JP2012081380A - Method for treating fluorine-contaminated soil - Google Patents

Method for treating fluorine-contaminated soil Download PDF

Info

Publication number
JP2012081380A
JP2012081380A JP2010227311A JP2010227311A JP2012081380A JP 2012081380 A JP2012081380 A JP 2012081380A JP 2010227311 A JP2010227311 A JP 2010227311A JP 2010227311 A JP2010227311 A JP 2010227311A JP 2012081380 A JP2012081380 A JP 2012081380A
Authority
JP
Japan
Prior art keywords
soil
fluorine
amount
elution
contaminated soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010227311A
Other languages
Japanese (ja)
Other versions
JP5789789B2 (en
Inventor
Kazuya Shimada
和哉 島田
Norio Yamaguchi
典生 山口
Reiko Aritomi
礼子 有冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010227311A priority Critical patent/JP5789789B2/en
Publication of JP2012081380A publication Critical patent/JP2012081380A/en
Application granted granted Critical
Publication of JP5789789B2 publication Critical patent/JP5789789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating fluorine-contaminated soil that does not always need to add a calcium phosphate compound for insolubilization of fluorine in the fluorine-contaminated soil, can reduce the addition amount compared to before even when the compound is added, and has the small impact to a soil ecosystem and the enough fluorine insolubilization action to make the elution amount of fluorine at most an environmental standard.SOLUTION: The method insolubilizes the fluorine contained in soil by adding acid materials to the fluorine-contaminated soil to make a pH of the soil be 5.5 or more and 6.5 or less. The acid materials is preferably at least one selected from aluminum sulfate and an aluminum chloride. The fluorine insolubilization action is further improved by adding the calcium phosphate compound more to the soil after the pH of the soil is made to be 5.5 or more and 6.5 or less by the addition of acid materials. The calcium phosphate compound is preferably a hydroxyapatite.

Description

本発明は、フッ素により汚染された土壌の処理方法、より具体的には、土壌中のフッ素を不溶化して、当該土壌から溶出するフッ素の量(フッ素溶出量)を環境基準以下とする方法に関する。   The present invention relates to a method for treating soil contaminated with fluorine, and more specifically, to a method for insolubilizing fluorine in soil so that the amount of fluorine eluted from the soil (fluorine elution amount) is less than or equal to the environmental standard. .

重金属あるいは有害化学物質による土壌の汚染が問題となっている。土壌の汚染を放置すれば、雨水および地下水を媒体として汚染が徐々に拡大し、被害が増大する。汚染物質の種類ならびに汚染の程度によって取り得る方法が異なるが、汚染土壌の処理方法の一つに、土壌中の汚染物質の不溶化処理がある。不溶化処理によって、水を媒体とする当該物質の周辺への拡散が抑えられる。   Contamination of soil with heavy metals or toxic chemicals is a problem. If the soil contamination is neglected, the contamination gradually spreads using rainwater and groundwater as a medium, and the damage increases. One of the treatment methods for contaminated soil is insolubilization treatment of contaminants in soil, although the method that can be taken varies depending on the type of contamination and the degree of contamination. By the insolubilization treatment, diffusion of the substance using water as a medium is suppressed.

汚染物質がフッ素の場合、「溶出量0.8mg/L以下」との環境基準が定められている。フッ素により汚染された土壌(フッ素汚染土壌)の処理方法では、処理後の土壌において、少なくともこの環境基準を満たす必要がある。   When the pollutant is fluorine, an environmental standard of “elution amount of 0.8 mg / L or less” is established. In the method for treating soil contaminated with fluorine (fluorine-contaminated soil), it is necessary to satisfy at least this environmental standard in the treated soil.

特許文献1には、フッ素汚染土壌に対して鉱酸を加えて酸性域(pH2〜4)にする第1工程と、次いでアルミニウム塩または鉄塩のうち少なくとも1種を添加して混合する第2工程と、次いでアルカリを加えて弱酸性域ないしアルカリ性域(pH3〜10、好ましくは中性域であるpH7〜8)に調節して、アルミニウムまたは鉄の水酸化物を生成させることによりフッ素を不溶化する第3工程と、を含む処理方法が開示されている(請求項3,4)。また、特許文献1には、処理対象物である土壌が、アルミニウム塩または鉄塩のうち少なくとも1種の添加により上記の酸性域となる場合、または当初から上記の酸性域にある場合、第1工程が省略され得ることが記載されている(段落0007、請求項1,2)。   Patent Document 1 includes a first step of adding a mineral acid to a fluorine-contaminated soil to make it acidic (pH 2 to 4), and then adding and mixing at least one of an aluminum salt or an iron salt. The process is then insolubilized by adding alkali to adjust to weakly acidic or alkaline range (pH 3-10, preferably neutral pH 7-8) to produce aluminum or iron hydroxide. And a third process is disclosed (claims 3 and 4). In Patent Document 1, when the soil to be treated becomes the above acidic range by adding at least one of aluminum salt or iron salt, or when it is in the above acidic range from the beginning, It is described that the process can be omitted (paragraph 0007, claims 1 and 2).

特許文献2には、フッ素汚染土壌に対してリン酸水素カルシウム二水和物を混合する処理方法が開示されている。   Patent Document 2 discloses a treatment method in which calcium hydrogen phosphate dihydrate is mixed with fluorine-contaminated soil.

特開2002-326081号公報JP 2002-326081 A 特開2007-216156号公報JP 2007-216156 A

特許文献1の方法は、処理後の土壌におけるフッ素溶出量を環境基準以下とするために、第1工程で土壌のpHを2〜4とする必要があり、土壌中の生態系へのインパクトが非常に大きい。特許文献2の方法は、処理後の土壌におけるフッ素溶出量を環境基準以下とするために、表面を活性化したリン酸水素カルシウムを多く、具体的には乾燥土壌100重量部に対して5〜20重量部ほど、添加する必要がある。リン資源は、全世界的に枯渇が懸念されており、それに伴い、価格が上昇傾向にあることが知られている。リン酸化合物の汚染土壌への添加量は、できるだけ少ないことが望まれる。   The method of Patent Document 1 requires that the pH of the soil be 2 to 4 in the first step in order to make the amount of fluorine elution in the treated soil less than or equal to the environmental standard, which has an impact on the ecosystem in the soil. Very big. In the method of Patent Document 2, the amount of calcium hydrogen phosphate whose surface is activated is increased in order to make the fluorine elution amount in the treated soil below the environmental standard, specifically, 5 to 100 parts by weight of dry soil. It is necessary to add about 20 parts by weight. Phosphorus resources are feared to be exhausted worldwide, and it is known that prices are on the rise. It is desirable that the amount of phosphate compound added to the contaminated soil be as small as possible.

本発明は、フッ素汚染土壌におけるフッ素の不溶化のためにリン酸カルシウム化合物の添加が必ずしも必要なく、リン酸カルシウム化合物を添加する場合においてもその添加量を従来より削減できるとともに、特許文献1の方法に比べて土壌中の生態系へのインパクトが抑制され、フッ素の溶出量が環境基準以下となる十分なフッ素不溶化作用を有する、フッ素汚染土壌の処理方法の提供を目的とする。   In the present invention, it is not always necessary to add a calcium phosphate compound for insolubilization of fluorine in fluorine-contaminated soil, and even when a calcium phosphate compound is added, the amount of addition can be reduced as compared with the method of Patent Document 1, and the soil The purpose is to provide a method for treating fluorine-contaminated soil that has a sufficient fluorine insolubilization effect that suppresses the impact on the ecosystem and suppresses the amount of fluorine eluted below the environmental standard.

本発明のフッ素汚染土壌の処理方法は、フッ素汚染土壌に酸性資材を添加して前記土壌のpHを5.5以上6.5以下とすることにより、前記土壌に含まれるフッ素を不溶化する方法である。   The method for treating fluorine-contaminated soil according to the present invention is a method for insolubilizing fluorine contained in the soil by adding an acidic material to the fluorine-contaminated soil and adjusting the pH of the soil to 5.5 or more and 6.5 or less. is there.

本発明の処理方法は、フッ素汚染土壌に対して、フッ素の溶出量が環境基準以下となる十分なフッ素不溶化作用を有する。本発明の処理方法では、フッ素汚染土壌におけるフッ素の不溶化のためにリン酸カルシウム化合物の添加が必ずしも必要なく、リン酸カルシウム化合物を添加する場合においてもその添加量が従来より削減される。本発明の処理方法は、土壌のpHをpH2〜4のような強い酸性域とすることなくフッ素を不溶化でき、特許文献1の方法に比べて、土壌中の生態系へのインパクト(ダメージ)が小さい。   The treatment method of the present invention has a sufficient fluorine insolubilizing action for the fluorine-contaminated soil so that the amount of eluted fluorine is below the environmental standard. In the treatment method of the present invention, it is not always necessary to add a calcium phosphate compound for insolubilization of fluorine in fluorine-contaminated soil, and even when a calcium phosphate compound is added, the amount added is reduced as compared with the conventional method. The treatment method of the present invention can insolubilize fluorine without setting the soil pH to a strong acidic range such as pH 2 to 4, and has an impact (damage) on the ecosystem in the soil as compared with the method of Patent Document 1. small.

本発明の処理方法の一例を示すフロー図である。It is a flowchart which shows an example of the processing method of this invention. 本発明の処理方法の別の一例を示すフロー図である。It is a flowchart which shows another example of the processing method of this invention. 実施例1で評価した、第1工程実施後の土壌のpHとフッ素溶出量との関係を示す図である。It is a figure which shows the relationship between the pH of the soil after implementation of a 1st process, and the amount of fluorine elution evaluated in Example 1. FIG. 実施例1および2で評価した、第1工程実施後の土壌のpHとフッ素溶出量との関係を示す図である。It is a figure which shows the relationship between the pH of the soil after implementation of a 1st process, and the amount of fluorine elution evaluated in Example 1 and 2. FIG. 実施例2で評価した、第1工程実施後の土壌のpHとフッ素溶出量との関係、ならびに実施例3で評価した、第2工程実施後の土壌のpHとフッ素溶出量との関係を示す図である。The relationship between the pH of the soil after execution of the first step and the amount of fluorine elution evaluated in Example 2 and the relationship between the pH of the soil after execution of the second step and the amount of fluorine elution evaluated in Example 3 are shown. FIG. 実施例4で評価した、ヒドロキシアパタイト添加量と第2工程実施後の土壌のフッ素溶出量との関係、ならびに比較例で評価した、ヒドロキシアパタイト添加量とヒドロキシアパタイト添加後の土壌のフッ素溶出量との関係を示す図である。The relationship between the amount of hydroxyapatite added and the amount of fluorine eluted from the soil after the second step evaluated in Example 4, and the amount of hydroxyapatite added and the amount of fluorine eluted from the soil after hydroxyapatite evaluated in Comparative Example It is a figure which shows the relationship. 実施例4で評価した、第2工程実施後の土壌にさらに酸添加溶出試験を行った際のヒドロキシアパタイト添加量と土壌のフッ素溶出量との関係、ならびに比較例で評価した、ヒドロキシアパタイト添加後の土壌にさらに酸添加溶出試験を行った際のヒドロキシアパタイト添加量と土壌のフッ素溶出量との関係を示す図である。The relationship between the amount of hydroxyapatite added and the amount of fluorine elution from the soil when the acid addition elution test was further performed on the soil after the second step, evaluated in Example 4, and after the addition of hydroxyapatite evaluated in the comparative example It is a figure which shows the relationship between the amount of hydroxyapatite addition at the time of performing an acid addition elution test to the soil of no, and the fluorine elution amount of soil. 実施例4で評価した、第2工程実施後の土壌にさらにアルカリ添加溶出試験を行った際のヒドロキシアパタイト添加量と土壌のフッ素溶出量との関係、ならびに比較例で評価した、ヒドロキシアパタイト添加後の土壌にさらにアルカリ添加溶出試験を行った際のヒドロキシアパタイト添加量と土壌のフッ素溶出量との関係を示す図である。Relationship between the amount of hydroxyapatite added and the amount of fluorine elution from the soil when the alkali addition dissolution test was further performed on the soil after the second step, evaluated in Example 4, and after the addition of hydroxyapatite evaluated in the comparative example It is a figure which shows the relationship between the amount of hydroxyapatite addition at the time of performing an alkali addition elution test to the soil of no, and the fluorine elution amount of soil.

