JP2012080218A - Amplifying circuit - Google Patents

Amplifying circuit Download PDF

Info

Publication number
JP2012080218A
JP2012080218A JP2010221595A JP2010221595A JP2012080218A JP 2012080218 A JP2012080218 A JP 2012080218A JP 2010221595 A JP2010221595 A JP 2010221595A JP 2010221595 A JP2010221595 A JP 2010221595A JP 2012080218 A JP2012080218 A JP 2012080218A
Authority
JP
Japan
Prior art keywords
circuit
voltage
current
distribution
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010221595A
Other languages
Japanese (ja)
Other versions
JP5459169B2 (en
Inventor
Shigeaki Kawai
重明 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010221595A priority Critical patent/JP5459169B2/en
Publication of JP2012080218A publication Critical patent/JP2012080218A/en
Application granted granted Critical
Publication of JP5459169B2 publication Critical patent/JP5459169B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an amplifying circuit by which changes in a gain and a passing phase between a high-output period and a low-output period are small or suppressed.SOLUTION: An amplifying circuit has a power division circuit, a power synthesis circuit, and a control circuit. In the power division circuit, a voltage division circuit dividing a voltage of an input signal into a plurality of voltages and a current division circuit dividing a current of the input signal into a plurality of currents are connected in a cascade manner. The input signal before division is input to a pre-stage voltage or the current division circuit, and a divided input signal is output from a post-stage current or the voltage division circuit. In the power synthesis circuit, a voltage synthesis circuit and a current synthesis circuit are connected in a cascade manner so that any one of them is arranged as a pre-stage. A divided output signal is input to a pre-stage current or the voltage synthesis circuit, and an output signal after synthesis is output from a post-stage voltage or the current synthesis circuit. Further, while keeping a ratio M/N of the number of voltage division M and the number of current division N and a ratio K/L of the number of voltage synthesis K and the number of current synthesis L constant, the control circuit changes the numbers of division M and N and the numbers of synthesis K and L, and controls an amplifier to which a signal is distributed to be in an operational state and controls an amplifier to which no signal is distributed to be in a non-operational state.

Description

本発明は,増幅回路に関する。   The present invention relates to an amplifier circuit.

増幅回路は,入力信号を増幅し増幅された出力信号を出力する。電力増幅を行う増幅回路は,例えば,通信装置の送信回路の最終段に設けられる電力増幅器として知られている。通信装置のうち,例えば携帯電話などの移動通信装置は,待ち受け状態などの出力電力が低い低出力状態の時間が長いので,低出力状態での電力効率が実用上重要になる。すなわち,低出力状態での電流消費をできるだけ抑制することが求められる。   The amplifier circuit amplifies the input signal and outputs an amplified output signal. An amplifier circuit that performs power amplification is known as a power amplifier provided at the final stage of a transmission circuit of a communication device, for example. Among communication devices, mobile communication devices such as mobile phones, for example, have a long time in a low output state in which the output power is low, such as in a standby state, so that power efficiency in the low output state is practically important. In other words, it is required to suppress current consumption in a low output state as much as possible.

低出力状態での電力効率改善策としては,増幅回路の一部のみに消費電流が発生し残りの部分では消費電流が発生しないようにするのが一般的である。たとえば,複数組の増幅器または増幅トランジスタを設けておき,出力電力が高い高出力状態では全ての増幅器または増幅トランジスタを動作させ,低出力状態ではその一部の増幅器または増幅トランジスタのみを動作させて消費電流を削減する。このような増幅回路については,特許文献1〜6に記載されている。   As a measure for improving the power efficiency in the low output state, it is general that current consumption occurs only in a part of the amplifier circuit and current consumption does not occur in the remaining part. For example, multiple sets of amplifiers or amplification transistors are provided, all amplifiers or amplification transistors are operated in a high output state with high output power, and only a part of the amplifiers or amplification transistors are operated in a low output state. Reduce current. Such an amplifier circuit is described in Patent Documents 1-6.

特開平10−126164号公報JP-A-10-126164 特開2002−100935号公報Japanese Patent Laid-Open No. 2002-100935 特開2002−135060号公報JP 2002-1335060 A 特開2002−271152号公報JP 2002-271152 A 特開2001−292033号公報JP 2001-292033 A 特開2006−333060号公報JP 2006-333060 A

従来の増幅回路は,動作させる増幅器または増幅トランジスタをスイッチにより切り替えて低消費電力状態または高消費電力状態に制御している。そのため,切替時に増幅回路の入出力インピーダンスが変化し,増幅回路の利得が変化し,また,増幅回路の通過位相が変化する。従来の増幅回路には,可変整合回路を設けて入出力のインピーダンスマッチングを行うことが提案されている(特許文献2など)。しかし,その場合において,可変整合回路を設けることにより,切替時に増幅回路全体の利得や通過位相が変化し,通信品質の劣化を招来する。特に,増幅器での通過位相の変化は,出力信号の位相に送信情報をのせている通信方式の場合,重大な通信品質の劣化につながる。   In a conventional amplifier circuit, an amplifier or an amplification transistor to be operated is switched by a switch to control to a low power consumption state or a high power consumption state. Therefore, the input / output impedance of the amplifier circuit changes at the time of switching, the gain of the amplifier circuit changes, and the passing phase of the amplifier circuit changes. It has been proposed that a conventional amplifier circuit is provided with a variable matching circuit to perform input / output impedance matching (Patent Document 2, etc.). However, in such a case, by providing a variable matching circuit, the gain and pass phase of the entire amplifier circuit change at the time of switching, resulting in deterioration of communication quality. In particular, the change in the passing phase at the amplifier leads to a serious deterioration in communication quality in the case of a communication system in which transmission information is carried on the phase of the output signal.

そこで,本発明の目的は,低出力時の消費電力を抑制し,且つ高出力時と低出力時の間で利得の変化や通過位相の変化が少ないもしくは抑制された増幅回路を提供することにある。   Accordingly, an object of the present invention is to provide an amplifier circuit that suppresses power consumption at the time of low output and has little or suppressed change in gain and change in passing phase between high output and low output.

増幅回路の第1の側面は,分配前入力信号の電力を分配し複数の分配入力信号を出力する電力分配回路と,
前記分配入力信号をそれぞれ増幅する複数の増幅器と,
前記複数の増幅器それぞれの分配出力信号の電力を合成して合成後出力信号を出力する電力合成回路とを有し,
前記電力分配回路は,入力信号の電圧を複数の電圧に分配する電圧分配回路と,入力信号の電流を複数の電流に分配する電流分配回路とを,いずれかを前段にして縦続接続し,前段の電圧または電流分配回路に前記分配前入力信号を入力し,後段の電流または電圧分配回路が前記分配入力信号を出力し,
前記電力合成回路は,複数の入力信号の電圧を合成する電圧合成回路と,複数の入力信号の電流を合成する電流合成回路とをいずれかを前段にして縦続接続し,前段の電流または電圧合成回路に前記分配出力信号を入力し,後段の電圧または電流合成回路が前記合成後出力信号を出力し,
さらに,前記電圧分配回路の電圧分配数Mと前記電流分配回路の電流分配数Nの比M/Nと,前記電圧合成回路の電圧合成数Kと前記電流合成回路の電流合成数Lの比K/Lとを一定に維持しながら,前記分配数M,Nと前記合成数K,Lとを変化させると共に,信号が分配される増幅器を動作状態に制御し分配されない増幅器を非動作状態に制御する制御回路を有する。
The first aspect of the amplifier circuit includes a power distribution circuit that distributes the power of the input signal before distribution and outputs a plurality of distribution input signals;
A plurality of amplifiers each amplifying the distributed input signal;
A power combining circuit for combining the power of the distributed output signals of each of the plurality of amplifiers and outputting the combined output signal;
The power distribution circuit includes a voltage distribution circuit that distributes the voltage of the input signal to a plurality of voltages and a current distribution circuit that distributes the current of the input signal to a plurality of currents, one of which is connected in cascade, The pre-distribution input signal is input to the voltage or current distribution circuit of the current stage, and the subsequent current or voltage distribution circuit outputs the distribution input signal,
The power combining circuit is configured by cascading a voltage combining circuit for combining the voltages of a plurality of input signals and a current combining circuit for combining the currents of the plurality of input signals, one of which is a previous stage, and combining the current or voltage of the previous stage. The distribution output signal is input to the circuit, and the subsequent voltage or current synthesis circuit outputs the synthesized output signal,
Further, the ratio M / N of the voltage distribution number M of the voltage distribution circuit and the current distribution number N of the current distribution circuit, and the ratio K of the voltage synthesis number K of the voltage synthesis circuit and the current synthesis number L of the current synthesis circuit. The distribution numbers M and N and the combined numbers K and L are changed while maintaining / L constant, and the amplifier to which the signal is distributed is controlled to be in an operating state, and the amplifier that is not distributed is controlled to be in a non-operating state. A control circuit.

第1の側面によれば,入出力インピーダンス,利得,通過位相を一定に保ちながら、高出力状態と低出力状態に可変制御できるため,通信装置の電力増幅器に使用されたときに通信品質の劣化を抑制しながら、低出力状態での消費電力を低減することができる。   According to the first aspect, since the input / output impedance, gain, and passing phase can be kept constant while being variably controlled between the high output state and the low output state, the communication quality deteriorates when used in the power amplifier of the communication device. The power consumption in the low output state can be reduced while suppressing the above.

本実施の形態における増幅回路の全体構成図である。It is a whole block diagram of the amplifier circuit in this Embodiment. 本実施の形態における電力分配回路の構成図である。It is a block diagram of the power distribution circuit in this Embodiment. 本実施の形態における電力合成回路の構成図である。It is a block diagram of the power combiner circuit in this Embodiment. 本実施の形態における電圧分配回路10の回路図である。1 is a circuit diagram of a voltage distribution circuit 10 in the present embodiment. 本実施の形態における電流分配回路12の回路図である。It is a circuit diagram of the current distribution circuit 12 in the present embodiment. 本実施の形態における電圧合成回路22の回路図である。It is a circuit diagram of the voltage synthesis circuit 22 in the present embodiment. 本実施の形態における電流合成回路20の回路図である。It is a circuit diagram of the current synthesis circuit 20 in the present embodiment. 本実施の形態における増幅回路の第1の具体例の回路図である。It is a circuit diagram of the 1st specific example of the amplifier circuit in this Embodiment. 本実施の形態における第1〜第4のスイッチの具体例を示す図である。It is a figure which shows the specific example of the 1st-4th switch in this Embodiment. 図8の増幅回路の高出力状態と低出力状態とを示す回路図である。It is a circuit diagram which shows the high output state and low output state of the amplifier circuit of FIG. 図8の増幅回路の高出力状態と低出力状態とを示す回路図である。It is a circuit diagram which shows the high output state and low output state of the amplifier circuit of FIG. 式(8)を説明する図である。It is a figure explaining Formula (8). 式(8)を説明する図である。It is a figure explaining Formula (8). 本実施の形態における第1の具体例の構成図である。It is a block diagram of the 1st specific example in this Embodiment. 本実施の形態における第2の具体例の構成図である。It is a block diagram of the 2nd specific example in this Embodiment. 本実施の形態における第3の具体例の構成図である。It is a block diagram of the 3rd specific example in this Embodiment. 本実施の形態における第4の具体例の構成図である。It is a block diagram of the 4th specific example in this Embodiment. 本実施の形態における第5の具体例の構成図である。It is a block diagram of the 5th specific example in this Embodiment.

図1は,本実施の形態における増幅回路の全体構成図である。増幅回路は,分配前入力信号INの電力を分配し複数の分配入力信号In_1〜In_nを出力する電力分配回路1と,分配入力信号In_1〜In_nをそれぞれ増幅する複数の増幅器ampと,複数の増幅器ampそれぞれの分配出力信号Out_1〜Out_nの電力を合成して合成後出力信号OUTを出力する電力合成回路2と,電力分配回路1と,複数の増幅器ampと,電力合成回路2とに制御信号CNTを供給して所望の回路構成に制御する制御回路3とを有する。   FIG. 1 is an overall configuration diagram of an amplifier circuit according to the present embodiment. The amplifier circuit distributes the power of the pre-distribution input signal IN and outputs a plurality of distributed input signals In_1 to In_n, a plurality of amplifiers amplifying each of the distributed input signals In_1 to In_n, and a plurality of amplifiers The control signal CNT is sent to the power combining circuit 2, the power distribution circuit 1, the plurality of amplifiers amp, and the power combining circuit 2 that combine the power of the distribution output signals Out_1 to Out_n of each amp and output the combined output signal OUT. And a control circuit 3 for controlling to a desired circuit configuration.

電力分配回路1は,分配前の入力信号INの電力を制御信号CNTに応じた所望の数に分配して,当該所望数の分配入力信号In_1〜In_nを出力する。増幅器ampは,所望数の分配入力信号In_1〜In_nをそれぞれ増幅して分配出力信号Out_1〜Out_nを出力する。そして,電力合成回路2は,各増幅器ampが増幅した所望数の分配出力信号Out_1〜Out_nの電力を合成して合成後出力信号OUTを出力する。電力分配回路1と電力合成回路2は,制御信号CNTに応じてその分配数と合成数が制御される。同時に,複数の増幅器ampのうち,制御信号CNTに応じて,上記所望数の増幅器ampのみが動作状態に制御され,残りの増幅器ampは非動作状態に制御される。   The power distribution circuit 1 distributes the power of the input signal IN before distribution to a desired number corresponding to the control signal CNT, and outputs the desired number of distributed input signals In_1 to In_n. The amplifier amp amplifies a desired number of distribution input signals In_1 to In_n, respectively, and outputs distribution output signals Out_1 to Out_n. The power combining circuit 2 combines the powers of the desired number of distributed output signals Out_1 to Out_n amplified by the amplifiers amp and outputs the combined output signal OUT. In the power distribution circuit 1 and the power combining circuit 2, the number of distributions and the number of combination are controlled according to the control signal CNT. At the same time, of the plurality of amplifiers amp, only the desired number of amplifiers amp is controlled to be in operation according to the control signal CNT, and the remaining amplifiers are controlled to be inactive.

増幅器が動作状態に制御されると,たとえば増幅トランジスタへのバイアス電圧やバイアス電流が適切に供給され,高周波の入力信号を増幅する。また,増幅器が非動作状態に制御されると,例えば増幅トランジスタへのバイアス電圧やバイアス電流の供給が止まり,増幅動作を行わず,消費電流がゼロにまたは抑制される。   When the amplifier is controlled to be in an operating state, for example, a bias voltage or a bias current is appropriately supplied to the amplification transistor to amplify a high frequency input signal. Further, when the amplifier is controlled to the non-operating state, for example, the supply of the bias voltage and the bias current to the amplifying transistor is stopped, the amplifying operation is not performed, and the consumption current is reduced to zero or suppressed.

図1の増幅回路は,高出力状態と低出力状態とを有する。すなわち,電力分配数と電力合成数を多くし動作状態の増幅器ampの数もそれに応じて多くするように制御することで高出力状態に制御され,電力分配数と電力合成数を少なくし動作状態の増幅器の数もそれに応じて少なくするように制御することで低出力状態に制御される。   The amplifier circuit of FIG. 1 has a high output state and a low output state. In other words, the power distribution number and the power combination number are increased, and the number of amplifiers in the operating state is controlled to increase accordingly. By controlling the number of amplifiers to be reduced accordingly, the low output state is controlled.

高出力状態では,例えば利得が30dB,分配前入力信号INが0dBm,合成後出力信号OUTが+30dBmであり,多くの増幅器ampがバイアスを供給されて動作状態になる。一方,低出力状態では,例えば利得が30dB,分配前入力信号INが-30dBm,合成後出力信号OUTが0dBmであり,高出力状態よりも少ない増幅器ampがバイアスを供給されて動作状態になる。このように,電力増幅器の出力電力の大小の制御は,主に入力信号INの電力を制御することにより行われる。   In the high output state, for example, the gain is 30 dB, the pre-distribution input signal IN is 0 dBm, and the post-synthesis output signal OUT is +30 dBm. Many amplifiers amp are supplied with a bias and are in an operating state. On the other hand, in the low output state, for example, the gain is 30 dB, the pre-distribution input signal IN is −30 dBm, and the combined output signal OUT is 0 dBm. As described above, the control of the output power of the power amplifier is mainly performed by controlling the power of the input signal IN.

ただし,本実施の形態では,低出力状態での動作状態の増幅器ampの数を減らして低消費電流化して当該状態での電力効率を向上させている。そして,高出力状態と低出力状態とで利得が一致するように,さらに増幅回路の通過位相が一致するように制御される。   However, in the present embodiment, the number of amplifiers amp in the operating state in the low output state is reduced to reduce the current consumption, thereby improving the power efficiency in this state. Then, control is performed so that the gains are matched between the high output state and the low output state, and the passing phases of the amplifier circuits are matched.

図2は,本実施の形態における電力分配回路の構成図である。図2には,構成方法(A)と(B)とが示されている。構成方法(A)では,電力分配回路1は,分配前入力信号INの電圧を複数の電圧IN_1〜IN_iに分配する電圧分配回路10と,電圧分配回路10からの複数の信号IN_1〜IN_Iそれぞれの入力信号の電流を複数の電流In_1〜In_nに分配する電流分配回路12とを縦続接続し,前段の電圧分配回路10に分配前入力信号INを入力し,後段の電流分配回路12が分配入力信号In_1〜In_nを出力する。   FIG. 2 is a configuration diagram of the power distribution circuit in the present embodiment. FIG. 2 shows the configuration methods (A) and (B). In the configuration method (A), the power distribution circuit 1 includes a voltage distribution circuit 10 that distributes the voltage of the pre-distribution input signal IN to a plurality of voltages IN_1 to IN_i, and a plurality of signals IN_1 to IN_I from the voltage distribution circuit 10, respectively. A current distribution circuit 12 that distributes the current of the input signal to a plurality of currents In_1 to In_n is connected in cascade, the pre-distribution input signal IN is input to the voltage distribution circuit 10 at the front stage, and the current distribution circuit 12 at the rear stage is the distribution input signal. In_1 to In_n are output.

構成方法(B)では,電力分配回路1は,分配前入力信号INの電流を複数の電流IN_1〜IN_iに分配する電流分配回路12と,電流分配回路12からの複数の信号IN_1〜IN_Iそれぞれの入力信号の電圧を複数の電圧In_1〜In_nに分配する電圧分配回路10とを縦続接続し,前段の電流分配回路12に分配前入力信号INを入力し,後段の電圧分配回路10が分配入力信号In_1〜In_nを出力する。   In the configuration method (B), the power distribution circuit 1 includes a current distribution circuit 12 that distributes the current of the input signal IN before distribution to a plurality of currents IN_1 to IN_i, and a plurality of signals IN_1 to IN_I from the current distribution circuit 12, respectively. A voltage distribution circuit 10 that distributes the voltage of the input signal to a plurality of voltages In_1 to In_n is connected in cascade, the pre-distribution input signal IN is input to the current distribution circuit 12 in the previous stage, and the voltage distribution circuit 10 in the subsequent stage is the distribution input signal. In_1 to In_n are output.

つまり,電圧分配回路10と電流分配回路12の縦続接続はいずれが前段になってもよい。電圧分配回路と電流分配回路の具体例は後述する。   That is, any of the cascade connection of the voltage distribution circuit 10 and the current distribution circuit 12 may be in the preceding stage. Specific examples of the voltage distribution circuit and the current distribution circuit will be described later.

図3は,本実施の形態における電力合成回路の構成図である。図3にも,構成方法(A)と(B)とが示されている。構成方法(A)では,電力合成回路2は,増幅器が出力する複数の分配出力信号Out_1〜Out_nの電流を合成する電流合成回路20と,電流合成回路20からの複数の信号OUT_1〜OUT_jの電圧を合成する電圧合成回路22とを縦続接続し,前段の電流合成回路20に分配出力信号Out_1〜Out_nを入力し,後段の電圧合成回路22が合成後出力信号OUTを出力する。   FIG. 3 is a configuration diagram of the power combining circuit according to the present embodiment. FIG. 3 also shows the configuration methods (A) and (B). In the configuration method (A), the power combining circuit 2 includes a current combining circuit 20 that combines the currents of the plurality of distributed output signals Out_1 to Out_n output from the amplifier, and the voltages of the plurality of signals OUT_1 to OUT_j from the current combining circuit 20. Are connected in cascade, the distributed output signals Out_1 to Out_n are input to the current synthesis circuit 20 at the previous stage, and the voltage synthesis circuit 22 at the subsequent stage outputs the synthesized output signal OUT.

構成方法(B)では,電力合成回路2は,増幅器が出力する複数の分配出力信号Out_1〜Out_nの電圧を合成する電圧合成回路22と,電圧合成回路22からの複数の信号OUT_1〜OUT_jの電流を合成する電流合成回路20とを縦続接続し,前段の電圧合成回路22に分配出力信号Out_1〜Out_nを入力し,後段の電流合成回路20が合成後出力信号OUTを出力する。   In the configuration method (B), the power combining circuit 2 includes a voltage combining circuit 22 that combines the voltages of the plurality of distributed output signals Out_1 to Out_n output from the amplifier, and currents of the plurality of signals OUT_1 to OUT_j from the voltage combining circuit 22. Are connected in cascade, and the distributed output signals Out_1 to Out_n are input to the preceding voltage combining circuit 22, and the subsequent current combining circuit 20 outputs the combined output signal OUT.

