JP2012082176A - Method for producing high-purity methacrylic acid chloride - Google Patents

Method for producing high-purity methacrylic acid chloride Download PDF

Info

Publication number
JP2012082176A
JP2012082176A JP2010231120A JP2010231120A JP2012082176A JP 2012082176 A JP2012082176 A JP 2012082176A JP 2010231120 A JP2010231120 A JP 2010231120A JP 2010231120 A JP2010231120 A JP 2010231120A JP 2012082176 A JP2012082176 A JP 2012082176A
Authority
JP
Japan
Prior art keywords
methacrylic acid
acid chloride
represented
formula
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010231120A
Other languages
Japanese (ja)
Other versions
JP5788657B2 (en
Inventor
Yoshiichi Kimura
芳一 木村
Nobuhide Wada
信英 和田
Kazuo Takaya
一央 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ihara Nikkei Chemical Industry Co Ltd
Original Assignee
Ihara Nikkei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihara Nikkei Chemical Industry Co Ltd filed Critical Ihara Nikkei Chemical Industry Co Ltd
Priority to JP2010231120A priority Critical patent/JP5788657B2/en
Publication of JP2012082176A publication Critical patent/JP2012082176A/en
Application granted granted Critical
Publication of JP5788657B2 publication Critical patent/JP5788657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for increasing the productivity of high-purity methacrylic acid chloride of an industrially useful compound by reducing the influence of the polymerization loss of a raw material, and effectively subjecting the raw material to a desired reaction without requiring a raw material that forms impurities whose separation is difficult and is difficult to treat.SOLUTION: The method for producing the methacrylic acid chloride includes reacting an aromatic acid chloride [molar amount: A] represented by general formula (1) (wherein, X is hydrogen, chlorine or methyl; and n is an integer of 0-2) with methacrylic acid [molar amount: B] represented by general formula (2) in a molar ratio [A/B] of 1.2-1.65 when producing the methacrylic acid chloride represented by formula (3) by reacting the aromatic acid chloride represented by formula (1) with the methacrylic acid represented by formula (2).

Description

本発明は、経済性に優れた高純度メタクリル酸クロリドの製造方法に関するものである。   The present invention relates to a method for producing high-purity methacrylic acid chloride excellent in economic efficiency.

高純度メタクリル酸クロリドは、塗料、接着剤、レジストなどの材料の原料として有用であり、工業的に安全かつ簡便な製造方法が求められている。   High-purity methacrylic acid chloride is useful as a raw material for materials such as paints, adhesives, and resists, and industrially safe and simple production methods are required.

塩化チオニル、五塩化リン、三塩化リンのような塩素化剤を用いて、メタクリル酸をメタクリル酸クロリドに変換できることは良く知られている。しかし、この方法で合成したメタクリル酸クロリドにはイオウ・燐に由来する不純物が含まれ、この不純物は蒸留などの簡易な操作では除去が困難であることが指摘されている(特許文献1参照)。また、メタクリル酸をホスゲンで塩素化する方法も公知である(特許文献2参照)。しかしながら、ホスゲンは取り扱いに危険を伴うことは周知であり、日本を始め移動禁止物資に指定されている地域等では、製造場所が限定されることとなる。   It is well known that methacrylic acid can be converted to methacrylic acid chloride using chlorinating agents such as thionyl chloride, phosphorus pentachloride and phosphorus trichloride. However, it has been pointed out that the methacrylic acid chloride synthesized by this method contains impurities derived from sulfur and phosphorus, and these impurities are difficult to remove by simple operations such as distillation (see Patent Document 1). . A method of chlorinating methacrylic acid with phosgene is also known (see Patent Document 2). However, it is well known that phosgene is dangerous in handling, and the production location is limited in areas such as Japan designated as prohibited materials.

特開2000−229911号公報JP 2000-229911 A 特開2003−277319号公報JP 2003-277319 A

上記の事情に鑑み、本発明者らは不純物の除去が容易で安全な製造方法を検討した結果、芳香族酸クロリド類を用いる方法が望ましいとの結論に至った。この芳香族酸クロリド類のうち、安価な塩化ベンゾイルを塩素化剤として用いる方法は知られてる(特許文献1、Paul BIEBER “Preparations de composes methacryliques” Bulletin de la Societe chimique de France,1954,p.56[非特許文献1])。しかし、そこでは工業生産を想定した詳細な研究は実施されていない。
上記非特許文献1によると、塩化ベンゾイルをメタクリル酸に対し2モル倍用い、80%収率でメタクリル酸クロリドを得たとされる。また、特許文献1では塩化ベンゾイルをメタクリル酸に対し1.12モル倍用いる実施例が開示されている。反応ルートを考察すると、塩化ベンゾイルはメタクリル酸を混合酸無水物として活性化するのに1当量必要であり(反応式1)、塩素化剤として1当量必要(反応式2)であり、理論量は2当量必要と思われる。しかし、中間に生成する酸無水物(BAA)がアシル化剤となりメタクリル酸の混合酸無水物を形成するために(反応式3)、実際には2当量までは必要ないことが考えられる(下記反応スキーム参照)。さらに問題を複雑にしているのは、メタクリル酸の重合反応が進行し、これによりメタクリル酸クロリドの反応基質として利用されない部分が相当量ありえることである。

Figure 2012082176
In view of the above circumstances, as a result of studying a safe manufacturing method in which impurities can be easily removed, the present inventors have come to the conclusion that a method using an aromatic acid chloride is desirable. Among these aromatic acid chlorides, a method using inexpensive benzoyl chloride as a chlorinating agent is known (Patent Document 1, Paul BIEBER “Preparations de composes methacryliques” Bulletin de la Societe chimique de France, 1954, p. 56. [Non-Patent Document 1]). However, no detailed study has been conducted on the assumption of industrial production.
According to the said nonpatent literature 1, it is supposed that the methacrylic acid chloride was obtained with 80% yield, using benzoyl chloride 2 mol times with respect to methacrylic acid. Patent Document 1 discloses an example in which benzoyl chloride is used in an amount of 1.12 mole times that of methacrylic acid. Considering the reaction route, 1 equivalent of benzoyl chloride is required to activate methacrylic acid as a mixed acid anhydride (reaction formula 1), and 1 equivalent is required as a chlorinating agent (reaction formula 2). Seems to require 2 equivalents. However, since the acid anhydride (BAA) produced in the middle becomes an acylating agent to form a mixed acid anhydride of methacrylic acid (Reaction Formula 3), it is considered that it is not actually necessary up to 2 equivalents (the following) See Reaction Scheme). To further complicate the problem, the polymerization reaction of methacrylic acid proceeds, so that there can be a considerable amount of a portion that is not used as a reaction substrate for methacrylic acid chloride.
Figure 2012082176

以上の点を考慮し本発明は、分離が困難な不純物を生成させたり取り扱い困難な原料を必要としたりせず、原料物質の重合ロスによる影響を抑え、これを有効に所望の反応に供し、産業上有用な化合物である高純度のメタクリル酸クロリドの生産性を高めることを目的とする。また、本発明は見かけの収率ではなく、容量が一定の反応容器であってもメタクリル酸クロリドの得量を高めることができ、特に実生産における原材料費や設備費を含めた製造原価を抑えつつ目的化合物の生産量を高めることを目的とする。   In view of the above points, the present invention does not generate impurities that are difficult to separate or require raw materials that are difficult to handle, suppresses the effects of polymerization loss of the raw material, and effectively provides this to the desired reaction, The object is to increase the productivity of high-purity methacrylic acid chloride, which is an industrially useful compound. In addition, the present invention is not an apparent yield, and can increase the yield of methacrylic acid chloride even in a reaction vessel with a constant capacity, and in particular, suppresses manufacturing costs including raw material costs and equipment costs in actual production. While aiming to increase the production amount of the target compound.

上記の課題は下記の手段によって解決された。
[1]一般式(1)で表される芳香族酸クロリドと、式(2)で表されるメタクリル酸とを反応させ、式(3)で表されるメタクリル酸クロリドを製造するに当たり、前記一般式(1)で表される芳香族酸クロリド[モル量A]と前記式(2)で表されるメタクリル酸[モル量B]とのモル比[A/B]を1.2〜1.65として反応させることを特徴とするメタクリル酸クロリドの製造方法。

Figure 2012082176
(一般式1中、Xは水素原子、塩素原子、またはメチル基を表し、nは0〜2の整数を表す。)
[2]前記式(2)で表されるメタクリル酸を反応釜に滴下し、同時に生成した前記式(3)で表されるメタクリル酸クロリドを前記反応釜外に留出捕集する[1]に記載のメタクリル酸クロリドの製造方法。
[3]前記一般式(1)で表される芳香族酸クロリドと前記式(2)で表されるメタクリル酸とのモル比[B/A]を1.3〜1.6とすることを特徴とする[1]又は[2]に記載のメタクリル酸クロリドの製造方法。
[4]一定容量の反応容器で前記反応を行うことを特徴とする[1]〜[3]のいずれか1項に記載のメタクリル酸クロリドの製造方法。
[5]前記一般式(1)で表される芳香族酸クロリドと前記式(2)で表されるメタクリル酸とを、反応釜温度100〜120℃、圧力47〜25KPaで反応させる[1]〜[4]のいずれか1項に記載のメタクリル酸クロリドの製造方法。
[6]前記式(2)で表されるメタクリル酸を3〜6時間掛けて反応釜に滴下する[1]〜[5]のいずれか1項に記載のメタクリル酸クロリドの製造方法。 The above problems have been solved by the following means.
[1] In producing the methacrylic acid chloride represented by the formula (3) by reacting the aromatic acid chloride represented by the general formula (1) with the methacrylic acid represented by the formula (2), The molar ratio [A / B] of the aromatic acid chloride [molar amount A] represented by the general formula (1) and the methacrylic acid [molar amount B] represented by the formula (2) is 1.2 to 1. A process for producing methacrylic acid chloride, characterized by reacting as .65.
Figure 2012082176
(In General Formula 1, X represents a hydrogen atom, a chlorine atom, or a methyl group, and n represents an integer of 0 to 2.)
[2] The methacrylic acid represented by the formula (2) is dropped into the reaction kettle, and the methacrylic acid chloride represented by the formula (3) generated simultaneously is distilled and collected outside the reaction kettle [1]. The manufacturing method of methacrylic acid chloride as described in 2.
[3] The molar ratio [B / A] of the aromatic acid chloride represented by the general formula (1) and the methacrylic acid represented by the formula (2) is 1.3 to 1.6. The method for producing methacrylic acid chloride according to [1] or [2], which is characterized.
[4] The method for producing methacrylic acid chloride according to any one of [1] to [3], wherein the reaction is carried out in a constant volume reaction vessel.
[5] The aromatic acid chloride represented by the general formula (1) and the methacrylic acid represented by the formula (2) are reacted at a reaction kettle temperature of 100 to 120 ° C. and a pressure of 47 to 25 KPa. -The manufacturing method of the methacrylic acid chloride of any one of [4].
[6] The method for producing methacrylic acid chloride according to any one of [1] to [5], wherein the methacrylic acid represented by the formula (2) is dropped into the reaction kettle over 3 to 6 hours.

本発明の製造方法によれば、分離が困難な不純物を生成させたり取り扱い困難な原料を必要としたりせず、原料物質の重合ロスによる影響を抑え、これを有効に所望の反応に供し、産業上有用な化合物である高純度のメタクリル酸クロリドの生産性を高めることができる。また、見かけの収率ではなく、容量が一定の反応容器であってもメタクリル酸クロリドの得量を高めることができ、特に実生産における原材料費や設備費を含めた製造原価を抑えつつ目的化合物の生産量を高めることができる。   According to the production method of the present invention, impurities that are difficult to separate are not generated or raw materials that are difficult to handle are not required, the influence of polymerization loss of the raw material is suppressed, and this is effectively subjected to a desired reaction, The productivity of high purity methacrylic acid chloride, which is a useful compound, can be increased. In addition, the yield of methacrylic acid chloride can be increased even in a reaction vessel with a fixed capacity, rather than the apparent yield. In particular, the target compound can be reduced while suppressing the production cost including raw material costs and equipment costs in actual production. Can increase the production volume.

実施例で行ったメタクリル酸クロリドの製造における原料化合物のモル比と収量との関係を示したグラフである。It is the graph which showed the relationship between the molar ratio and the yield of the raw material compound in manufacture of the methacrylic acid chloride performed in the Example.

以下、本発明についてその好ましい実施態様に基づき詳細に説明する。
本実施態様は、メタクリル酸と芳香族酸クロリドを用いてメタクリル酸クロリドを製造する方法に関し、その変換反応はメタクリル酸の塩素化反応に属し、塩素化剤として芳香族酸クロリドを用いるものである。芳香族酸クロリドとして用いることができるものに制限はないが、産業界で安価に入手容易なものとして塩化ベンゾイル、パラクロロ安息香酸クロリド、オルトクロロ安息香酸クロリド、パラメチル安息香酸クロリド等が用いられる。なかでも、安価で入手容易な塩化ベンゾイルを用いることが好ましい。
Hereinafter, the present invention will be described in detail based on preferred embodiments thereof.
The present embodiment relates to a method for producing methacrylic acid chloride using methacrylic acid and aromatic acid chloride, the conversion reaction belongs to chlorination reaction of methacrylic acid, and uses aromatic acid chloride as a chlorinating agent. . There are no limitations on what can be used as the aromatic acid chloride, but benzoyl chloride, parachlorobenzoic acid chloride, orthochlorobenzoic acid chloride, paramethylbenzoic acid chloride, and the like are easily available at a low cost in the industry. Of these, it is preferable to use benzoyl chloride which is inexpensive and easily available.

本実施態様の製造方法においては、その使用量が重要である。すなわち、芳香族酸クロリド(モル量A)をメタクリル酸(モル量B)に対して1.2当量(A/B)以上とし、1.3以上することが好ましく、1.4以上とすることがより好ましい。他方、上限値としては1.65当量以下とし、1.6以下とすることが好ましい。この範囲とすることで、一定容量の反応器でメタクリル酸クロリドの得量を高めることができ、必要によりこれを最大化し得ることを本発明者らは明らかとした。メタクリル酸を基準としたメタクリル酸クロリドの見かけの収率は、塩素化剤である芳香族酸クロリドを多く使用する方が高くなるといえる。しかし、それは反応容器の大きさも原料価格をも考慮していない場合の見積もりであって、工業生産においては反応釜の大きさは一定であることが一般的であり、仕込める試薬の最大量には自ずと制限がある。本発明の好ましい実施態様によれば、そのような制限があるなかでも実質的に得られるメタクリル酸クロリドの量を高め、必要により最大化することができる。   In the production method of this embodiment, the amount used is important. That is, the aromatic acid chloride (molar amount A) is 1.2 equivalents (A / B) or more with respect to methacrylic acid (molar amount B), preferably 1.3 or more, and more preferably 1.4 or more. Is more preferable. On the other hand, the upper limit is 1.65 equivalents or less, preferably 1.6 or less. The inventors of the present invention have made it clear that the amount of methacrylic acid chloride can be increased in a reactor having a constant volume by setting this range, and this can be maximized if necessary. It can be said that the apparent yield of methacrylic acid chloride based on methacrylic acid is higher when more aromatic acid chloride as a chlorinating agent is used. However, it is an estimate when neither the size of the reaction vessel nor the price of raw materials is taken into consideration. Are naturally limited. According to a preferred embodiment of the present invention, the amount of methacrylic acid chloride obtained can be increased and maximized if necessary, even under such limitations.

本発明の好ましい実施態様としてのメタクリル酸クロリドの製造方法においては、反応釜温度を100〜120℃とすることが好ましい。また、その圧力を47〜25KPaとすることが好ましい。本実施態様に用いられる反応釜としては、この種の化合物の製造に用いられているものを用いればよく、特に限定されるものではない。反応釜の容量としては必要生産量等により適宜設定すればよい。反応釜の温度や圧力の調節は常法によればよい。   In the method for producing methacrylic acid chloride as a preferred embodiment of the present invention, the reaction kettle temperature is preferably 100 to 120 ° C. Moreover, it is preferable that the pressure shall be 47-25 KPa. The reaction kettle used in this embodiment may be the one used for the production of this type of compound, and is not particularly limited. What is necessary is just to set suitably as the capacity | capacitance of a reaction kettle according to required production amount etc. The temperature and pressure of the reaction kettle can be adjusted by a conventional method.

本実施態様の製造方法においては、メタクリル酸を滴下し、他方、反応釜内で生成するメタクリル酸クロリド(MAOC)をその外部に留出しながら行うことが好ましい。このように系外に留出する手段や方法としては常法によればよく、また留出量は特に限定されず上記必要生産量等を考慮し適宜設定することが好ましい。   In the manufacturing method of this embodiment, it is preferable to carry out while dropping methacrylic acid and distilling the methacrylic acid chloride (MAOC) produced | generated in a reaction kettle on the outside. Thus, the means and method for distilling out of the system may be a conventional method, and the distillate amount is not particularly limited, and is preferably set appropriately in consideration of the necessary production amount and the like.

本実施態様の製造方法においては、式(2)で表されるメタクリル酸を3〜5時間かけて反応釜に滴下し、同時に生成するメタクリル酸クロリドを留出しながら行うことが好ましい。この滴下量は適宜設定すればよい。この滴下の方法ないし手段はこの種の化合物の製造に用いられる常法によればよい。
上述した設定条件によれば、本実態様の製造方法において、特に式(2)で表されるメタクリル酸誘導体の重合反応を最少化した設定にすることも可能であり、メタクリル酸クロリドの製造原価をその製造設備において最小にすることができ好ましい。
In the production method of this embodiment, methacrylic acid represented by the formula (2) is preferably added dropwise to the reaction kettle over 3 to 5 hours, and the methacrylic acid chloride produced at the same time is distilled off. What is necessary is just to set this dripping amount suitably. The dripping method or means may be a conventional method used for producing this type of compound.
According to the setting conditions described above, in the manufacturing method of the present embodiment, it is possible to set the polymerization reaction of the methacrylic acid derivative represented by the formula (2) to a minimum, and the manufacturing cost of methacrylic acid chloride can be reduced. Can be minimized in the production facility.

さらに本実施態様の製造方法に係る利点について説明する。
上述のとおり、本実施態様の反応に原料として用いるメタクリル酸は重合しやすい。重合禁止剤を添加しても塩化水素雰囲気下での反応ではその効果が薄く、重合物の生成を抑止することは難しい。特にスケールアップし、実生産で必要な反応量を確保しようとして反応時間がかかる場合は重合物が増加する。したがって反応容器内に存在するメタクリル酸の滞在時間を極力減少することが好ましい。かかる観点からメタクリル酸を一定の時間かかって反応系に滴下する方法が好ましい。また、生成物であるメタクリル酸クロリドも重合する可能性があり、生成と同時に系外に抜き出す方式が好ましい。したがって、本実施態様の好ましい形態として、芳香族酸クロリドを反応温度まで加熱しておき、メタクリル酸を滴下すると同時にメタクリル酸クロリドを蒸留する製造方法を採用することが挙げられる。その場合、メタクリル酸クロリドが反応釜温度100〜120℃で蒸留されるためには、反応系内を減圧にしなければならない。減圧にしすぎるとメタクリル酸クロリドが捕捉できない。当該分野で通常使用できる冷却水温度範囲(マイナス10℃〜プラス10℃)でメタクリル酸クロリドを捕集するために熱収支の計算と実験を繰り返した結果によれば、上述のとおり反応釜の内部圧力を47〜25KPaの範囲内で行うことが好ましい。
Furthermore, the advantage which concerns on the manufacturing method of this embodiment is demonstrated.
As described above, methacrylic acid used as a raw material for the reaction of this embodiment is easily polymerized. Even if a polymerization inhibitor is added, the reaction is less effective in a reaction in a hydrogen chloride atmosphere, and it is difficult to suppress the formation of a polymer. In particular, when a reaction time is required to scale up and secure a reaction amount necessary for actual production, the amount of polymer increases. Therefore, it is preferable to reduce the residence time of methacrylic acid present in the reaction vessel as much as possible. From such a viewpoint, a method in which methacrylic acid is dropped into the reaction system over a certain period of time is preferable. In addition, the product methacrylic acid chloride may be polymerized, and a method of drawing out of the system simultaneously with the production is preferable. Therefore, as a preferred form of this embodiment, it is mentioned that the aromatic acid chloride is heated to the reaction temperature, and a production method in which methacrylic acid chloride is distilled simultaneously with dropwise addition of methacrylic acid is exemplified. In that case, in order for methacrylic acid chloride to be distilled at a reaction kettle temperature of 100 to 120 ° C., the pressure in the reaction system must be reduced. If the pressure is too low, methacrylic acid chloride cannot be captured. According to the results of repeated calculation and experiment of heat balance to collect methacrylic acid chloride in the cooling water temperature range (minus 10 ° C to plus 10 ° C) that can be normally used in the field, It is preferable to perform the pressure within a range of 47 to 25 KPa.

ここでメタクリル酸クロリドの有用性について一例を通じ説明する。メタクリル酸クロリドは式(3)に示されたように、その分子の一方に反応性官能基である2重結合をもつ。他方には酸クロリド(−COCl)を有し、特定の基と反応し、ここで結合させ別の化合物の分子内に導入することができる。したがって、例えば工業用樹脂製品に適用される機能性分子A−OH(Aは機能性分子の残基)を想定したときには、A−O−(CO)−C(CH)=CHとして導入することができる。この二重結合部分を例えば高分子化合物の主鎖に結合させ導入することで、機能性側鎖Aあるいは機能性官能基Aを有する高分子化合物を合成することができる。この説明により本発明が限定して解釈されるものではないが、メタクリル酸クロリドはその反応性を利用して様々な化合物の合成に適用することができる。そして、先端機器に適用されるような高機能性の塗料・接着剤・レジストなどへの利用を考慮すると、副作用をもたらす不純物のない、高純度のメタクリル酸クロリドを提供することが近時の工業製品にとって極めて重要である。
メタクリル酸クロリドの純度は特に限定されるものではないが、上記のような高純度化のニーズを考慮したときには98%以上であることが好ましく、99%以上であることがより好ましい。
Here, the usefulness of methacrylic acid chloride will be described through an example. As shown in the formula (3), methacrylic acid chloride has a double bond which is a reactive functional group on one of its molecules. The other has an acid chloride (—COCl), which reacts with a specific group, where it can be combined and introduced into the molecule of another compound. Thus, for example, when (the A residue of a functional molecule) functional molecule A-OH which is applied to an industrial resin product was assumed is, A-O- (CO) -C (CH 3) = introduced as CH 2 can do. A polymer compound having a functional side chain A or a functional functional group A can be synthesized by, for example, bonding and introducing this double bond portion to the main chain of the polymer compound. Although the present invention is not construed as being limited by this description, methacrylic acid chloride can be applied to the synthesis of various compounds by utilizing its reactivity. In view of the use in high-performance paints, adhesives, resists, etc. that are applied to advanced equipment, it is a recent industry to provide high-purity methacrylic acid chloride that has no side-effect impurities. Very important for the product.
The purity of methacrylic acid chloride is not particularly limited, but is preferably 98% or more, and more preferably 99% or more in consideration of the need for high purity as described above.

ところで、産業界における化学品合成とは、2つ以上の化学薬品を混ぜ合わせ有用な化合物に変化させる行為である。2つ以上の化学薬品の使用する割合により、有用物質の得られる量が変化するが、その経済的最大効率を求めて当業者は2つ以上の化学薬品の使用量を決定するのが通常である。すなわち、見かけの収率が高くても高価な薬品を大量に使用すれば総合的な原料価格が高くなり得策ではない。さらに、一般的な化学品製造では一定の大きさを持った反応容器(反応釜)を使用するので、2つ以上の化学薬品の使用量を決め、1回の反応で最大の得量になるようにすることが望ましい。本発明の製造方法によれば、上記工業製品の生産において極めて有用なメタクリル酸クロリドの製造に際し、上記のような産業上求められる実生産において特に好適に効果を発揮することができ、経済効率を高め、かつその生産量の最大化を図ることも可能となる。   By the way, chemical synthesis in industry is an act of changing two or more chemicals into useful compounds. Depending on the ratio of two or more chemicals used, the amount of useful substances that can be obtained varies, but it is normal for those skilled in the art to determine the amount of two or more chemicals used in order to obtain the maximum economic efficiency. is there. In other words, even if the apparent yield is high, if a large amount of expensive chemicals are used, the total raw material price becomes high, which is not a good idea. Furthermore, in general chemical manufacturing, a reaction vessel (reaction kettle) with a certain size is used, so the amount of two or more chemicals used is determined, and the maximum yield is achieved in one reaction. It is desirable to do so. According to the production method of the present invention, in the production of methacrylic acid chloride, which is extremely useful in the production of the industrial products, it is possible to exert the effect particularly suitably in the actual production required in the industry as described above, and the economic efficiency is improved. It is also possible to increase and maximize the production volume.

以下に、本発明について実施例に基づきさらに詳細に説明するが、本発明がこれに限定して解釈されるものではない。
<実施例・参考例>
1000mlの丸底フラスコに884.4gの安息香酸クロリド(6.35モル、730ml)を取り、所定の減圧条件下、所定温度まで昇温した後、所定量のメタクリル酸を滴下した。メタクリル酸約160gの滴下が終了した時点で、メタクリル酸クロリドの留出が始まり、これ以降はメタクリル酸クロリドを留出させながらメタクリル酸の滴下を続ける。メタクリル酸クロリドの留出開始時点で反応系内の容量は約900mlとなるが、メタクリル酸クロリドの留出速度とメタクリル酸の滴下速度を合わせて、系内の容量を一定に保った。メタクリル酸の滴下終了後は、徐々に昇温し、最終温度160℃まで留出させることで、メタクリル酸クロリドを得た。結果を表1に纏めた。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited thereto.
<Examples and reference examples>
884.4 g of benzoic acid chloride (6.35 mol, 730 ml) was placed in a 1000 ml round bottom flask, heated to a predetermined temperature under a predetermined reduced pressure condition, and a predetermined amount of methacrylic acid was added dropwise. When dropping of about 160 g of methacrylic acid was completed, distillation of methacrylic acid chloride started, and thereafter dropping of methacrylic acid was continued while distilling methacrylic acid chloride. The volume in the reaction system was about 900 ml at the start of the distillation of methacrylic acid chloride, but the volume in the system was kept constant by combining the distillation speed of methacrylic acid chloride and the dropping speed of methacrylic acid. After completion of the dropwise addition of methacrylic acid, the temperature was gradually raised and distilled to a final temperature of 160 ° C. to obtain methacrylic acid chloride. The results are summarized in Table 1.

Figure 2012082176
* BOC/MA
** MAOC得量×GC面積比
実施例番号・・・S:参考例、J実施例
Figure 2012082176
* BOC / MA
** MAOC yield x GC area ratio Example number ... S: Reference example, J example

実施例J2のモル比1.47(反応温度120℃、滴下時間3時間)で、メタクリル酸クロリドの純分収量は最大ととなり、338.6gを得た。なお、本実施例使用したメタクリル酸には、250ppmの4−メトキシフェノールを重合防止剤として添加している。表1の結果の内、反応温度120℃で滴下時間3時間のデータを抜き出しグラフ化し図1とした。
表1および図1の結果を見ると明らかなように、本発明は芳香族酸クロリドを100〜120℃に加熱した中に、圧力を47〜25KPaとしてメタクリル酸を3〜6時間かかり滴下すると同時に生成するメタクリル酸クロリドを蒸留する経済性に優れた製造方法の提供である。芳香族酸クロリドの量は滴下するメタクリル酸に対しとりわけ1.3〜1.6モル倍として用いる反応容器の容量内での向上がみられることが分かる。このようにして得たものを再蒸留すると、例えば高純度(99.8%以上)のメタクリル酸クロリドであっても、ロスなく容易な操作で得ることができる。なお、BOC/MAのモル比が小さくなりすぎると重合物の生成率が高くなり望ましくない。
At a molar ratio of Example J2 of 1.47 (reaction temperature: 120 ° C., dropping time: 3 hours), the yield of pure methacrylic acid chloride was maximized to obtain 338.6 g. Note that 250 ppm of 4-methoxyphenol was added to the methacrylic acid used in this example as a polymerization inhibitor. Of the results shown in Table 1, data for a dropping time of 3 hours at a reaction temperature of 120 ° C. was extracted and plotted in FIG.
As is apparent from the results of Table 1 and FIG. 1, the present invention was carried out while dripping methacrylic acid over 3 to 6 hours at a pressure of 47 to 25 KPa while heating the aromatic acid chloride to 100 to 120 ° C. The present invention provides an economical production method for distilling produced methacrylic acid chloride. It can be seen that the amount of the aromatic acid chloride is improved within the capacity of the reaction vessel used as 1.3 to 1.6 mol times the methacrylic acid to be dropped. When the product thus obtained is redistilled, for example, even high purity (99.8% or more) methacrylic acid chloride can be obtained by an easy operation without loss. In addition, when the molar ratio of BOC / MA becomes too small, the production rate of the polymer is increased, which is not desirable.

実施例1〜12で得られたメタクリル酸クロリド201.9g(純度88.5%)を63℃、33.3kPaで精留し152.4gのメタクリル酸クロリド(純度99.85%)を得た。回収率90.1%。   201.9 g (purity 88.5%) of the methacrylic acid chloride obtained in Examples 1 to 12 was rectified at 63 ° C. and 33.3 kPa to obtain 152.4 g of methacrylic acid chloride (purity 99.85%). . Recovery rate 90.1%.

(比較例)
特許文献1(特開2000−229911号公報)の段落0029に記載の条件で、上記実施例と同じスケールで実施した場合の収率及び得量を見積もった。すなわち、総容量900mLになるように行うと、メタクリル酸(MA)354mL(361g、4.2モル)、安息香酸クロリド(BOC)546mL(660g、4.7モル)で一括反応させることとなる。この場合は、MA/BOC比が1.12であり、収率63%でMAOCを得ることができるとすると、277gの得量となる。
これに対し、前記参考例S6(MA/BOC=1.14)ですでにその得量は291gであり、滴下法の方が生成物の収率が高いことが分かる。これは、反応開始時において塩素化剤であるBOCのモル比が3.4モルであることで初期の反応速度が速いことが原因である。
(Comparative example)
Under the conditions described in Paragraph 0029 of Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-229911), the yield and the yield were estimated when the test was carried out on the same scale as the above Examples. That is, when the total volume is set to 900 mL, 354 mL (361 g, 4.2 mol) of methacrylic acid (MA) and 546 mL (660 g, 4.7 mol) of benzoic acid chloride (BOC) are collectively reacted. In this case, if the MA / BOC ratio is 1.12 and MAOC can be obtained with a yield of 63%, the yield is 277 g.
In contrast, in Reference Example S6 (MA / BOC = 1.14), the amount already obtained was 291 g, and it was found that the yield of the product was higher in the dropping method. This is because the initial reaction rate is high because the molar ratio of BOC as a chlorinating agent is 3.4 mol at the start of the reaction.

Claims (6)

一般式(1)で表される芳香族酸クロリドと、式(2)で表されるメタクリル酸とを反応させ、式(3)で表されるメタクリル酸クロリドを製造するに当たり、前記一般式(1)で表される芳香族酸クロリド[モル量A]と前記式(2)で表されるメタクリル酸[モル量B]とのモル比[A/B]を1.2〜1.65として反応させることを特徴とするメタクリル酸クロリドの製造方法。
Figure 2012082176
(一般式1中、Xは水素原子、塩素原子、またはメチル基を表し、nは0〜2の整数を表す。)
In producing the methacrylic acid chloride represented by the formula (3) by reacting the aromatic acid chloride represented by the general formula (1) with the methacrylic acid represented by the formula (2), the above general formula ( The molar ratio [A / B] of the aromatic acid chloride [molar amount A] represented by 1) and the methacrylic acid [molar amount B] represented by the formula (2) is 1.2 to 1.65. A process for producing methacrylic acid chloride, characterized by reacting.
Figure 2012082176
(In General Formula 1, X represents a hydrogen atom, a chlorine atom, or a methyl group, and n represents an integer of 0 to 2.)
前記式(2)で表されるメタクリル酸を反応釜に滴下し、同時に生成した前記式(3)で表されるメタクリル酸クロリドを前記反応釜外に留出捕集する請求項1に記載のメタクリル酸クロリドの製造方法。   The methacrylic acid represented by said Formula (2) is dripped at a reaction kettle, The methacrylic acid chloride represented by said Formula (3) produced | generated simultaneously is distilled and collected out of the said reaction kettle. A method for producing methacrylic acid chloride. 前記一般式(1)で表される芳香族酸クロリドと前記式(2)で表されるメタクリル酸とのモル比[B/A]を1.3〜1.6とすることを特徴とする請求項1又は2に記載のメタクリル酸クロリドの製造方法。   The molar ratio [B / A] of the aromatic acid chloride represented by the general formula (1) and the methacrylic acid represented by the formula (2) is 1.3 to 1.6. The manufacturing method of the methacrylic acid chloride of Claim 1 or 2. 一定容量の反応容器で前記反応を行うことを特徴とする請求項1〜3のいずれか1項に記載のメタクリル酸クロリドの製造方法。   The method for producing methacrylic acid chloride according to any one of claims 1 to 3, wherein the reaction is performed in a reaction container having a constant volume. 前記一般式(1)で表される芳香族酸クロリドと前記式(2)で表されるメタクリル酸とを、反応釜温度100〜120℃、圧力47〜25KPaで反応させる請求項1〜4のいずれか1項に記載のメタクリル酸クロリドの製造方法。   The aromatic acid chloride represented by the general formula (1) and the methacrylic acid represented by the formula (2) are reacted at a reaction kettle temperature of 100 to 120 ° C and a pressure of 47 to 25 KPa. The manufacturing method of the methacrylic acid chloride of any one. 前記式(2)で表されるメタクリル酸を3〜6時間掛けて反応釜に滴下する請求項1〜5のいずれか1項に記載のメタクリル酸クロリドの製造方法。   The method for producing methacrylic acid chloride according to any one of claims 1 to 5, wherein the methacrylic acid represented by the formula (2) is dropped into the reaction kettle over 3 to 6 hours.
JP2010231120A 2010-10-14 2010-10-14 Method for producing high purity methacrylic acid chloride Active JP5788657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010231120A JP5788657B2 (en) 2010-10-14 2010-10-14 Method for producing high purity methacrylic acid chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231120A JP5788657B2 (en) 2010-10-14 2010-10-14 Method for producing high purity methacrylic acid chloride

Publications (2)

Publication Number Publication Date
JP2012082176A true JP2012082176A (en) 2012-04-26
JP5788657B2 JP5788657B2 (en) 2015-10-07

Family

ID=46241451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231120A Active JP5788657B2 (en) 2010-10-14 2010-10-14 Method for producing high purity methacrylic acid chloride

Country Status (1)

Country Link
JP (1) JP5788657B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426531A (en) * 1987-07-22 1989-01-27 Nikkei Kako Kk Production of fatty acid chloride
JP2000229911A (en) * 1999-02-05 2000-08-22 Mitsubishi Rayon Co Ltd Production of 2-alkyl-2-adamantyl (meth)acrylates
JP2003277319A (en) * 2002-03-19 2003-10-02 Hodogaya Chem Co Ltd Method for producing acrylic acid chloride and methacrylic acid chloride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426531A (en) * 1987-07-22 1989-01-27 Nikkei Kako Kk Production of fatty acid chloride
JP2000229911A (en) * 1999-02-05 2000-08-22 Mitsubishi Rayon Co Ltd Production of 2-alkyl-2-adamantyl (meth)acrylates
JP2003277319A (en) * 2002-03-19 2003-10-02 Hodogaya Chem Co Ltd Method for producing acrylic acid chloride and methacrylic acid chloride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014027521; J. R. Durig: The Journal of Chemical Physics 76 (4), 1982, 1723-1734 *

Also Published As

Publication number Publication date
JP5788657B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
JP3540822B2 (en) Method for producing glycerol carbonate
JP7359141B2 (en) Method for producing hexafluoro-1,3-butadiene
JP5788657B2 (en) Method for producing high purity methacrylic acid chloride
JP2014139174A (en) METHOD FOR PRODUCING α-FLUOROMALONIC ACID DIALKYL ESTERS
CN104844450B (en) The manufacturing method of two formyl dichloro of 1,4- hexamethylene
JP5359052B2 (en) Method for producing fluorine-containing monomer
JP6086163B2 (en) Method for producing 2&#39;-trifluoromethyl group-substituted aromatic ketone
JPWO2013180210A1 (en) Hydroxyalkyl (meth) acrylate and method for producing the same
JP5206736B2 (en) Method for producing glycidyloxybutyl acrylate
JP6828500B2 (en) Method and composition for producing 2-methyl-2-hydroxy-1-propyl (meth) acrylate and / or 3-methyl-3-hydroxy-1-butyl (meth) acrylate
JP2012067037A (en) METHOD OF PRODUCING α,α-DIFLUORO ESTERS
US20080021184A1 (en) Method For Producing Fluorine-Containing (Meth)Acrylic Ester
CN106674000B (en) Acyl chloride co-production method
JP5242873B2 (en) Method for producing fluorinated alkylamine compound
JPWO2019117019A1 (en) Method for producing diol
JP2005247810A (en) Epoxy group-terminated (meth)acrylate
JP5994578B2 (en) Method for producing acid anhydride having adamantane structure
JP2007308464A (en) Manufacturing method of 2-methyl-2-adamantyl (meth)acrylate
JP2523936B2 (en) Method for producing dicarbonyl fluoride
JP2007308457A (en) Manufacturing method of 2-methyl-2-adamantanol and magnesium chloride salt thereof
JP3751657B2 (en) Method for separating acetic anhydride and acetic acid
JP2002128772A (en) Method for producing 2-glycidyloxyethyl(meth)acrylate
TW201305104A (en) Isopropyl 3-chloro-4-methylbenzoate and method for producing same
JPH02229145A (en) Production of dimethylaminoethyl acrylate
JP2021080211A (en) Method for producing (meth)acrylic acid anhydride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140908

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150202

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150730

R150 Certificate of patent or registration of utility model

Ref document number: 5788657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250