図1に、本発明の処理方法の一例を示す。図1に示す処理方法では、フッ素汚染土壌に対して酸性資材を添加して、当該土壌のpHを5.5以上6.5以下に調整する(第1工程)。酸性資材の添加により、フッ素汚染土壌のpHを5.5以上6.5以下に調整すると、土壌中の粘土画分にフッ化物イオンが吸着してフッ素が不溶化される。この不溶化の効率は高く、処理前の土壌中に含まれているフッ化物イオンの量にもよるが、リン酸カルシウム化合物を必ずしも添加することなく、処理後の土壌におけるフッ素の溶出量が環境基準以下となる。酸性資材の添加によりpHを調整した後の土壌のpHが5.5未満および6.5を超える場合、このような効率よいフッ化物イオンの吸着が行われず、フッ素の不溶化が不十分となる。土壌中の粘土画分は、層状ケイ酸塩化合物;鉄、アルミニウム、マンガン、ケイ素などの酸化物または水酸化物;アロフェン;イモゴライト;腐植物質が代表的である。粘土画分の粒子径は、一般に、5μm以下、好ましくは2μm以下である。   FIG. 1 shows an example of the processing method of the present invention. In the treatment method shown in FIG. 1, an acidic material is added to fluorine-contaminated soil to adjust the pH of the soil to 5.5 or more and 6.5 or less (first step). When the pH of the fluorine-contaminated soil is adjusted to 5.5 or more and 6.5 or less by the addition of acidic materials, fluoride ions are adsorbed on the clay fraction in the soil and fluorine is insolubilized. The efficiency of this insolubilization is high, and depending on the amount of fluoride ions contained in the soil before treatment, the amount of fluorine elution in the treated soil is below the environmental standard without necessarily adding a calcium phosphate compound. Become. When the pH of the soil after adjusting the pH by addition of an acidic material is less than 5.5 and exceeds 6.5, such efficient adsorption of fluoride ions is not performed, and insolubilization of fluorine becomes insufficient. Typical clay fractions in the soil are layered silicate compounds; oxides or hydroxides of iron, aluminum, manganese, silicon, etc .; allophane; imogolite; humic substances. The particle size of the clay fraction is generally 5 μm or less, preferably 2 μm or less.

土壌のpHは、土壌を乾燥させた後、当該土壌の重量(乾燥重量)に対して10倍の重量の水を当該土壌に加え、6時間振とうさせて得た懸濁液のpHにより表される。   The pH of the soil is expressed by the pH of the suspension obtained by drying the soil and then adding water 10 times the weight of the soil (dry weight) to the soil and shaking for 6 hours. Is done.

本明細書における環境基準は、平成15年に施行された土壌汚染対策法における重金属等(第二種特定有害物質)の土壌溶出量の指定基準に基づく。フッ素に関しては、その土壌からの溶出量を0.8mg/Lとすることが基準として定められている。フッ素汚染土壌とは、フッ素の溶出量が当該基準を超過する土壌である。   The environmental standards in this specification are based on the designated standards for the amount of soil elution of heavy metals and the like (second-type specified hazardous substances) in the Soil Contamination Countermeasures Law enacted in 2003. With respect to fluorine, the standard is that the amount of elution from the soil is 0.8 mg / L. Fluorine-contaminated soil is soil whose fluorine elution amount exceeds the standard.

酸性資材は、フッ素汚染土壌のpHを5.5以上6.5以下に調整できる限り限定されない。酸性資材は、例えば、塩酸、硫酸などの鉱酸、ならびに水との接触により、より具体的には水への溶解により、酸性を示す物質である。   The acidic material is not limited as long as the pH of the fluorine-contaminated soil can be adjusted to 5.5 or more and 6.5 or less. An acidic material is a substance that exhibits acidity, for example, by contact with mineral acids such as hydrochloric acid and sulfuric acid, and water, and more specifically by dissolution in water.

酸性資材は、硫酸アルミニウムおよび塩化アルミニウムから選ばれる少なくとも1種が好ましい。硫酸アルミニウムおよび塩化アルミニウムは、水への溶解により酸性を示す物質であり、土壌のpHを5.5以上6.5以下とするpH調整剤としての機能を有する。これに加えて、両者には、フッ化物イオンを不溶化させる不溶化剤としての機能が期待できる。具体的には、当該pH域において、アルミニウムは水酸化アルミニウムとして析出した状態で土壌中に存在する。水酸化アルミニウムは多数の表面水酸基を有し、当該pH域においては、正に帯電した表面サイトが卓越する。この表面水酸基にフッ化物イオンが吸着することで、フッ化物イオンが不溶化される。すなわち、酸性資材として硫酸アルミニウムおよび塩化アルミニウムから選ばれる少なくとも1種を用いることによって、本発明の処理方法におけるフッ素不溶化作用が向上する。   The acidic material is preferably at least one selected from aluminum sulfate and aluminum chloride. Aluminum sulfate and aluminum chloride are substances that show acidity when dissolved in water, and have a function as a pH adjuster that adjusts the pH of the soil to 5.5 or more and 6.5 or less. In addition to this, both can be expected to function as an insolubilizing agent for insolubilizing fluoride ions. Specifically, in the said pH range, aluminum exists in soil in the state which precipitated as aluminum hydroxide. Aluminum hydroxide has a large number of surface hydroxyl groups, and positively charged surface sites are dominant in the pH range. Fluoride ions are insolubilized by adsorbing fluoride ions to the surface hydroxyl groups. That is, by using at least one selected from aluminum sulfate and aluminum chloride as the acidic material, the fluorine insolubilizing action in the treatment method of the present invention is improved.

フッ素汚染土壌に対する酸性資材の添加量は、酸性資材の添加による土壌のpHの変化が止まった後、すなわち、土壌が安定した後のpHが5.5以上6.5以下となるように選択すればよい。   The amount of the acidic material added to the fluorine-contaminated soil should be selected so that the change in the pH of the soil due to the addition of the acidic material stops, that is, the pH after the soil is stabilized is 5.5 or more and 6.5 or less. That's fine.

第1工程では、フッ素汚染土壌に対し、2種以上の酸性資材を添加してもよい。この場合、少なくとも1種の酸性資材が、硫酸アルミニウムおよび塩化アルミニウムから選ばれる少なくとも1種であることが好ましい。   In the first step, two or more acidic materials may be added to the fluorine-contaminated soil. In this case, it is preferable that at least one acidic material is at least one selected from aluminum sulfate and aluminum chloride.

第1工程の具体的な実施方法は限定されない。フッ素不溶化剤を土壌に添加する公知の方法を応用できる。土壌中への酸性資材の均一な添加のためには、溶液状の酸性資材、例えば水溶液、を土壌に添加することが好ましい。酸性資材が不溶性または難溶性である場合は、粉末またはスラリーとして酸性資材を土壌に添加してもよい。フッ素汚染土壌が存在する現地において第1工程を実施し、そのまま当該土壌を現地で養生してもよい。養生の条件、例えば養生時間、温度など、は、適宜調整できる。あるいは、フッ素汚染土壌を現地で採取し、採取した土壌に対して別途第1工程を実施した後、フッ素が不溶化された土壌を現地に埋め戻してもよい。本発明の処理方法は、フッ素汚染土壌を封じ込める方法にも適用可能であり、当該方法をとる場合、第1工程は、封じ込め前の前処理として実施してもよい。養生、埋め戻しならびに封じ込めは、公知の方法を応用して実施できる。   The specific implementation method of a 1st process is not limited. A known method of adding a fluorine insolubilizer to soil can be applied. In order to uniformly add the acidic material into the soil, it is preferable to add a solution-like acidic material, for example, an aqueous solution, to the soil. When the acidic material is insoluble or hardly soluble, the acidic material may be added to the soil as a powder or a slurry. The first step may be performed at a site where fluorine-contaminated soil exists, and the soil may be cured as it is. Curing conditions such as curing time and temperature can be adjusted as appropriate. Alternatively, fluorine-contaminated soil may be collected locally, and after the first step is separately performed on the collected soil, the soil in which the fluorine is insolubilized may be backfilled locally. The treatment method of the present invention can also be applied to a method for containing fluorine-contaminated soil. When the method is used, the first step may be performed as a pretreatment before containment. Curing, backfilling and containment can be carried out by applying known methods.

図2に、本発明の処理方法の別の一例を示す。図2に示す処理方法では、上述した第1工程を実施した後に、当該土壌にリン酸カルシウム化合物を添加する(第2工程)。この方法は、例えば、処理対象であるフッ素汚染土壌に含まれるフッ素の量が非常に多く、第1工程のみではフッ素の不溶化が不十分となる場合、あるいは環境基準に比べてさらなるフッ素溶出量の低減が必要な場合に実施すればよい。本発明の処理方法では、第2工程は、あくまでも必要に応じて実施される工程である。   FIG. 2 shows another example of the processing method of the present invention. In the treatment method shown in FIG. 2, after the first step described above is performed, a calcium phosphate compound is added to the soil (second step). In this method, for example, the amount of fluorine contained in the fluorine-contaminated soil to be treated is very large, and insolubilization of fluorine is insufficient only by the first step, or the amount of further fluorine elution is higher than the environmental standard. What is necessary is just to implement when reduction is required. In the processing method of the present invention, the second step is a step that is performed as necessary.

リン酸カルシウム化合物の添加は、第1工程の後に、すなわち、酸性資材の添加により、土壌のpHを5.5以上6.5以下とした後に行う。このとき、リン酸カルシウム化合物を添加した後の土壌のpHを5.5以上6.5以下に保つことが好ましい。   The calcium phosphate compound is added after the first step, that is, after the pH of the soil is adjusted to 5.5 or more and 6.5 or less by adding an acidic material. At this time, it is preferable to maintain the pH of the soil after adding the calcium phosphate compound at 5.5 or more and 6.5 or less.

第2工程において土壌にリン酸カルシウム化合物を添加すると、土壌中の未だ不溶化がなされていないフッ素(フッ化物イオン)が当該化合物と結合し、不溶化される。すなわち、第2工程の実施により、本発明の処理方法におけるフッ素不溶化作用がさらに向上する。   When a calcium phosphate compound is added to the soil in the second step, fluorine (fluoride ions) that have not yet been insolubilized in the soil are combined with the compound and insolubilized. That is, by performing the second step, the fluorine insolubilization effect in the treatment method of the present invention is further improved.

これに加えて、第2工程を実施した場合、酸性側およびアルカリ性側を問わず土壌のpHが後に変化したときにも、フッ素不溶化の効果がより確実に維持される。不溶化処理後の土壌のpHが変化することが予想される場合、特に、土壌のpHがアルカリ側に変動することが予想される場合に、第2工程を含む本発明の処理方法は特に効果的である。土壌のpHがアルカリ側に変動することが予想される場合として、例えば、コンクリート製の構築物が土壌中に存在する場合、溶液状の酸化資材または溶液状のリン酸カルシウム化合物の添加による地盤強度の低下を防ぐために、あるいは処理済み土壌の埋め戻しによる地盤強度の低下を防ぐために、セメントのようなアルカリ性の固化剤を併用する場合、が考えられる。   In addition to this, when the second step is performed, the effect of fluorine insolubilization is more reliably maintained even when the pH of the soil is changed later regardless of the acidic side or the alkaline side. The treatment method of the present invention including the second step is particularly effective when the pH of the soil after insolubilization is expected to change, particularly when the pH of the soil is expected to fluctuate to the alkali side. It is. As a case where the pH of the soil is expected to fluctuate to the alkali side, for example, when a concrete structure is present in the soil, the ground strength is reduced by the addition of a solution-like oxidizing material or a solution-like calcium phosphate compound. In order to prevent or to prevent a decrease in ground strength due to backfilling of the treated soil, it is conceivable that an alkaline solidifying agent such as cement is used in combination.

リン酸カルシウム化合物は特に限定されない。例えば、ヒドロキシアパタイト(Ca5(PO43OH)、または、リン酸二水素カルシウム(Ca(H2PO42)、リン酸水素カルシウム(CaHPO4)、リン酸三カルシウム(Ca3(PO42)の無水物または水和物であり、フッ化物イオンと結合する能力が高いことからヒドロキシアパタイトが好ましい。ヒドロキシアパタイトは、フッ化物イオンとの結合により、フルオロアパタイト(Ca5(PO43F)に変化する。この変化は、土壌のpHが5.5以上の領域において特に進行しやすい。 The calcium phosphate compound is not particularly limited. For example, hydroxyapatite (Ca 5 (PO 4 ) 3 OH), or calcium dihydrogen phosphate (Ca (H 2 PO 4 ) 2 ), calcium hydrogen phosphate (CaHPO 4 ), tricalcium phosphate (Ca 3 ( Hydroxyapatite is preferred because it is an anhydride or hydrate of PO 4 ) 2 ) and has a high ability to bind fluoride ions. Hydroxyapatite is changed to fluoroapatite (Ca 5 (PO 4 ) 3 F) by binding with fluoride ions. This change is particularly likely to proceed in the region where the pH of the soil is 5.5 or higher.

第1工程後の土壌に対するリン酸カルシウム化合物の添加量は、特に限定されない。第1工程における酸性資材の添加量、フッ素汚染土壌中に含まれているフッ素の量、ならびに処理後の土壌に要求されるフッ素溶出量に応じて、適宜設定すればよい。本発明の処理方法におけるフッ素不溶化作用が強いことから、当該添加量は、例えば、乾燥土壌100重量部に対して5重量部未満、3重量部以下、さらには2重量部以下である。   The amount of calcium phosphate compound added to the soil after the first step is not particularly limited. What is necessary is just to set suitably according to the addition amount of the acidic material in a 1st process, the quantity of the fluorine contained in the fluorine-contaminated soil, and the fluorine elution amount requested | required of the soil after a process. Since the fluorine insolubilizing action in the treatment method of the present invention is strong, the amount added is, for example, less than 5 parts by weight, 3 parts by weight or less, and further 2 parts by weight or less with respect to 100 parts by weight of dry soil.

第2工程の具体的な実施方法は限定されない。フッ素不溶化剤を土壌に添加する公知の方法を応用できる。土壌中へのリン酸カルシウム化合物の均一な添加のためには、溶液状のリン酸カルシウム化合物、例えば水溶液、を土壌に添加することが好ましい。リン酸カルシウム化合物が不溶性または難溶性である場合は、当該化合物の粉末またはスラリーを土壌に添加してもよい。フッ素汚染土壌が存在する現地において第1および第2工程を実施し、そのまま当該土壌を現地で養生してもよい。第2工程後の養生の条件、例えば養生時間、温度など、は、適宜調整できる。あるいは、フッ素汚染土壌を現地で採取し、採取した土壌に対して別途第1および第2工程を実施した後、フッ素が不溶化された土壌を現地に埋め戻してもよい。フッ素汚染土壌を封じ込める方法をとる場合、第1および第2工程は、封じ込め前の前処理として実施してもよい。養生、埋め戻しならびに封じ込めは、公知の方法を応用して実施できる。   The specific implementation method of a 2nd process is not limited. A known method of adding a fluorine insolubilizer to soil can be applied. In order to uniformly add the calcium phosphate compound to the soil, it is preferable to add a solution-like calcium phosphate compound such as an aqueous solution to the soil. If the calcium phosphate compound is insoluble or sparingly soluble, a powder or slurry of the compound may be added to the soil. The first and second steps may be performed at a site where fluorine-contaminated soil exists and the soil may be cured as it is. Curing conditions after the second step, such as curing time and temperature, can be adjusted as appropriate. Alternatively, fluorine-contaminated soil may be collected locally, and after the first and second steps are separately performed on the collected soil, the soil in which fluorine is insolubilized may be backfilled locally. When taking the method of containing fluorine-contaminated soil, you may implement a 1st and 2nd process as pre-processing before containment. Curing, backfilling and containment can be carried out by applying known methods.

本発明の処理方法は、本発明の効果が得られる限り、第1および第2工程以外の任意の工程を含んでいてもよい。   The treatment method of the present invention may include any step other than the first and second steps as long as the effect of the present invention is obtained.

以下、実施例により、本発明をさらに詳細に説明する。本発明は、以下の実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.

最初に、土壌の評価方法を記載する。   First, the soil evaluation method is described.

[土壌のpH]
評価対象である土壌を十分に乾燥した後(例えば、土壌をバットに広げ、一週間風乾する)、ポリプロピレン製のふるい(目の開きが2mm)にかけて粒径2mm以下の画分を採取し、評価試料とした。次に、当該試料の乾燥重量に対して10倍の重量の水を当該試料に加えた。次に、試料と水との混合物を振とう機(EYELA東京理化器械製、NTS-1300)を用いて室温で6時間振とうさせ、懸濁液を得た。得られた懸濁液のpHをpHメータ(HORIBA製、F-52)により測定して、その値を土壌のpHとした。
[Soil pH]
After sufficiently drying the soil to be evaluated (for example, spreading the soil in a vat and air-drying for one week), a fraction having a particle size of 2 mm or less is collected by evaluation on a polypropylene sieve (opening of 2 mm) and evaluated. A sample was used. Next, 10 times the weight of water relative to the dry weight of the sample was added to the sample. Next, the mixture of the sample and water was shaken at room temperature for 6 hours using a shaker (manufactured by EYELA Tokyo Rika Kikai Co., Ltd., NTS-1300) to obtain a suspension. The pH of the resulting suspension was measured with a pH meter (HORIBA, F-52), and the value was taken as the pH of the soil.

[土壌のフッ素溶出量]
土壌のフッ素溶出量は、環境庁告示第46号(平成3年8月23日付)に示された方法により評価した(通常溶出試験)。フッ素不溶化処理後における土壌のpH変化を想定した、フッ素溶出量に関する酸添加溶出試験およびアルカリ添加溶出試験は、社団法人土壌環境センター提案の方法に従って実施した。これらの評価には、土壌のpHを測定するための評価試料と同様に準備した試料を用いた。
[Soil fluorine elution amount]
The amount of fluorine elution from the soil was evaluated by the method shown in Environmental Agency Notification No. 46 (August 23, 1991) (normal elution test). The acid addition elution test and the alkali addition elution test on the fluorine elution amount, assuming the pH change of the soil after the fluorine insolubilization treatment, were performed according to the method proposed by the Soil Environment Center. For these evaluations, samples prepared in the same manner as the evaluation samples for measuring the pH of the soil were used.

(実施例1)
フッ素化合物を使用する事業所の敷地から採取したフッ素汚染土壌を上記の方法で風乾させた後、粒径2mm以下の画分を採取し、評価試料とした。試料のフッ素溶出量は3.64mg/L、pHは8.63であった。なお、当該試料は、粘土画分として層状ケイ酸塩化合物、水酸化物、鉄酸化物、腐植物質を含んでいた。
Example 1
After the fluorine-contaminated soil collected from the site of the establishment using the fluorine compound was air-dried by the above method, a fraction having a particle size of 2 mm or less was collected and used as an evaluation sample. The fluorine elution amount of the sample was 3.64 mg / L, and the pH was 8.63. The sample contained a layered silicate compound, hydroxide, iron oxide, and humic substance as a clay fraction.

次に、上記のように準備した試料に、酸性資材として濃度0.1Mの塩酸水溶液を、その添加量を変えながら添加し、全体を10分間振とう攪拌して第1工程を実施した。このとき、試料と水との混合比(重量比)が1:10となるように、塩酸水溶液とは別に水を添加した。混合比中の水には、塩酸水溶液中の水分が含まれる。   Next, an aqueous hydrochloric acid solution having a concentration of 0.1 M as an acidic material was added to the sample prepared as described above while changing the addition amount, and the whole was shaken and stirred for 10 minutes to carry out the first step. At this time, water was added separately from the hydrochloric acid aqueous solution so that the mixing ratio (weight ratio) of the sample and water was 1:10. The water in the mixing ratio includes water in the aqueous hydrochloric acid solution.

以下の表1および図3に、第1工程実施後の試料の(土壌の)pHおよびフッ素溶出量を示す。   The following Table 1 and FIG. 3 show the pH (of soil) and fluorine elution amount of the sample after the first step.

Figure 2012081380
Figure 2012081380

表1および図3に示すように、酸性資材である塩酸水溶液の添加により土壌のpHを酸性側に変化させ、当該pHを5.5以上6.5以下とした場合に、土壌のフッ素溶出量が大きく低減し、環境基準である0.8mg/L以下となった。一方、土壌のpHが5.5未満および6.5を超える場合は、フッ素溶出量が高く、環境基準を満たさなかった。   As shown in Table 1 and FIG. 3, when the pH of the soil is changed to the acidic side by addition of an aqueous hydrochloric acid solution which is an acidic material, and the pH is set to 5.5 or more and 6.5 or less, the fluorine elution amount of the soil Greatly reduced to 0.8 mg / L or less, which is the environmental standard. On the other hand, when the pH of the soil was less than 5.5 and more than 6.5, the fluorine elution amount was high and the environmental standard was not satisfied.

(実施例2)
実施例1で準備した試料に、酸性資材として硫酸アルミニウムの水溶液(濃度はAl23換算で8重量%)を、その添加量を変えながら添加し、全体を10分間振とう攪拌して第1工程を実施した。このとき、試料と水との混合比(重量比)が1:10となるように、硫酸アルミニウム水溶液とは別に水を添加した。混合比中の水には、硫酸アルミニウム水溶液中の水分が含まれる。
(Example 2)
To the sample prepared in Example 1, an aqueous solution of aluminum sulfate (concentration is 8% by weight in terms of Al 2 O 3 ) was added as an acidic material while changing the addition amount, and the whole was shaken and stirred for 10 minutes. One step was performed. At this time, water was added separately from the aluminum sulfate aqueous solution so that the mixing ratio (weight ratio) of the sample and water was 1:10. Water in the mixing ratio includes moisture in the aqueous aluminum sulfate solution.

以下の表2および図4に、第1工程実施後の試料の(土壌の)pHおよびフッ素溶出量を示す。なお、図4には、実施例1の結果を併せて示す。   The following Table 2 and FIG. 4 show the pH (of soil) and the fluorine elution amount of the sample after the first step. In addition, in FIG. 4, the result of Example 1 is shown collectively.

Figure 2012081380
Figure 2012081380

表2および図4に示すように、酸性資材である硫酸アルミニウムの添加により土壌のpHを酸性側に変化させ、当該pHを5.5以上6.5以下とした場合に、土壌のフッ素溶出量が大きく低減した。フッ素溶出量を低減させる効果は、酸性資材として塩酸水溶液を用いた場合よりも高かった。   As shown in Table 2 and FIG. 4, when the pH of the soil is changed to the acidic side by addition of aluminum sulfate, which is an acidic material, and the pH is set to 5.5 or more and 6.5 or less, the fluorine elution amount of the soil Was greatly reduced. The effect of reducing the fluorine elution amount was higher than that in the case of using a hydrochloric acid aqueous solution as an acidic material.

(実施例3)
実施例2と同様にして、硫酸アルミニウムの添加により試料のpHを5.4〜6.7とした(第1工程)後に、リン酸カルシウム化合物としてヒドロキシアパタイトの粉末を試料100gに対して2.5g添加し、全体が均一となるように10分間振とう攪拌して第2工程を実施した。
(Example 3)
In the same manner as in Example 2, after adding aluminum sulfate to adjust the pH of the sample to 5.4 to 6.7 (first step), 2.5 g of hydroxyapatite powder as a calcium phosphate compound was added to 100 g of the sample. Then, the second step was carried out by shaking and stirring for 10 minutes so that the whole was uniform.

以下の表3および図5に、第1工程実施後、すなわち、ヒドロキシアパタイト添加時の試料の(土壌の)pHおよび第2工程実施後の試料の(土壌の)フッ素溶出量を示す。なお、図5には、実施例2の結果を併せて示す。   Table 3 and FIG. 5 below show the (soil) pH of the sample after the first step, that is, the hydroxyapatite addition, and the fluorine elution amount of the sample (soil) after the second step. In addition, in FIG. 5, the result of Example 2 is shown collectively.

Figure 2012081380
Figure 2012081380

表3および図5に示すように、第2工程実施により、土壌のフッ素溶出量が非常に小さくなった。   As shown in Table 3 and FIG. 5, the amount of fluorine elution from the soil became very small by performing the second step.

(実施例4および比較例)
実施例2と同様に、硫酸アルミニウムの添加により試料のpHを6.1とした(第1工程)後に、リン酸カルシウム化合物としてヒドロキシアパタイトの粉末を添加量を変えながら添加し、全体が均一となるように10分間振とう攪拌して第2工程を実施した。
Example 4 and Comparative Example
As in Example 2, after adding aluminum sulfate to adjust the pH of the sample to 6.1 (first step), hydroxyapatite powder was added as the calcium phosphate compound while changing the addition amount so that the whole became uniform. The second step was carried out with shaking for 10 minutes.

以下の表4および図6に、ヒドロキシアパタイトの添加量ならびに第2工程実施後の試料の(土壌の)pHおよびフッ素溶出量を示す。表4および図7に、第2工程を実施した後の試料に対して、さらに酸添加溶出試験を行った際の試料の(土壌の)pHおよびフッ素溶出量を示す。表4および図8に、第2工程を実施した後の試料に対して、さらにアルカリ添加溶出試験を行った際の試料の(土壌の)pHおよびフッ素溶出量を示す。   Table 4 and FIG. 6 below show the amount of hydroxyapatite added, the pH (of soil) and the amount of fluorine eluted of the sample after the second step. Table 4 and FIG. 7 show the (soil) pH and fluorine elution amount of the sample when the acid addition elution test was further performed on the sample after the second step. Table 4 and FIG. 8 show the (soil) pH and fluorine elution amount of the sample when the alkali addition elution test was further performed on the sample after the second step.

Figure 2012081380
Figure 2012081380

これとは別に、実施例1で準備した試料に、第1工程を実施することなく、リン酸カルシウム化合物としてヒドロキシアパタイトの粉末を添加量を変えながら添加し、全体が均一となるように10分間振とう攪拌した。   Separately, hydroxyapatite powder as a calcium phosphate compound was added to the sample prepared in Example 1 without changing the amount of addition, and shaken for 10 minutes so that the whole was uniform. Stir.

以下の表5および図6に、ヒドロキシアパタイトの添加量ならびにヒドロキシアパタイト添加後の試料の(土壌の)pHおよびフッ素溶出量を示す。表5および図7に、ヒドロキシアパタイトを添加した試料に対して、さらに酸添加溶出試験を行った際の試料の(土壌の)pHおよびフッ素溶出量を示す。表5および図8に、ヒドロキシアパタイトを添加した試料に対して、さらにアルカリ添加溶出試験を行った際の試料の(土壌の)pHおよびフッ素溶出量を示す。   Table 5 and FIG. 6 below show the amount of hydroxyapatite added, the pH (of soil) and the amount of fluorine elution of the sample after the addition of hydroxyapatite. Table 5 and FIG. 7 show the (soil) pH and fluorine elution amount of the sample when the acid addition elution test was further performed on the sample to which hydroxyapatite was added. Table 5 and FIG. 8 show the (soil) pH and fluorine elution amount of the sample when the alkali addition elution test was further performed on the sample to which hydroxyapatite was added.

Figure 2012081380
Figure 2012081380

表4,5および図6〜8に示すように、第1工程を行うことなく、リン酸カルシウム化合物であるヒドロキシアパタイトの添加のみを行った比較例に対して、第1工程後にヒドロキシアパタイトを添加した実施例4では、ヒドロキシアパタイトの添加量が少ない場合にもフッ素溶出量が非常に小さく、高いフッ素不溶化作用が得られた。また、比較例に比べて実施例4では、酸添加溶出試験およびアルカリ添加溶出試験においても、フッ素溶出量が大きく抑えられた。   As shown in Tables 4 and 5 and FIGS. 6 to 8, compared with the comparative example in which only the addition of hydroxyapatite, which is a calcium phosphate compound, was performed without performing the first step, the hydroxyapatite was added after the first step. In Example 4, even when the amount of hydroxyapatite added was small, the fluorine elution amount was very small, and a high fluorine insolubilizing action was obtained. Moreover, in Example 4, compared with the comparative example, the fluorine elution amount was largely suppressed in the acid addition elution test and the alkali addition elution test.

実施例4について、酸添加溶出試験では、ヒドロキシアパタイトの添加量がゼロの場合、すなわち、第1工程のみが実施された場合にも、処理後の土壌におけるフッ素溶出量は非常に小さかった。一方、アルカリ添加溶出試験では、ヒドロキシアパタイトの添加量がゼロの場合に処理後の土壌におけるフッ素溶出量が増加したが、ヒドロキシアパタイトを乾燥土壌100gに対して2.4g以上添加することで、処理後の土壌におけるフッ素溶出量が非常に小さくなった。   About Example 4, in the acid addition elution test, even when the amount of hydroxyapatite added was zero, that is, when only the first step was performed, the amount of fluorine elution in the treated soil was very small. On the other hand, in the alkali addition elution test, when the amount of hydroxyapatite added was zero, the amount of fluorine elution in the treated soil increased, but by adding 2.4 g or more of hydroxyapatite to 100 g of dry soil, The amount of fluorine elution in the later soil became very small.

本発明の処理方法は、フッ素汚染土壌に対する効率的なフッ素不溶化処理を実現する。これにより、フッ素による土壌汚染の拡大を抑制でき、環境保護に寄与する。   The treatment method of the present invention realizes efficient fluorine insolubilization treatment for fluorine-contaminated soil. Thereby, the expansion of soil contamination by fluorine can be suppressed, which contributes to environmental protection.

Claims (4)

フッ素汚染土壌に酸性資材を添加して前記土壌のpHを5.5以上6.5以下とすることにより、前記土壌に含まれるフッ素を不溶化する、フッ素汚染土壌の処理方法。   A method for treating fluorine-contaminated soil, wherein insoluble fluorine is contained in the soil by adding an acidic material to the fluorine-contaminated soil to adjust the pH of the soil to 5.5 or more and 6.5 or less. 前記酸性資材が、硫酸アルミニウムおよび塩化アルミニウムから選ばれる少なくとも1種である請求項1に記載のフッ素汚染土壌の処理方法。   The method for treating fluorine-contaminated soil according to claim 1, wherein the acidic material is at least one selected from aluminum sulfate and aluminum chloride. 前記酸性資材の添加により、前記土壌のpHを5.5以上6.5以下とした後に、
前記土壌にリン酸カルシウム化合物をさらに添加する、請求項1に記載のフッ素汚染土壌の処理方法。
After the pH of the soil is set to 5.5 or more and 6.5 or less by the addition of the acidic material,
The method for treating fluorine-contaminated soil according to claim 1, wherein a calcium phosphate compound is further added to the soil.
前記リン酸カルシウム化合物が、ヒドロキシアパタイトである請求項3に記載のフッ素汚染土壌の処理方法。
The method for treating fluorine-contaminated soil according to claim 3, wherein the calcium phosphate compound is hydroxyapatite.
JP2010227311A 2010-10-07 2010-10-07 Treatment method for fluorine-contaminated soil Active JP5789789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010227311A JP5789789B2 (en) 2010-10-07 2010-10-07 Treatment method for fluorine-contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010227311A JP5789789B2 (en) 2010-10-07 2010-10-07 Treatment method for fluorine-contaminated soil

Publications (2)

Publication Number Publication Date
JP2012081380A true JP2012081380A (en) 2012-04-26
JP5789789B2 JP5789789B2 (en) 2015-10-07

Family

ID=46240832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010227311A Active JP5789789B2 (en) 2010-10-07 2010-10-07 Treatment method for fluorine-contaminated soil

Country Status (1)

Country Link
JP (1) JP5789789B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160155A (en) * 2014-02-26 2015-09-07 石坂産業株式会社 Recycling processing method of carefully selected soil extracted from sediment-based mixed waste
CN105689374A (en) * 2016-01-28 2016-06-22 中南大学 Application of phosphorus base charcoal material to remediation of lead contaminated soil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236521A (en) * 2002-02-20 2003-08-26 Tsukishima Kikai Co Ltd Treating material and treating method of soil contaminated with fluorine
JP2004305935A (en) * 2003-04-08 2004-11-04 Kurita Water Ind Ltd Treating agent and treating method for soil contaminated with fluorine
JP2005305387A (en) * 2004-04-26 2005-11-04 Japan Organo Co Ltd Method for treating fluorine polluted soil
JP2008086911A (en) * 2006-10-02 2008-04-17 Kurita Water Ind Ltd Civil engineering material and its manufacturing method
JP2009189927A (en) * 2008-02-13 2009-08-27 Nippon Steel Corp Insolubilizing agent of fluorine in steelmaking slag and insolubilizing method thereof
JP2010142714A (en) * 2008-12-17 2010-07-01 Ohbayashi Corp In-situ purification method of ground contaminated with heavy metal
JP2010222430A (en) * 2009-03-23 2010-10-07 Daio Paper Corp Soil-improving material and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236521A (en) * 2002-02-20 2003-08-26 Tsukishima Kikai Co Ltd Treating material and treating method of soil contaminated with fluorine
JP2004305935A (en) * 2003-04-08 2004-11-04 Kurita Water Ind Ltd Treating agent and treating method for soil contaminated with fluorine
JP2005305387A (en) * 2004-04-26 2005-11-04 Japan Organo Co Ltd Method for treating fluorine polluted soil
JP2008086911A (en) * 2006-10-02 2008-04-17 Kurita Water Ind Ltd Civil engineering material and its manufacturing method
JP2009189927A (en) * 2008-02-13 2009-08-27 Nippon Steel Corp Insolubilizing agent of fluorine in steelmaking slag and insolubilizing method thereof
JP2010142714A (en) * 2008-12-17 2010-07-01 Ohbayashi Corp In-situ purification method of ground contaminated with heavy metal
JP2010222430A (en) * 2009-03-23 2010-10-07 Daio Paper Corp Soil-improving material and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160155A (en) * 2014-02-26 2015-09-07 石坂産業株式会社 Recycling processing method of carefully selected soil extracted from sediment-based mixed waste
CN105689374A (en) * 2016-01-28 2016-06-22 中南大学 Application of phosphorus base charcoal material to remediation of lead contaminated soil

Also Published As

Publication number Publication date
JP5789789B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
CN105682813B (en) Insolubilization material for specific harmful substance and insolubilization method using the same
JP4109017B2 (en) Solidification and insolubilization methods for contaminated soil
JP4434156B2 (en) Treatment method of fluorine-contaminated soil
JP5647371B1 (en) Detoxification method for contaminated soil
JP4233923B2 (en) Treatment agent for heavy metal contaminated soil and soil treatment method using the same
Zohar et al. Innovative approach for recycling phosphorous from agro-wastewaters using water treatment residuals (WTR)
JP6284978B2 (en) Bulk density adjusting material and bulk density adjusting method
JP2005238207A (en) Engineering method for cleaning contaminated soil
JP2005146275A (en) Agent for improving, solidifying, and stabilizing soil and its quality
JP5789789B2 (en) Treatment method for fluorine-contaminated soil
JP2014227457A (en) Insolubilizing agent of heavy metal or the like and insolubilizing method
JP2006273921A (en) Soil improving material, soil improving method, sludge ash for preventing dissolution of heavy metal in soil, and sludge ash for shortening curing period for developing strength
JP4687969B2 (en) Methods for insolubilizing hazardous substances
WO2013147034A1 (en) Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improvement method
JP2011162712A (en) Treatment material of arsenic-contaminated soil, and treatment method
JP2003290759A (en) Heavy metal fixing agent and method for fixing heavy metal
JP2006224025A (en) Method for immobilizing fluorine and/or boron
JP5437589B2 (en) Heavy metal insolubilizing agent and soil purification method using the same.
JP5792974B2 (en) Soil-modifying composition and soil-modifying method
JP2010260030A (en) Adsorbent for adsorbing contaminating component and method for producing the adsorbent
JP6567288B2 (en) Recycling method of selected soil extracted from earth and sand mixed waste
JP2007216069A (en) Treating method of contaminated soil
JP2005144341A (en) Insolubilizing processing method of arsenic and lead in soil
TWI666303B (en) Insolubilizing material and insolubilizing method
JPH1161128A (en) Modifier of sludge and mud, and treatment process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141009

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R151 Written notification of patent or utility model registration

Ref document number: 5789789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151