電力合成回路2においても,電流合成回路20と電圧合成回路22の縦続接続はいずれが前段になってもよい。ただし,図2,3の電力分配回路と電力合成回路とは,構成方法(A)の組み合わせで,または,構成方法(B)の組み合わせで,増幅器ampに接続される。   Also in the power combiner circuit 2, any one of the cascade connection of the current combiner circuit 20 and the voltage combiner circuit 22 may be in the preceding stage. However, the power distribution circuit and the power combining circuit in FIGS. 2 and 3 are connected to the amplifier amp by a combination of the configuration method (A) or a combination of the configuration method (B).

図4は,本実施の形態における電圧分配回路10の回路図である。電圧分配回路10は,入力端子と基準電圧(例えばGND)との間に複数のトランスTS1〜TSiの一次側コイルが直列に接続され,複数の出力端子と基準電圧GNDとの間にそれぞれ複数のトランスTS1〜TSiの二次側コイルが並列に設けられ,一次側コイルの接続点と基準電圧GNDとの間にそれぞれ第1のスイッチSW1,SW2〜が設けられている。   FIG. 4 is a circuit diagram of the voltage distribution circuit 10 in the present embodiment. In the voltage distribution circuit 10, primary coils of a plurality of transformers TS1 to TSi are connected in series between an input terminal and a reference voltage (for example, GND), and a plurality of transformers are connected between the plurality of output terminals and the reference voltage GND. Secondary coils of the transformers TS1 to TSi are provided in parallel, and first switches SW1 and SW2 are provided between a connection point of the primary coil and the reference voltage GND, respectively.

たとえば,全ての第1のスイッチSW1,SW2〜がオフにされると,入力端子と基準電圧GNDとの間には,トランスの一次側コイルがi個直列に接続される。したがって,各一次側コイルには入力電圧Vinをi個で除した電圧Vin/iが印加され,入力電流Iinがそれぞれ流れる。今仮に簡単のために,各トランスTSの変圧比(巻数比)が1:1とすると,二次側コイルの電圧もVin/i,電流もIinになる。つまり,この電圧分配回路10により,入力電圧Vinがi等分されて出力電圧として出力される。   For example, when all the first switches SW1, SW2˜ are turned off, i primary transformer coils are connected in series between the input terminal and the reference voltage GND. Therefore, the voltage Vin / i obtained by dividing the input voltage Vin by i is applied to each primary coil, and the input current Iin flows. For the sake of simplicity, assuming that the transformer ratio (turn ratio) of each transformer TS is 1: 1, the voltage of the secondary coil is Vin / i, and the current is Iin. That is, the voltage distribution circuit 10 divides the input voltage Vin into i and outputs it as an output voltage.

制御信号CNTにより導通する第1のスイッチSW1,SW2〜を選択することにより,電圧の分配数を選択することができる。なお,上記の各トランスの変圧比(巻数比)が1:n1の場合は,二次側コイルの電圧は巻き数比に比例して(n1)*Vin/i,電流は巻き数比に逆比例してIin/n1になる。   By selecting the first switches SW1, SW2 to be turned on by the control signal CNT, the number of voltage distribution can be selected. When the transformer ratio (turn ratio) of each transformer is 1: n1, the secondary coil voltage is proportional to the turn ratio (n1) * Vin / i, and the current is opposite to the turn ratio. Proportionally Iin / n1.

図5は,本実施の形態における電流分配回路12の回路図である。電流分配回路12は,入力端子と複数の出力端子との間にそれぞれ第2のスイッチSW11〜SW1iが設けられている。全ての第2のスイッチSW11〜SW1iがオンになると,入力電流Iinがi等分されて分配される。そして,電圧には変更はない。したがって,制御信号CNTにより導通する第2のスイッチの数を制御することにより,電流の分配数を可変制御することができる。   FIG. 5 is a circuit diagram of the current distribution circuit 12 in the present embodiment. In the current distribution circuit 12, second switches SW11 to SW1i are provided between the input terminal and the plurality of output terminals, respectively. When all the second switches SW11 to SW1i are turned on, the input current Iin is equally divided into i and distributed. And there is no change in voltage. Therefore, by controlling the number of second switches that are turned on by the control signal CNT, the number of current distribution can be variably controlled.

図6は,本実施の形態における電圧合成回路22の回路図である。電圧合成回路22は,複数の入力端子と基準電圧(例えばグランドGND)との間にそれぞれ複数のトランスTS11〜TS1jの一次側コイルが並列に設けられ,出力端子と基準電圧GNDとの間に複数のトランスTS11〜TS1jの二次側コイルが直列に接続され,二次側コイルの接続点と基準電圧との間にそれぞれ第3のスイッチSW21,SW22〜が設けられている。   FIG. 6 is a circuit diagram of the voltage synthesis circuit 22 in the present embodiment. In the voltage synthesis circuit 22, primary coils of a plurality of transformers TS11 to TS1j are respectively provided in parallel between a plurality of input terminals and a reference voltage (for example, ground GND), and a plurality of transformers are provided between the output terminal and the reference voltage GND. Secondary coils of the transformers TS11 to TS1j are connected in series, and third switches SW21 and SW22 are provided between the connection point of the secondary coil and the reference voltage, respectively.

複数の入力には同じ入力電圧Vin,入力電流Iinが入力され,各トランスの変圧比(巻数比)を1:1とすると,j個の各二次側コイルには電圧Vin,電流Iinが発生する。その結果,複数の二次側コイルが直列に接続されている出力端子には,電圧j*Vin,電流Iinが出力される。すなわち,j個の入力電圧Vinがj*Vinに合成される。   The same input voltage Vin and input current Iin are input to multiple inputs, and if the transformer ratio (turn ratio) of each transformer is 1: 1, voltage Vin and current Iin are generated in each of the j secondary coils. To do. As a result, voltage j * Vin and current Iin are output to an output terminal to which a plurality of secondary coils are connected in series. That is, j input voltages Vin are synthesized into j * Vin.

制御信号CNTによりオンする第3のスイッチSW21,SW22〜を選択することで,電圧合成数を制御することができる。なお,上記のトランスの変圧比(巻数比)が1:n2の場合は,二次側コイルの電圧は巻き数比に比例して(n2)*Vin,電流は巻き数比に逆比例してIin/n2になる。   By selecting the third switches SW21, SW22, which are turned on by the control signal CNT, the number of voltage synthesis can be controlled. When the transformer transformation ratio (turn ratio) is 1: n2, the secondary coil voltage is proportional to the turn ratio (n2) * Vin, and the current is inversely proportional to the turn ratio. Iin / n2.

図7は,本実施の形態における電流合成回路20の回路図である。電流合成回路20は,複数の入力端子と出力端子との間にそれぞれ第4のスイッチSW31,SW32〜SW3jが設けられている。全ての第4のスイッチがオンになると,入力電流Iinがj倍されて合成される。電圧に変更はない。したがって,制御信号CNTによりオンする第4のスイッチの数を制御することにより,電流合成数を可変制御することができる。   FIG. 7 is a circuit diagram of the current synthesis circuit 20 in the present embodiment. In the current synthesis circuit 20, fourth switches SW31, SW32 to SW3j are provided between a plurality of input terminals and output terminals, respectively. When all the fourth switches are turned on, the input current Iin is multiplied by j and synthesized. There is no change in voltage. Therefore, by controlling the number of fourth switches that are turned on by the control signal CNT, the number of current synthesis can be variably controlled.

図4,6に示したとおり,本実施の形態では,例えば,電圧分配回路10,電圧合成回路22の各トランスの変圧比は全て同じに設定され,均等に電圧が分配され,同じ電圧が合成される。それに伴い,動作状態の増幅器ampは,同じ入力電圧,電流に対して増幅動作を行い,同等の出力電圧,電流を出力する。   As shown in FIGS. 4 and 6, in this embodiment, for example, the transformer ratios of the voltage distribution circuit 10 and the voltage synthesis circuit 22 are all set to be the same, the voltages are evenly distributed, and the same voltage is synthesized. Is done. Accordingly, the operational amplifier amp performs an amplification operation on the same input voltage and current and outputs an equivalent output voltage and current.

図8は,本実施の形態における増幅回路の第1の具体例の回路図である。図8の増幅回路は,4個の増幅器amp1〜amp4を有する。電圧分配回路10が分配前入力信号INを2つまたは1つに分配し信号IN_1,IN_2を出力し,それらの信号IN_1,IN_2をそれぞれ2組の電流分配回路12が2つまたは1つに分配し分配入力信号In_1〜In_4を出力する。これらの分配数は,制御回路3からの制御信号CNTにより第1のスイッチsw1,第2のスイッチsw3〜sw9の導通状態を制御することにより制御される。   FIG. 8 is a circuit diagram of a first specific example of the amplifier circuit according to the present embodiment. The amplifier circuit of FIG. 8 has four amplifiers amp1 to amp4. The voltage distribution circuit 10 distributes the pre-distribution input signal IN to two or one and outputs signals IN_1 and IN_2, and the two sets of current distribution circuits 12 distribute the signals IN_1 and IN_2 to two or one, respectively. Distribution input signals In_1 to In_4 are output. These distribution numbers are controlled by controlling the conduction state of the first switch sw1 and the second switches sw3 to sw9 by the control signal CNT from the control circuit 3.

4個の増幅器amp1〜amp4は,分配数に応じて生成される分配入力信号In_1〜In_4の数だけ動作状態に制御される。残りの増幅器は非動作状態に制御され,省電力化される。   The four amplifiers amp1 to amp4 are controlled in the operating state by the number of distribution input signals In_1 to In_4 generated according to the number of distributions. The remaining amplifiers are controlled in a non-operating state to save power.

そして,各増幅器amp1〜amp4が増幅した分配出力信号Out_1〜Out_4が,2組の電流合成回路20が合成して出力信号OUT_1,OUT_2を出力し,それらを電圧合成回路22が合成して合成後出力信号OUTを出力する。これらの合成数は,制御回路3からの制御信号CNTにより第3のスイッチsw4〜sw10,第4のスイッチsw2の導通状態を制御することにより制御される。   Then, the distribution output signals Out_1 to Out_4 amplified by the amplifiers amp1 to amp4 are combined by the two current combining circuits 20 to output the output signals OUT_1 and OUT_2, which are combined by the voltage combining circuit 22 and combined. Output signal OUT is output. These composite numbers are controlled by controlling the conduction states of the third switches sw4 to sw10 and the fourth switch sw2 by the control signal CNT from the control circuit 3.

なお,電圧分配回路10と電圧合成回路22のトランスの変圧比はそれぞれ,一般化して1:n1,1:n2になっている。   Note that the transformation ratios of the transformers of the voltage distribution circuit 10 and the voltage synthesis circuit 22 are generally 1: n1 and 1: n2, respectively.

例えば,分配側の分配数を電圧分配2,電流分配2にした場合は,2×2=4個の増幅器amp1〜amp4が動作状態に制御され,合成側の合成数は電流合成2,電圧合成2に制御される。また,分配側の分配数を電圧分配1,電流分配1にした場合は,1×1=1個の増幅器amp1のみが動作状態に残りの増幅器amp2〜amp4が非動作状態に制御され,合成側の合成数は電流合成1,電圧合成1に制御される。この例については,後述する。   For example, when the distribution side distribution number is set to voltage distribution 2 and current distribution 2, 2 × 2 = 4 amplifiers amp1 to amp4 are controlled to be in an operating state, and the combined number on the synthesis side is current synthesis 2 and voltage synthesis. 2 is controlled. Further, when the number of distributions on the distribution side is set to voltage distribution 1 and current distribution 1, only 1 × 1 = 1 amplifier amp1 is controlled to be in an operating state, and the remaining amplifiers amp2 to amp4 are controlled to be in an inactive state. The number of synthesis is controlled by current synthesis 1 and voltage synthesis 1. This example will be described later.

図9は,本実施の形態における第1〜第4のスイッチの具体例を示す図である。図9には3つのスイッチの具体例が示されている。(A)のパスゲートスイッチは,NチャネルのMOSトランジスタMOSTRのソース,ドレインが入出力端子に,ゲートに制御信号CNTが入力される制御端子にされている。制御信号CNTがHレベルになればトランジスタMOSTRが導通し,LレベルになればトランジスタMOSTRは非導通になる。この構成はトランジスタのみによるものであるので面積を小さくする必要がある場合に有効である。ただし,高周波信号の場合は,トランジスタMOSTRのソースドレイン間の寄生容量C0により高周波成分に対して短絡状態になり完全にオフにすることができない場合がある。   FIG. 9 is a diagram illustrating a specific example of the first to fourth switches in the present embodiment. FIG. 9 shows a specific example of three switches. In the (A) pass gate switch, the source and drain of an N-channel MOS transistor MOSTR are input / output terminals, and the control terminal is supplied with a control signal CNT at its gate. When the control signal CNT becomes H level, the transistor MOSTR becomes conductive, and when the control signal CNT becomes L level, the transistor MOSTR becomes non-conductive. Since this configuration is based on only transistors, it is effective when the area needs to be reduced. However, in the case of a high-frequency signal, the parasitic capacitance C0 between the source and drain of the transistor MOSTR may cause a short-circuit state with respect to the high-frequency component and cannot be completely turned off.

(B)のLC共振を利用したスイッチは,NチャネルMOSトランジスタMOSTRと,キャパシタC1,C12及びインダクタL1を有する。このキャパシタC1、C12とインダクタL1は,高周波信号と共振するようにそのキャパシタンスとインダクタンスが設定されている。   The switch using the LC resonance of (B) has an N-channel MOS transistor MOSTR, capacitors C1 and C12, and an inductor L1. Capacitors and inductances of the capacitors C1 and C12 and the inductor L1 are set so as to resonate with a high frequency signal.

したがって,トランジスタMOSTRがオンのときは,高周波信号はキャパシタC1,C12とインダクタL1とによる共振回路が共振し,高周波信号の通過を阻止し,実質的にスイッチオフ状態になる。   Therefore, when the transistor MOSTR is on, the resonance circuit of the capacitors C1 and C12 and the inductor L1 resonates the high-frequency signal, and the high-frequency signal is prevented from passing through, so that the high-frequency signal is substantially switched off.

一方,トランジスタMOSTRがオフのときは,インダクタL1を介して高周波信号が伝達し実質的にスイッチオン状態になる。   On the other hand, when the transistor MOSTR is off, a high-frequency signal is transmitted through the inductor L1 and the switch is turned on substantially.

(C)のMEMS(Micro-Electro-Mechanical-Systems)スイッチは,例えば,入出力端子に接続された2つの電極P1,P2が所定の距離隔てて設けられている。そして,電極P1,P2間に印加する電圧によって,いずれか一方の電極P1が可動し,他方の電極P2との接触状態と非接触状態とを切り替えることができる。したがって,非接触状態では,高周波信号に対してスイッチがオフ状態になる。一方,接触状態では高周波信号に対してスイッチがオン状態になる。MEMSスイッチの場合は,(A)と比較してオフ状態の容量C2は小さい。   In the (C) MEMS (Micro-Electro-Mechanical-Systems) switch, for example, two electrodes P1 and P2 connected to an input / output terminal are provided at a predetermined distance. Then, one of the electrodes P1 is moved by the voltage applied between the electrodes P1 and P2, and the contact state and the non-contact state with the other electrode P2 can be switched. Therefore, in the non-contact state, the switch is turned off with respect to the high frequency signal. On the other hand, in the contact state, the switch is turned on with respect to the high frequency signal. In the case of a MEMS switch, the off-state capacitance C2 is small compared to (A).

図10,図11は,図8の増幅回路の高出力状態と低出力状態とを示す回路図である。図10の高出力状態では,分配側の分配数を電圧分配2,電流分配2にし,2×2=4個の増幅器amp1〜amp4が動作状態に制御され,合成側の合成数は電流合成2,電圧合成2に制御されている。すなわち,スイッチsw1,sw2はオフに,スイッチsw3〜sw9は全てオンに,スイッチsw4〜sw10も全てオンに制御され,4つの増幅器amp1〜amp4が全て動作状態になるようにバイアスがオンにされている。   10 and 11 are circuit diagrams showing a high output state and a low output state of the amplifier circuit of FIG. In the high output state of FIG. 10, the distribution number on the distribution side is set to voltage distribution 2 and current distribution 2, and 2 × 2 = 4 amplifiers amp1 to amp4 are controlled to be in an operating state. , Voltage synthesis 2 is controlled. That is, the switches sw1 and sw2 are turned off, the switches sw3 to sw9 are all turned on, the switches sw4 to sw10 are all turned on, and the biases are turned on so that all the four amplifiers amp1 to amp4 are in an operating state. Yes.

一方,図11の低出力状態では,分配側の分配数を電圧分配1,電流分配1にし,1×1=1個の増幅器amp1のみが動作状態に制御され,残りの増幅器amp2〜amp4が非動作状態に制御され,合成側の合成数は電流合成1,電圧合成1に制御されている。すなわち,スイッチsw1,sw2はオンに,スイッチsw3のみがオンに,スイッチsw4のみがオンに制御され,1つの増幅器amp1のみが動作状態になるようにバイアスがオンにされ,残りの増幅器は非動作状態になるようにバイアスがオフされている。   On the other hand, in the low output state of FIG. 11, the distribution number on the distribution side is set to voltage distribution 1 and current distribution 1, only 1 × 1 = 1 amplifier amp1 is controlled to operate, and the remaining amplifiers amp2 to amp4 are not operated. The number of synthesis on the synthesis side is controlled to current synthesis 1 and voltage synthesis 1. That is, the switches sw1 and sw2 are turned on, only the switch sw3 is turned on, only the switch sw4 is turned on, the bias is turned on so that only one amplifier amp1 is in operation, and the remaining amplifiers are not operating. The bias is turned off to be in the state.

図10の高出力状態の例では,電力分配回路の電圧分配回路10と電流分配回路12のそれぞれの分配数の比は2:2,電力合成回路の電圧合成回路22と電流合成回路20のそれぞれの合成数の比も2:2である。これに対して,図11の低出力状態の例では,電力分配回路の電圧分配回路10と電流分配回路12のそれぞれの分配数の比は1:1,電力合成回路の電圧合成回路22と電流合成回路20のそれぞれの合成数の比も1:1である。つまり,図10の高出力状態と,図11の低出力状態とを比べると,分配比が共に1:1であり,合成比も共に1:1に保たれている。このように分配比,合成比をそれぞれ一定に保ちながら,増幅器ampを動作させる数を可変制御することで,高出力状態と低出力状態とで,増幅回路の入力インピーダンスZinと出力インピーダンスZoutを一定に保つことができるとともに,増幅回路の分配前入力信号INから合成後出力信号OUTまでの電圧利得を一定に保ち通過位相を一定に保つことができる。   In the example of the high output state of FIG. 10, the ratio of the distribution numbers of the voltage distribution circuit 10 and the current distribution circuit 12 of the power distribution circuit is 2: 2, and the voltage synthesis circuit 22 and the current synthesis circuit 20 of the power synthesis circuit are respectively. The ratio of the number of synthesis is also 2: 2. On the other hand, in the example of the low output state of FIG. 11, the ratio of the distribution numbers of the voltage distribution circuit 10 and the current distribution circuit 12 of the power distribution circuit is 1: 1, the voltage synthesis circuit 22 of the power synthesis circuit and the current. The ratio of the number of synthesis of the synthesis circuit 20 is also 1: 1. That is, comparing the high output state of FIG. 10 with the low output state of FIG. 11, the distribution ratio is 1: 1 and the synthesis ratio is also kept 1: 1. In this way, the input impedance Zin and the output impedance Zout of the amplifier circuit are kept constant in the high output state and the low output state by variably controlling the number of operating the amplifier amp while keeping the distribution ratio and the synthesis ratio constant. In addition, the voltage gain from the pre-distribution input signal IN to the post-synthesis output signal OUT of the amplifier circuit can be kept constant, and the passing phase can be kept constant.

図10の高出力状態では,スイッチsw1,sw2を開放とし,スイッチsw3, sw4, sw5, sw6, sw7, sw8, sw9, sw10を導通に制御する。加えて,4つの増幅器amp1,amp2,amp3,amp4を動作状態に制御する。その結果,この状態での電圧分配数,電流分配数,電圧合成数,電流合成数は全て2となる。   In the high output state of FIG. 10, the switches sw1 and sw2 are opened, and the switches sw3, sw4, sw5, sw6, sw7, sw8, sw9, and sw10 are controlled to be conductive. In addition, the four amplifiers amp1, amp2, amp3, and amp4 are controlled to be in an operating state. As a result, the voltage distribution number, current distribution number, voltage synthesis number, and current synthesis number in this state are all 2.

図10の入力端子INの電圧をVin,電流をIinとし,出力端子OUTの電圧をVout,電流をIoutとし,a点,b点,c点,d点での電圧をVa,Vb,Vc,Vd,電流をIa,Ib,Ic,Idとし,各増幅器ampの入力インピーダンスをZain,出力インピーダンスをZaout,各増幅器ampその出力電圧と入力電圧の比をAvとする。ここで,高周波信号に対してAvは複素数であり,Avの絶対値が増幅回路全体の利得となり,Avの偏角が通過位相となる。   In FIG. 10, the voltage at the input terminal IN is Vin, the current is Iin, the voltage at the output terminal OUT is Vout, the current is Iout, and the voltages at points a, b, c, and d are Va, Vb, Vc, Vd, current are Ia, Ib, Ic, Id, input impedance of each amplifier amp is Zain, output impedance is Zaout, and each amplifier amp has its output voltage to input voltage ratio Av. Here, Av is a complex number for the high-frequency signal, the absolute value of Av is the gain of the entire amplifier circuit, and the deviation angle of Av is the passing phase.

そして,入力側トランスの変圧比を1:n1,出力側トランスの変圧比を1:n2とすると,入力側トランスでは,以下のとおりになる。
Vin=1/n1*Va+1/n1*Vc (1)
Iin=n1*Ia=n1*Ic (2)
ここで,2組の電流分配回路12ではVa,IaとVc,Icをそれぞれ2つに電流分配して2つの増幅器ampに入力するので,以下のとおりとなる。
Va/Ia=Vc/Ic=Zain/2 (3)
一方,出力側のトランスでは,以下のとおりとなる。
Vout=n2*Vb+n2*Vd (4)
Iout=1/n2*Ib=1/n2*Id (5)
ここで,2組の電流合成回路20では2つの増幅器の出力をそれぞれ電流合成してVb,IbとVd,Idが生成されているので,以下のとおりとなる。
Vb/Ib=Vd/Id=Zaout/2 (6)
そして,各増幅器ampの出力電圧と入力電圧の比がAvであるので,以下のとおりとなる。
Vb/Va=Vd/Vc=Av (7)
上記から,以下の関係のとおりになる。
増幅回路全体の入力インピーダンス Zin=Vin/Iin=1/n12*Zain (8)
増幅回路全体の出力インピーダンス Zout=Vout/Iout=n22*Zaout (9)
増幅回路全体の電圧利得 |Vout/Vin|=n1*n2*|Av| (10)
増幅回路全体の通過位相 arg(Vout/Vin)= arg(Av) (11)
次に,図11の低出力状態では,スイッチsw5, sw6, sw7, sw8, sw9, sw10を開放とし,スイッチsw1, sw2, sw3, sw4を導通とする。そして増幅器amp1のみ動作させて残りの増幅器amp2, amp3, amp4を非動作状態にしてその消費電流を低減することで増幅回路全体の消費電力をおよそ4分の1に低減し,高効率動作を実現している。
If the transformation ratio of the input transformer is 1: n1 and the transformation ratio of the output transformer is 1: n2, the following is obtained for the input transformer.
Vin = 1 / n1 * Va + 1 / n1 * Vc (1)
Iin = n1 * Ia = n1 * Ic (2)
Here, in the two sets of current distribution circuits 12, Va, Ia and Vc, Ic are divided into two currents and input to the two amplifiers amp, respectively.
Va / Ia = Vc / Ic = Zain / 2 (3)
On the other hand, the output transformer is as follows.
Vout = n2 * Vb + n2 * Vd (4)
Iout = 1 / n2 * Ib = 1 / n2 * Id (5)
Here, in the two sets of current synthesis circuits 20, Vb, Ib and Vd, Id are generated by current synthesis of the outputs of the two amplifiers, respectively.
Vb / Ib = Vd / Id = Zaout / 2 (6)
Since the ratio between the output voltage and the input voltage of each amplifier amp is Av, it is as follows.
Vb / Va = Vd / Vc = Av (7)
From the above, the relationship is as follows.
Input impedance of the entire amplifier circuit Zin = Vin / Iin = 1 / n1 2 * Zain (8)
Output impedance of the entire amplifier circuit Zout = Vout / Iout = n2 2 * Zaout (9)
Voltage gain of the entire amplifier circuit | Vout / Vin | = n1 * n2 * | Av | (10)
Passing phase of entire amplifier circuit arg (Vout / Vin) = arg (Av) (11)
Next, in the low output state of FIG. 11, the switches sw5, sw6, sw7, sw8, sw9, sw10 are opened, and the switches sw1, sw2, sw3, sw4 are turned on. Then, only the amplifier amp1 is operated and the remaining amplifiers amp2, amp3, amp4 are deactivated and the current consumption is reduced to reduce the power consumption of the entire amplifier circuit to about one quarter, realizing high-efficiency operation. is doing.

低出力状態の電圧分配数M,電流分配数N,電圧合成数K,電流合成数Lは全て1となり,高出力状態の電圧分配数2と電流分配数2の比2:2は,低出力状態の電圧分配数1と電流分配数1の比1:1と等しく,また高出力状態の電圧合成数2と電流合成数2の比2:2は,低出力状態の電圧合成数1と電流合成数1の比1:1と等しい。   Low output voltage distribution number M, current distribution number N, voltage synthesis number K, current synthesis number L are all 1, and the ratio 2: 2 of high output voltage distribution number 2 and current distribution number 2 is low output. The ratio of the voltage distribution number 1 in the state and the current distribution number 1 is equal to 1: 1, and the ratio of the voltage synthesis number 2 in the high output state and the current synthesis number 2 is 2: 2 in the low power state. It is equal to the ratio of the composite number 1 to 1: 1.

このとき,図11の入力端子の電圧をVin2,電流をIin2とし,出力端子の電圧をVout2,電流をIout2とし,e点,f点での電圧をVe,Vf,電流をIe,Ifとすると,入力側については,
Vin2=1/n1*Ve
Iin2=n1*Ie
スイッチsw5がオフでsw3がオンであるので,
Ve/Ie=Zain
出力側については,
Vout2=n2*Vf
Iout2=1/n2*If
スイッチsw6がオフでsw4がオンであるので,
Vf/If=Zaout
となり,これらより,以下の関係が導かれる。
増幅回路全体の入力インピーダンス Zin=Vin2/Iin2=1/n12*Zain (8A)
増幅回路全体の出力インピーダンス Zout=Vout2/Iout2=n22*Zaout (9A)
増幅回路全体の電圧利得 |Vout2/Vin2|=n1*n2*|Av| (10A)
増幅回路全体の通過位相 arg(Vout2/Vin2)= arg(Av) (11A)
図12,図13は,上記の式(8)及び(8A)を説明する図である。図12には電圧分配回路が示され,分配前入力信号Vin,Iin,電圧分配数M,入力端子からみた入力インピーダンスZinとすると,トランスの変圧比1:n1の場合,トランスの二次側コイルの電圧はn1*Vin/M,電流はIin/n1であるので,増幅器ampへの入力インピーダンスをZainとすると,以下のとおりの関係が成り立つ
Zain= n12*Vin/M*Iin
そして,入力端子からの入力インピーダンスZinは,Vin/Iinであるので,
Zin=Vin/Iin= 1/n12*M*Zain (12)
となる。
At this time, if the voltage at the input terminal in FIG. 11 is Vin2, the current is Iin2, the voltage at the output terminal is Vout2, the current is Iout2, the voltages at points e and f are Ve, Vf, and the current is Ie, If. For the input side,
Vin2 = 1 / n1 * Ve
Iin2 = n1 * Ie
Since switch sw5 is off and sw3 is on,
Ve / Ie = Zain
For the output side,
Vout2 = n2 * Vf
Iout2 = 1 / n2 * If
Because switch sw6 is off and sw4 is on,
Vf / If = Zaout
From these, the following relationship is derived.
Input impedance of the entire amplifier circuit Zin = Vin2 / Iin2 = 1 / n1 2 * Zain (8A)
Output impedance of the entire amplifier circuit Zout = Vout2 / Iout2 = n2 2 * Zaout (9A)
Voltage gain of the entire amplifier circuit | Vout2 / Vin2 | = n1 * n2 * | Av | (10A)
Passing phase of the entire amplifier circuit arg (Vout2 / Vin2) = arg (Av) (11A)
12 and 13 are diagrams for explaining the above equations (8) and (8A). FIG. 12 shows a voltage distribution circuit, where the pre-distribution input signals Vin and Iin, the voltage distribution number M, and the input impedance Zin viewed from the input terminal, the transformer secondary coil when the transformer transformation ratio is 1: n1. Since the voltage of n1 * Vin / M and the current is Iin / n1, assuming that the input impedance to the amplifier amp is Zain, the following relationship holds:
Zain = n1 2 * Vin / M * Iin
And since the input impedance Zin from the input terminal is Vin / Iin,
Zin = Vin / Iin = 1 / n1 2 * M * Zain (12)
It becomes.

図13は電流分配回路が示され,電流分配数Nの例である。電流分配により分配後の電流はIin/N,電圧はVinであり,増幅器ampの入力インピーダンスをZainとすると,
Zain=N*Vin/Iin
そして,入力端子からみた入力インピーダンスZinは,Vin/Iinであるので,
Zin=Vin/Iin=Zain/N (13)
したがって,電圧分配回路と電流分配回路とを縦続接続すると,上記式(12)(13)から,次の通りである。
Zin=1/n12*(M/N)*Zain (8B)
電流合成回路,電圧合成回路の場合も上記と同様の計算により,
Zout=n22*(K/L)*Zaout (9B)
加えてこれらの回路を用いた増幅器全体の電圧利得、通過位相については、
|Vout/Vin|=n1*n2*M/K*|Av| (10B)
arg(Vout/Vin)=arg(Av) (10B)
となり,分配された信号が全て合成されるためMN=KLであり,M/Kが一定となり電圧利得、通過位相が一定となる。
FIG. 13 shows a current distribution circuit, which is an example of the number N of current distribution. The current after distribution is Iin / N, the voltage is Vin, and the input impedance of the amplifier amp is Zain.
Zain = N * Vin / Iin
And since the input impedance Zin seen from the input terminal is Vin / Iin,
Zin = Vin / Iin = Zain / N (13)
Therefore, when the voltage distribution circuit and the current distribution circuit are connected in cascade, the following equations (12) and (13) are obtained.
Zin = 1 / n1 2 * (M / N) * Zain (8B)
In the case of current synthesis circuit and voltage synthesis circuit,
Zout = n2 2 * (K / L) * Zaout (9B)
In addition, regarding the voltage gain and passing phase of the entire amplifier using these circuits,
| Vout / Vin | = n1 * n2 * M / K * | Av | (10B)
arg (Vout / Vin) = arg (Av) (10B)
Since all the distributed signals are combined, MN = KL, M / K is constant, and the voltage gain and passing phase are constant.

上記式(8B)(9B)(10B)(11B)において,図10の電圧分配数M=2,電流分配数N=2,電圧合成数K=2,電流合成数L=2を代入すると式(8)(9)(10)(11)が導かれることが理解できる。   In the above formulas (8B), (9B), (10B), and (11B), substituting the voltage distribution number M = 2, the current distribution number N = 2, the voltage composition number K = 2, and the current composition number L = 2 in FIG. It can be understood that (8), (9), (10), and (11) are derived.

また,図11の電圧分配数M=1,電流分配数N=1,電圧合成数K=1,電流合成数L=1を代入すると,上記の式(8A)(9A)(10A)(11A)が導かれることが理解できる。   When the voltage distribution number M = 1, the current distribution number N = 1, the voltage composition number K = 1, and the current composition number L = 1 in FIG. 11 are substituted, the above equations (8A), (9A), (10A), and (11A) ) Can be understood.

よって,入力及び出力から見た入出力インピーダンスZin,Zout,利得,通過位相は,高出力状態と低出力状態で等しく,動作状態の増幅器ampの数だけが異なっている。したがって,電力増幅回路の出力状態を高出力と低出力とに制御信号CNTにより切り替えたとしても,入出力インピーダンスZin,Zout,利得,通過位相は,一定に保たれるので,両状態間で切り替える際の通信品質の低下を防ぐことができる。   Therefore, the input / output impedances Zin, Zout, gain, and passing phase as seen from the input and output are the same in the high output state and the low output state, and only the number of amplifiers in the operating state is different. Therefore, even if the output state of the power amplifier circuit is switched between the high output and the low output by the control signal CNT, the input / output impedances Zin, Zout, the gain, and the passing phase are kept constant. It is possible to prevent deterioration in communication quality.

図14は,本実施の形態における第1の具体例の構成図である。第1の具体例は,図8,図10,図11と同じであり,入力側に最大分配数2の電圧分配回路10と最大分配数2の電流分配回路12とが縦続接続され,4つの増幅器ampが設けられ,出力側に最大合成数2の電流合成回路20と最大合成数2の電圧合成回路22とが縦続接続されている。そして,図14中に状態1,2の場合の,電圧分配数M,電流分配数N,それらの比M/N,電流合成数L,電圧合成数K,それらの比K/Lがそれぞれ示されている。状態1が高出力状態,状態2が低出力状態であり,両状態間でM/N,K/Lに変更はないので,入出力インピーダンスZin,Zout,利得,通過位相は一定に保たれる。   FIG. 14 is a configuration diagram of a first specific example in the present embodiment. The first specific example is the same as FIG. 8, FIG. 10 and FIG. 11, and the voltage distribution circuit 10 with the maximum distribution number 2 and the current distribution circuit 12 with the maximum distribution number 2 are cascaded on the input side. An amplifier amp is provided, and a current synthesis circuit 20 with a maximum synthesis number 2 and a voltage synthesis circuit 22 with a maximum synthesis number 2 are cascaded on the output side. FIG. 14 shows the number of voltage distributions M, the number of current distributions N, their ratio M / N, the number of current synthesis L, the number of voltage synthesis K, and the ratio K / L for states 1 and 2, respectively. Has been. State 1 is a high output state, state 2 is a low output state, and there is no change in M / N and K / L between both states, so the input / output impedances Zin, Zout, gain, and passing phase are kept constant. .

図15は,本実施の形態における第2の具体例の構成図である。第2の具体例は,図14とは,入力側で前段に電流分配回路12,後段に電圧分配回路10を設け,出力側で前段に電圧合成回路22,後段に電流合成回路20を設けたことだけが異なる。それ以外は同じ構成である。この場合も,状態1が高出力状態,状態2が低出力状態であり,両状態間でM/N,K/Lに変更はないので,入出力インピーダンスZin,Zout,利得,通過位相は一定に保たれる。   FIG. 15 is a configuration diagram of a second specific example of the present embodiment. The second specific example is different from FIG. 14 in that the current distribution circuit 12 is provided in the front stage on the input side, the voltage distribution circuit 10 is provided in the rear stage, the voltage synthesis circuit 22 is provided in the front stage on the output side, and the current synthesis circuit 20 is provided in the rear stage. Only thing is different. Other than that, the configuration is the same. Also in this case, state 1 is a high output state, state 2 is a low output state, and there is no change in M / N and K / L between both states, so input / output impedances Zin, Zout, gain, and passing phase are constant. To be kept.

図16は,本実施の形態における第3の具体例の構成図である。第3の具体例は,入力側に最大分配数2の電圧分配回路10と最大分配数4の電流分配回路12とが縦続接続され,8つの増幅器ampが設けられ,出力側に最大合成数4の電流合成回路20と最大合成数2の電圧合成回路22とが縦続接続されている。そして,状態1の高出力状態と状態2の低出力状態間でM/N=1/2,K/L=1/2に変更はないので,入出力インピーダンスZin,Zout,利得,通過位相は一定に保たれる。   FIG. 16 is a configuration diagram of a third specific example of the present embodiment. In the third specific example, a voltage distribution circuit 10 having a maximum distribution number 2 and a current distribution circuit 12 having a maximum distribution number 4 are cascaded on the input side, eight amplifiers amp are provided, and a maximum composite number 4 is provided on the output side. Current synthesis circuit 20 and voltage synthesis circuit 22 having a maximum synthesis number of 2 are connected in cascade. And since there is no change to M / N = 1/2 and K / L = 1/2 between the high output state of state 1 and the low output state of state 2, the input / output impedances Zin, Zout, gain, and passing phase are Kept constant.

第3の具体例において,入力側の電圧分配回路と電流分配回路を逆に接続し,出力側の電流合成回路と電圧合成回路とを逆に接続しても,同様に,状態1の高出力状態と状態2の低出力状態間で,入出力インピーダンスZin,Zout,利得,通過位相は一定に保たれる。   In the third specific example, even if the input side voltage distribution circuit and the current distribution circuit are connected in reverse, and the output side current synthesis circuit and the voltage synthesis circuit are connected in reverse, the high output in the state 1 is similarly obtained. The input / output impedances Zin, Zout, gain, and passing phase are kept constant between the state and the state 2 low output state.

図17は,本実施の形態における第4の具体例の構成図である。第4の具体例は,入力側に最大分配数3の電圧分配回路10と最大分配数3の電流分配回路12とが縦列接続され,9つの増幅器ampが設けられ,出力側に最大合成数3の電流合成回路20と最大合成数3の電圧合成回路22とが縦続接続されている。そして,状態1の高出力状態と,状態2の中出力状態と,状態3の低出力状態間でM/N=1,K/L=1に変更はないので,入出力インピーダンスZin,Zout,利得,通過位相は一定に保たれる。そして,状態1,2,3の場合の動作状態の増幅器ampの数は,9個,4個,1個になる。   FIG. 17 is a configuration diagram of a fourth specific example of the present embodiment. In the fourth specific example, a voltage distribution circuit 10 having a maximum distribution number 3 and a current distribution circuit 12 having a maximum distribution number 3 are connected in cascade on the input side, nine amplifiers amp are provided, and a maximum composite number 3 is provided on the output side. Current synthesis circuit 20 and voltage synthesis circuit 22 having a maximum synthesis number of 3 are connected in cascade. Since there is no change in M / N = 1 and K / L = 1 between the high output state of state 1, the medium output state of state 2, and the low output state of state 3, the input / output impedances Zin, Zout, Gain and passing phase are kept constant. In the case of states 1, 2, and 3, the number of operational amplifiers amp is nine, four, and one.

第4の具体例において,入力側の電圧分配回路と電流分配回路を逆に接続し,出力側の電流合成回路と電圧合成回路とを逆に接続しても,同様に,状態1の高出力状態と,状態2の中出力状態と,状態3の低出力状態間で,M/N=1,K/L=1に保つことで,入出力インピーダンスZin,Zout,利得,通過位相は一定に保たれる。   In the fourth specific example, even if the input side voltage distribution circuit and the current distribution circuit are connected in reverse and the output side current synthesis circuit and the voltage synthesis circuit are connected in reverse, the high output of the state 1 is similarly obtained. By keeping M / N = 1 and K / L = 1 between the state, the medium output state of state 2 and the low output state of state 3, the input / output impedances Zin, Zout, gain and pass phase are constant. Kept.

図18は,本実施の形態における第5の具体例の構成図である。第5の具体例は,入力側に最大分配数4の電圧分配回路10と最大分配数4の電流分配回路12とが縦続接続され,16つの増幅器ampが設けられ,出力側に最大合成数4の電流合成回路20と最大合成数4の電圧合成回路22とが縦続接続されている。そして,状態1,2,3,4の間でM/N=1,K/L=1に変更はないので,入出力インピーダンスZin,Zout,利得,通過位相は一定に保たれる。そして,状態1,2,3,4の場合の動作状態の増幅器ampの数は,16個,9個,4個,1個になる。   FIG. 18 is a configuration diagram of a fifth specific example of the present embodiment. In the fifth specific example, a voltage distribution circuit 10 having a maximum distribution number 4 and a current distribution circuit 12 having a maximum distribution number 4 are cascaded on the input side, 16 amplifiers amps are provided, and a maximum composite number 4 is provided on the output side. Current synthesis circuit 20 and voltage synthesis circuit 22 having a maximum synthesis number of 4 are connected in cascade. Since there is no change in M / N = 1 and K / L = 1 between states 1, 2, 3, and 4, input / output impedances Zin, Zout, gain, and passing phase are kept constant. In the case of states 1, 2, 3, and 4, the number of operational amplifiers amp is 16, 9, 4, and 1.

第5の具体例において,入力側の電圧分配回路と電流分配回路を逆に接続し,出力側の電流合成回路と電圧合成回路とを逆に接続しても,同様に,状態1,2,3,4の間で,M/N=1,K/L=1に保つことで,入出力インピーダンスZin,Zout,利得,通過位相は一定に保たれる。   In the fifth specific example, even if the input side voltage distribution circuit and the current distribution circuit are connected in reverse and the output side current synthesis circuit and the voltage synthesis circuit are connected in reverse, the states 1, 2, By maintaining M / N = 1 and K / L = 1 between 3 and 4, the input / output impedances Zin, Zout, gain, and passing phase are kept constant.

以上の具体例から明らかなとおり,分配比M/Nと合成比K/Lを一定に保つようにそれぞれの分配数,合成数を制御信号CNTにより制御するとともに,それに対応して動作させる増幅器ampの数を制御することで,高出力状態と低出力状態との間で切り替えても,入出力インピーダンス,利得,通過位相は一定に保たれる。よって,通信品質の劣化を抑制しつつ,低出力状態時の電力効率を高くすることができる。   As is clear from the above specific examples, the number of distributions and the number of synthesis are controlled by the control signal CNT so as to keep the distribution ratio M / N and the synthesis ratio K / L constant, and the amplifier amp that operates correspondingly By controlling the number, the input / output impedance, gain, and passing phase are kept constant even when switching between the high output state and the low output state. Therefore, it is possible to increase power efficiency in a low output state while suppressing deterioration in communication quality.

そして,最大出力状態に制御する場合は,分配数と合成数を最大分配数,最大合成数に制御し,全ての増幅器ampを動作状態に制御することが望ましい。   When controlling to the maximum output state, it is desirable to control the distribution number and the combination number to the maximum distribution number and the maximum combination number, and to control all the amplifiers amp to the operating state.

上記の実施の形態では,電圧分配回路および電圧合成回路を複数のトランスにより実現しているが,他の電圧合成回路および電圧分配回路であっても,同様に,高出力状態と低出力状態との間で切り替えても,入出力インピーダンス,利得,通過位相は一定に保たれて,通信品質の劣化を抑制しつつ,低出力状態時の電力効率を高くすることができる。同様の効果を得ることができる。   In the above embodiment, the voltage distribution circuit and the voltage synthesis circuit are realized by a plurality of transformers. However, in the case of other voltage synthesis circuits and voltage distribution circuits, the high output state and the low output state are similarly set. Even when switching between, the input / output impedance, the gain, and the passing phase are kept constant, and the power efficiency in the low output state can be increased while suppressing the deterioration of the communication quality. Similar effects can be obtained.

さらに,電流分配回路および電流合成回路を並列接続により実現しているが,他の電流合成回路および電流分配回路であっても同様の効果を得ることができる。   Furthermore, although the current distribution circuit and the current synthesis circuit are realized by parallel connection, the same effect can be obtained even with other current synthesis circuits and current distribution circuits.

以上の実施の形態をまとめると,次の付記のとおりである。   The above embodiment is summarized as follows.

(付記1)
分配前入力信号の電力を分配し複数の分配入力信号を出力する電力分配回路と,
前記分配入力信号をそれぞれ増幅する複数の増幅器と,
前記複数の増幅器それぞれの分配出力信号の電力を合成して合成後出力信号を出力する電力合成回路とを有し,
前記電力分配回路は,入力信号の電圧を複数の電圧に分配する電圧分配回路と,入力信号の電流を複数の電流に分配する電流分配回路とを,いずれかを前段にして縦続接続し,前段の電圧または電流分配回路に前記分配前入力信号を入力し,後段の電流または電圧分配回路が前記分配入力信号を出力し,
前記電力合成回路は,複数の入力信号の電圧を合成する電圧合成回路と,複数の入力信号の電流を合成する電流合成回路とをいずれかを前段にして縦続接続し,前段の電流または電圧合成回路に前記分配出力信号を入力し,後段の電圧または電流合成回路が前記合成後出力信号を出力し,
さらに,前記電圧分配回路の電圧分配数Mと前記電流分配回路の電流分配数Nの比M/Nと,前記電圧合成回路の電圧合成数Kと前記電流合成回路の電流合成数Lの比K/Lとを一定に維持しながら,前記分配数M,Nと前記合成数K,Lとを変化させると共に,信号が分配される増幅器を動作状態に制御し分配されない増幅器を非動作状態に制御する制御回路を有する増幅回路。
(Appendix 1)
A power distribution circuit that distributes the power of the input signal before distribution and outputs a plurality of distribution input signals;
A plurality of amplifiers each amplifying the distributed input signal;
A power combining circuit for combining the power of the distributed output signals of each of the plurality of amplifiers and outputting the combined output signal;
The power distribution circuit includes a voltage distribution circuit that distributes the voltage of the input signal to a plurality of voltages and a current distribution circuit that distributes the current of the input signal to a plurality of currents, one of which is connected in cascade, The pre-distribution input signal is input to the voltage or current distribution circuit of the current stage, and the subsequent current or voltage distribution circuit outputs the distribution input signal,
The power combining circuit is configured by cascading a voltage combining circuit for combining the voltages of a plurality of input signals and a current combining circuit for combining the currents of the plurality of input signals, one of which is a previous stage, and combining the current or voltage of the previous stage. The distribution output signal is input to the circuit, and the subsequent voltage or current synthesis circuit outputs the synthesized output signal,
Further, the ratio M / N of the voltage distribution number M of the voltage distribution circuit and the current distribution number N of the current distribution circuit, and the ratio K of the voltage synthesis number K of the voltage synthesis circuit and the current synthesis number L of the current synthesis circuit. The distribution numbers M and N and the combined numbers K and L are changed while maintaining / L constant, and the amplifier to which the signal is distributed is controlled to be in an operating state, and the amplifier that is not distributed is controlled to be in a non-operating state. An amplifying circuit having a control circuit.

(付記2)
付記1において,
前記電圧分配回路は,入力端子と基準電圧との間に複数のトランスの一次側コイルが直列に接続され,複数の出力端子と前記基準電圧との間にそれぞれ前記複数のトランスの二次側コイルが並列に設けられ,前記一次側コイルの接続点と前記基準電圧との間にそれぞれ第1のスイッチが設けられ,
前記電流分配回路は,入力端子と複数の出力端子との間にそれぞれ第2のスイッチが設けられ,
前記電圧合成回路は,複数の入力端子と基準電圧との間にそれぞれ複数のトランスの一次側コイルが並列に設けられ,出力端子と前記基準電圧との間に前記複数のトランスの二次側コイルが直列に接続され,前記二次側コイルの接続点と前記基準電圧との間にそれぞれ第3のスイッチが設けられ,
前記電流合成回路は,複数の入力端子と出力端子との間にそれぞれ第4のスイッチが設けられ,
前記第1,第2,第3,第4のスイッチが前記制御回路からの制御信号に応じてオン,オフ制御される増幅回路。
(Appendix 2)
In Appendix 1,
In the voltage distribution circuit, primary coils of a plurality of transformers are connected in series between an input terminal and a reference voltage, and secondary coils of the plurality of transformers are respectively connected between a plurality of output terminals and the reference voltage. Are provided in parallel, and a first switch is provided between the connection point of the primary coil and the reference voltage,
In the current distribution circuit, a second switch is provided between the input terminal and the plurality of output terminals,
In the voltage synthesis circuit, primary coils of a plurality of transformers are respectively provided in parallel between a plurality of input terminals and a reference voltage, and secondary coils of the plurality of transformers are provided between an output terminal and the reference voltage. Are connected in series, and a third switch is provided between the connection point of the secondary coil and the reference voltage,
In the current synthesis circuit, a fourth switch is provided between each of the plurality of input terminals and the output terminal,
An amplifier circuit in which the first, second, third and fourth switches are on / off controlled in accordance with a control signal from the control circuit.

(付記3)
付記1または2において,
前記複数の増幅器は,それぞれ増幅トランジスタを有し,
前記制御回路は,前記増幅器の増幅トランジスタへのバイアスをオンにして前記増幅器を動作状態にし,前記バイアスをオフにして前記増幅器を非動作状態にする増幅回路。
(Appendix 3)
In Appendix 1 or 2,
Each of the plurality of amplifiers includes an amplification transistor;
The control circuit is an amplifier circuit that turns on a bias to an amplifier transistor of the amplifier to turn on the amplifier, turns off the bias, and puts the amplifier into a non-operational state.

(付記4)
付記1乃至3のいずれかにおいて,
前記制御回路は,第1の電力出力時では,前記第1の電力出力時より出力電力が低い第2の電力出力時よりも,前記分配数M,Nと前記合成数K,Lをより大きく制御し,前記動作状態に制御する前記複数の増幅器の数をより多くする増幅回路。
(Appendix 4)
In any one of appendices 1 to 3,
In the first power output, the control circuit increases the distribution numbers M and N and the combined numbers K and L more than in the second power output in which the output power is lower than that in the first power output. An amplifier circuit for controlling and increasing the number of the plurality of amplifiers controlled to the operation state.

(付記5)
付記4において,
前記制御回路は,最大電力出力時では,前記分配数M,Nと前記合成数K,Lを最大数に制御し,前記動作状態に制御する前記複数の増幅器の数を最大数に制御する増幅回路。
(Appendix 5)
In Appendix 4,
The control circuit controls the distribution numbers M and N and the combined numbers K and L to a maximum number at the time of maximum power output, and an amplification for controlling the number of the plurality of amplifiers controlled to the operation state to the maximum number. circuit.

(付記6)
付記2において,
前記電圧分配回路の前記複数のトランスの一次側コイルと二次側コイルの巻数比は同じであり,前記電圧合成回路の前記複数のトランスの一次側コイルと二次側コイルの巻数比も同じである増幅回路。
(Appendix 6)
In Appendix 2,
The turns ratio of the primary side coils and the secondary side coils of the plurality of transformers of the voltage distribution circuit is the same, and the turns ratio of the primary side coils and the secondary side coils of the transformers of the voltage synthesis circuit are also the same. An amplifier circuit.

(付記7)
付記1乃至3のいずれかにおいて,
前記第1乃至第4のスイッチは,入出力端子間にソース,ドレインが接続されたMOSトランジスタを有する増幅回路。
(Appendix 7)
In any one of appendices 1 to 3,
The first to fourth switches are amplifier circuits each having a MOS transistor having a source and a drain connected between input and output terminals.

(付記8)
付記1乃至3のいずれかにおいて,
前記第1乃至第4のスイッチは,入出力端子間にMOSトランジスタとキャパシタとを直列に接続するとともに,前記入出力端子間にインダクタンスを前記MOSトランジスタとキャパシタの直列回路に並列に接続し,前記MOSトランジスタがオンの時に入力される高周波信号がLC共振する増幅回路。
(Appendix 8)
In any one of appendices 1 to 3,
The first to fourth switches connect a MOS transistor and a capacitor in series between input and output terminals, and connect an inductance in parallel to the series circuit of the MOS transistor and capacitor between the input and output terminals. An amplifying circuit in which a high-frequency signal inputted when the MOS transistor is turned on undergoes LC resonance.

(付記9)
付記1乃至3のいずれかにおいて,
前記第1乃至第4のスイッチは,オンの時に入出力端子間が接触状態となり,オフの時に前記入出力端子間が非接触状態にされるMEMSスイッチである増幅回路。
(Appendix 9)
In any one of appendices 1 to 3,
The amplification circuit is a MEMS switch in which the first to fourth switches are in a contact state between the input / output terminals when turned on and are in a non-contact state between the input / output terminals when turned off.

1:電力分配回路 2:電力合成回路
3:制御回路 amp:増幅器
1: Power distribution circuit 2: Power synthesis circuit 3: Control circuit amp: Amplifier

Claims (5)

分配前入力信号の電力を分配し複数の分配入力信号を出力する電力分配回路と,
前記分配入力信号をそれぞれ増幅する複数の増幅器と,
前記複数の増幅器それぞれの分配出力信号の電力を合成して合成後出力信号を出力する電力合成回路とを有し,
前記電力分配回路は,入力信号の電圧を複数の電圧に分配する電圧分配回路と,入力信号の電流を複数の電流に分配する電流分配回路とを,いずれかを前段にして縦続接続し,前段の電圧または電流分配回路に前記分配前入力信号を入力し,後段の電流または電圧分配回路が前記分配入力信号を出力し,
前記電力合成回路は,複数の入力信号の電圧を合成する電圧合成回路と,複数の入力信号の電流を合成する電流合成回路とをいずれかを前段にして縦続接続し,前段の電流または電圧合成回路に前記分配出力信号を入力し,後段の電圧または電流合成回路が前記合成後出力信号を出力し,
さらに,前記電圧分配回路の電圧分配数Mと前記電流分配回路の電流分配数Nの比M/Nと,前記電圧合成回路の電圧合成数Kと前記電流合成回路の電流合成数Lの比K/Lとを一定に維持しながら,前記分配数M,Nと前記合成数K,Lとを変化させると共に,信号が分配される増幅器を動作状態に制御し分配されない増幅器を非動作状態に制御する制御回路を有する増幅回路。
A power distribution circuit that distributes the power of the input signal before distribution and outputs a plurality of distribution input signals;
A plurality of amplifiers each amplifying the distributed input signal;
A power combining circuit for combining the power of the distributed output signals of each of the plurality of amplifiers and outputting the combined output signal;
The power distribution circuit includes a voltage distribution circuit that distributes the voltage of the input signal to a plurality of voltages and a current distribution circuit that distributes the current of the input signal to a plurality of currents, one of which is connected in cascade, The pre-distribution input signal is input to the voltage or current distribution circuit of the current stage, and the subsequent current or voltage distribution circuit outputs the distribution input signal,
The power combining circuit is configured by cascading a voltage combining circuit for combining the voltages of a plurality of input signals and a current combining circuit for combining the currents of the plurality of input signals, one of which is a previous stage, and combining the current or voltage of the previous stage. The distribution output signal is input to the circuit, and the subsequent voltage or current synthesis circuit outputs the synthesized output signal,
Further, the ratio M / N of the voltage distribution number M of the voltage distribution circuit and the current distribution number N of the current distribution circuit, and the ratio K of the voltage synthesis number K of the voltage synthesis circuit and the current synthesis number L of the current synthesis circuit. The distribution numbers M and N and the combined numbers K and L are changed while maintaining / L constant, and the amplifier to which the signal is distributed is controlled to be in an operating state, and the amplifier that is not distributed is controlled to be in a non-operating state. An amplifying circuit having a control circuit.
請求項1において,
前記電圧分配回路は,入力端子と基準電圧との間に複数のトランスの一次側コイルが直列に接続され,複数の出力端子と前記基準電圧との間にそれぞれ前記複数のトランスの二次側コイルが並列に設けられ,前記一次側コイルの接続点と前記基準電圧との間にそれぞれ第1のスイッチが設けられ,
前記電流分配回路は,入力端子と複数の出力端子との間にそれぞれ第2のスイッチが設けられ,
前記電圧合成回路は,複数の入力端子と基準電圧との間にそれぞれ複数のトランスの一次側コイルが並列に設けられ,出力端子と前記基準電圧との間に前記複数のトランスの二次側コイルが直列に接続され,前記二次側コイルの接続点と前記基準電圧との間にそれぞれ第3のスイッチが設けられ,
前記電流合成回路は,複数の入力端子と出力端子との間にそれぞれ第4のスイッチが設けられ,
前記第1,第2,第3,第4のスイッチが前記制御回路からの制御信号に応じてオン,オフ制御される増幅回路。
In claim 1,
In the voltage distribution circuit, primary coils of a plurality of transformers are connected in series between an input terminal and a reference voltage, and secondary coils of the plurality of transformers are respectively connected between a plurality of output terminals and the reference voltage. Are provided in parallel, and a first switch is provided between the connection point of the primary coil and the reference voltage,
In the current distribution circuit, a second switch is provided between the input terminal and the plurality of output terminals,
In the voltage synthesis circuit, primary coils of a plurality of transformers are respectively provided in parallel between a plurality of input terminals and a reference voltage, and secondary coils of the plurality of transformers are provided between an output terminal and the reference voltage. Are connected in series, and a third switch is provided between the connection point of the secondary coil and the reference voltage,
In the current synthesis circuit, a fourth switch is provided between each of the plurality of input terminals and the output terminal,
An amplifier circuit in which the first, second, third and fourth switches are on / off controlled in accordance with a control signal from the control circuit.
請求項1または2において,
前記複数の増幅器は,それぞれ増幅トランジスタを有し,
前記制御回路は,前記増幅器の増幅トランジスタへのバイアスをオンにして前記増幅器を動作状態にし,前記バイアスをオフにして前記増幅器を非動作状態にする増幅回路。
In claim 1 or 2,
Each of the plurality of amplifiers includes an amplification transistor;
The control circuit is an amplifier circuit that turns on a bias to an amplifier transistor of the amplifier to turn on the amplifier, turns off the bias, and puts the amplifier into a non-operational state.
請求項1乃至3のいずれかにおいて,
前記制御回路は,第1の電力出力時では,前記第1の電力出力時より出力電力が低い第2の電力出力時よりも,前記分配数M,Nと前記合成数K,Lをより大きく制御し,前記動作状態に制御する前記複数の増幅器の数をより多くする増幅回路。
In any one of Claims 1 thru | or 3,
In the first power output, the control circuit increases the distribution numbers M and N and the combined numbers K and L more than in the second power output in which the output power is lower than that in the first power output. An amplifier circuit for controlling and increasing the number of the plurality of amplifiers controlled to the operation state.
請求項2において,
前記電圧分配回路の前記複数のトランスの一次側コイルと二次側コイルの巻数比は同じであり,前記電圧合成回路の前記複数のトランスの一次側コイルと二次側コイルの巻数比も同じである増幅回路。
In claim 2,
The turns ratio of the primary side coils and the secondary side coils of the plurality of transformers of the voltage distribution circuit is the same, and the turns ratio of the primary side coils and the secondary side coils of the transformers of the voltage synthesis circuit are also the same. An amplifier circuit.
JP2010221595A 2010-09-30 2010-09-30 Amplifier circuit Expired - Fee Related JP5459169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010221595A JP5459169B2 (en) 2010-09-30 2010-09-30 Amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221595A JP5459169B2 (en) 2010-09-30 2010-09-30 Amplifier circuit

Publications (2)

Publication Number Publication Date
JP2012080218A true JP2012080218A (en) 2012-04-19
JP5459169B2 JP5459169B2 (en) 2014-04-02

Family

ID=46239993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221595A Expired - Fee Related JP5459169B2 (en) 2010-09-30 2010-09-30 Amplifier circuit

Country Status (1)

Country Link
JP (1) JP5459169B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017509224A (en) * 2014-01-27 2017-03-30 日本テキサス・インスツルメンツ株式会社 Systems, methods, and devices for power amplification of signals in integrated circuits
WO2023101581A1 (en) * 2021-12-02 2023-06-08 Telefonaktiebolaget Lm Ericsson (Publ) A power combiner for power amplifier
CN117559925A (en) * 2024-01-12 2024-02-13 电子科技大学 Multimode high-efficiency power amplifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448715U (en) * 1990-08-30 1992-04-24
JPH06132746A (en) * 1992-10-20 1994-05-13 Sharp Corp Power amplifier
JPH08501425A (en) * 1992-09-15 1996-02-13 アナロジック コーポレーション High power solid state RF amplifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448715U (en) * 1990-08-30 1992-04-24
JPH08501425A (en) * 1992-09-15 1996-02-13 アナロジック コーポレーション High power solid state RF amplifier
JPH06132746A (en) * 1992-10-20 1994-05-13 Sharp Corp Power amplifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017509224A (en) * 2014-01-27 2017-03-30 日本テキサス・インスツルメンツ株式会社 Systems, methods, and devices for power amplification of signals in integrated circuits
WO2023101581A1 (en) * 2021-12-02 2023-06-08 Telefonaktiebolaget Lm Ericsson (Publ) A power combiner for power amplifier
CN117559925A (en) * 2024-01-12 2024-02-13 电子科技大学 Multimode high-efficiency power amplifier
CN117559925B (en) * 2024-01-12 2024-03-29 电子科技大学 Multimode high-efficiency power amplifier

Also Published As

Publication number Publication date
JP5459169B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
CN106656068B (en) Dual operation mode power amplifier
USRE42612E1 (en) Switched-mode power amplifier using lumped element impedance inverter for parallel combining
US9099969B2 (en) Class AB amplifiers
WO2012098863A1 (en) High-frequency power amplifier
US7692494B2 (en) Low strain variable frequency amplifier
JP5962462B2 (en) Amplifier and wireless communication device
JP5523619B2 (en) Variable gain amplifier
US10211797B2 (en) Bidirectional amplifier
TWI655843B (en) Multiple RF power amplifier
KR20200052696A (en) Wideband Variable Gain Amplifier with Low Phase Variation
JP5459169B2 (en) Amplifier circuit
KR20080037559A (en) Bias circuit
US9667202B2 (en) Power amplifier and method
WO2013153894A1 (en) Cascode amplifier and amplifier circuit
JP2013110520A (en) Power amplifier
KR100835057B1 (en) Power amplifier
EP2371059A1 (en) Operational transconductance amplifier having two amplification stages.
CN117378142A (en) Low noise amplifier with built-in SUTARDJA transformer
JP2013009249A (en) Power amplifier
CN112039451A (en) Variable gain circuit, high frequency switch, and transistor circuit
WO2018037688A1 (en) Signal amplification device
JP2023068288A (en) Differential amplification device
KR101727610B1 (en) Power amplifier for radio frequency
JP2020017812A (en) amplifier
Gao et al. An improved method of power control with CMOS class-E power amplifiers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees