JP2002155791A - Control device of diesel engine - Google Patents

Control device of diesel engine

Info

Publication number
JP2002155791A
JP2002155791A JP2000350062A JP2000350062A JP2002155791A JP 2002155791 A JP2002155791 A JP 2002155791A JP 2000350062 A JP2000350062 A JP 2000350062A JP 2000350062 A JP2000350062 A JP 2000350062A JP 2002155791 A JP2002155791 A JP 2002155791A
Authority
JP
Japan
Prior art keywords
fuel injection
injection
main fuel
stage
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000350062A
Other languages
Japanese (ja)
Other versions
JP3941382B2 (en
Inventor
Tomoaki Saito
智明 齊藤
Takumi Nishida
工 西田
Keiji Araki
啓二 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2000350062A priority Critical patent/JP3941382B2/en
Publication of JP2002155791A publication Critical patent/JP2002155791A/en
Application granted granted Critical
Publication of JP3941382B2 publication Critical patent/JP3941382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a smoke while preventing a deterioration of a fuel consumption by carrying out a divided injection of main fuel and appropriately controlling the divided injection depending on an operation state in a diesel engine. SOLUTION: A fuel injection valve 5 for injecting a fuel and a fuel injection control means 37 for controlling a fuel injection from this fuel injection valve are provided in a combustion chamber of the diesel engine. This fuel injection control means 37 divides and carries out a main fuel injection for producing a torque to a plurality of times at an operation area from a low load side to a high load side at at least low speed area of the engine for a period from near a compression top dead point to a former stage of an expansion stroke. A starting timing of the injection at a latter stage side of the main fuel injection is delayed at an operation area at a high load side as compared with an operation area at the low load side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はディーゼルエンジン
の制御装置に関し、とくに燃料噴射を分割して行うこと
によりスモークの低減を図る技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control system for a diesel engine, and more particularly to a technique for reducing smoke by dividing fuel injection.

【0002】[0002]

【従来の技術】従来、例えば特開平3−160148号
公報に示されるように、燃焼室内に燃料を噴射する燃料
噴射弁を備えたディーゼルエンジンにおいて、上記燃料
噴射弁からの燃料噴射を分割して行うようにし、例えば
パイロット噴射と主噴射とに分割し、あるいはさらに主
噴射を複数回に分割するとともに、その噴射間隔及び各
噴射パルス幅を制御可能とすることにより、排気ガスに
含まれるスモーク、炭化水素、窒素酸化物等の有害物質
の低減を図るようにした技術は知られている。
2. Description of the Related Art Conventionally, as disclosed in Japanese Patent Application Laid-Open No. 3-160148, for example, in a diesel engine having a fuel injection valve for injecting fuel into a combustion chamber, fuel injection from the fuel injection valve is divided. To be performed, for example, by dividing into pilot injection and main injection, or further dividing main injection into a plurality of times, and by controlling the injection interval and each injection pulse width, smoke contained in exhaust gas, Techniques for reducing harmful substances such as hydrocarbons and nitrogen oxides are known.

【0003】[0003]

【発明が解決しようとする課題】上記のように燃料噴射
弁からの燃料噴射を分割し、特にトルク生成のための主
燃料噴射を分割して行うようにすれば、スモーク低減に
有利であるが、このようにする場合に後段側の噴射の時
期(前段側の噴射と後段側の噴射との間隔)はスモーク
低減効果に影響を及ぼすとともに、燃費性能や出力性能
にも影響を及ぼす。つまり、後に詳述するように、膨張
行程前期の特定範囲内で後段側の噴射の時期を遅くすれ
ば、スモークが低減されるが、その一方で燃費性能が悪
化し易くなる。しかも、後段側の噴射の時期がスモーク
低減効果に影響を及ぼす度合と燃費性能に影響を及ぼす
度合とは運転状態によって違ってくる。
If the fuel injection from the fuel injection valve is divided as described above, and in particular, the main fuel injection for generating torque is performed in a divided manner, it is advantageous for reducing smoke. In such a case, the timing of the second-stage injection (the interval between the first-stage injection and the second-stage injection) affects not only the smoke reduction effect but also the fuel consumption performance and the output performance. That is, as will be described in detail later, if the timing of the injection at the later stage is delayed within the specific range of the first half of the expansion stroke, the smoke is reduced, but the fuel consumption performance is liable to deteriorate. In addition, the degree to which the timing of the injection at the subsequent stage affects the smoke reduction effect differs from the degree to which the fuel consumption performance is affected, depending on the operating state.

【0004】従来ではこのような点が充分に究明されて
いなかったため、スモーク低減と燃費改善の両立といっ
た面で改善の余地が残されていた。
Conventionally, such points have not been sufficiently investigated, so that there is room for improvement in terms of reducing smoke and improving fuel efficiency.

【0005】本発明はこのような点に鑑み、主燃料噴射
を分割して行い、かつ、その分割噴射を運転状態に応じ
て適切に制御することにより、燃費の悪化を防止しつつ
スモークを低減することができるディーゼルエンジンの
制御装置を提供することを目的とする。
In view of the foregoing, the present invention reduces the smoke while preventing the fuel consumption from deteriorating by dividing the main fuel injection and controlling the divided injection appropriately according to the operating condition. It is an object of the present invention to provide a diesel engine control device which can perform the control.

【0006】[0006]

【課題を解決するための手段】本発明は、ディーゼルエ
ンジンの燃焼室内に燃料を噴射する燃料噴射弁と、この
燃料噴射弁からの燃料噴射を制御する燃料噴射制御手段
とを備え、この燃料噴射制御手段は、少なくともエンジ
ンの低速域における低負荷側から高負荷側にわたる運転
領域で、トルク生成のための主燃料噴射を圧縮上死点付
近から膨張行程前期にわたる期間に複数回に分割して行
わせるとともに、主燃料噴射のうちの後段側の噴射の開
始時期を、高負荷側の運転領域では低負荷側の運転領域
と比べて遅らせるように制御する構成としたものであ
る。
SUMMARY OF THE INVENTION The present invention comprises a fuel injection valve for injecting fuel into a combustion chamber of a diesel engine, and fuel injection control means for controlling fuel injection from the fuel injection valve. The control means divides the main fuel injection for torque generation into a plurality of times during a period from near the compression top dead center to the first half of the expansion stroke at least in an operation range from a low load side to a high load side in a low speed range of the engine. At the same time, the start timing of the latter-stage injection of the main fuel injection is controlled to be delayed in the high-load operation region as compared with the low-load operation region.

【0007】とくに好ましくは、主燃料噴射を複数回に
分割して行う運転領域のうちの低負荷領域では主燃料噴
射による燃焼が継続し、所定負荷以上の領域では燃焼が
途切れるように、主燃料噴射のうちの後段側の噴射の開
始時期をエンジン負荷に応じて変更する。
[0007] It is particularly preferable that the main fuel injection continues to be performed in a low-load region of an operation region in which the main fuel injection is divided into a plurality of times, and the main fuel injection is interrupted in a region above a predetermined load. The start timing of the latter injection of the injection is changed according to the engine load.

【0008】この装置によると、本来的にスモークが少
ないエンジンの低負荷側では後段側の噴射の開始時期が
比較的早くされることにより燃費の悪化が避けられる。
一方、エンジンの高負荷側では後段側の噴射の開始時期
が遅らされることにより、後に詳述するように、前段側
の噴射燃料の燃焼において生じた炭素粒子が後段側の噴
射燃料の燃焼に伴って燃焼すること等でスモークが大幅
に低減される。
According to this device, on the low load side of the engine, which originally has little smoke, deterioration of fuel efficiency can be avoided by making the start timing of the injection in the latter stage relatively early.
On the other hand, on the high-load side of the engine, the start timing of the second-stage injection is delayed, so that the carbon particles generated in the combustion of the first-stage injected fuel burn the second-stage injected fuel, as described later in detail. As a result, smoke is greatly reduced by burning.

【0009】この発明の装置において、エンジンの低、
中速域における中負荷および高負荷の運転領域で、主燃
料噴射による燃焼が途切れるように主燃料噴射のうちの
後段側の噴射の開始時期を制御すればよい。
[0009] In the device of the present invention, the low engine,
In the medium-load and high-load operation regions in the medium-speed region, the start timing of the latter-stage injection of the main fuel injection may be controlled so that the combustion by the main fuel injection is interrupted.

【0010】この発明の装置において、排気エネルギー
により駆動されて吸気を過給するターボ過給機と、排気
ガスの一部を吸気系に還流する排気ガス還流装置と、こ
の排気ガス還流装置による排気ガス還流量を制御する排
気ガス還流制御手段とをさらに備え、エンジンの低、中
速域における過給領域で、燃料噴射制御手段により主燃
料噴射による燃焼が途切れるように主燃料噴射のうちの
後段側の噴射の開始時期を制御するとともに、排気ガス
還流制御手段により燃焼室内の空気過剰率が運転状態に
応じた目標値となるように排気ガス還流量を制御するこ
とが好ましい。
In the apparatus of the present invention, a turbocharger driven by exhaust energy to supercharge intake air, an exhaust gas recirculation device for recirculating a part of exhaust gas to an intake system, and exhaust gas by the exhaust gas recirculation device Exhaust gas recirculation control means for controlling the amount of gas recirculation, the latter part of the main fuel injection in the supercharging region in the low and medium speed regions of the engine so that the combustion by the main fuel injection is interrupted by the fuel injection control means. It is preferable to control the start timing of the side injection and to control the exhaust gas recirculation amount by the exhaust gas recirculation control means so that the excess air ratio in the combustion chamber becomes a target value corresponding to the operating state.

【0011】このようにすれば、エンジンの低、中速域
における過給領域で、後段側の噴射の開始時期が遅くさ
れることで排気エネルギーが高められめことによりター
ボ過給機の過給作用が高められる。そして、後段側の噴
射の開始時期が遅くされることと過給による吸入空気量
の増加とがスモークの低減に有利に作用するとともに、
過給による吸入空気量の増加に応じて排気ガス還流量が
増加し、それによってNOxも低減されることとなる。
In this manner, in the supercharging region in the low and medium speed range of the engine, the start timing of the latter-stage injection is delayed so that the exhaust energy is increased, so that the supercharging of the turbocharger is performed. Action is enhanced. In addition, the delay in the start timing of the injection on the subsequent stage and the increase in the amount of intake air due to supercharging have an advantageous effect on reducing smoke, and
The exhaust gas recirculation amount increases in accordance with the increase in the intake air amount due to the supercharging, so that NOx is also reduced.

