JP2012082800A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2012082800A
JP2012082800A JP2010231680A JP2010231680A JP2012082800A JP 2012082800 A JP2012082800 A JP 2012082800A JP 2010231680 A JP2010231680 A JP 2010231680A JP 2010231680 A JP2010231680 A JP 2010231680A JP 2012082800 A JP2012082800 A JP 2012082800A
Authority
JP
Japan
Prior art keywords
injection
engine
internal combustion
combustion engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010231680A
Other languages
Japanese (ja)
Other versions
JP5664106B2 (en
Inventor
Akira Iijima
章 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2010231680A priority Critical patent/JP5664106B2/en
Publication of JP2012082800A publication Critical patent/JP2012082800A/en
Application granted granted Critical
Publication of JP5664106B2 publication Critical patent/JP5664106B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively improve heat efficiency of an engine, by restraining an increase in cylinder internal pressure in high load operation, in a control device of an internal combustion engine.SOLUTION: The control device 1 of the internal combustion engine 2 having a multistage injection device 30 which can inject a plurality of times including main injection in one combustion stroke, includes operation state detecting means 32 and 33 for detecting an operation state of the internal combustion engine 2, and an injection control means 50 for controlling the multistage injection device 30 so that injection of fuel by the main injection is separately performed in at least three stages, when the operation state of the internal combustion engine 2 is a predetermined high load area based on detection of the operation state detecting means 32 and 33.

Description

本発明は、内燃機関の制御装置に関し、特に1燃焼行程中にメイン噴射を含む複数回の噴射が可能な多段噴射装置を有する内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine having a multi-stage injection device capable of performing a plurality of injections including a main injection during one combustion stroke.

ディーゼルエンジン等の内燃機関(以下、エンジンという)の燃料噴射装置として、エンジンの各気筒内に燃料を供給すべく、コモンレール内に蓄圧した加圧燃料を、各気筒に対応して設けられた複数の燃料噴射制御弁を介して供給する蓄圧式の燃料噴射装置が知られている。   As a fuel injection device for an internal combustion engine (hereinafter referred to as an engine) such as a diesel engine, a plurality of pressurized fuels accumulated in a common rail are provided corresponding to each cylinder so as to supply fuel into each cylinder of the engine. 2. Description of the Related Art An accumulator fuel injection device that supplies fuel via a fuel injection control valve is known.

例えば、特許文献1には、この種の燃料噴射装置として、燃料加圧ポンプとコモンレールと燃料噴射制御弁とを備えた蓄圧式の燃料噴射装置が開示されている。   For example, Patent Document 1 discloses a pressure accumulation type fuel injection device including a fuel pressurizing pump, a common rail, and a fuel injection control valve as this type of fuel injection device.

特開平10−30486号公報Japanese Patent Laid-Open No. 10-30486

蓄圧式の燃料噴射装置を有するエンジンにおいては、エンジンの低騒音や低スモークを同時に達成させるべく、エンジンの1燃焼行程中に燃料を複数回噴射する多段噴射が行われている。この多段噴射による燃料噴射パターンは、例えば図9(b)に示すように、エンジンの最高筒内圧が低い運転領域(図9(a)中の領域4等を参照)では、1燃焼行程中にプレ噴射やメイン噴射等を含む複数回の燃料噴射を行っている。一方、エンジンの定格点を含む最高筒内圧が高い運転領域(図9(a)中の領域1等を参照)では、1燃焼行程中にメイン噴射を1回のみ行うのが一般的である。   In an engine having an accumulator fuel injection device, multistage injection is performed in which fuel is injected a plurality of times during one combustion stroke of the engine in order to simultaneously achieve low noise and low smoke of the engine. For example, as shown in FIG. 9B, the fuel injection pattern by the multi-stage injection is performed during one combustion stroke in the operation region where the maximum in-cylinder pressure of the engine is low (see region 4 in FIG. 9A). A plurality of fuel injections including pre-injection and main injection are performed. On the other hand, in an operation region where the maximum in-cylinder pressure including the engine rated point is high (see region 1 in FIG. 9A, etc.), it is common to perform main injection only once during one combustion stroke.

ところで、高負荷運転時等にエンジンを高過給とした場合、エンジンの出力が上がると同時に筒内圧も上昇することになる。そのため、エンジンの筒内圧が高くなるような高負荷運転時においては、シリンダヘッドやシリンダブロック及び、ピストン等の耐久性の観点から、エンジンの圧縮比を下げる必要がある。   By the way, when the engine is supercharged during high-load operation or the like, the in-cylinder pressure increases at the same time as the output of the engine increases. Therefore, at the time of high load operation where the in-cylinder pressure of the engine becomes high, it is necessary to lower the compression ratio of the engine from the viewpoint of durability of the cylinder head, the cylinder block, the piston, and the like.

しかし、エンジンの圧縮比を下げてしまうと、エンジンの熱効率が低下して、エンジンの燃費も悪化する可能性がある。   However, if the compression ratio of the engine is lowered, the thermal efficiency of the engine is lowered, and the fuel consumption of the engine may be deteriorated.

本発明はこのような点に鑑みてなされたもので、その目的は、エンジンの高負荷運転時に筒内圧の上昇を抑制しつつ、エンジンの熱効率を効果的に向上させることにある。   The present invention has been made in view of these points, and an object thereof is to effectively improve the thermal efficiency of the engine while suppressing an increase in the in-cylinder pressure during high-load operation of the engine.

上記目的を達成するため、本発明の内燃機関の制御装置は、1燃焼行程中にメイン噴射を含む複数回の噴射が可能な多段噴射装置を有する内燃機関の制御装置であって、前記内燃機関の運転状態を検出する運転状態検出手段と、前記運転状態検出手段の検出に基づいて、前記内燃機関の運転状態が所定の高負荷領域の場合は、前記メイン噴射による燃料の噴射が少なくとも3段階に分けて行われるように前記多段噴射装置を制御する噴射制御手段とを備えることを特徴とする。   In order to achieve the above object, a control device for an internal combustion engine according to the present invention is a control device for an internal combustion engine having a multistage injection device capable of performing a plurality of injections including a main injection during one combustion stroke. When the operating state of the internal combustion engine is in a predetermined high load region based on the detection of the operating state, and the operating state detecting means for detecting the operating state of the fuel, at least three stages of fuel injection by the main injection And an injection control means for controlling the multistage injection device so as to be performed separately.

また、前記噴射制御手段は、少なくとも3段階に分けて行う前記メイン噴射による燃料の噴射のうち、1段目の噴射時期を前記内燃機関の上死点近傍で行うとともに、1段目の噴射量を2段目以降の噴射量よりも小さくするように前記多段噴射装置を制御するようにしてもよい。   Further, the injection control means performs the first stage injection timing in the vicinity of the top dead center of the internal combustion engine among the fuel injections by the main injection performed in at least three stages, and the first stage injection amount. The multi-stage injection device may be controlled so that the injection amount is smaller than the injection amount after the second stage.

本発明の内燃機関の制御装置によれば、エンジンの高負荷運転時に筒内圧の上昇を抑制しつつ、エンジンの熱効率を効果的に向上させることができる。   According to the control device for an internal combustion engine of the present invention, it is possible to effectively improve the thermal efficiency of the engine while suppressing an increase in the in-cylinder pressure during high load operation of the engine.

本発明の一実施形態に係る内燃機関の制御装置を示す模式的な全体構成図である。1 is a schematic overall configuration diagram showing a control device for an internal combustion engine according to an embodiment of the present invention. 本発明の一実施形態に係る内燃機関の正味平均有効圧(BMEP)とエンジン回転数との関係を示す図である。It is a figure which shows the relationship between the net average effective pressure (BMEP) of the internal combustion engine which concerns on one Embodiment of this invention, and an engine speed. 本発明の一実施形態に係る内燃機関の制御装置において、メイン噴射を4〜6段階に分けた場合の燃料噴射量と噴射時期とを示す図である。In the control apparatus for an internal combustion engine according to one embodiment of the present invention, it is a diagram showing a fuel injection amount and an injection timing when main injection is divided into 4 to 6 stages. 本発明の一実施形態に係る内燃機関の制御装置による燃料噴射制御を示すフローである。It is a flow which shows the fuel-injection control by the control apparatus of the internal combustion engine which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内燃機関の制御装置による筒内圧とクランク角との関係を示す指圧線図である。It is a shiatsu diagram which shows the relationship between the cylinder pressure by the control apparatus of the internal combustion engine which concerns on one Embodiment of this invention, and a crank angle. 本発明の一実施形態に係る内燃機関の制御装置によるP−V線図である。It is a PV diagram by a control device of an internal-combustion engine concerning one embodiment of the present invention. 本発明の一実施形態に係る内燃機関の制御装置による熱発生率を示す図であるIt is a figure which shows the heat release rate by the control apparatus of the internal combustion engine which concerns on one Embodiment of this invention. メイン噴射による燃料噴射を1段階にした場合と3段階にした場合とを比較した図である。It is the figure which compared the case where the fuel injection by main injection is made into 1 step, and the case where it made it to 3 steps. 従来の多段噴射装置による噴射パターンを示す図である。It is a figure which shows the injection pattern by the conventional multistage injection apparatus.

以下、図1〜8に基づいて、本発明の一実施形態に係る内燃機関の制御装置1について説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, based on FIGS. 1-8, the control apparatus 1 of the internal combustion engine which concerns on one Embodiment of this invention is demonstrated. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

本発明の一実施形態に係る内燃機関の制御装置1は、図1に示すように、4個の気筒2a〜2dを備えたディーゼルエンジン(以下、エンジンという)2に適用される。また、このエンジン2には、1燃焼行程中にメイン噴射を含む複数回の燃料噴射が可能な多段噴射装置30が設けられている。   An internal combustion engine control apparatus 1 according to an embodiment of the present invention is applied to a diesel engine (hereinafter referred to as an engine) 2 having four cylinders 2a to 2d as shown in FIG. Further, the engine 2 is provided with a multistage injection device 30 capable of performing fuel injection a plurality of times including main injection during one combustion stroke.

エンジン2の各気筒2a〜2dの吸気口には、図1に示すように、吸気弁(不図示)の開弁により吸気通路20を介して新気を導入する吸気マニホールド15が接続されている。また、エンジン2の各気筒2a〜2dの排出口には、排気弁(不図示)の開弁により排気通路26を介して排気ガスを排出する排気マニホールド16が接続されている。さらに、吸気マニホールド15と排気マニホールド16とは、排気ガスの一部を還流するEGR通路40によって連通されている。   As shown in FIG. 1, an intake manifold 15 for introducing fresh air through an intake passage 20 by opening an intake valve (not shown) is connected to the intake ports of the cylinders 2a to 2d of the engine 2. . Further, an exhaust manifold 16 that exhausts exhaust gas through an exhaust passage 26 by opening an exhaust valve (not shown) is connected to the exhaust ports of the cylinders 2 a to 2 d of the engine 2. Further, the intake manifold 15 and the exhaust manifold 16 are communicated with each other by an EGR passage 40 that recirculates a part of the exhaust gas.

吸気通路20には、図1に示すように、上流側から順にエアクリーナ25と、ターボ過給器23を構成するコンプレッサ23aと、インタクーラ22とが設けられている。また、排気通路26には、ターボ過給器23を構成するタービン23bが設けられている。   As shown in FIG. 1, an air cleaner 25, a compressor 23 a that constitutes a turbocharger 23, and an intercooler 22 are provided in the intake passage 20 in order from the upstream side. The exhaust passage 26 is provided with a turbine 23b that constitutes the turbocharger 23.

多段噴射装置30は、図1に示すように、電磁式の燃料噴射制御弁3a〜3dと、燃料噴射管4a〜4dと、コモンレール10と、サプライポンプ14とを備え構成されている。   As shown in FIG. 1, the multistage injection device 30 includes electromagnetic fuel injection control valves 3 a to 3 d, fuel injection pipes 4 a to 4 d, a common rail 10, and a supply pump 14.

燃料噴射制御弁3a〜3dは、エンジン2の各気筒2a〜2d毎に加圧燃料を直接噴射するもので、噴射孔を有する燃料噴射ノズル(不図示)と、燃料噴射ノズル内に摺動自在に収容された芯弁(不図示)と、芯弁を開弁方向に移動させる電磁弁(不図示)とを有する。また、燃料噴射制御弁3a〜3dは、燃料噴射管4a〜4dを介してコモンレール10に接続されている。そして、燃料噴射制御弁3a〜3dは、電磁弁に後述するECU50から制御信号(パルス信号)が出力されると、係る出力に応じて芯弁を駆動させることで、各気筒2a〜2dに適量の加圧燃料を噴射するように構成されている。   The fuel injection control valves 3a to 3d directly inject pressurized fuel into the cylinders 2a to 2d of the engine 2, and are slidable within the fuel injection nozzle (not shown) having injection holes and the fuel injection nozzle. And a solenoid valve (not shown) for moving the core valve in the valve opening direction. The fuel injection control valves 3a to 3d are connected to the common rail 10 via fuel injection pipes 4a to 4d. Then, when a control signal (pulse signal) is output from the ECU 50, which will be described later, to the solenoid valve, the fuel injection control valves 3a to 3d drive the core valve in accordance with the output, thereby providing an appropriate amount for each cylinder 2a to 2d. The pressurized fuel is configured to be injected.

コモンレール10は、サプライポンプ14から供給される加圧燃料を畜圧するとともに、この畜圧した加圧燃料を燃料噴射管4a〜4dを介して燃料噴射制御弁3a〜3dへと分配する。   The common rail 10 pressure-accumulates the pressurized fuel supplied from the supply pump 14, and distributes this pressurized fuel to the fuel injection control valves 3a to 3d via the fuel injection pipes 4a to 4d.

サプライポンプ14は、公知の高圧供給ポンプであって、図示しない燃料タンクから燃料を汲み取るフィードポンプや、コモンレール10への加圧燃料の吐出量を調整する電磁弁(不図示)等を備え構成されている。   The supply pump 14 is a known high-pressure supply pump, and includes a feed pump that draws fuel from a fuel tank (not shown), an electromagnetic valve (not shown) that adjusts the discharge amount of pressurized fuel to the common rail 10, and the like. ing.

エンジン回転センサ32は、エンジン2の回転数を検出するもので、図1に示すように電気配線を介してECU50に接続されている。   The engine rotation sensor 32 detects the number of rotations of the engine 2 and is connected to the ECU 50 via electric wiring as shown in FIG.

アクセル開度センサ33は、図示しないアクセルペダルの踏み込み量を検出するもので、図1に示すように電気配線を介してECU50に接続されている。   The accelerator opening sensor 33 detects the amount of depression of an accelerator pedal (not shown), and is connected to the ECU 50 via electric wiring as shown in FIG.

なお、本実施形態に係るエンジン回転センサ32とアクセル開度センサ33とは、本発明の運転状態検出手段を構成する。   Note that the engine rotation sensor 32 and the accelerator opening sensor 33 according to the present embodiment constitute an operating state detection means of the present invention.

ECU(Electric Control Unit:ECU)50は、本発明の噴射制御手段に相当するもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えている。また、ECU50には、エンジン回転数センサ32、アクセル開度センサ33、クランク角度センサ(不図示)等の各種センサの出力信号がA/D変換された後に入力されるように構成されている。また、ECU50は、運転状態判定部51と、燃料噴射条件設定部52とを一部の機能要素として有する。なお、これら各機能要素は、本実施形態では一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。   An ECU (Electric Control Unit: ECU) 50 corresponds to the injection control means of the present invention, and includes a known CPU, ROM, RAM, input port, output port, and the like. Further, the ECU 50 is configured such that output signals from various sensors such as the engine speed sensor 32, the accelerator opening sensor 33, and the crank angle sensor (not shown) are input after A / D conversion. Further, the ECU 50 includes an operating state determination unit 51 and a fuel injection condition setting unit 52 as a part of functional elements. In the present embodiment, these functional elements are described as being included in the ECU 50, which is an integral piece of hardware. However, any one of these functional elements may be provided in separate hardware.

運転状態判定部51は、エンジン回転センサ32の検出値(以下、回転数Nという)やアクセル開度センサ33の検出値(以下、アクセル開度Qという)等のエンジン2の運転状態を示すパラメータに基づいて、エンジン2の運転状態が所定の高負荷運転領域にあるか否かを判定する。ここで、所定の高負荷運転領域は、例えば図2に示すように、エンジン2の正味平均有効圧(Brake Mean Effective Pressure:BMEP)が上限閾値PMAXよりも高くなる運転領域に設定されている。すなわち、運転状態判定部51は、回転数Nが所定回転数NSより大きくなり、かつ、アクセル開度Qも所定開度QSより大きくなることで、BMEPが上限閾値PMAXより高くなるような運転領域の場合は、エンジン2の運転状態を所定の高負荷運転領域にあると判定する。一方、運転状態判定部51は、回転数Nが所定回転数NS以下になり、かつ、アクセル開度Qも所定開度QS以下となることで、BMEPが上限閾値PMAX以下になるような運転領域の場合は、エンジン2の運転状態を所定の高負荷運転領域にないと判定する。 The operation state determination unit 51 is a parameter indicating the operation state of the engine 2 such as a detection value of the engine rotation sensor 32 (hereinafter referred to as the rotational speed N) and a detection value of the accelerator opening sensor 33 (hereinafter referred to as the accelerator opening Q). Based on the above, it is determined whether or not the operating state of the engine 2 is in a predetermined high-load operating region. Here, for example, as shown in FIG. 2, the predetermined high load operation region is set to an operation region in which the net mean effective pressure (BMEP) of the engine 2 is higher than the upper limit threshold P MAX . . That is, the operating condition determining section 51, the rotational speed N becomes larger than the predetermined rotational speed N S, and the accelerator opening Q also be greater than the predetermined opening Q S, so that the BMEP is higher than the upper threshold P MAX In the case of a proper operation region, it is determined that the operation state of the engine 2 is in a predetermined high load operation region. On the other hand, the operating condition determining section 51, the rotational speed N becomes less than the predetermined rotational speed N S, and the accelerator opening Q also be equal to or less than a predetermined opening degree Q S, so that the BMEP is equal to or less than the upper threshold value P MAX In the case of a proper operation region, it is determined that the operation state of the engine 2 is not in the predetermined high load operation region.

燃料噴射条件設定部52は、運転状態判定部51の判定に応じて、多段噴射装置30による燃料噴射条件を設定する。エンジン2の運転状態が所定の高負荷運転領域にない場合は、エンジン2の運転状態とECU50に予め記憶された図示しない多段噴射の特性マップとに基づいて、1燃焼行程中に行うパイロット噴射,メイン噴射,アフター噴射等の各噴射条件(燃料噴射量,噴射開始時期等)を設定し、これら設定した噴射条件のパルス信号を燃料噴射制御弁3a〜3dの電磁弁に出力する。   The fuel injection condition setting unit 52 sets the fuel injection condition by the multistage injection device 30 according to the determination of the operation state determination unit 51. When the operation state of the engine 2 is not in the predetermined high load operation region, pilot injection performed during one combustion stroke based on the operation state of the engine 2 and a characteristic map of multistage injection (not shown) stored in advance in the ECU 50, Each injection condition (fuel injection amount, injection start timing, etc.) such as main injection and after injection is set, and pulse signals of these set injection conditions are output to the solenoid valves of the fuel injection control valves 3a to 3d.

一方、エンジン2の運転状態が所定の高負荷運転領域にある場合は、エンジン2の運転状態に応じた1燃焼行程中におけるメイン噴射の総噴射量Mを算出するとともに、メイン噴射による燃料噴射を3段階に分けて行うメイン噴射条件を設定する。そして、設定されたメイン噴射条件は、制御信号(パルス信号)として燃料噴射制御弁3a〜3dの電磁弁に出力されるように構成されている。ここで、本実施形態において、メイン噴射を3段階に分けて行うメイン噴射条件のうち、1段目の燃料噴射量は算出した総噴射量Mの約5%に設定され、その噴射時期(クランク角度)はクランク角度が限りなく0(ゼロ)に近い上死点近傍に設定されている。また、2段目の燃料噴射量は算出した総噴射量Mの約70%に設定され、その噴射時期(クランク角度)は上死点後の5°(5度)前後に設定されている。さらに、3段目の燃料噴射量は算出した総噴射量Mの約25%に設定され、その噴射時期(クランク角度)は上死点後の10°(10度)前後に設定されている。   On the other hand, when the operation state of the engine 2 is in a predetermined high load operation region, the total injection amount M of the main injection during one combustion stroke corresponding to the operation state of the engine 2 is calculated, and the fuel injection by the main injection is performed. The main injection conditions to be performed in three stages are set. And the set main injection conditions are output to the solenoid valves of the fuel injection control valves 3a to 3d as control signals (pulse signals). Here, in the present embodiment, of the main injection conditions in which the main injection is divided into three stages, the first stage fuel injection amount is set to about 5% of the calculated total injection amount M, and the injection timing (crank The angle) is set in the vicinity of the top dead center where the crank angle is as close to 0 (zero) as possible. The fuel injection amount at the second stage is set to about 70% of the calculated total injection amount M, and the injection timing (crank angle) is set around 5 ° (5 °) after top dead center. Further, the third-stage fuel injection amount is set to about 25% of the calculated total injection amount M, and the injection timing (crank angle) is set to about 10 ° (10 degrees) after the top dead center.

なお、メイン噴射を分ける段数は必ずしも3段階に限られず、例えば4〜6段階など3段階以上にするものであれば、適宜変形して適用することができる。この場合、上死点近傍で行う1段目の燃料噴射量は以下の数式1で算出され、上死点近傍から上死点後10°(10度)の範囲で行う2段目以降の燃料噴射量は以下の数式2で算出される。   It should be noted that the number of stages for dividing the main injection is not necessarily limited to three stages, and can be appropriately modified and applied as long as the number of stages is three or more, such as 4 to 6 stages. In this case, the fuel injection amount of the first stage performed near the top dead center is calculated by the following formula 1, and the fuel after the second stage performed within the range of 10 ° (10 degrees) after the top dead center from the vicinity of the top dead center. The injection amount is calculated by the following formula 2.

Figure 2012082800
Figure 2012082800

Figure 2012082800
Figure 2012082800

なお、数式1,2中のA及びBは、以下の数式3,4で算出される。また、数式3,4のnはメイン噴射を分ける段数(n≧3)を示し、kは燃料を噴射する順番(1≦k≦n)を示す。   In addition, A and B in Formulas 1 and 2 are calculated by Formulas 3 and 4 below. Further, n in Equations 3 and 4 indicates the number of stages that separate the main injection (n ≧ 3), and k indicates the order in which the fuel is injected (1 ≦ k ≦ n).

Figure 2012082800
Figure 2012082800

Figure 2012082800
Figure 2012082800

また、上死点近傍から上死点後10°(10度)の範囲で行う2段目以降の噴射時期(クランク角度)は、以下の数式5で算出される。   Further, the injection timing (crank angle) after the second stage performed in the range from the vicinity of the top dead center to 10 ° (10 degrees) after the top dead center is calculated by the following Expression 5.

Figure 2012082800
Figure 2012082800

このように、メイン噴射を分ける段数を4段階以上にした場合の噴射時期と噴射量とを上述の数式1〜5に基づいて算出すると、図3の表1に示すような関係になる。いずれの場合も、上死点近傍で行う1段目の燃料噴射量は総噴射量Mの約3〜7%となり、2段目以降に行う燃料噴射量よりも小さく設定されることになる。   As described above, when the injection timing and the injection amount when the number of stages for dividing the main injection is set to four or more are calculated based on the above formulas 1 to 5, the relationship shown in Table 1 of FIG. 3 is obtained. In either case, the first stage fuel injection amount performed in the vicinity of the top dead center is about 3 to 7% of the total injection amount M, and is set smaller than the fuel injection amount performed after the second stage.

本発明の一実施形態に係る内燃機関の制御装置1は、以上のように構成されているので、例えば図4に示すフローに従って以下のような制御が行われる。   Since the control apparatus 1 for an internal combustion engine according to one embodiment of the present invention is configured as described above, for example, the following control is performed according to the flow shown in FIG.

ステップ(以下、ステップを単にSと記載する)100では、ECU50の運転状態判定部51によって、エンジン2の運転状態が所定の高負荷運転領域にあるか否かが判定される。回転数Nが所定回転数NSより大きく、かつ、アクセル開度Qも所定開度QSより大きくなり、BMEPが上限閾値PMAXより高くなるような運転領域の場合は、エンジン2の運転状態は所定の高負荷運転領域と判定されてS110へと進む。一方、回転数Nが所定回転数NS以下で、かつ、アクセル開度Qも所定開度QS以下となり、BMEPが上限閾値PMAX以下になるような運転領域の場合は、エンジン2の運転状態は所定の高負荷運転領域にないと判定されてS200へと進む。 In step (hereinafter, the step is simply referred to as S) 100, the operation state determination unit 51 of the ECU 50 determines whether or not the operation state of the engine 2 is in a predetermined high load operation region. Rotational speed N is greater than the predetermined rotational speed N S, and becomes larger than the predetermined opening degree Q S accelerator opening Q, if BMEP is operating range such that higher than the upper limit threshold value P MAX, the operation state of the engine 2 Is determined to be a predetermined high-load operation region, and the process proceeds to S110. On the other hand, at a rotational speed N is less than a predetermined rotational speed N S, and also the accelerator opening Q becomes equal to or less than the predetermined opening Q S, if BMEP is operating range such that less than the upper limit threshold value P MAX, the operation of the engine 2 The state is determined not to be in the predetermined high load operation region, and the process proceeds to S200.

S110では、燃料噴射条件設定部52により、3段階に分けて行うメイン噴射の総噴射量Mがエンジン2の運転状態に基づいて算出される。   In S <b> 110, the fuel injection condition setting unit 52 calculates the total injection amount M of main injection performed in three stages based on the operating state of the engine 2.

S120では、燃料噴射条件設定部52により、S110で算出された総噴射量Mに基づいて、1〜3段目までのメイン噴射条件(各燃料噴射量,各噴射時期)が設定される。具体的には、上死点近傍で行う1段目の燃料噴射量は総噴射量Mの約5%に設定される。また、上死点後の5°(5度)前後で行う2段目の燃料噴射量は総噴射量Mの約70%に設定される。さらに、上死点後の10°(10度)前後で行う3段目の燃料噴射量は総噴射量Mの約25%に設定される。   In S120, the fuel injection condition setting unit 52 sets main injection conditions (each fuel injection amount, each injection timing) up to the first to third stages based on the total injection amount M calculated in S110. Specifically, the first-stage fuel injection amount performed near the top dead center is set to about 5% of the total injection amount M. Further, the second stage fuel injection amount performed around 5 ° (5 degrees) after the top dead center is set to about 70% of the total injection amount M. Further, the third stage fuel injection amount performed around 10 ° (10 degrees) after the top dead center is set to about 25% of the total injection amount M.

S130では、S120で設定されたメイン噴射条件のパルス信号が、燃料噴射条件設定部52から燃料噴射制御弁3a〜3dの電磁弁に出力されて本制御はリターンされる。   In S130, the pulse signal of the main injection condition set in S120 is output from the fuel injection condition setting unit 52 to the electromagnetic valves of the fuel injection control valves 3a to 3d, and this control is returned.

一方、前述のS100において、エンジン2の運転状態が所定の高負荷運転領域にないと判定された場合は、S200で、燃料噴射条件設定部52によりエンジン2の運転状態と多段噴射の特性マップとに基づいて1燃焼行程中に行うパイロット噴射,メイン噴射,アフター噴射等の各噴射条件が設定される。   On the other hand, if it is determined in S100 described above that the operating state of the engine 2 is not in the predetermined high-load operating region, the operating state of the engine 2 and the multi-stage injection characteristic map are determined by the fuel injection condition setting unit 52 in S200. Each injection condition such as pilot injection, main injection, and after injection performed during one combustion stroke is set based on the above.

S210では、S200で設定された各噴射条件のパルス信号が、燃料噴射条件設定部52から燃料噴射制御弁3a〜3dの電磁弁に出力されて本制御はリターンされる。   In S210, the pulse signal of each injection condition set in S200 is output from the fuel injection condition setting unit 52 to the electromagnetic valves of the fuel injection control valves 3a to 3d, and this control is returned.

上述のような構成により、本発明の一実施形態に係る内燃機関の制御装置1によれば以下のような作用・効果を奏する。   With the configuration as described above, the control device 1 for an internal combustion engine according to one embodiment of the present invention has the following operations and effects.

エンジン2の運転状態が正味平均有効圧(BMEP)の高くなる所定の高負荷運転領域にある場合、多段噴射装置30によるメイン噴射の燃料噴射は3段階に分けられて噴射される。1段目は総噴射量Mの約5%の燃料が上死点近傍で噴射され、2段目は総噴射量Mの約70%の燃料が上死点後の5°(5度)前後で噴射され、3段目は総噴射量Mの約25%の燃料が上死点後の10°(10度)前後で噴射される。   When the operating state of the engine 2 is in a predetermined high-load operating region where the net average effective pressure (BMEP) is high, the fuel injection of the main injection by the multistage injection device 30 is injected in three stages. In the first stage, about 5% of the total injection amount M is injected near top dead center, and in the second stage, about 70% of the total injection amount M is injected around 5 ° (5 degrees) after top dead center. In the third stage, about 25% of the total injection amount M of fuel is injected around 10 ° (10 degrees) after top dead center.

このように、メイン噴射を3段階に分けて噴射した際のエンジン2の筒内圧とクランク角との関係を示す指圧線図を図5に示す。また、P−V線図を図6に示し、熱発生率を示す図を図7に示す。図5に示すように、メイン噴射を1段のみとした従来例(破線)に比べ、メイン噴射を3段階に分けた本実施形態の場合(実線)は、エンジン2の筒内圧の上昇が効果的に抑制されていることが分かる。また、図6に示すように、メイン噴射を1段のみとした従来例(破線)に比べ、メイン噴射を3段階に分けた本実施形態の場合(実線)は、P−V線図の面積が増加(図6中の領域A参照)していることから、エンジン2の出力であるトルクが効果的に増加していることが分かる。さらに、図7に示すように、メイン噴射を1段のみとした従来例(破線)では1燃焼行程中に熱発生が1回であるのに対して、メイン噴射を3段階に分けた本実施形態の場合(実線)は、1燃焼行程中に熱発生が3回あることが分かる。   FIG. 5 shows an acupressure diagram showing the relationship between the in-cylinder pressure of the engine 2 and the crank angle when the main injection is injected in three stages. Moreover, a PV diagram is shown in FIG. 6, and a diagram showing a heat generation rate is shown in FIG. As shown in FIG. 5, in the case of the present embodiment in which the main injection is divided into three stages (solid line) compared to the conventional example in which the main injection is only one stage (broken line), an increase in the in-cylinder pressure of the engine 2 is effective It can be seen that it is suppressed. Further, as shown in FIG. 6, in the case of the present embodiment in which the main injection is divided into three stages (solid line) as compared with the conventional example (dashed line) in which the main injection is only one stage, the area of the PV diagram is shown. Is increased (see region A in FIG. 6), it can be seen that the torque that is the output of the engine 2 is effectively increased. Furthermore, as shown in FIG. 7, in the conventional example (dashed line) in which the main injection is only one stage, heat is generated only once during one combustion stroke, whereas the main injection is divided into three stages. In the case of the form (solid line), it can be seen that heat is generated three times during one combustion stroke.

すなわち、本発明の一実施形態に係る内燃機関の制御装置1によれば、エンジン2の運転状態が所定の高負荷運転領域にある場合にメイン噴射の燃料噴射を3段階に分けて噴射することで、エンジン2の筒内圧が上昇することを効果的に抑制しつつ、エンジン2の出力を増加させることができる。   That is, according to the control apparatus 1 for an internal combustion engine according to an embodiment of the present invention, when the operating state of the engine 2 is in a predetermined high load operation region, the fuel injection of the main injection is divided into three stages. Thus, it is possible to increase the output of the engine 2 while effectively suppressing an increase in the in-cylinder pressure of the engine 2.

また、エンジン2の1燃焼行程中に熱発生が3回あり、エンジン2の熱効率も向上されるので、エンジン2の燃費を効果的に向上することができる。   In addition, since heat is generated three times during one combustion stroke of the engine 2 and the thermal efficiency of the engine 2 is improved, the fuel consumption of the engine 2 can be effectively improved.

ここで、メイン噴射を1段のみとした従来例と、メイン噴射を3段階に分けた本実施形態との比較例として、エンジン2の最高筒内圧,エンジン2の出力,エンジン2の燃費(BSFC),エンジン2から排出されるスモーク(FSN)を図8(a)〜(d)に示す。図8(a)〜(d)に示すように、メイン噴射を3段階に分けた本実施形態によれば、従来例に比べてエンジン2の最高筒内圧は下がり、エンジン2の出力は増加し、エンジン2の燃費(BSFC)は向上され、かつ、エンジン2から排出されるスモーク(FSN)も低減されていることからも、本発明の効果が分かる。   Here, as a comparative example of the conventional example in which the main injection is only one stage and the present embodiment in which the main injection is divided into three stages, the maximum in-cylinder pressure of the engine 2, the output of the engine 2, the fuel consumption of the engine 2 (BSFC) ), Smoke (FSN) discharged from the engine 2 is shown in FIGS. As shown in FIGS. 8A to 8D, according to the present embodiment in which the main injection is divided into three stages, the maximum in-cylinder pressure of the engine 2 decreases and the output of the engine 2 increases compared to the conventional example. The fuel efficiency (BSFC) of the engine 2 is improved, and the smoke (FSN) discharged from the engine 2 is also reduced, so that the effect of the present invention can be seen.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

例えば、上述の実施形態において、内燃機関の制御装置1は4気筒のエンジン2に適用されるものとして説明したが、単気筒やそれ以上の気筒を備えた複数気筒のエンジンにも広く適用することができる。   For example, in the above-described embodiment, the control apparatus 1 for an internal combustion engine has been described as being applied to a four-cylinder engine 2; Can do.

また、メイン噴射を4段階以上に分ける場合のメイン噴射条件(燃料噴射量、噴射時期)は、上述の数式1〜5で算出されるものとして説明したが、ECU50に図3の表1を予め噴射条件マップとして記憶させ、係る噴射条件マップを参照することでエンジン2の運転状態に応じた最適なメイン噴射条件を設定するようにしてもよい。   In addition, the main injection conditions (fuel injection amount, injection timing) in the case of dividing the main injection into four or more stages have been described as being calculated by the above formulas 1 to 5, but Table 1 of FIG. You may make it memorize | store as an injection condition map and set the optimal main injection conditions according to the driving | running state of the engine 2 by referring to the injection condition map concerned.

2 エンジン(内燃機関)
3a,3b,3c,3d 燃料噴射制御弁(多段噴射装置)
4a,4b,4c,4d 燃料噴射管(多段噴射装置)
10 コモンレール(多段噴射装置)
14 サプライポンプ(多段噴射装置)
30 多段噴射装置
32 エンジン回転センサ(運転状態検出手段)
33 アクセル開度センサ(運転状態検出手段)
50 ECU(噴射制御手段)
51 運転状態判定部
52 燃料噴射条件設定部
2 Engine (Internal combustion engine)
3a, 3b, 3c, 3d Fuel injection control valve (multistage injection device)
4a, 4b, 4c, 4d Fuel injection pipe (multistage injection device)
10 Common rail (multi-stage injection device)
14 Supply pump (multistage injection device)
30 Multistage injection device 32 Engine rotation sensor (operating state detection means)
33 Accelerator opening sensor (operating state detection means)
50 ECU (injection control means)
51 Operation state determination unit 52 Fuel injection condition setting unit

Claims (2)

1燃焼行程中にメイン噴射を含む複数回の噴射が可能な多段噴射装置を有する内燃機関の制御装置であって、
前記内燃機関の運転状態を検出する運転状態検出手段と、
前記運転状態検出手段の検出に基づいて、前記内燃機関の運転状態が所定の高負荷領域の場合は、前記メイン噴射による燃料の噴射が少なくとも3段階に分けて行われるように前記多段噴射装置を制御する噴射制御手段と、を備える
ことを特徴とする内燃機関の制御装置。
A control device for an internal combustion engine having a multi-stage injection device capable of performing a plurality of injections including a main injection during one combustion stroke,
An operating state detecting means for detecting an operating state of the internal combustion engine;
Based on the detection of the operating state detecting means, when the operating state of the internal combustion engine is in a predetermined high load region, the multi-stage injection device is arranged so that fuel injection by the main injection is performed in at least three stages. An internal combustion engine control apparatus comprising: an injection control means for controlling.
前記噴射制御手段は、
少なくとも3段階に分けて行う前記メイン噴射による燃料の噴射のうち、1段目の噴射時期を前記内燃機関の上死点近傍で行うとともに、1段目の噴射量を2段目以降の噴射量よりも小さくするように前記多段噴射装置を制御する
ことを特徴とする請求項1記載の内燃機関の制御装置。
The injection control means includes
Of the fuel injection by the main injection performed in at least three stages, the first stage injection timing is performed in the vicinity of the top dead center of the internal combustion engine, and the first stage injection quantity is the second and subsequent stage injection quantity. The control apparatus for an internal combustion engine according to claim 1, wherein the multistage injection device is controlled to be smaller.
JP2010231680A 2010-10-14 2010-10-14 Control device for internal combustion engine Expired - Fee Related JP5664106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010231680A JP5664106B2 (en) 2010-10-14 2010-10-14 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231680A JP5664106B2 (en) 2010-10-14 2010-10-14 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012082800A true JP2012082800A (en) 2012-04-26
JP5664106B2 JP5664106B2 (en) 2015-02-04

Family

ID=46241918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231680A Expired - Fee Related JP5664106B2 (en) 2010-10-14 2010-10-14 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5664106B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030486A (en) * 1996-07-17 1998-02-03 Mitsubishi Motors Corp Accumulator fuel injection controlling device
JP2001041089A (en) * 1999-07-29 2001-02-13 Mazda Motor Corp Control device for diesel engine and power train device
JP2001159311A (en) * 1999-12-03 2001-06-12 Mazda Motor Corp Exhaust emission control device for engine
JP2002155791A (en) * 2000-11-16 2002-05-31 Mazda Motor Corp Control device of diesel engine
JP2006250120A (en) * 2005-03-14 2006-09-21 Nissan Motor Co Ltd Fuel injection control device of diesel engine
JP2009041474A (en) * 2007-08-09 2009-02-26 Idemitsu Kosan Co Ltd Internal combustion engine, internal combustion system, and control method for internal combustion engine
JP2009138657A (en) * 2007-12-07 2009-06-25 Toyota Motor Corp Fuel injection control device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030486A (en) * 1996-07-17 1998-02-03 Mitsubishi Motors Corp Accumulator fuel injection controlling device
JP2001041089A (en) * 1999-07-29 2001-02-13 Mazda Motor Corp Control device for diesel engine and power train device
JP2001159311A (en) * 1999-12-03 2001-06-12 Mazda Motor Corp Exhaust emission control device for engine
JP2002155791A (en) * 2000-11-16 2002-05-31 Mazda Motor Corp Control device of diesel engine
JP2006250120A (en) * 2005-03-14 2006-09-21 Nissan Motor Co Ltd Fuel injection control device of diesel engine
JP2009041474A (en) * 2007-08-09 2009-02-26 Idemitsu Kosan Co Ltd Internal combustion engine, internal combustion system, and control method for internal combustion engine
JP2009138657A (en) * 2007-12-07 2009-06-25 Toyota Motor Corp Fuel injection control device for internal combustion engine

Also Published As

Publication number Publication date
JP5664106B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
CN110360019B (en) Control device for internal combustion engine
JP5392418B2 (en) Ignition delay period estimation device and ignition timing control device for internal combustion engine
KR101787228B1 (en) Control device for internal combustion engine
KR20080026659A (en) Boost pressure control
JP6001497B2 (en) Intake device for internal combustion engine
JP4998632B1 (en) Combustion control device
US20100076668A1 (en) Control apparatus for internal combustion engine
JP2012167607A (en) Control apparatus for internal combustion engine with supercharger
JP2017020445A (en) Control device of internal combustion engine
JP5896288B2 (en) Control device for internal combustion engine
JP5093407B2 (en) Combustion control device for internal combustion engine
JP2011247214A (en) Fuel injection control device of internal combustion engine
JP5664106B2 (en) Control device for internal combustion engine
JP2012092675A (en) Internal combustion engine control device
JP5998900B2 (en) Turbocharged engine
JP5888605B2 (en) Control device for internal combustion engine
JP5659997B2 (en) Control device for internal combustion engine
JP2010144527A (en) Fuel injection control device and fuel injection control method for internal combustion engine
JP4894815B2 (en) Fuel pressure control device for vehicle internal combustion engine
JP2008014207A (en) Fuel injection device for engine
JP2013224616A (en) Torque estimating device for internal combustion engine and operation control device
JP2012082737A (en) Internal combustion engine
JP2009293621A (en) Control device of internal combustion engine
JP2016223387A (en) Pm generation amount estimation device for internal combustion engine
JP5769509B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R150 Certificate of patent or registration of utility model

Ref document number: 5664106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees