対方向に脱塩室Dを通過して流出する。そして、脱塩室Dを流出した処理水は、一部が陰極室E2に流入して、流路f4および陽極室E1から流路f5を介して外部に排出されるとともに、残りの部分が一対の濃縮室C1,C2に流入して、流路f3を介して外部に排出される。こうして、脱塩室Dを流出した処理水が、陽極室E1、陰極室E2、および一対の濃縮室C1,C2を介して外部に排出されることで、処理水のブロー運転が行われる。   On the other hand, when the blow operation mode (second operation mode) is started, as shown in FIG. 3B, the valve 21 in the flow path f1 and the valve 14 in the flow path f2 are closed, and the valve in the flow path f6. 16 is opened. For this reason, the to-be-treated water supplied from the to-be-treated water tank 1 through the flow path f1 flows into the desalting chamber D through the flow path f6, and passes through the desalting chamber D in the direction opposite to the water sampling operation mode. leak. A part of the treated water that has flowed out of the desalting chamber D flows into the cathode chamber E2, and is discharged to the outside through the flow channel f4 and the anode chamber E1 through the flow channel f5. Into the concentrating chambers C1 and C2 and discharged to the outside through the flow path f3. Thus, the treated water that has flowed out of the desalting chamber D is discharged to the outside through the anode chamber E1, the cathode chamber E2, and the pair of concentrating chambers C1 and C2.

本実施形態のブロー運転モードでは、上述した実施形態の循環運転モードと同様に、脱塩室Dへの通水量が採水運転モードよりも少なくなるように設定され、陽極11と陰極12との間に流れる電流値も採水運転モードと同じか、それよりも小さくなるように設定される。これにより、本実施形態のブロー運転モードにおいても、採水運転モードと同じ条件(脱塩室Dへの通水量および電極11,12間の電流値)で処理水のブロー運転を行った場合に比べて、装置全体の消費電力を削減するとともに、外部への排水量を削減することができる。すなわち、装置起動時に発生し得る処理水の水質の立ち上がりの問題を回避するための継続運転として、本実施形態のブロー運転モードで運転を行うことで、装置全体の消費電力および外部への排水量を削減することが可能になる。   In the blow operation mode of the present embodiment, similarly to the circulation operation mode of the above-described embodiment, the amount of water flow to the desalting chamber D is set to be smaller than that in the water sampling operation mode, and the anode 11 and the cathode 12 The value of the current flowing between them is set to be the same as or smaller than the water sampling operation mode. Thereby, also in the blow operation mode of the present embodiment, when the treatment water blow operation is performed under the same conditions as the water sampling operation mode (the amount of water passing through the desalination chamber D and the current value between the electrodes 11 and 12). In comparison, the power consumption of the entire apparatus can be reduced, and the amount of drainage to the outside can be reduced. That is, as a continuous operation to avoid the problem of rising of the quality of treated water that may occur at the time of starting the device, by operating in the blow operation mode of the present embodiment, the power consumption of the entire device and the amount of drainage to the outside are reduced. It becomes possible to reduce.

なお、本実施形態のブロー運転モードでは、脱塩室Dへの通水方向が採水運転モードと反対方向(向流)であることから、処理水質が低下したときにブロー運転モードを行うことで、脱塩室Dに充填されたイオン交換体が向流再生され、高効率でイオン交換体の回生効果を得ることもできる。   In addition, in the blow operation mode of this embodiment, since the water flow direction to the desalination chamber D is the opposite direction (counterflow) to the water sampling operation mode, the blow operation mode is performed when the quality of the treated water is reduced. Thus, the ion exchanger filled in the desalting chamber D is regenerated countercurrently, and the regeneration effect of the ion exchanger can be obtained with high efficiency.

(第4の実施形態)
図4(a)および図4(b)は、それぞれ本実施形態の電気式脱イオン水製造装置の採水運転モードおよびブロー運転モードにおける流路構成を示す概略図である。以下、上述した実施形態と同様の構成については、図面に同じ符号を付してその説明を省略し、上述した実施形態と異なる構成のみ説明する。
(Fourth embodiment)
FIG. 4A and FIG. 4B are schematic views showing flow path configurations in the water sampling operation mode and the blow operation mode of the electric deionized water production apparatus of the present embodiment, respectively. Hereinafter, with respect to the same configuration as that of the above-described embodiment, the same reference numerals are given to the drawings and the description thereof will be omitted, and only the configuration different from the above-described embodiment will be described.

本実施形態は、第3の実施形態に対して、ブロー運転モードにおける脱塩室Dへの被処理水の供給経路を変更した変形例である。第3の実施形態では、流路f2から分岐して流路f1に接続された流路f6が設けられているが、本実施形態では、流路f2から分岐して処理水タンク2に接続された流路f9が設けられている。流路f9には、バルブ22が設けられている。   This embodiment is a modification in which the supply path of the water to be treated to the desalting chamber D in the blow operation mode is changed with respect to the third embodiment. In the third embodiment, a flow path f6 branched from the flow path f2 and connected to the flow path f1 is provided, but in this embodiment, branched from the flow path f2 and connected to the treated water tank 2. A flow path f9 is provided. A valve 22 is provided in the flow path f9.

本実施形態の採水運転モードでは、図4(a)に示すように、流路f1のバルブ21と流路f2のバルブ14が開放され、流路f9のバルブ22が閉鎖されて、第1の実施形態と同様の運転が行われ、処理水が処理水タンク2に貯留される。   In the water sampling operation mode of the present embodiment, as shown in FIG. 4A, the valve 21 of the flow path f1 and the valve 14 of the flow path f2 are opened, the valve 22 of the flow path f9 is closed, and the first The same operation as in the embodiment is performed, and the treated water is stored in the treated water tank 2.

一方、ブロー運転モードが開始されると、図4(b)に示すように、流路f1のバルブ21と流路f2のバルブ14が閉鎖されるとともに、流路f9のバルブ22が開放され、ポンプ13の作動が停止される。ここで、流路f9は、処理水タンク2内の処理水が水頭圧によって脱塩室Dに供給されるように、処理水タンク2と脱塩室Dとを接続している。このため、処理水タンク2内の処理水は、流路f9および流路f2を通じて脱塩室Dに流入し、採水運転モードとは反対方向に脱塩室Dを通過して流出する。そして、脱塩室Dを流出した処理水は、陰極室E2に流入して、流路f4および陽極室E1から流路f5を介して外部に排出されるとともに、一対の濃縮室C1,C2に流入して、流路f3を介して外部に排出される。こうして、脱塩室Dを流出した処理水が、陽極室E1、陰極室E2、および一対の濃縮室C1,C2を介して外部に排出されることで、処理水のブロー運転が行われる。   On the other hand, when the blow operation mode is started, as shown in FIG. 4B, the valve 21 of the flow path f1 and the valve 14 of the flow path f2 are closed, and the valve 22 of the flow path f9 is opened. The operation of the pump 13 is stopped. Here, the flow path f9 connects the treated water tank 2 and the desalting chamber D so that the treated water in the treated water tank 2 is supplied to the desalting chamber D by the head pressure. For this reason, the treated water in the treated water tank 2 flows into the desalting chamber D through the flow path f9 and the flow path f2, and flows out through the desalting chamber D in the direction opposite to the water sampling operation mode. Then, the treated water that has flowed out of the desalting chamber D flows into the cathode chamber E2, and is discharged to the outside through the flow channel f4 and the anode chamber E1 through the flow channel f5, and into the pair of concentration chambers C1 and C2. It flows in and is discharged to the outside through the flow path f3. Thus, the treated water that has flowed out of the desalting chamber D is discharged to the outside through the anode chamber E1, the cathode chamber E2, and the pair of concentrating chambers C1 and C2.

本実施形態においても、ブロー運転モードでは、装置全体の消費電力および外部への排水量が削減されるように、脱塩室Dへの通水量が採水運転モードよりも少なくなるように設定され、陽極11と陰極12との間に流れる電流値も採水運転モードと同じか、それよりも小さくなるように設定される。特に、本実施形態のブロー運転モードは、水頭圧を利用して送水を行っているため、ポンプを使用していない点で、他の実施形態に比べて有利である。なお、本実施形態のブロー運転モードでは、被処理水として処理水タンク2内の処理水が脱塩室Dに供給されるため、脱塩室Dで脱塩処理が行われなくてもよく、電極11,12間に流れる電流値は0であってもよい。また、第3の実施形態と同様に、脱塩室Dに充填されたイオン交換体の回生効果を得ることもできる。   Also in this embodiment, in the blow operation mode, the water flow rate to the desalination chamber D is set to be smaller than the water sampling operation mode so that the power consumption of the entire apparatus and the amount of drainage to the outside are reduced. The value of the current flowing between the anode 11 and the cathode 12 is also set to be the same as or smaller than the water sampling operation mode. In particular, the blow operation mode of the present embodiment is advantageous in comparison with other embodiments in that a pump is not used because water is supplied using water head pressure. In the blow operation mode of the present embodiment, since the treated water in the treated water tank 2 is supplied as treated water to the desalting chamber D, the desalting treatment may not be performed in the desalting chamber D. The current value flowing between the electrodes 11 and 12 may be zero. Moreover, the regeneration effect of the ion exchanger with which the desalting chamber D was filled can also be acquired similarly to 3rd Embodiment.

次に、具体的な実施例を挙げて、本発明をより詳細に説明する。   Next, the present invention will be described in more detail with reference to specific examples.

(実施例1)
本実施例では、図1に示す電気式脱イオン水製造装置を用いて、採水運転モードで一定時間の運転を行った後、循環運転モードで22時間の運転を行い、採水運転モードに運転を再度切り替えた後の処理水質(処理水比抵抗)を測定した。被処理水として、導電率が3〜4μS/cmの2段RO透過水を用い、循環運転モードでの運転は、採水運転モードにおいて比抵抗値が18.2MΩ・cmの処理水が得られた後、処理水タンク内の水位が所定の上限水位以上になった時点で開始した。採水運転モードでは、処理流量(処理室に流入させる被処理水の流量)、濃縮水流量、および電極水流量を、それぞれ500L/h、50L/h、および20L/hとし、循環運転モードでは、処理流量、濃縮水流量、および電極水流量を、それぞれ250L/h、25L/h、および10L/hとした。運転電流(電極間に流す電流値)は、採水運転モードおよび循環運転モード共に、2.5Aとした。
Example 1
In the present embodiment, using the electric deionized water production apparatus shown in FIG. 1, after operating for a certain period of time in the sampling operation mode, the operation is performed for 22 hours in the circulation operation mode, and the sampling operation mode is set. The treated water quality (treated water specific resistance) after switching operation again was measured. As the water to be treated, two-stage RO permeated water having a conductivity of 3 to 4 μS / cm is used. In the circulation operation mode, treated water having a specific resistance value of 18.2 MΩ · cm is obtained in the water sampling operation mode. After that, it started when the water level in the treated water tank became equal to or higher than a predetermined upper limit water level. In the water sampling operation mode, the treatment flow rate (the flow rate of the treated water flowing into the treatment chamber), the concentrated water flow rate, and the electrode water flow rate are 500 L / h, 50 L / h, and 20 L / h, respectively. The treatment flow rate, the concentrated water flow rate, and the electrode water flow rate were 250 L / h, 25 L / h, and 10 L / h, respectively. The operating current (current value flowing between the electrodes) was 2.5 A in both the water sampling operation mode and the circulation operation mode.

(実施例2)
循環運転モードでの運転電流を1.25Aとした以外、実施例1と同様の条件で測定を行った。
(Example 2)
Measurement was performed under the same conditions as in Example 1 except that the operating current in the circulating operation mode was 1.25 A.

(実施例3)
本実施例では、図2に示す電気式脱イオン水製造装置を用い、循環運転モードでの運転電流を1.25Aとし、処理水タンク内の水位に応じて採水運転モードと循環運転モードとを適宜切り替えながら循環運転モードでの運転を合計で22時間行った以外、実施例1と同様の条件で測定を行った。すなわち、本実施例では、循環運転モードにおいて、被処理水として処理水タンク内の処理水が脱塩室に供給されるため、処理水タンク内の水位が所定の下限水位以下になった場合に所定の上限水位以上になるまで採水運転モードを実行するように、採水運転モードと循環運転モードとを適宜切り替えながら循環運転モードでの運転を合計で22時間行った。
(Example 3)
In this embodiment, the electric deionized water production apparatus shown in FIG. 2 is used, the operation current in the circulation operation mode is set to 1.25 A, and the water sampling operation mode and the circulation operation mode are set according to the water level in the treated water tank. The measurement was performed under the same conditions as in Example 1 except that the operation in the circulating operation mode was performed for a total of 22 hours while appropriately switching between and. That is, in the present embodiment, in the circulating operation mode, the treated water in the treated water tank is supplied to the desalting chamber as treated water, so that the water level in the treated water tank becomes equal to or lower than a predetermined lower limit water level. The operation in the circulating operation mode was performed for a total of 22 hours while appropriately switching between the water sampling operation mode and the circulation operation mode so that the water sampling operation mode was executed until the water level reached a predetermined upper limit water level or higher.

(実施例4)
循環運転モードにおける処理流量、濃縮水流量、および電極水流量をそれぞれ50L/h、5L/h、および1L/hとし、循環運転モードにおける運転電流を0Aとした以外、実施例3と同様の条件で測定を行った。
Example 4
The same conditions as in Example 3 except that the treatment flow rate, the concentrated water flow rate, and the electrode water flow rate in the circulation operation mode were 50 L / h, 5 L / h, and 1 L / h, respectively, and the operation current in the circulation operation mode was 0 A. The measurement was performed.

(実施例5)
本実施例では、図3に示す電気式脱イオン水製造装置を用い、循環運転モードで運転を行う代わりに、ブロー運転モードで運転を行い、ブロー運転モードにおける処理流量、濃縮水流量、および電極水流量を、それぞれ50L/h、40L/h、および10L/hとし、ブロー運転モードにおける運転電流を0.25Aとした以外、実施例1と同様の条件で測定を行った。
(Example 5)
In the present embodiment, the electric deionized water production apparatus shown in FIG. 3 is used, and instead of operating in the circulating operation mode, the operation is performed in the blow operation mode, the treatment flow rate in the blow operation mode, the concentrated water flow rate, and the electrode The measurement was performed under the same conditions as in Example 1 except that the water flow rates were 50 L / h, 40 L / h, and 10 L / h, respectively, and the operating current in the blow operation mode was 0.25 A.

(実施例6)
本実施例では、図4に示す電気式脱イオン水製造装置を用い、実施例3と同様に、処理水タンク内の水位に応じて採水運転モードとブロー運転モードとを適宜切り替えながらブロー運転モードでの運転を合計で22時間行った以外、実施例5と同様の条件で測定を行った。
(Example 6)
In the present embodiment, the electric deionized water production apparatus shown in FIG. 4 is used, and the blow operation is performed while appropriately switching between the water sampling operation mode and the blow operation mode according to the water level in the treated water tank, as in the third embodiment. Measurement was performed under the same conditions as in Example 5 except that the operation in the mode was performed for a total of 22 hours.

(比較例1)
採水運転モードで一定時間の運転を行い、比抵抗値が18.2MΩ・cmの処理水が得られた後、循環運転モードで22時間の運転を行う代わりに、装置の運転を22時間停止した後で採水運転モードでの運転を再開した以外、実施例1と同様の条件で測定を行った。
(Comparative Example 1)
After operating for a certain period of time in the sampling operation mode and obtaining treated water with a specific resistance value of 18.2 MΩ · cm, the operation of the system is stopped for 22 hours instead of 22 hours in the circulation operation mode. Then, measurement was performed under the same conditions as in Example 1 except that the operation in the water sampling operation mode was restarted.

(比較例2)
循環運転モードにおける処理流量、濃縮水流量、および電極水流量を、採水運転モードと同様に、それぞれ500L/h、50L/h、および20L/hとした以外、実施例1と同様の条件で測定を行った。
(Comparative Example 2)
Under the same conditions as in Example 1, except that the treatment flow rate, the concentrated water flow rate, and the electrode water flow rate in the circulation operation mode were set to 500 L / h, 50 L / h, and 20 L / h, respectively, as in the water sampling operation mode. Measurements were made.

なお、実際には、実施例1〜6および比較例1,2において、脱塩室が5室設けられた電気式脱イオン水製造装置を用いて測定を行った。各実施例および各比較例に共通する各室の仕様は、以下の通りである。ここで、CERはカチオン交換樹脂、AERはアニオン交換樹脂の略である。
・陽極室:寸法200×300×8mm CER充填
・陰極室:寸法200×300×8mm AER充填
・脱塩室:寸法200×300×16mm(5室とも) AER/CER充填
・濃縮室:寸法200×300×8mm(6室とも) AER充填
Actually, in Examples 1 to 6 and Comparative Examples 1 and 2, measurement was performed using an electric deionized water production apparatus provided with five demineralization chambers. The specifications of each chamber common to each example and each comparative example are as follows. Here, CER is an abbreviation for a cation exchange resin and AER is an anion exchange resin.
・ Anode chamber: Dimension 200 × 300 × 8 mm CER filling ・ Cathode chamber: Dimension 200 × 300 × 8 mm AER filling ・ Desalination chamber: Dimension 200 × 300 × 16 mm (5 chambers) AER / CER filling ・ Concentration chamber: Dimension 200 × 300 × 8mm (6 rooms) AER filling

表1に、実施例1〜6および比較例1,2における測定結果、具体的には、採水運転モードでの運転再開10秒後での処理水比抵抗を示す。なお、比較のために、表1には、継続運転(循環運転およびブロー運転)中の排水量の積算値(総排水量)、運転電流、およびポンプの動作状況も示している。   Table 1 shows the measurement results in Examples 1 to 6 and Comparative Examples 1 and 2, specifically, the treated water specific resistance 10 seconds after the resumption of operation in the water sampling operation mode. For comparison, Table 1 also shows an integrated value (total amount of drainage) of drainage during continuous operation (circulation operation and blow operation), operating current, and pump operating status.

Figure 2018043206
Figure 2018043206

継続運転を行わない比較例1と比べて、実施例1〜6では、処理水の水質の立ち上がりに関して良好な結果が得られていることが確認された。また、表1から、実施例2,4〜6は、処理水の水質の立ち上がりの点では実施例1,3より若干劣るものの、総排水量および消費電力(運転電流およびポンプの動作状況)の少なくとも一方で、実施例1,3よりも良好であることがわかる。また、すべての実施例で、同様に継続運転を行った比較例2と比べて、総排水量が大幅に削減されていることが分かる。したがって、実施例1〜6では、継続運転を行うことで処理水の水質の立ち上がりの問題が回避されるとともに、総排水量および消費電力の削減が可能になることが確認された。   Compared to Comparative Example 1 in which continuous operation is not performed, in Examples 1 to 6, it was confirmed that good results were obtained regarding the rise of the quality of the treated water. Further, from Table 1, Examples 2 and 4 to 6 are slightly inferior to Examples 1 and 3 in terms of rising water quality of the treated water, but at least the total amount of drainage and power consumption (operating current and pump operating conditions). On the other hand, it turns out that it is better than Examples 1 and 3. Moreover, it turns out that the total drainage amount is reduced significantly compared with the comparative example 2 which performed the continuous operation similarly in all the Examples. Therefore, in Examples 1-6, it was confirmed by performing continuous operation that the problem of the rising of the quality of treated water is avoided, and the total amount of drainage and power consumption can be reduced.

1 被処理水タンク
2 処理水タンク
3 制御部
10 電気式脱イオン水製造装置
11 陽極
12 陰極
13,18 ポンプ
14,16,19,20〜22 バルブ
15 水質計
17 水位計
D 脱塩室
C1 陽極側濃縮室
C2 陰極側濃縮室
E1 陽極室
E2 陰極室
a1,a2 アニオン交換膜
c1,c2 カチオン交換膜
f1〜f9 流路
DESCRIPTION OF SYMBOLS 1 Treated water tank 2 Treated water tank 3 Control part 10 Electric deionized water production apparatus 11 Anode 12 Cathode 13,18 Pumps 14, 16, 19, 20-22 Valve 15 Water quality meter 17 Water level meter D Desalination chamber C1 Anode Side enrichment chamber C2 Cathode side enrichment chamber E1 Anode chamber E2 Cathode chamber a1, a2 Anion exchange membrane c1, c2 Cation exchange membrane f1-f9 Channel

Claims (10)

陽極と陰極との間に位置し、前記陽極側のアニオン交換膜と前記陰極側のカチオン交換膜とで区画され、カチオン交換体とアニオン交換体との少なくとも一方が充填された脱塩室と、前記アニオン交換膜および前記カチオン交換膜を介して前記脱塩室の両側に配置された一対の濃縮室とを備えた電気式脱イオン水製造装置であって、
前記電気式脱イオン水製造装置の運転を、被処理水を前記脱塩室に通水して得られた処理水を処理水タンクに貯留する第1の運転モードと、被処理水を前記脱塩室に通水して得られた処理水を前記脱塩室に還流させて循環させるか、または前記処理水を外部に排出する第2の運転モードとに切り替える制御部を有し、
前記第2の運転モードでは、前記脱塩室への通水量が前記第1の運転モードよりも少なく、前記陽極と前記陰極との間に流れる電流値が前記第1の運転モードと同じか、前記第1の運転モードよりも小さい、
電気式脱イオン水製造装置。
A desalting chamber located between the anode and the cathode, partitioned by the anion exchange membrane on the anode side and the cation exchange membrane on the cathode side, and filled with at least one of a cation exchanger and an anion exchanger; An electric deionized water production apparatus comprising a pair of concentration chambers disposed on both sides of the demineralization chamber via the anion exchange membrane and the cation exchange membrane,
The operation of the electric deionized water production apparatus includes a first operation mode in which treated water obtained by passing the treated water through the demineralization chamber is stored in a treated water tank, and the treated water is dehydrated. A control unit that circulates the treated water obtained by passing the salt water through the desalting chamber, or switches to the second operation mode for discharging the treated water to the outside;
In the second operation mode, the amount of water flow to the desalination chamber is less than that in the first operation mode, and the current value flowing between the anode and the cathode is the same as in the first operation mode, Smaller than the first operation mode,
Electric deionized water production equipment.
前記一対の濃縮室には、それぞれイオン交換体が充填されている、請求項1に記載の電気式脱イオン水製造装置。   The electric deionized water production apparatus according to claim 1, wherein each of the pair of concentration chambers is filled with an ion exchanger. 前記脱塩室は、前記第2の運転モードにおいて前記処理水が前記被処理水を貯留する被処理水タンクを介して前記脱塩室に還流するように、前記被処理水タンクに接続されている、請求項1または2に記載の電気式脱イオン水製造装置。   The desalting chamber is connected to the treated water tank so that the treated water returns to the desalting chamber via the treated water tank storing the treated water in the second operation mode. The electric deionized water production apparatus according to claim 1 or 2. 前記脱塩室は、前記第2の運転モードにおいて前記処理水が前記処理水タンクを介して前記脱塩室に還流するように、前記処理水タンクに接続されている、請求項1または2に記載の電気式脱イオン水製造装置。   The desalination chamber is connected to the treated water tank so that the treated water returns to the desalted chamber via the treated water tank in the second operation mode. The electric deionized water production apparatus as described. 前記陽極を備えた陽極室と、前記陰極を備えた陰極室とを有し、
前記脱塩室は、前記第2の運転モードにおいて前記処理水の一部が前記陽極室および前記陰極室を介して外部に排出され、前記処理水の他の部分が前記一対の濃縮室を介して外部に排出されるように、前記陽極室、前記陰極室、および前記一対の濃縮室に接続されている、請求項1または2に記載の電気式脱イオン水製造装置。
An anode chamber having the anode and a cathode chamber having the cathode;
In the demineralization chamber, a part of the treated water is discharged to the outside through the anode chamber and the cathode chamber in the second operation mode, and the other part of the treated water is passed through the pair of concentration chambers. The electric deionized water production apparatus according to claim 1, wherein the apparatus is connected to the anode chamber, the cathode chamber, and the pair of concentration chambers so as to be discharged to the outside.
前記脱塩室は、前記第2の運転モードにおいて前記処理水タンク内の前記処理水が前記被処理水として前記脱塩室に供給されるように、前記処理水タンクに接続されている、請求項1または2に記載の電気式脱イオン水製造装置。   The desalting chamber is connected to the treated water tank so that the treated water in the treated water tank is supplied as the treated water to the desalted chamber in the second operation mode. Item 3. The electric deionized water production apparatus according to Item 1 or 2. 前記脱塩室と前記処理水タンクとは、前記処理水タンク内の前記処理水が水頭圧によって前記脱塩室に供給されるように接続されている。請求項6に記載の電気式脱イオン水製造装置。   The desalting chamber and the treated water tank are connected so that the treated water in the treated water tank is supplied to the desalting chamber by water head pressure. The electric deionized water production apparatus according to claim 6. 前記脱塩室への前記処理水の通水方向が、前記第1の運転モードと前記第2の運転モードとで互いに反対方向である、請求項5から7のいずれか1項に記載の電気式脱イオン水製造装置。   The electricity according to any one of claims 5 to 7, wherein a flow direction of the treated water to the desalting chamber is opposite to each other in the first operation mode and the second operation mode. Type deionized water production equipment. 前記制御部は、前記処理水タンク内の水位または前記処理水の水質に基づいて、前記第1の運転モードから前記第2の運転モードに切り替える、請求項1から8のいずれか1項に記載の電気式脱イオン水製造装置。   9. The control unit according to claim 1, wherein the control unit switches from the first operation mode to the second operation mode based on a water level in the treated water tank or a quality of the treated water. Electric deionized water production equipment. 陽極と陰極との間に位置し、前記陽極側のアニオン交換膜と前記陰極側のカチオン交換膜とで区画され、カチオン交換体とアニオン交換体との少なくとも一方が充填された脱塩室と、前記アニオン交換膜および前記カチオン交換膜を介して前記脱塩室の両側に配置された一対の濃縮室とを備えた電気式脱イオン水製造装置の運転方法であって、
被処理水を前記脱塩室に通水して得られた処理水を処理水タンクに貯留する第1の工程と、
被処理水を前記脱塩室に通水して得られた処理水を前記脱塩室に還流させて循環させるか、または前記処理水を外部に排出する第2の工程と、を含み、
前記第2の工程では、前記脱塩室への通水量を前記第1の工程よりも少なくし、前記陽極と前記陰極との間に流す電流値を前記第1の工程と同じにするか、または前記第1の工程よりも小さくする、
電気式脱イオン水製造装置の運転方法。
A desalting chamber located between the anode and the cathode, partitioned by the anion exchange membrane on the anode side and the cation exchange membrane on the cathode side, and filled with at least one of a cation exchanger and an anion exchanger; An operation method of an electrical deionized water production apparatus comprising a pair of concentration chambers disposed on both sides of the demineralization chamber via the anion exchange membrane and the cation exchange membrane,
A first step of storing treated water obtained by passing treated water through the desalting chamber in a treated water tank;
A second step of circulating the treated water obtained by passing the treated water through the desalting chamber to the desalting chamber for circulation or discharging the treated water to the outside,
In the second step, the amount of water flow to the desalting chamber is less than that in the first step, and the current value flowing between the anode and the cathode is the same as in the first step, Or smaller than the first step,
An operation method of the electric deionized water production apparatus
JP2016180614A 2016-09-15 2016-09-15 Electric deionized water production equipment and its operation method Active JP6777480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016180614A JP6777480B2 (en) 2016-09-15 2016-09-15 Electric deionized water production equipment and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180614A JP6777480B2 (en) 2016-09-15 2016-09-15 Electric deionized water production equipment and its operation method

Publications (2)

Publication Number Publication Date
JP2018043206A true JP2018043206A (en) 2018-03-22
JP6777480B2 JP6777480B2 (en) 2020-10-28

Family

ID=61693371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180614A Active JP6777480B2 (en) 2016-09-15 2016-09-15 Electric deionized water production equipment and its operation method

Country Status (1)

Country Link
JP (1) JP6777480B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110104741A (en) * 2019-06-04 2019-08-09 东北电力大学 Double film room membrane capacitance demineralizers with continuous water-yielding capacity
CN114867692A (en) * 2019-12-25 2022-08-05 栗田工业株式会社 Method for controlling ultrapure water production apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312883A (en) * 1999-04-28 2000-11-14 Japan Carlit Co Ltd:The Method for operating washing electrolytic water making apparatus
JP2010058011A (en) * 2008-09-01 2010-03-18 Miura Co Ltd Pure water production apparatus
JP2011020029A (en) * 2009-07-14 2011-02-03 Miura Co Ltd Pure water production system
JP2012170906A (en) * 2011-02-22 2012-09-10 Kurita Water Ind Ltd Electric deionizer, method of producing pure water and fuel cell system
JP2012196619A (en) * 2011-03-22 2012-10-18 Miura Co Ltd Water treatment equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312883A (en) * 1999-04-28 2000-11-14 Japan Carlit Co Ltd:The Method for operating washing electrolytic water making apparatus
JP2010058011A (en) * 2008-09-01 2010-03-18 Miura Co Ltd Pure water production apparatus
JP2011020029A (en) * 2009-07-14 2011-02-03 Miura Co Ltd Pure water production system
JP2012170906A (en) * 2011-02-22 2012-09-10 Kurita Water Ind Ltd Electric deionizer, method of producing pure water and fuel cell system
JP2012196619A (en) * 2011-03-22 2012-10-18 Miura Co Ltd Water treatment equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110104741A (en) * 2019-06-04 2019-08-09 东北电力大学 Double film room membrane capacitance demineralizers with continuous water-yielding capacity
CN114867692A (en) * 2019-12-25 2022-08-05 栗田工业株式会社 Method for controlling ultrapure water production apparatus

Also Published As

Publication number Publication date
JP6777480B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP5768961B2 (en) Water treatment equipment
JP4960288B2 (en) Electric deionized water production apparatus and deionized water production method
JP2008212871A (en) Pure water production method and apparatus
TWI801595B (en) Electric deionization device, ultrapure water production system, and ultrapure water production method
JP6777480B2 (en) Electric deionized water production equipment and its operation method
WO2020148961A1 (en) Pure water production apparatus, and method for operating same
JP3966103B2 (en) Operation method of electrodeionization equipment
JP2007203136A (en) Electric deionized water manufacturing device and demineralized water manufacturing method
JP5379025B2 (en) Electric deionized water production equipment
JP2011121027A (en) Electric type deionized water producing apparatus
KR20180052765A (en) Water treatment device and water treatment method
JP5940387B2 (en) Electric deionized water production apparatus and deionized water production method
JP5806038B2 (en) Electric deionized water production equipment
JP5415966B2 (en) Electric deionized water production apparatus and deionized water production method
JP6009307B2 (en) Electric deionized water production apparatus and operation method thereof
JP6720428B1 (en) Pure water production apparatus and operating method thereof
JP4016663B2 (en) Operation method of electrodeionization equipment
JP6158681B2 (en) Deionized water production system and operation method thereof
JP2007283228A (en) Electric deionizer
JP2016129863A (en) Electric type deionized water producing apparatus
WO2023199676A1 (en) Method for operating deionized water production system and deionized water production system
JP2016129861A (en) Operation method of electric device for producing deionized water, and pure water production system including the device
JP6994351B2 (en) Electric deionized water production equipment
JP2019188367A (en) Method for producing electric deionized water production apparatus
JP2013013830A (en) Electric deionized water production apparatus and deionized water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201008

R150 Certificate of patent or registration of utility model

Ref document number: 6777480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250