【0012】また、本発明は、ディーゼルエンジンの燃
焼室内に燃料を噴射する燃料噴射弁と、この燃料噴射弁
からの燃料噴射を制御する燃料噴射制御手段とを備え、
この燃料噴射制御手段は、少なくともエンジンの低速域
における低負荷側から高負荷側にわたる運転領域で、ト
ルク生成のための主燃料噴射を圧縮上死点付近から膨張
行程前期にわたる期間に複数回に分割して行わせるとと
もに、主燃料噴射を複数回に分割して行う運転領域のう
ちの低負荷領域での定常運転時には主燃料噴射による燃
焼が継続し、加速運転時には燃焼が途切れるように、主
燃料噴射のうちの後段側の噴射の開始時期を制御する構
成としたものである。
Further, the present invention includes a fuel injection valve for injecting fuel into a combustion chamber of a diesel engine, and fuel injection control means for controlling fuel injection from the fuel injection valve.
This fuel injection control means divides the main fuel injection for torque generation into a plurality of times in a period from near the compression top dead center to the first half of the expansion stroke at least in an operation range from a low load side to a high load side in a low speed range of the engine. The main fuel injection is performed such that the main fuel injection continues to be performed during a steady operation in a low load region of the operation region in which the main fuel injection is divided into a plurality of times, and the combustion is interrupted during an accelerated operation. This is configured to control the start timing of the injection at the latter stage of the injection.

【0013】この発明によると、定常運転時には主燃料
噴射による燃焼が継続するように制御されることで燃費
の悪化が防止され、一方、加速時には主燃料噴射による
燃焼が途切れるように後段噴射の開始時期が遅くされる
ことにより、スモークの発生が充分に抑制される。
According to the present invention, the fuel consumption is prevented from deteriorating by controlling the combustion by the main fuel injection to be continued during the steady operation, while the post-injection is started so that the combustion by the main fuel injection is interrupted during the acceleration. By delaying the timing, generation of smoke is sufficiently suppressed.

【0014】この発明の装置は、好ましくはターボ過給
機を備える。また、燃料噴射制御手段は、燃料噴射弁か
ら主燃料噴射に先立ってパイロット噴射を行わせるとと
もに、上記加速初期に、パイロット噴射開始時期を早
め、かつ、パイロット噴射の増量割合を主燃料噴射の増
量割合よりも多くすることが好ましい。
[0014] The device of the invention preferably comprises a turbocharger. Further, the fuel injection control means causes the pilot injection to be performed prior to the main fuel injection from the fuel injection valve, and at the early stage of the acceleration, the pilot injection start timing is advanced, and the increase rate of the pilot injection is increased. It is preferable that the ratio be larger than the ratio.

【0015】このようにすると、加速初期には、後段側
の噴射の開始時期が遅くされることによりスモークが低
減されるとともに、パイロット噴射による予混燃焼の割
合が高められることでトルクアップが図られ、かつ、後
段側の噴射が遅らされることで排気エネルギーが高めら
れることによりターボ過給機の過給作用が促進され、加
速性能が向上される。
In this manner, in the initial stage of the acceleration, the smoke is reduced by delaying the start timing of the subsequent injection, and the ratio of the premixed combustion by the pilot injection is increased, thereby increasing the torque. In addition, since the exhaust energy is increased by delaying the injection at the subsequent stage, the supercharging action of the turbocharger is promoted, and the acceleration performance is improved.

【0016】さらに上記燃料噴射制御手段は、加速初期
を過ぎたとき、主燃料噴射のうちの後段側の噴射の開始
時期を早めるとともに、パイロット噴射量を減少または
カットすることが好ましい。
Further, it is preferable that the fuel injection control means accelerates the start timing of the latter-stage injection of the main fuel injection and reduces or cuts the pilot injection amount after the initial stage of acceleration.

【0017】このようにすると、加速初期が過ぎてター
ボ過給機による過給が充分に行われる状態になれば、出
力向上及び燃費低減に有利なように、後段噴射の時期が
早められるとともに、パイロット噴射量が減少またはカ
ットされる。
In this manner, if the supercharging is sufficiently performed by the turbocharger after the initial stage of acceleration, the timing of the second-stage injection is advanced so as to be advantageous for improving output and reducing fuel consumption. The pilot injection amount is reduced or cut.

【0018】また、以上のような装置において、主燃料
噴射を複数回に分割して行う運転領域において主燃料噴
射のうちの後段側の噴射量を前段側の噴射量よりも少な
くし、かつ、高負荷側ほど上記後段側の噴射量の割合を
少なくすることが好ましい。
Further, in the above-described apparatus, in the operation region in which the main fuel injection is divided into a plurality of times, the injection amount of the latter stage of the main fuel injection is made smaller than the injection amount of the former stage, and It is preferable that the higher the load side, the smaller the ratio of the injection amount in the latter stage.

【0019】このようにすると、可及的に燃費悪化が小
さく抑えられる。
[0019] In this case, deterioration of fuel efficiency is suppressed as much as possible.

【0020】[0020]

【発明の実施の形態】以下、図面に示した実施の形態に
基づいて本発明を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

【0021】図1は、本発明が適用されるディーゼルエ
ンジンの全体構成を示している。このディーゼルエンジ
ンのエンジン本体1は、複数の気筒(図には一つのみを
示す)2を有し、各気筒2内にはピストン3が往復動可
能に嵌挿され、このピストン3によって各気筒2内に燃
焼室4が画成されている。また、上記燃焼室4の上面略
中央には燃料噴射弁5が配設され、この燃料噴射弁5か
ら燃焼室4内に燃料が噴射されるようになっている。
FIG. 1 shows the overall structure of a diesel engine to which the present invention is applied. The engine body 1 of the diesel engine has a plurality of cylinders (only one is shown in the figure) 2, and a piston 3 is inserted into each cylinder 2 in a reciprocating manner. A combustion chamber 4 is defined in 2. A fuel injection valve 5 is provided at substantially the center of the upper surface of the combustion chamber 4, and fuel is injected from the fuel injection valve 5 into the combustion chamber 4.

【0022】上記各燃料噴射弁5は、高圧の燃料を蓄え
るコモンレール6に接続され、このコモンレール6に
は、内部の燃圧(コモンレール圧)を検出する圧力セン
サ6aが配設されるとともに、クランク軸7により駆動
される高圧供給ポンプ8が接続されている。そして、後
述のECUで高圧供給ポンプ8による燃料の供給圧力が
制御されることにより、圧力センサ6aで検出されるコ
モンレール6内の燃圧が運転状態に応じた目標値となる
ように制御され、例えばエンジンのアイドル運転時に燃
圧が約20MPaに保持され、エンジン負荷が高くなる
(燃料噴射量が増加する)につれて燃圧が増大するよう
に構成されている。
Each of the fuel injection valves 5 is connected to a common rail 6 for storing high-pressure fuel. The common rail 6 is provided with a pressure sensor 6a for detecting an internal fuel pressure (common rail pressure) and a crankshaft. A high-pressure supply pump 8 driven by 7 is connected. Then, the fuel supply pressure by the high-pressure supply pump 8 is controlled by an ECU described later, so that the fuel pressure in the common rail 6 detected by the pressure sensor 6a is controlled to be a target value corresponding to the operation state. The fuel pressure is maintained at about 20 MPa during the idle operation of the engine, and the fuel pressure increases as the engine load increases (the fuel injection amount increases).

【0023】また、上記クランク軸7には、その回転角
度を検出するクランク角センサ9が設けられている。こ
のクランク角センサ9は、クランク軸7の端部に設けら
れた被検出プレートと、その外周に対向するように配設
された電磁ピックアップとからなり、この電磁ピックア
ップが被検出用プレートの外周部に形成された突起部の
通過を検出してパルス信号を出力するように構成されて
いる。
The crankshaft 7 is provided with a crank angle sensor 9 for detecting the rotation angle. The crank angle sensor 9 includes a plate to be detected provided at the end of the crankshaft 7 and an electromagnetic pickup disposed to face the outer periphery of the plate. And outputs a pulse signal by detecting the passage of the projection formed on the substrate.

【0024】上記エンジン本体1に対して吸気通路10
及び排気通路20が接続されている。
The intake passage 10 is connected to the engine body 1.
And the exhaust passage 20 are connected.

【0025】上記吸気通路10は、その下流側部分が図
示を省略したサージタンクを介して各気筒2毎に分岐
し、この分岐部がそれぞれ吸気ポートを介して各気筒2
の燃焼室4に接続されている。また、上記サージタンク
には、各気筒2内に供給される吸気の圧力を検出する吸
気圧センサ10aが設けられている。
The intake passage 10 has a downstream portion branched for each of the cylinders 2 via a surge tank (not shown), and the branch portion is connected to each of the cylinders 2 via an intake port.
Are connected to the combustion chamber 4. In addition, the surge tank is provided with an intake pressure sensor 10a that detects the pressure of intake air supplied into each cylinder 2.

【0026】この吸気通路10には、その上流側から順
に、エンジン本体1内に吸入される吸気流量を検出する
エアフローセンサ11と、ターボ過給機12のブロワ1
3と、このブロワ13により圧縮された空気を冷却する
インタークーラ15と、吸気の流通面積を変化させる吸
気絞り弁16とがそれぞれが設けられている。
The intake passage 10 has, in order from the upstream side, an air flow sensor 11 for detecting a flow rate of intake air taken into the engine body 1 and a blower 1 of a turbocharger 12.
3, an intercooler 15 for cooling the air compressed by the blower 13, and an intake throttle valve 16 for changing the flow area of the intake air.

【0027】上記吸気絞り弁16は、全閉状態でも吸気
の流通が可能なように切欠きが設けられたバタフライバ
ルブからなり、後述するEGR弁24と同様に、負圧制
御用の電磁弁18によってダイヤフラム式アクチュエー
タ17に作用する負圧の大きさが調節されるのに応じ、
弁開度が変更されるように構成されている。また、上記
吸気絞り弁16の設置部には、その弁開度を検出するセ
ンサが設けられている。
The intake throttle valve 16 is a butterfly valve provided with a notch so that intake air can flow even in a fully closed state. Like the EGR valve 24 described later, a solenoid valve 18 for negative pressure control is provided. As the magnitude of the negative pressure acting on the diaphragm actuator 17 is adjusted by
The valve opening is configured to be changed. The installation portion of the intake throttle valve 16 is provided with a sensor for detecting the valve opening.

【0028】一方、上記排気通路20は、その上流側部
分が各気筒2毎に分岐し、この分岐部がそれぞれ排気ポ
ートを介して各気筒2の燃焼室4に接続されている。こ
の排気通路20には、その上流側から順に、ターボ過給
機12のタービン14と、排気ガス浄化用の触媒21と
が配設されている。
On the other hand, the exhaust passage 20 has an upstream portion branched for each cylinder 2, and the branch portion is connected to the combustion chamber 4 of each cylinder 2 via an exhaust port. In the exhaust passage 20, a turbine 14 of the turbocharger 12 and a catalyst 21 for purifying exhaust gas are arranged in this order from the upstream side.

【0029】上記ターボ過給機12のタービン14とブ
ロア13とは図外の軸を介して連結されており、排気ガ
ス流でタービン14が駆動され、それに連動してブロア
13が回転することにより吸気を過給するようになって
いる。図示のターボ過給機12は、排気通路20のノズ
ル断面積が変化するように構成されたバリアブルジオメ
トリーターボ(VGT)からなっており、このターボ過
給機12に対し、上記ノズル断面積を変化させるための
ダイヤフラム式アクチュエータ22と、このダイヤフラ
ム式アクチュエータ22の負圧を制御するための電磁弁
23とが設けられている。
The turbine 14 and the blower 13 of the turbocharger 12 are connected via a shaft (not shown). The turbine 14 is driven by the exhaust gas flow, and the blower 13 rotates in conjunction with the drive. It is designed to supercharge the intake air. The illustrated turbocharger 12 is composed of a variable geometry turbo (VGT) configured so that the nozzle cross-sectional area of the exhaust passage 20 changes. A diaphragm actuator 22 for changing the pressure and an electromagnetic valve 23 for controlling a negative pressure of the diaphragm actuator 22 are provided.

【0030】上記排気通路20に対し、排気ガスの一部
を吸気通路10に還流させる排気還流通路(以下EGR
通路という)25が、タービン14の上流側部に接続さ
れている。そして、上記EGR通路25の下流端が、上
記吸気絞り弁16の下流側において吸気通路10に接続
されるとともに、上記EGR通路25の途中に、弁開度
が調節可能に構成された負圧作動式の排気還流量調節弁
(以下EGR弁という)26が配設され、このEGR弁
26と、上記EGR通路25とにより排気ガス環流装置
24が構成されている。
An exhaust gas recirculation passage (hereinafter referred to as EGR) for recirculating a part of the exhaust gas to the intake
A passage 25 is connected to the upstream side of the turbine 14. A downstream end of the EGR passage 25 is connected to the intake passage 10 on the downstream side of the intake throttle valve 16, and a negative pressure operation in which the valve opening is adjustable in the middle of the EGR passage 25. An exhaust gas recirculation amount control valve (hereinafter, referred to as an EGR valve) 26 is provided, and the EGR valve 26 and the EGR passage 25 constitute an exhaust gas recirculation device 24.

【0031】上記EGR弁26は、図示を省略した弁本
体がスプリングによって閉方向に付勢されるとともに、
ダイヤフラム式アクチュエータ26aによって開方向に
駆動されることにより、EGR通路25の開度をリニア
に調節するように構成されている。すなわち、上記ダイ
ヤフラム式アクチュエータ26aには、負圧通路27が
接続されるとともに、この負圧通路27が負圧制御用の
電磁弁28を介してバキュームポンプ(負圧源)29に
接続されている。そして、上記電磁弁28が負圧通路2
7を連通または遮断することにより、EGR弁駆動用の
負圧が調節されてEGR弁26が開閉駆動されるように
なっている。また、上記EGR弁26の設置部には、そ
の弁本体の位置を検出するリフトセンサ30が設けられ
ている。
In the EGR valve 26, a valve body (not shown) is urged in a closing direction by a spring.
The opening degree of the EGR passage 25 is linearly adjusted by being driven in the opening direction by the diaphragm type actuator 26a. That is, a negative pressure passage 27 is connected to the diaphragm type actuator 26a, and the negative pressure passage 27 is connected to a vacuum pump (negative pressure source) 29 via a negative pressure control electromagnetic valve 28. . The solenoid valve 28 is connected to the negative pressure passage 2.
By communicating or shutting off 7, the negative pressure for driving the EGR valve is adjusted, and the EGR valve 26 is driven to open and close. Further, a lift sensor 30 for detecting the position of the valve body is provided at the installation portion of the EGR valve 26.

【0032】上記燃料噴射弁5、高圧供給ポンプ8、吸
気絞り弁16、EGR弁26及びターボ過給機12等
は、後述するエンジンコントロールユニット(以下EC
Uという)35から出力される制御信号に応じて作動状
態が制御されるように構成されている。また、上記EC
U35には、上記圧力センサ6aの出力信号と、クラン
ク角センサ9の出力信号と、エアフローセンサ11の出
力信号と、運転者によって操作されるアクセルペダルの
操作量を検出するアクセルセンサ32の出力信号等が入
力されるようになっている。
The fuel injection valve 5, the high-pressure supply pump 8, the intake throttle valve 16, the EGR valve 26, the turbocharger 12, etc. are provided with an engine control unit (hereinafter referred to as EC).
The operating state is controlled in accordance with a control signal output from the U) 35. In addition, the EC
U35 includes an output signal of the pressure sensor 6a, an output signal of the crank angle sensor 9, an output signal of the air flow sensor 11, and an output signal of an accelerator sensor 32 for detecting an operation amount of an accelerator pedal operated by a driver. Etc. are input.

【0033】上記ECU35は、エンジンの運転状態を
判別する運転状態判別手段36と、燃料噴射弁5からの
燃料噴射を制御する燃料噴射制御手段37と、排気ガス
還流装置24による排気ガス還流量を制御する排気ガス
還流制御手段38とを含んでいる。
The ECU 35 determines the operating state of the engine, determines the operating state of the engine, controls the fuel injection from the fuel injection valve 5, controls the fuel injection, and determines the amount of exhaust gas recirculated by the exhaust gas recirculation device 24. And exhaust gas recirculation control means 38 for controlling.

【0034】上記運転状態判別手段36は、クランク角
センサ9の出力信号の周期を計測することによって求め
られるエンジン回転数とアクセルセンサ32により検出
されるアクセル開度(アクセルペダル操作量)等に基づ
いてエンジンの運転状態を調べて、運転状態が図2に示
すような制御マップ中のどの運転領域に属するかを判別
するとともに、アクセル開度変化率等に基づいて加速運
転状態か否かを判別するようになっている。
The operating state discriminating means 36 is based on the engine speed obtained by measuring the cycle of the output signal of the crank angle sensor 9, the accelerator opening (accelerator pedal operation amount) detected by the accelerator sensor 32, and the like. The operating state of the engine is checked to determine which operating area the operating state belongs to in the control map as shown in FIG. 2, and whether or not the vehicle is in an accelerating operating state based on the rate of change of the accelerator opening. It is supposed to.

【0035】上記燃料噴射制御手段37は、少なくとも
エンジンの低速域における低負荷側から高負荷側にわた
る運転領域で、トルク生成のための主燃料噴射を圧縮上
死点付近から膨張行程前期にわたる期間に複数回に分割
して行わせるとともに、主燃料噴射のうちの後段側の噴
射の開始時期を、高負荷側の運転領域では低負荷側の運
転領域と比べて遅らせるように燃料噴射弁5を制御す
る。
The fuel injection control means 37 controls the main fuel injection for generating torque during a period from the vicinity of the compression top dead center to the first half of the expansion stroke at least in the operation range from the low load side to the high load side in the low speed range of the engine. The fuel injection valve 5 is controlled so that the fuel injection valve 5 is divided into a plurality of injections and the start timing of the latter-stage injection of the main fuel injection is delayed in the high-load operation region compared to the low-load operation region. I do.

【0036】特に、主燃料噴射を複数回に分割して行わ
せる運転領域のうちの低負荷領域では、主燃料噴射によ
る燃焼が継続するように後段側の噴射の開始時期を比較
的早くする(前段側の噴射との間隔を短くする)が、所
定負荷以上の領域では主燃料噴射による燃焼が途切れる
ように後段側の噴射の開始時期を遅らせる。また、加速
運転時にも主燃料噴射による燃焼が途切れるように後段
側の噴射の開始時期を遅らせる。
In particular, in the low load region of the operating region in which the main fuel injection is performed in a plurality of divided times, the start timing of the latter-stage injection is made relatively early so that the combustion by the main fuel injection is continued ( However, the start timing of the subsequent-stage injection is delayed so that the combustion by the main fuel injection is interrupted in a region where the load is equal to or more than a predetermined load. In addition, the start timing of the latter-stage injection is delayed so that the combustion by the main fuel injection is interrupted even during the acceleration operation.

【0037】さらに、主噴射に先立ってピストン上死点
より前の適当な時期にパイロット噴射を行わせ、このパ
イロット噴射の噴射量及び噴射タイミングも運転状態に
応じて制御するようになっている。
Further, prior to the main injection, the pilot injection is performed at an appropriate timing before the top dead center of the piston, and the injection amount and the injection timing of the pilot injection are controlled in accordance with the operation state.

【0038】具体的には、図2に示すような所定回転数
Na(例えば2500rpm)以下の低中速域のうちの
各運転領域a〜eで次のように燃料噴射弁5からの燃料
噴射が制御される。
More specifically, the fuel injection from the fuel injection valve 5 is performed as follows in each of the operation regions a to e in the low and medium speed regions below a predetermined rotation speed Na (for example, 2500 rpm) as shown in FIG. Is controlled.

【0039】図3に示すように、所定回転数以下の低、
中速域のうちでアイドル運転領域aを除く低負荷領域
b、中負荷領域c、高負荷領域d及び全負荷領域eで
は、パイロット噴射PIの後に主燃料噴射が前段噴射M
1及び後段噴射M2の2回に分割されて行われる。な
お、アイドル運転域aでは燃料噴射量が少ない(空気過
剰率が多い)ためにスモークが少なく、主燃料噴射の分
割によるスモーク低減の必要がないので、パイロット噴
射PIの後に主燃料噴射Mが1回だけ行われる。
As shown in FIG.
In the low-load region b, the medium-load region c, the high-load region d, and the full-load region e excluding the idling operation region a in the medium-speed region, the main fuel injection is performed after the pilot injection PI in the former-stage injection M.
The injection is divided into two, that is, the first injection and the second injection M2. In the idling operation range a, since the amount of fuel injection is small (the excess air ratio is large), the smoke is small and there is no need to reduce the smoke by dividing the main fuel injection. Done only once.

【0040】主燃料噴射の分割が行われる運転領域のう
ちの低負荷領域bでは、パイロット噴射PIが行われて
から上死点付近で前段噴射M1が開始され、この前段噴
射M1の後に、前段噴射M1による拡散燃焼が終了する
までの比較的早い時期に後段噴射M2が開始され、、例
えば後段噴射M2の開始時期が約ATDC20°CA
(ATDCは上死点後を意味し、CAはクランク角を意
味する)までに設定される。
In the low load region b of the operation region in which the main fuel injection is divided, the pre-injection M1 is started near the top dead center after the pilot injection PI is performed, and after the pre-injection M1, the pre-injection M1 is started. The latter-stage injection M2 is started relatively early before the diffusion combustion by the injection M1 is completed. For example, the start timing of the latter-stage injection M2 is about ATDC20 ° CA
(ATDC means after top dead center, CA means crank angle).

【0041】中負荷領域c及び高負荷領域dでは、パイ
ロット噴射PIが行われてから前段噴射M1の後、前段
噴射M1による拡散燃焼の終了時期もしくはそれより遅
い時期に後段噴射M2が開始され、例えば後段噴射M2
の開始時期が約ATDC30°CA以後に設定される。
そして、燃料噴射量が増加するほど前段噴射による拡散
燃焼の終了時期が遅くなるので、中負荷領域cよりも高
負荷領域dの方が後段噴射M2の開始時期がさらに遅く
される。なお、極端な燃費の悪化やトルクの落ち込みを
避けるため、後段噴射M2の開始時期は約ATDC60
°CAまでの範囲で設定することが好ましい。
In the middle load range c and the high load range d, after the pilot injection PI is performed, after the pre-injection M1, the post-injection M2 is started at the end of diffusion combustion by the pre-injection M1 or at a later time, For example, the latter injection M2
Is set after about 30 ° CA of ATDC.
Then, as the fuel injection amount increases, the end timing of the diffusion combustion by the first-stage injection is delayed, so that the start timing of the second-stage injection M2 is further delayed in the high-load region d than in the middle-load region c. The start timing of the second-stage injection M2 is set to about ATDC60 in order to avoid an extreme deterioration in fuel efficiency and a drop in torque.
It is preferable to set within a range up to ° CA.

【0042】全負荷領域eでは、出力向上を優先させる
ため、主燃料噴射のうちの後段噴射M2の時期が早めら
れ、前段噴射M1と後段噴射M2との間隔が短くされ
る。なお、全負荷領域eにおいては排気エネルギーが高
いため、主燃料噴射Mを1回(一括噴射)としてもよ
い。
In the full load region e, in order to prioritize the output improvement, the timing of the latter injection M2 of the main fuel injection is advanced, and the interval between the former injection M1 and the latter injection M2 is shortened. Since the exhaust energy is high in the full load region e, the main fuel injection M may be performed once (collective injection).

【0043】上記主燃料噴射の分割が行われる場合に後
段噴射量は前段噴射量よりも小さくされ、かつ、負荷が
高くなるにつれて主燃料噴射量のうちの後段噴射量の割
合が小さくされる。
When the main fuel injection is divided, the post-stage injection amount is made smaller than the pre-stage injection amount, and the ratio of the post-stage injection amount to the main fuel injection amount is reduced as the load increases.

【0044】また、加速運転状態f(図2中に矢印で示
す運転状態変化)となったときには、前段噴射による拡
散燃焼の終了時期もしくは終了時期付近で実際に各気筒
2内に燃料が噴射されるように、後段噴射の開始時期が
設定される。とくに、ターボ過給機を備えている場合の
好ましい制御として、加速初期には、図4中に実線で示
すように、主燃料噴射のうちの後段噴射M2の開始時期
が遅らされるとともに、パイロット噴射量及び主燃料噴
射量が増量されて、そのうちのパイロット噴射量の増量
割合が主燃料噴射量の増量割合よりも大きくされ、か
つ、パイロット噴射PIの開始時期が早められてパイロ
ット間隔(パイロット噴射と主燃料噴射の間隔)が大き
くされる。そして、加速初期が過ぎたときは、図4中に
破線で示すように、主燃料噴射のうちの後段噴射M2の
開始時期が早められるとともに、パイロット噴射量及び
パイロット間隔が減少され、またはパイロット噴射がカ
ットされる。
Further, when the acceleration operation state f (operation state change indicated by the arrow in FIG. 2) is reached, the fuel is actually injected into each cylinder 2 at or near the end time of the diffusion combustion by the preceding injection. Thus, the start timing of the second-stage injection is set. In particular, as a preferable control when a turbocharger is provided, in the initial stage of acceleration, the start timing of the second-stage injection M2 of the main fuel injection is delayed, as indicated by the solid line in FIG. The pilot injection amount and the main fuel injection amount are increased, of which the increase ratio of the pilot injection amount is greater than the increase ratio of the main fuel injection amount, and the start timing of the pilot injection PI is advanced, so that the pilot interval (pilot interval) is increased. The interval between the injection and the main fuel injection) is increased. When the initial stage of acceleration has passed, the start timing of the second-stage injection M2 of the main fuel injection is advanced, and the pilot injection amount and the pilot interval are reduced, as indicated by the broken line in FIG. Is cut.

【0045】また、排気ガス還流制御手段38は、燃焼
室内の空気過剰率が運転状態に応じた目標値となるよう
に排気ガス還流量を制御する。具体的には、運転状態
(例えばアクセル開度等に基づいて設定した目標トルク
とエンジン回転数)に応じ、目標空気過剰率を設定する
とともに、目標燃料噴射量を設定し、これら目標空気過
剰率と目標燃料噴射量とから目標新気量が求められ、こ
の目標新気量とエアフローセンサ11により検出される
実新気量との比較に基づき、目標新気量に対して実新気
量が多ければ排気ガス還流量を増加させる方向にEGR
弁26を制御し、実新気量が少なければ排気ガス還流量
を減少させる方向にEGR弁26を制御するようになっ
ている。
The exhaust gas recirculation control means 38 controls the amount of exhaust gas recirculation so that the excess air ratio in the combustion chamber becomes a target value corresponding to the operating state. Specifically, the target excess air ratio is set according to the operating state (for example, the target torque and the engine speed set based on the accelerator opening and the like), and the target fuel injection amount is set. The target fresh air amount is obtained from the target fresh air amount and the target fuel injection amount. Based on a comparison between the target fresh air amount and the actual fresh air amount detected by the airflow sensor 11, the actual fresh air amount is calculated with respect to the target fresh air amount. If it is too large, EGR tends to increase the exhaust gas recirculation amount.
The EGR valve 26 is controlled such that the valve 26 is controlled, and if the actual fresh air amount is small, the exhaust gas recirculation amount is reduced.

【0046】以上のような当実施形態の装置の作用を、
図5〜図9を参照しつつ次に説明する。
The operation of the apparatus of the present embodiment as described above is as follows.
Next, description will be made with reference to FIGS.

【0047】図5は、運転状態が低中速・低負荷(図2
中の領域b内)である場合と、低中速・中負荷(図2中
の領域c内)である場合と、中速・中高負荷(図2中の
領域d内)である場合とについてそれぞれ、主燃料噴射
を分割してその後段噴射の噴射開始時期を種々変えたと
きのスモーク発生量の変化を調べた実験結果を示すグラ
フである。この図において、横軸は後段噴射開始時のク
ランク角、縦軸はスモーク発生量であり、図中の一点鎖
線は低中速・低負荷、低中速・中負荷、中速・中高負荷
の各場合に主燃料噴射を一括噴射としたときのスモーク
発生量SL0、SM0、SH0を示している。また、Δ
L、ΔSM、ΔSHは上記各場合において主燃料噴射の
後段噴射開始時期を遅くしたときの一括噴射時と比べた
スモーク低減代を示している。
FIG. 5 shows that the operating state is low, medium speed and low load (FIG. 2).
(In the region b in the middle), low-medium-speed / medium load (in the region c in FIG. 2), and case where the vehicle is in a medium-speed / medium-high load (in the region d in FIG. 2). 7 is a graph showing experimental results obtained by examining changes in the amount of smoke generated when the main fuel injection is divided and the injection start timing of the subsequent injection is variously changed. In this figure, the horizontal axis represents the crank angle at the start of the second-stage injection, the vertical axis represents the amount of smoke generated, and the one-dot chain line in the figure represents low medium speed / low load, low medium speed / medium load, medium speed / medium high load. In each case, the smoke generation amounts S L0 , S M0 , and S H0 when the main fuel injection is the batch injection are shown. Also, Δ
S L , ΔS M , and ΔS H indicate the smoke reduction allowance in each of the above cases as compared with the one at the time of the batch injection when the later injection start timing of the main fuel injection is delayed.

【0048】この図に示すように、主燃料噴射を分割す
ると一括噴射と比べてスモークが低減される傾向があ
り、とくに、低中速・中負荷や中速・中高負荷では、後
に詳述する前段噴射の燃料の燃焼終了時点S(図7、図
8参照)以後に後段噴射を開始すれば、スモーク低減代
ΔSM、ΔSHが大きくなる。これは、次のような理由に
よるものと思われる。
As shown in this figure, when the main fuel injection is divided, the smoke tends to be reduced as compared with the collective injection. Particularly, in the case of a low / medium speed / medium load or a medium / medium / high load, the details will be described later. combustion end of the fuel of the preceding injection point S (Fig. 7, see FIG. 8) by starting the succeeding injection on or after, smoke reduction allowance [Delta] S M, [Delta] S H increases. This seems to be due to the following reasons.

【0049】すなわち、噴射された燃料に対しミキシン
グが不充分で局部的に空気が不足する状態で加熱される
と燃料の炭化による煤(スモーク)が生じるが、主燃料
噴射を分割すればミキシングが良くなることで煤が低減
される。さらに、前段噴射の燃料の燃焼において煤が生
じても、その燃焼の終了した時点では筒内流動により煤
の成分である炭素粒子と酸素とが充分に混合され、か
つ、筒内温度も高くて、燃料が供給されれば非常に着火
し易い状態にあるため、この状態で後段噴射が開始され
ることによりその燃料とともに上記炭素粒子も充分に燃
焼される。こうして、スモークがさらに低減されること
となる。
That is, if the injected fuel is heated in a state where mixing is insufficient and air is locally insufficient, soot (smoke) is generated due to carbonization of the fuel. However, if the main fuel injection is divided, mixing is performed. Being better reduces soot. Furthermore, even if soot is generated in the combustion of the fuel of the first stage injection, at the time when the combustion is completed, carbon particles and oxygen, which are components of soot, are sufficiently mixed by the in-cylinder flow, and the in-cylinder temperature is high. When the fuel is supplied, the fuel is in a state of being easily ignited. When the latter-stage injection is started in this state, the carbon particles are sufficiently burned together with the fuel. Thus, smoke is further reduced.

【0050】ただし、低中速・低負荷では、空気過剰率
が大きいために本来的にスモーク発生量が比較的少な
く、後段噴射開始時期を前段噴射の燃料の燃焼終了時点
S以後に遅らせてもスモーク低減代ΔSLはあまり大き
くならない。
However, at low to medium speeds and low loads, the amount of smoke is inherently relatively small due to the large excess air ratio, and the start of the second stage injection can be delayed after the end of combustion S of the first stage fuel. The smoke reduction allowance ΔS L does not increase so much.

【0051】また、図6は上記各場合についてそれぞ
れ、主燃料噴射を分割してその後段噴射の噴射開始時期
を種々変えたときの燃費率の変化を調べた実験結果を示
すグラフである。この図において、横軸は後段噴射開始
時のクランク角、縦軸は燃費率であり、図中の一点鎖線
は上記各場合に主燃料噴射を一括噴射としたときの燃費
率FL0、FM0、FH0を示している。また、ΔFL、Δ
M、ΔFHは上記各場合において主燃料噴射の後段噴射
開始時期を遅くしたときの一括噴射時と比べた燃費率増
加代を示している。
FIG. 6 is a graph showing the results of an experiment for examining the change in fuel efficiency when the main fuel injection is divided and the injection start timing of the subsequent injection is variously changed in each of the above cases. In this figure, the horizontal axis represents the crank angle at the start of succeeding injection, and the vertical axis is the fuel consumption rate, fuel consumption F L 0 when the dashed line is obtained by a batch injection and main fuel injection when the above in the figure, F M 0 and F H 0 are shown. ΔF L , Δ
F M and ΔF H indicate the fuel consumption rate increase in the above-described cases compared with the one at the time of the batch injection when the later-stage injection start timing of the main fuel injection is delayed.

【0052】この図のように、主燃料噴射を分割してそ
の後段噴射を遅らせるに伴い、熱発生効率が低下するこ
とによって燃費率が増加(悪化)する。とくに、低中速
・低負荷では後段噴射開始時期を前段噴射の燃料の燃焼
終了時点S以後となる程度に大きく遅らせると燃費率増
加代ΔFLが大きくなる。一方、低中速・中負荷や中速
・中高負荷では、本来的に、熱発生効率が高くて燃費率
が低く、各気筒2内に実際に燃料が噴射される後段噴射
開始時期を前段噴射の燃料の燃焼終了時点S以後まで遅
らせても、ATDC50°〜60°の間までの範囲であ
れば、燃費率増加代ΔFM、ΔFHは比較的小さい。
As shown in this figure, as the main fuel injection is divided and the subsequent injection is delayed, the heat generation efficiency is reduced and the fuel efficiency is increased (deteriorated). In particular, at low to medium speeds and low loads, the fuel consumption rate increase ΔF L increases when the start of the second-stage injection is delayed so much as to become after the combustion end point S of the fuel of the first-stage injection. On the other hand, at low / medium speed / medium load or medium / medium / high load, the heat generation efficiency is originally high, the fuel efficiency is low, and the post-injection start timing at which the fuel is actually injected into each cylinder 2 is set to the pre-injection. Even if it is delayed until after the end of combustion S of the fuel, the fuel consumption rate increase ΔF M and ΔF H are relatively small within the range of ATDC 50 ° to 60 °.

【0053】これら図5、図6に示すデータから、本来
的にスモーク発生量が少ない低中速・低負荷の領域(低
噴射量領域)では、後段噴射開始時期を前段噴射の燃料
の燃焼終了時点よりも早くする一方、中負荷乃至高負荷
の領域では後段噴射開始時期を前段噴射の燃料の燃焼終
了時点以後(ただしATDC60°弱までの範囲)とな
るように、負荷が高くなるにつれて遅らせることによ
り、燃費の悪化を可及的に小さく抑えつつスモークを充
分に低減し得ることがわかる。
From the data shown in FIGS. 5 and 6, in the low-medium-speed and low-load region (low injection amount region) where the amount of smoke generation is originally small, the post-injection start timing is set to the end of the combustion of the fuel in the pre-injection. On the other hand, in the middle to high load range, the later injection start timing is delayed as the load becomes higher so as to be after the end of the combustion of the fuel in the former injection (but within a range of up to less than 60 ° ATDC). Thus, it can be understood that the smoke can be sufficiently reduced while suppressing the deterioration of the fuel economy as much as possible.

【0054】ここで、前段噴射の燃料の燃焼終了時点
は、図7(a)〜(c)に示すように熱発生率が0とな
る時点Sであり、図8(a)〜(c)のように質量燃焼
割合で見るとその増加率が0となる(質量燃焼割合の増
加が中断し、そのグラフが略水平に延びるようになる)
時点Sである。なお、図7は圧縮上死点付近から膨張行
程前期にわたる期間の熱発生率の時間的変化を示し、図
8は上記期間の質量燃焼割合の時間的変化を示してお
り、図7及び図8の各(a)は低中速・低負荷時、各
(b)は低中速・中負荷時、各(c)は中速・高負荷時
である。これらの図において、熱発生率及び質量燃焼割
合の変化を示す曲線のうちで実線は主燃料噴射を一括噴
射とした場合のものであり、破線は主燃料噴射を分割し
てその後段噴射の開始時期を前段噴射の燃焼終了時点S
よりも前の時期(例えばATDC20°CA)とした場
合のものであり、また一点鎖線は主燃料噴射を分割して
その後段噴射の開始時期を前段噴射の終了時点S付近と
したものである。
Here, the end point of the combustion of the fuel in the first stage injection is the time point S at which the heat generation rate becomes 0 as shown in FIGS. 7A to 7C, and FIGS. 8A to 8C. The rate of increase becomes zero when viewed in terms of the mass combustion ratio (the increase in the mass combustion ratio is interrupted, and the graph extends substantially horizontally).
Time point S. FIG. 7 shows the temporal change of the heat release rate during the period from near the compression top dead center to the first half of the expansion stroke, and FIG. 8 shows the temporal change of the mass combustion ratio during the above period. (A) at low / medium speed / low load, (b) at low / medium speed / medium load, and (c) at medium speed / high load. In these figures, in the curves showing the changes in the heat release rate and the mass combustion rate, the solid line indicates the case where the main fuel injection is performed as a single injection, and the broken line indicates that the main fuel injection is divided and the subsequent injection is started. The timing is set to the end point S of the combustion of the preceding injection.
In this case, the main fuel injection is divided and the start timing of the subsequent injection is set near the end point S of the preceding injection.

【0055】図7及び図8に示すように、上記前段噴射
の燃焼終了時点Sは、低、中速域において、低負荷時で
はATDC30°CA程度、中負荷時ではATDC35
°CA程度、高負荷時ではATDC48°CA程度とな
る。具体的に前段噴射の燃焼終了時点Sを求める手法は
種々考えられ、例えば、燃焼室内の温度を検出する温度
センサと、燃焼光を検出する燃焼光センサとを設け、こ
れらのセンサの検出信号に基づいて前段噴射後の燃焼室
内温度が所定温度以下まで降下したか否か、及び燃焼光
の発光が無くなったか否かを調べることにより、上記時
点Sを求めることができる。あるいは、上記温度センサ
により検出される燃焼室内温度から断熱膨張温度を減算
した値の微分値を求め、この値がマイナスから0になっ
た時点により上記時点Sを求めるようにしてもよい。
As shown in FIGS. 7 and 8, the combustion end point S of the above-mentioned pre-injection is about 30 ° CA ATDC at low load in low and medium speed ranges, and ATDC 35 ° at medium load.
At about CA, ATDC is about 48 ° CA under high load. Various methods for specifically obtaining the combustion end point S of the pre-injection can be considered. For example, a temperature sensor for detecting the temperature in the combustion chamber and a combustion light sensor for detecting combustion light are provided. The time point S can be determined by examining whether the temperature in the combustion chamber after the pre-injection has dropped to a predetermined temperature or lower based on whether the emission of combustion light has ceased. Alternatively, a differential value of a value obtained by subtracting the adiabatic expansion temperature from the temperature in the combustion chamber detected by the temperature sensor may be obtained, and the time point S may be obtained when this value becomes 0 from minus.

【0056】また、このようにセンサの信号に基づいて
前段噴射の燃焼終了時点Sを求める代りに、低、中速域
における中負荷乃至高負荷の領域での各種運転状態にお
ける前段噴射の燃焼終了時点Sを予め実験的に調べてお
いて、これをマップとしてメモリに記憶させておき、実
際の運転状態に応じて読み出すようにしてもよい。
Instead of obtaining the end point S of the combustion of the pre-injection based on the signal of the sensor as described above, the end of the combustion of the pre-injection in various operating states in the range of medium load to high load in the low and medium speed ranges. The time point S may be experimentally checked beforehand, stored in a memory as a map, and read out according to the actual operation state.

【0057】いずれにしても、低、中速域における中負
荷乃至高負荷の運転領域では前段噴射の燃焼終了時点S
もしくはこの時点の直後以後に後段噴射が開始され、か
つ、負荷が高くなる(燃料噴射量が多くなる)ほど前段
噴射の燃焼終了時点Sが遅くなるので後段噴射の開始時
期が遅らされる。
In any case, in the middle to high load operating range in the low and middle speed ranges, the combustion end point S of the first-stage injection is determined.
Alternatively, immediately after this time point, the latter-stage injection is started, and the higher the load (the greater the fuel injection amount), the later the combustion end time point S of the first-stage injection is delayed, so that the start timing of the second-stage injection is delayed.

【0058】また、図9は主燃料噴射を前段噴射と後段
噴射とに分割してその総主噴射量(T)に対する後段噴
射量(P)の比率(P/T)を種々変えたときの燃費率
の変化を示している。図9(a)は、低中速・低負荷の
運転状態で、後段噴射の開始時期(気筒2内への燃料噴
射開始時期)を前段噴射の燃焼終了時点Sより前のAT
DC8°CAとした場合(一点鎖線)と、後段噴射の開
始時期を前段噴射の燃焼終了時点S付近であるATDC
30°CAとした場合(実線)とについて示している。
図9(b)は、低中速・中負荷の運転状態で、後段噴射
の開始時期を前段噴射の燃焼終了時点Sより前のATD
C20°CAとした場合(一点鎖線)と、後段噴射の開
始時期を前段噴射の燃焼終了時点S付近であるATDC
35°CAとした場合(実線)とについて示している。
図9(c)は、中速・中高負荷の運転状態において、後
段噴射の開始時期を前段噴射の燃焼終了時点Sより前の
ATDC20°CAとした場合(一点鎖線)と、後段噴
射の開始時期を前段噴射の燃焼終了時点S付近であるA
TDC48°CAとした場合(実線)とについて示して
いる。
FIG. 9 shows a case in which the main fuel injection is divided into a pre-injection and a post-injection and the ratio (P / T) of the post-injection amount (P) to the total main injection amount (T) is variously changed. This shows the change in fuel efficiency. FIG. 9A shows a state in which the start timing of the second-stage injection (the timing of starting the fuel injection into the cylinder 2) in the low-medium-speed / low-load operation state is determined by the AT before the combustion end point S of the first-stage injection
When DC is set to 8 ° CA (dashed line), the start timing of the second stage injection is set to ATDC which is near the combustion end time S of the first stage injection.
The case of 30 ° CA (solid line) is shown.
FIG. 9 (b) shows a state in which the start timing of the post-injection is set to the ATD before the combustion end point S of the pre-injection in the low-medium speed / medium load operation state.
When C20 ° CA is set (dashed line), the start timing of the second-stage injection is set to ATDC which is near the combustion end point S of the first-stage injection.
The case of 35 ° CA (solid line) is shown.
FIG. 9C shows the case where the start timing of the second stage injection is set to ATDC 20 ° CA before the combustion end time S of the first stage injection (dashed line) and the start timing of the second stage injection in the middle-speed / medium-high load operation state. In the vicinity of the combustion end time point S of the pre-stage injection.
The case where TDC is 48 ° CA (solid line) is shown.

【0059】これらの図に示すように、後段噴射の開始
時期を前段噴射の燃焼終了時点Sより前とすれば後段噴
射量の比率(P/T)が増大しても燃費率はあまり変化
しないが、後段噴射の開始時期を前段噴射の燃焼終了時
点S付近もしくはそれ以後とすると、後段噴射量の比率
(P/T)の増大に応じて燃費が悪化し、とくに低負荷
では後段噴射量の比率(P/T)が25%を越えると燃
費の悪化が顕著になり、中負荷では後段噴射量の比率
(P/T)が20%を越えると燃費の悪化が顕著にな
り、中高負荷では後段噴射量の比率(P/T)が15%
を越えると燃費の悪化が顕著になる。
As shown in these figures, if the start timing of the post-injection is set before the combustion end point S of the pre-injection, the fuel consumption rate does not change much even if the ratio (P / T) of the post-injection amount increases. However, if the start timing of the post-injection is near or after the end point S of the combustion of the pre-injection, the fuel consumption deteriorates in accordance with the increase of the ratio (P / T) of the post-injection amount. When the ratio (P / T) exceeds 25%, the fuel consumption deteriorates remarkably. At a medium load, the fuel consumption deteriorates remarkably when the ratio (P / T) of the post-injection amount exceeds 20%. The ratio (P / T) of the post injection amount is 15%
If it exceeds, the deterioration of fuel economy becomes remarkable.

【0060】従って、後段噴射量は前段噴射量よりも少
なくし、特に後段噴射の開始時期を前段噴射の燃焼終了
時点S以後とする中負荷域乃至高負荷域では後段噴射量
の比率(P/T)を10%〜20%の範囲とし、かつ負
荷が高くなるに伴って少なくすることが燃費の面から好
ましい。
Therefore, the post-injection amount is made smaller than the pre-injection amount, and especially in the middle load range or high load range where the start timing of the post-injection is after the combustion end time S of the pre-injection, the ratio (P / T) is preferably in the range of 10% to 20%, and is preferably reduced as the load increases, from the viewpoint of fuel efficiency.

【0061】このように、低速乃至中速の低負荷から高
負荷にわたる運転領域(図2中の領域b,c,d)で主
燃料噴射の分割を行うとともに、その後段噴射の開始時
期及び噴射量の比率を運転状態に応じて制御し、特に好
ましくは、低負荷域で後段噴射の開始時期をATDC3
0°CA程度よりも早くし、一方、中負荷乃至高負荷の
領域では後段噴射の開始時期をATDC30°CA〜A
TDC60°CAの範囲、後段噴射量の比率(P/T)
を10%〜20%の範囲で制御することにより、燃費悪
化を最小限に止めつつ、スモークを充分に低減すること
ができる。
As described above, the main fuel injection is divided in the operation range (regions b, c, and d in FIG. 2) from low to medium speed low load to high load, and the start timing of the subsequent injection and the injection The ratio of the amount is controlled in accordance with the operation state, and it is particularly preferable to set the start timing of the second-stage injection to ATDC3 in a low load range.
In the region of medium load to high load, the start timing of the second stage injection is set to 30 ° CA to
TDC 60 ° CA range, ratio of post injection amount (P / T)
Is controlled in the range of 10% to 20%, it is possible to sufficiently reduce smoke while minimizing deterioration of fuel efficiency.

【0062】その上、中負荷乃至高負荷の領域で後段噴
射の開始時期を上記のように遅くすると、全体の燃焼期
間は長くなるものの、後段噴射の燃焼が膨張行程で行わ
れ、かつ前段噴射の燃焼と連続しないので、その燃焼温
度が比較的低くなり、そのため中負荷乃至高負荷の領域
でのNOxの増大も抑制される。
In addition, if the start timing of the second stage injection is delayed as described above in the range of medium load to high load, the whole combustion period is prolonged, but the second stage combustion is performed in the expansion stroke and the first stage injection is performed. Combustion does not continue, the combustion temperature becomes relatively low, and therefore, an increase in NOx in a medium to high load region is also suppressed.

【0063】さらに、過給領域では上記のような燃料制
御が行われることに加えてターボ過給機12により過給
が行われ、かつ、排気ガス還流制御手段38により燃焼
室内の空気過剰率が運転状態に応じた目標値となるよう
に排気ガス還流量が制御されることにより、スモーク及
びNOxの低減に一層有利となる。すなわち、主燃焼が
分割されてその後段噴射の開始時期が遅らされると、排
気エネルギーが高められることによりターボ過給機12
の過給作用が高められ、その過給による吸入空気量の増
加等でスモーク低減に有利となるとともに、過給による
吸入空気量の増加に応じて排気ガス還流制御手段38に
より排気ガス還流量が増加し、それによってNOxが低
減されることとなる。
Further, in the supercharging region, in addition to the above-described fuel control, supercharging is performed by the turbocharger 12, and the excess air ratio in the combustion chamber is reduced by the exhaust gas recirculation control means 38. By controlling the exhaust gas recirculation amount so as to be a target value according to the operating state, it is more advantageous to reduce smoke and NOx. That is, when the main combustion is divided and the start timing of the subsequent injection is delayed, the exhaust energy is increased and the turbocharger 12 is increased.
The supercharging effect of the supercharger is increased, and the increase of the intake air amount due to the supercharging is advantageous in reducing the smoke. Will increase, thereby reducing NOx.

【0064】また、当実施形態の装置では、加速時にも
主燃料噴射が分割され、かつ少なくとも加速初期には燃
焼が途切れるように後段噴射の開始時期が遅くされ、と
くに好ましくは図4に示すように制御されることによ
り、スモークが低減されつつ加速性能が確保される。
Further, in the device of this embodiment, the main fuel injection is divided even during acceleration, and the start timing of the latter injection is delayed so that the combustion is interrupted at least at the initial stage of acceleration, and particularly preferably as shown in FIG. , The acceleration performance is secured while the smoke is reduced.

【0065】すなわち、加速初期には、後段噴射の開始
時期が前段噴射の燃焼終了時点S付近もしくはその時点
Sの直後まで遅くされることによりスモークが低減され
るとともに、パイロット噴射の増量割合が多くされるこ
とにより、騒音の増大が防止されつつ、パイロット噴射
による予混燃焼の割合が高められることでトルクアップ
が図られる。この場合に、パイロット噴射量の増大に対
応してパイロット噴射時期が早められることで気化、霧
化の時間が確保され、良好に予混燃焼が行われる。ま
た、後段噴射が遅らされることによって排気エネルギー
が高められ、これによりターボ過給機12の過給作用が
促進される。
That is, in the initial stage of the acceleration, the start timing of the second-stage injection is delayed until near or immediately after the combustion end point S of the first-stage injection, thereby reducing the smoke and increasing the rate of increase in the pilot injection. By doing so, the ratio of premixed combustion by pilot injection is increased while increasing the noise, thereby increasing the torque. In this case, the pilot injection timing is advanced in response to the increase in the pilot injection amount, so that the time for vaporization and atomization is secured, and the premixed combustion is favorably performed. Further, by delaying the second-stage injection, the exhaust energy is increased, whereby the supercharging action of the turbocharger 12 is promoted.

【0066】そして、このようにターボ過給機12の過
給作用が促進されることにより加速初期が過ぎれば急激
に吸入空気量が増加して、吸入空気量の増加及びミキシ
ングの促進によりスモークが低減される。そこで、加速
初期が過ぎてターボ過給機による過給が充分に行われる
状態になれば、出力向上及び燃費低減に有利なように、
後段噴射の時期が早められるとともに、パイロット噴射
量が減少またはカットされる。
As the supercharging action of the turbocharger 12 is promoted in this way, the amount of intake air sharply increases after the initial stage of acceleration, and the smoke is increased due to the increase in the amount of intake air and the promotion of mixing. Reduced. Therefore, if the supercharging by the turbocharger is sufficiently performed after the initial stage of acceleration, it is advantageous for improving the output and reducing the fuel consumption.
The timing of the second-stage injection is advanced, and the pilot injection amount is reduced or cut.

【0067】なお、上記実施形態では、主燃料噴射を分
割するときに前段噴射と後段噴射の2分割としている
が、3分割以上としてもよい。例えば、後段噴射の開始
時期を前段噴射終了時点以後とする運転領域(中負荷域
乃至高負荷域)のうちの特定負荷より高負荷側の領域
で、主燃料噴射を図3中に二点鎖線で示すように3分割
(M1′,M2′,M3′)とし、かつ、その最後段の
噴射開始時期M3′をそれ以前の主燃料噴射M1′,M
2′による拡散燃焼の終了時点S以後とすれば、その
分、燃焼期間を長くしつつ炭素を燃焼させることがで
き、排気エネルギーの増大及びスモーク、NOxの低減
の効果をより一層高めることができる。
In the above embodiment, when the main fuel injection is divided, the main fuel injection is divided into the first stage injection and the second stage injection, but may be divided into three or more. For example, in a region on the higher load side than a specific load in an operation region (medium load region to high load region) in which the start timing of the latter injection is after the end of the former injection, the main fuel injection is indicated by a two-dot chain line in FIG. , The injection start timing M3 'at the last stage is divided into three (M1', M2 ', M3'), and the main fuel injection M1 ', M
If the time is after the end point S of the diffusion combustion by 2 ', the carbon can be burned while the combustion period is prolonged, and the effect of increasing the exhaust energy and reducing the smoke and NOx can be further enhanced. .

【0068】また、エンジンの所定回転数Naより高速
側の運転領域での制御については本発明で限定せず、出
力性能等を満足するように噴射量及び噴射タイミングを
適宜制御すればよく、時間的に分割噴射が困難であれば
一括噴射とすればよい。
The control in the operating region on the higher side than the predetermined engine speed Na is not limited by the present invention, and the injection amount and injection timing may be appropriately controlled so as to satisfy the output performance and the like. If divisional injection is difficult, batch injection may be used.

【0069】[0069]

【発明の効果】以上説明したように、請求項1に係る発
明のディーゼルエンジンの制御装置によると、少なくと
もエンジンの低速域における低負荷側から高負荷側にわ
たる運転領域で、主燃料噴射を複数回に分割し、その後
段側の噴射の開始時期を、高負荷側の運転領域では低負
荷側の運転領域と比べて遅らせるようにしているため、
本来的にスモークが少ないエンジンの低負荷側では後段
側の噴射の開始時期を比較的早くして燃費の悪化を避け
る一方、エンジンの高負荷側では後段側の噴射の開始時
期を遅らせることで充分にスモークを低減することがで
きる。従って、燃費の悪化の防止と、スモーク低減とを
両立させることができる。
As described above, according to the diesel engine control apparatus of the first aspect of the present invention, the main fuel injection is performed a plurality of times at least in the operation range from the low load side to the high load side in the low speed range of the engine. Since the start timing of the injection on the subsequent stage is delayed in the operation range on the high load side as compared with the operation range on the low load side,
On the low-load side of the engine, which inherently has less smoke, it is sufficient to delay the start of the latter-stage injection on the high-load side of the engine, while keeping the start of the latter-stage injection relatively early to avoid fuel consumption deterioration. Smoke can be reduced. Therefore, both prevention of deterioration of fuel efficiency and reduction of smoke can be achieved.

【0070】とくに、主燃料噴射を複数回に分割して行
う運転領域のうちの低負荷領域では主燃料噴射による燃
焼が継続し、所定負荷以上の領域では燃焼が途切れるよ
うに後段側の噴射の開始時期を制御すれば、燃費悪化の
防止及びスモーク低減の効果が高められる。
In particular, the combustion by the main fuel injection continues in the low load region of the operation region in which the main fuel injection is divided into a plurality of times, and the combustion in the subsequent stage is interrupted in the region where the load exceeds a predetermined load. By controlling the start timing, the effects of preventing fuel consumption deterioration and reducing smoke can be enhanced.

【0071】また、請求項5に係る発明のディーゼルエ
ンジンの制御装置によると、主燃料噴射を複数回に分割
して行う運転領域のうちの低負荷領域での定常運転時に
は主燃料噴射による燃焼が継続し、加速運転時には燃焼
が途切れるように、後段側の噴射の開始時期を制御する
ようにしているため、燃費の悪化を防止し、かつ、出力
性能を確保しつつ、加速時のスモークの発生を充分に抑
制することができる。
According to the control apparatus for a diesel engine according to the fifth aspect of the present invention, during steady operation in a low load region of an operation region in which the main fuel injection is divided into a plurality of times, combustion by the main fuel injection is not performed. Continuously, the start timing of the second-stage injection is controlled so that combustion is interrupted during the acceleration operation.This prevents smoke from deteriorating and ensures output performance while generating smoke during acceleration. Can be sufficiently suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の制御装置を有するディーゼルエンジン
の一実施形態を示す概略図である。
FIG. 1 is a schematic diagram showing one embodiment of a diesel engine having a control device of the present invention.

【図2】燃料噴射制御の運転領域のマップを示す説明図
である。
FIG. 2 is an explanatory diagram showing a map of an operation region of fuel injection control.

【図3】各運転領域での燃料噴射の形態及び噴射時期を
示す説明図である。
FIG. 3 is an explanatory diagram showing a fuel injection mode and an injection timing in each operation region.

【図4】加速時の燃料噴射の形態及び噴射時期を示す説
明図である。
FIG. 4 is an explanatory diagram showing the form and injection timing of fuel injection during acceleration.

【図5】主燃料噴射を分割してその後段噴射の開始時期
を種々変えた場合のスモーク発生量の変化を示すグラフ
である。
FIG. 5 is a graph showing a change in the amount of smoke generated when the main fuel injection is divided and the start timing of the subsequent injection is variously changed.

【図6】主燃料噴射を分割してその後段噴射の開始時期
を種々変えた場合の燃費率の変化を示すグラフである。
FIG. 6 is a graph showing a change in fuel efficiency when the main fuel injection is divided and the start timing of the subsequent injection is variously changed.

【図7】運転状態が低負荷、中負荷及び高負荷の各場合
について、熱発生率を示すグラフである。
FIG. 7 is a graph showing a heat generation rate when the operating state is low load, medium load, and high load.

【図8】運転状態が低負荷域、中負荷域及び高負荷域の
各場合について、質量燃焼割合を示すグラフである。
FIG. 8 is a graph showing the mass combustion ratio in each of the low, middle, and high load operating states.

【図9】燃料の総噴射量に対する後段噴射量の比率と燃
費率との関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the ratio of the post-injection amount to the total fuel injection amount and the fuel efficiency.

【符号の説明】[Explanation of symbols]

1 エンジン本体 4 燃焼室 5 燃料噴射弁 12 ターボ過給機 24 排気ガス還流装置 35 ECU 36 運転状態判別手段 37 燃料噴射制御手段 38 排気ガス還流制御手段 DESCRIPTION OF SYMBOLS 1 Engine main body 4 Combustion chamber 5 Fuel injection valve 12 Turbocharger 24 Exhaust gas recirculation device 35 ECU 36 Operating state determination means 37 Fuel injection control means 38 Exhaust gas recirculation control means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/02 380 F02D 41/02 380C 41/04 385 41/04 385C 385B 43/00 301 43/00 301J 301N 301R F02M 25/07 550 F02M 25/07 550F 570 570J 570P (72)発明者 荒木 啓二 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 Fターム(参考) 3G062 AA01 AA03 AA05 BA00 BA02 BA04 BA05 BA06 CA06 DA01 DA02 EA08 EB15 ED01 ED04 ED10 FA02 FA09 FA23 GA00 GA01 GA02 GA04 GA06 GA15 GA21 3G084 AA01 AA03 BA05 BA08 BA09 BA13 BA15 BA20 CA03 CA04 CA09 DA02 DA10 EA04 EA11 EB08 EC01 EC03 FA00 FA07 FA10 FA11 FA33 FA37 FA38 3G092 AA02 AA06 AA13 AA17 AA18 BB01 BB06 DC03 DE01S DG06 EC09 FA18 FA24 GA04 GA05 GA06 GA12 GA17 HA01Z HA05Z HA06Z HB03X HB03Z HD07Z HE01Z HE03Z HF08Z 3G301 HA02 HA04 HA06 HA11 HA13 JA02 JA24 KA07 KA08 KA09 KA12 KA24 LA03 LB11 LC07 MA01 MA11 MA18 NC02 PA01Z PA07Z PA11Z PB08A PB08Z PD15Z PE01Z PE03Z PF03Z──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/02 380 F02D 41/02 380C 41/04 385 41/04 385C 385B 43/00 301 43/00 301J 301N 301R F02M 25/07 550 F02M 25/07 550F 570 570J 570P (72) Inventor Keiji Araki 3-1, Fuchu-cho Shinchi, Aki-gun, Hiroshima Pref. Mazda F-term (reference) 3G062 AA01 AA03 AA05 BA00 BA02 BA04 BA06 CA06 DA01 DA02 EA08 EB15 ED01 ED04 ED10 FA02 FA09 FA23 GA00 GA01 GA02 GA04 GA06 GA15 GA21 3G084 AA01 AA03 BA05 BA08 BA09 BA13 BA15 BA20 CA03 CA04 CA09 DA02 DA10 EA04 EA11 EB08 EC01 EC03 FA00 FA07 FA10 FA11 A11 FA33 AA18 BB01 BB06 DC03 DE01S DG06 EC09 FA18 FA24 GA04 GA05 GA06 GA12 GA17 HA01Z HA05Z HA06Z HB03X HB03Z HD07Z HE01Z HE03Z HF08Z 3G301 HA02 HA04 HA06 HA11 HA13 JA02 JA24 KA07 KA08 KA09 KA12 KA24 LA03 LB11 LC07 MA01 MA11 MA18 NC02 PA01Z PA07Z PA11Z PB08ZPBZZ

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ディーゼルエンジンの燃焼室内に燃料を
噴射する燃料噴射弁と、この燃料噴射弁からの燃料噴射
を制御する燃料噴射制御手段とを備え、この燃料噴射制
御手段は、少なくともエンジンの低速域における低負荷
側から高負荷側にわたる運転領域で、トルク生成のため
の主燃料噴射を圧縮上死点付近から膨張行程前期にわた
る期間に複数回に分割して行わせるとともに、主燃料噴
射のうちの後段側の噴射の開始時期を、高負荷側の運転
領域では低負荷側の運転領域と比べて遅らせるように制
御することを特徴とするディーゼルエンジンの制御装
置。
A fuel injection valve for injecting fuel into a combustion chamber of a diesel engine; and a fuel injection control means for controlling fuel injection from the fuel injection valve. In the operating range from the low load side to the high load side in the region, the main fuel injection for torque generation is divided into multiple times during the period from near the compression top dead center to the first half of the expansion stroke, and the main fuel injection A control apparatus for a diesel engine, characterized in that control is performed such that the start timing of the injection at the subsequent stage is delayed in an operation region on a high load side as compared with an operation region on a low load side.
【請求項2】 主燃料噴射を複数回に分割して行う運転
領域のうちの低負荷領域では主燃料噴射による燃焼が継
続し、所定負荷以上の領域では燃焼が途切れるように、
主燃料噴射のうちの後段側の噴射の開始時期をエンジン
負荷に応じて変更することを特徴とする請求項1記載の
ディーゼルエンジンの制御装置。
2. An operation region in which the main fuel injection is divided into a plurality of times, in which the combustion by the main fuel injection continues in a low load region, and the combustion is interrupted in a region above a predetermined load.
2. The control system for a diesel engine according to claim 1, wherein the start timing of the latter-stage injection of the main fuel injection is changed according to the engine load.
【請求項3】 エンジンの低、中速域における中負荷お
よび高負荷の運転領域で、主燃料噴射による燃焼が途切
れるように主燃料噴射のうちの後段側の噴射の開始時期
を制御することを特徴とする請求項2記載のディーゼル
エンジンの制御装置。
3. Controlling the start timing of the latter stage of the main fuel injection so that the combustion by the main fuel injection is interrupted in the middle and high load operation ranges of the engine in a low and medium speed range. The control device for a diesel engine according to claim 2, wherein
【請求項4】 排気エネルギーにより駆動されて吸気を
過給するターボ過給機と、排気ガスの一部を吸気系に還
流する排気ガス還流装置と、この排気ガス還流装置によ
る排気ガス還流量を制御する排気ガス還流制御手段とを
さらに備え、エンジンの低、中速域における過給領域
で、燃料噴射制御手段により主燃料噴射による燃焼が途
切れるように主燃料噴射のうちの後段側の噴射の開始時
期を制御するとともに、排気ガス還流制御手段により燃
焼室内の空気過剰率が運転状態に応じた目標値となるよ
うに排気ガス還流量を制御することを特徴とする請求項
1記載のディーゼルエンジンの制御装置。
4. A turbocharger driven by exhaust energy to supercharge intake air, an exhaust gas recirculation device for recirculating a part of exhaust gas to an intake system, and an exhaust gas recirculation amount by the exhaust gas recirculation device. Exhaust gas recirculation control means for controlling, and in the supercharging region in the low and medium speed regions of the engine, the fuel injection control means makes the injection of the latter stage side of the main fuel injection so that the combustion by the main fuel injection is interrupted. 2. The diesel engine according to claim 1, wherein the start timing is controlled, and the exhaust gas recirculation amount is controlled by the exhaust gas recirculation control means so that the excess air ratio in the combustion chamber becomes a target value according to the operation state. Control device.
【請求項5】 ディーゼルエンジンの燃焼室内に燃料を
噴射する燃料噴射弁と、この燃料噴射弁からの燃料噴射
を制御する燃料噴射制御手段とを備え、この燃料噴射制
御手段は、少なくともエンジンの低速域における低負荷
側から高負荷側にわたる運転領域で、トルク生成のため
の主燃料噴射を圧縮上死点付近から膨張行程前期にわた
る期間に複数回に分割して行わせるとともに、主燃料噴
射を複数回に分割して行う運転領域のうちの低負荷領域
での定常運転時には主燃料噴射による燃焼が継続し、加
速運転時には燃焼が途切れるように、主燃料噴射のうち
の後段側の噴射の開始時期を制御することを特徴とする
ディーゼルエンジンの制御装置。
5. A fuel injection valve for injecting fuel into a combustion chamber of a diesel engine, and fuel injection control means for controlling fuel injection from the fuel injection valve, wherein the fuel injection control means includes at least a low speed engine. In the operating range from the low load side to the high load side in the region, the main fuel injection for torque generation is divided into multiple times during the period from near the compression top dead center to the first half of the expansion stroke, and the main fuel injection Start timing of injection of the latter stage of main fuel injection so that combustion by main fuel injection continues during steady operation in the low load region of the operation region divided into multiple operations and combustion is interrupted during accelerated operation. Control device for a diesel engine, characterized in that the control of the engine is performed.
【請求項6】 ターボ過給機を備えたことを特徴とする
請求項5記載のディーゼルエンジンの制御装置。
6. The diesel engine control device according to claim 5, further comprising a turbocharger.
【請求項7】 燃料噴射制御手段は、燃料噴射弁から主
燃料噴射に先立ってパイロット噴射を行わせるととも
に、上記加速初期に、パイロット噴射開始時期を早め、
かつ、パイロット噴射の増量割合を主燃料噴射の増量割
合よりも多くすることを特徴とする請求項6記載のディ
ーゼルエンジンの制御装置。
7. The fuel injection control means causes a pilot injection to be performed from the fuel injection valve prior to the main fuel injection, and hastens the pilot injection start timing in the initial stage of the acceleration.
7. The control apparatus for a diesel engine according to claim 6, wherein an increase rate of the pilot injection is made larger than an increase rate of the main fuel injection.
【請求項8】 燃料噴射制御手段は、加速初期を過ぎた
とき、主燃料噴射のうちの後段側の噴射の開始時期を早
めるとともに、パイロット噴射量を減少またはカットす
ることを特徴とする請求項7記載のディーゼルエンジン
の制御装置。
8. The fuel injection control means, when the initial stage of the acceleration has passed, advances the start timing of the latter-stage injection of the main fuel injection, and reduces or cuts the pilot injection amount. The control device for a diesel engine according to claim 7.
【請求項9】 主燃料噴射を複数回に分割して行う運転
領域において、主燃料噴射のうちの後段側の噴射量を前
段側の噴射量よりも少なくし、かつ、高負荷側ほど上記
後段側の噴射量の割合を少なくすることを特徴とする請
求項1乃至8のいずれかに記載のディーゼルエンジンの
制御装置。
9. In an operation region in which the main fuel injection is divided into a plurality of times, the injection amount of the latter stage of the main fuel injection is made smaller than the injection amount of the former stage, and the higher the load, the more the latter stage. The control device for a diesel engine according to any one of claims 1 to 8, wherein the ratio of the side injection amount is reduced.
JP2000350062A 2000-11-16 2000-11-16 Diesel engine control device Expired - Fee Related JP3941382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000350062A JP3941382B2 (en) 2000-11-16 2000-11-16 Diesel engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000350062A JP3941382B2 (en) 2000-11-16 2000-11-16 Diesel engine control device

Publications (2)

Publication Number Publication Date
JP2002155791A true JP2002155791A (en) 2002-05-31
JP3941382B2 JP3941382B2 (en) 2007-07-04

Family

ID=18823360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000350062A Expired - Fee Related JP3941382B2 (en) 2000-11-16 2000-11-16 Diesel engine control device

Country Status (1)

Country Link
JP (1) JP3941382B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072235A1 (en) 2007-12-07 2009-06-11 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus of internal combustion engine
WO2009150977A1 (en) 2008-06-09 2009-12-17 トヨタ自動車株式会社 Fuel injection controller of internal combustion engine
WO2010035342A1 (en) * 2008-09-29 2010-04-01 トヨタ自動車株式会社 Fuel injection control device for internal-combustion engine
JP2012082800A (en) * 2010-10-14 2012-04-26 Isuzu Motors Ltd Control device of internal combustion engine
US8596242B2 (en) 2008-05-16 2013-12-03 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus of internal combustion engine
CN107387251A (en) * 2017-07-31 2017-11-24 重庆康明斯发动机有限公司 A kind of control method and control system of generating electronic controlled diesel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072235A1 (en) 2007-12-07 2009-06-11 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus of internal combustion engine
US8428850B2 (en) 2007-12-07 2013-04-23 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus of internal combustion engine
US8596242B2 (en) 2008-05-16 2013-12-03 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus of internal combustion engine
WO2009150977A1 (en) 2008-06-09 2009-12-17 トヨタ自動車株式会社 Fuel injection controller of internal combustion engine
US8181626B2 (en) 2008-06-09 2012-05-22 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus for internal combustion engine
WO2010035342A1 (en) * 2008-09-29 2010-04-01 トヨタ自動車株式会社 Fuel injection control device for internal-combustion engine
JP4930637B2 (en) * 2008-09-29 2012-05-16 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP2012082800A (en) * 2010-10-14 2012-04-26 Isuzu Motors Ltd Control device of internal combustion engine
CN107387251A (en) * 2017-07-31 2017-11-24 重庆康明斯发动机有限公司 A kind of control method and control system of generating electronic controlled diesel

Also Published As

Publication number Publication date
JP3941382B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
JP2002188474A (en) Control device for diesel engine with turbosupercharger
JP2012031844A (en) Diesel engine with turbo supercharger for mounting on automobile, and method of controlling the same
JP2006233898A (en) Egr device
US20060185353A1 (en) Strategy for selectively bypassing a DPF in a hybrid HCCI combustion engine
US7900440B2 (en) Exhaust emission control device and method for internal combustion engine and engine control unit
JP2001090594A (en) Control device for engine
US8464529B2 (en) Reduction in turbocharger lag at high altitudes
JP4461617B2 (en) Diesel engine combustion control system
US7886526B2 (en) Fuel control of an internal-combustion engine
JP4048885B2 (en) Engine combustion control device
US20100076668A1 (en) Control apparatus for internal combustion engine
JP4736969B2 (en) Diesel engine control device
JP4506001B2 (en) Fuel injection system for diesel engine
JP4419860B2 (en) Combustion control system for compression ignition internal combustion engine
JP3941382B2 (en) Diesel engine control device
JP4253984B2 (en) Diesel engine control device
JP4134413B2 (en) Diesel engine control device
JP4114008B2 (en) Control device for spark ignition direct injection engine with turbocharger
JP2006299892A (en) Internal combustion engine with supercharger
JP4505702B2 (en) Fuel injection control device for diesel engine
JP4403641B2 (en) Fuel injection system for diesel engine
US10669966B2 (en) Control device and method for diesel engine
EP1176300A2 (en) System, method and computer program for controlling fuel injection in a diesel engine
JP3763177B2 (en) Diesel engine control device
JP2008031874A (en) Exhaust emission control device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3941382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees