JP2012080156A - Signal transmission circuit, switching element drive circuit and power conversion apparatus - Google Patents

Signal transmission circuit, switching element drive circuit and power conversion apparatus Download PDF

Info

Publication number
JP2012080156A
JP2012080156A JP2010220470A JP2010220470A JP2012080156A JP 2012080156 A JP2012080156 A JP 2012080156A JP 2010220470 A JP2010220470 A JP 2010220470A JP 2010220470 A JP2010220470 A JP 2010220470A JP 2012080156 A JP2012080156 A JP 2012080156A
Authority
JP
Japan
Prior art keywords
signal
circuit
switching element
arm switching
complementary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010220470A
Other languages
Japanese (ja)
Other versions
JP5416673B2 (en
Inventor
Masatake Nametake
正剛 行武
Junichi Sakano
順一 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010220470A priority Critical patent/JP5416673B2/en
Publication of JP2012080156A publication Critical patent/JP2012080156A/en
Application granted granted Critical
Publication of JP5416673B2 publication Critical patent/JP5416673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To optionally check whether a transmitting side is in a normal operating state, for example, for a transmitting side anomaly or noise contamination, and reliably prevent a wrong operation due to a fluctuation in reference potential at switching.SOLUTION: A signal transmission circuit includes a complementary signal drive circuit for outputting positive logic and negative logic complementary signals based on a transmission signal, a complementary signal transmission path for transmitting the complementary signals in respective independent channels, and a complementary signal determination circuit for receiving the signals on the complementary signal transmission path and determining whether or not both are complementary signals on the basis of the exclusive disjunction of both, and regards the conjunction of an output signal of the complementary signal determination circuit and the transmission signal as a received signal.

Description

本発明は、信号伝送回路及びこの信号伝送回路を使用した、電力変換装置に用いられる絶縁伝送回路、半導体スイッチング素子の駆動回路及びインバータ装置などからなる電力変換装置に関する。   The present invention relates to a signal transmission circuit and a power conversion device including an insulation transmission circuit used in a power conversion device, a semiconductor switching element drive circuit, an inverter device, and the like using the signal transmission circuit.

インバータなどの電力変換装置において、負荷を駆動するための電力用スイッチング素子は、主電源端子間に直列に接続されている。
図8に一例を示す。
低い側の電力用スイッチング素子S1(以下、下アームスイッチング素子と称する。)と、高い側の電力用スイッチング素子S2(以下、上アームスイッチング素子と称する)は、それぞれ下アームスイッチング素子の入力信号、及び上アームスイッチング素子の入力信号により駆動されるドライバ105、106によりオンオフされるもので、これらのスイッチング素子の中点107に負荷108が接続されている。
In a power converter such as an inverter, a power switching element for driving a load is connected in series between main power supply terminals.
An example is shown in FIG.
The low-side power switching element S1 (hereinafter referred to as the lower arm switching element) and the high-side power switching element S2 (hereinafter referred to as the upper arm switching element) are respectively input signals of the lower arm switching element, These are turned on and off by drivers 105 and 106 driven by input signals of the upper arm switching elements, and a load 108 is connected to a middle point 107 of these switching elements.

このような装置においては、上下アームのオン/オフの状態により、下アームスイッチング素子S1の基準電位は基本的には変動しないが、上アームスイッチング素子S2の基準電位は変動し、電位的に浮動の状態になってしまう。
このような装置においては、負荷108に、非常に高電圧のHVが印加されているため、下アームスイッチング素子1及び上アームスイッチング素子2の基準電位は、電位的に浮動の状態にし、鉄道車両に搭載された場合等において高電圧の感電等を確実に防止する必要がある。
そこで、基準電位が浮動電位となる上アームスイッチング素子S2を駆動するための入力信号は、いずれかの箇所で電気的に絶縁する必要がある。すなわち、基準電位が浮動電位となる下アームスイッチング素子S1及び上アームスイッチング素子S2を駆動するための入力信号は、いずれかの箇所で電気的に絶縁する必要がある。
このように、高耐圧の絶縁が要求される鉄道車両等においては、下記特許文献1にみられるように、パルストランスやフォトカプラなどの絶縁素子が用いられていた。
なお、この文献に示されているように、従来のスイッチング素子駆動のための絶縁手段は、1アーム当たり1チャネルで構成されている。
In such a device, the reference potential of the lower arm switching element S1 basically does not vary depending on the on / off state of the upper and lower arms, but the reference potential of the upper arm switching element S2 varies and floats in potential. It will be in the state of.
In such a device, since a very high voltage HV is applied to the load 108, the reference potentials of the lower arm switching element 1 and the upper arm switching element 2 are floated in terms of potential, and the railway vehicle It is necessary to reliably prevent a high voltage electric shock or the like in the case of being mounted on a battery.
Therefore, an input signal for driving the upper arm switching element S2 whose reference potential is a floating potential needs to be electrically insulated at any location. That is, an input signal for driving the lower arm switching element S1 and the upper arm switching element S2 whose reference potential is a floating potential needs to be electrically insulated at any location.
As described above, in railway vehicles and the like that require high voltage insulation, insulating elements such as pulse transformers and photocouplers have been used, as can be seen in Patent Document 1 below.
As shown in this document, the conventional insulating means for driving the switching element is composed of one channel per arm.

また、こうしたインバータなどの電力変換装置においては、各スイッチング素子への制御信号を伝送する伝送回路など信号系のエラーにより上下アームスイッチング素子S1、S2の同時オンを防ぐ必要があり、上下アームスイッチング素子S1、S2の駆動指令信号が、送信側や伝送回路などの異常やノイズの影響を受けることなく、相補的なものか否か、常時正確に安否を確認する必要がある。   Further, in such a power conversion device such as an inverter, it is necessary to prevent the upper and lower arm switching elements S1 and S2 from being simultaneously turned on by a signal system error such as a transmission circuit that transmits a control signal to each switching element. It is necessary to always confirm safety whether or not the drive command signals of S1 and S2 are complementary without being affected by abnormality or noise on the transmission side or the transmission circuit.

なお、下記特許文献2には、データ信号とクロック信号の多重化を目的に、データ信号とクロック信号の排他的論理和を採った信号を差動化して送信し、受信側では、差動受信した差動出力の排他的論理和を採ってクロック信号とデータ信号を分離することが示されている。   In Patent Document 2 below, for the purpose of multiplexing a data signal and a clock signal, a signal obtained by taking an exclusive OR of the data signal and the clock signal is differentiated and transmitted. It is shown that the clock signal and the data signal are separated by taking the exclusive OR of the differential outputs.

特開2008−270548号公報JP 2008-270548 A 特開2009−186502号公報JP 2009-186502 A

ところで、近年では、上述した入力信号の絶縁に磁気結合や容量結合を用いたアイソレータICなどが製品化され、鉄道車両向けや風力発電向けの電力変換装置への適用が進められている。磁気結合や容量結合を用いたアイソレータICでは、絶縁の1次側と2次側との間に寄生容量が存在するために、スイッチング時の基準電位の変動、いわゆるdV/dtに起因する誤動作が問題となってくる。磁気結合や容量結合を用いたアイソレータICではdV/dt耐量が数10kV/μs程度しかないため、例えば、100kV/μsを超えるような高いdV/dt耐量を要求される分野では利用できない。   By the way, in recent years, isolator ICs using magnetic coupling or capacitive coupling for the insulation of input signals described above have been commercialized, and application to power converters for railway vehicles and wind power generation has been promoted. In an isolator IC using magnetic coupling or capacitive coupling, since there is a parasitic capacitance between the primary side and the secondary side of insulation, a malfunction due to fluctuations in the reference potential at the time of switching, so-called dV / dt. It becomes a problem. An isolator IC using magnetic coupling or capacitive coupling has a dV / dt resistance of only about several tens of kV / μs, and thus cannot be used in a field requiring a high dV / dt resistance exceeding 100 kV / μs, for example.

しかし、従来は、上記特許文献1にみられるように、1アーム当たり1チャネルの絶縁手段を用いていたが、上述の磁気結合や容量結合を用いたアイソレータICを採用すれば、ワンパッケージ内に複数のチャネルを搭載することが非常に容易に実現することができる。
そこで、本発明では、上述のようなアイソレータICなどを活用することにより、例えば、駆動制御信号の2チャンネル化が大きなコストアップを招くことなく実現できることに着目し、例えば駆動制御信号のような1つの送信号に対し2チャンネルを用いて、駆動信号を正論理と負論理の相補信号で伝送し、受信側で、正論理と負論理の排他的論理和を採ることで、受信信号に異常が無いか、また、ノイズ混入など、送信側動作状態の安否を随時に確認することができるとともに、スイッチング時の基準電位の変動による誤動作ついても確実に防止することを目的とする。
However, conventionally, as shown in the above-mentioned Patent Document 1, one channel of insulation means is used per arm. However, if the isolator IC using the magnetic coupling or capacitive coupling described above is adopted, it is included in one package. It is very easy to mount a plurality of channels.
Therefore, in the present invention, attention is paid to the fact that, by utilizing the isolator IC as described above, for example, two channels of drive control signals can be realized without causing a significant increase in cost. Using two channels for one transmission signal, the drive signal is transmitted as a complementary signal of positive logic and negative logic, and on the receiving side, an exclusive OR of positive logic and negative logic is taken, so that the reception signal is abnormal. It is possible to confirm at any time whether the transmission side operation state is safe, such as noise contamination, and to reliably prevent malfunctions due to fluctuations in the reference potential during switching.

本発明では、上記の課題を解決するため、受信した正論理と負論理が相補信号であれば、駆動制御信号が正常に受信されたものとして、スイッチング素子をオン状態に制御し、また、相補信号ではなく双方が同レベルの信号であれば、何らかの異常があると判断して、スイッチング素子への制御信号を遮断する。より具体的には、本発明の信号伝送回路は次のように構成される。
(1)送信信号に基づいて、正論理と負論理の相補信号を出力する相補信号駆動回路と、前記相補信号をそれぞれ独立したチャンネルで伝送する相補信号伝送路と、相補信号伝送路と、前記相補信号伝送路の信号を受信して、両者の排他的論理和に基づいて、両者が相補信号であるか否かを判定する相補信号判定回路と、前記相補信号伝送路の少なくともいずれかの信号を受信して信号を判定する受信回路を有する信号伝送回路において、前記相補信号判定回路の出力信号と前記受信回路の出力送信信号との論理積を受信信号とする。
In the present invention, in order to solve the above-described problem, if the received positive logic and negative logic are complementary signals, it is assumed that the drive control signal has been normally received, and the switching element is controlled to be in the ON state. If the signals are not signals but both have the same level, it is determined that there is some abnormality and the control signal to the switching element is cut off. More specifically, the signal transmission circuit of the present invention is configured as follows.
(1) Based on a transmission signal, a complementary signal driving circuit that outputs complementary signals of positive logic and negative logic, a complementary signal transmission path that transmits the complementary signals through independent channels, a complementary signal transmission path, A complementary signal determination circuit that receives a signal of the complementary signal transmission path and determines whether or not both are complementary signals based on the exclusive OR of the both; and at least one signal of the complementary signal transmission path In the signal transmission circuit having a receiving circuit that receives the signal and determines the signal, the logical product of the output signal of the complementary signal determining circuit and the output transmission signal of the receiving circuit is used as a received signal.

(2)上記の信号伝送回路において、前記相補信号駆動回路の前段に、相補信号の双方とイネーブル信号との論理積を出力する論理積回路を設け、ディセーブル時には前記相補信号駆動回路双方の出力が同一レベルの信号を出力する。 (2) In the signal transmission circuit described above, an AND circuit that outputs a logical product of both the complementary signal and the enable signal is provided in the preceding stage of the complementary signal drive circuit, and when the signal is disabled, the output of both the complementary signal drive circuits is provided. Output signals of the same level.

(3)上記の信号伝送回路において、送信信号に基づいて、差動信号伝送線路に差動信号を出力する差動信号出力回路と、前記差動信号伝送線からの差動信号を、それぞれ正負逆転して入力されるとともに、入力電位差が所定以上の場合動作する一対の比較回路と、
前記一対の比較回路の出力信号の排他的論理和を出力する排他的論理和回路と、前記一対の比較回路のいずれかの信号と前記排他的論理和回路の出力の論理積を受信信号とする。
(3) In the above signal transmission circuit, the differential signal output circuit that outputs a differential signal to the differential signal transmission line based on the transmission signal, and the differential signal from the differential signal transmission line are respectively positive and negative. A pair of comparison circuits that are input in reverse and operate when the input potential difference is greater than or equal to a predetermined value;
An exclusive OR circuit that outputs an exclusive OR of the output signals of the pair of comparison circuits, and a logical product of one of the pair of comparison circuits and the output of the exclusive OR circuit as a reception signal .

(4)上記の信号伝送回路において、前記排他的論理和回路の後段に、グリッジをマスクするための時定数を備えたローパスフィルタを設け、該ローパスフィルタの出力信号と前記一対の比較回路のいずれかの信号との論理積を受信信号とする。 (4) In the signal transmission circuit described above, a low-pass filter having a time constant for masking glitch is provided at the subsequent stage of the exclusive OR circuit, and the output signal of the low-pass filter and any of the pair of comparison circuits The logical product of these signals is used as a received signal.

また、本発明の駆動回路は次のように構成される。
(5)駆動制御信号の入力側と駆動制御信号の出力側がアイソレータICにより絶縁されている駆動回路において、前記送信信号として駆動制御信号が前記アイソレータICに到るまでの信号伝送回路に、上記(1)ないし(3)の信号伝送回路を用いた。
The drive circuit of the present invention is configured as follows.
(5) In the drive circuit in which the input side of the drive control signal and the output side of the drive control signal are insulated by the isolator IC, the signal transmission circuit until the drive control signal reaches the isolator IC as the transmission signal is The signal transmission circuit of 1) to (3) was used.

さらに本発明の電力変換装置は、次のように構成される。
(6)主電源端子間に直列に接続された下アームスイッチング素子及び上アームスイッチング素子と、前記下アームスイッチング素子及び上アームスイッチング素子のそれぞれをオン/オフを制御する駆動回路基板と、該駆動回路基板に駆動制御信号を伝送する上位論理制御部を有する電力変換装置において、前記上位論理制御部から前記駆動回路基板に入力した下アームスイッチング素子駆動用信号と、上アームスイッチング素子駆動用信号との排他的論理和に基づいて、前記下アームスイッチング素子駆動用信号と前記上アームスイッチング素子駆動用信号との関係が相補信号であるか否かを判定する排他的論理和回路を有し、前記排他的論理和回路の出力と前記下アームスイッチング素子駆動用信号あるいは上アームスイッチング素子との論理積により、前記下アームスイッチング素子あるいは上アームスイッチング素子のそれぞれをオンに制御するようにした。
Furthermore, the power conversion device of the present invention is configured as follows.
(6) A lower arm switching element and an upper arm switching element connected in series between main power supply terminals, a drive circuit board for controlling on / off of each of the lower arm switching element and the upper arm switching element, and the driving In a power converter having a higher-order logic control unit that transmits a drive control signal to a circuit board, a lower-arm switching element drive signal input from the higher-order logic control unit to the drive circuit board, an upper arm switching element drive signal, An exclusive OR circuit that determines whether the relationship between the lower arm switching element driving signal and the upper arm switching element driving signal is a complementary signal based on the exclusive OR of Output of exclusive OR circuit and signal for driving lower arm switching element or upper arm switching element The logical product, and to control to turn on each of the lower arm switching element or the upper arm switching element.

(7)また上記の電力変換装置において、前記下アームスイッチング素子及び上アームスイッチング素子の対が複数あり、それぞれの対について、各アームスイッチング素子のオン/オフを制御する駆動回路基板と該駆動回路基板に駆動制御信号を伝送する上位論理制御部との間にインターフェース基板を設け、前記上位論理部から各対の下アームスイッチング素子及び上アームスイッチング素子を制御する複数の駆動制御信号を、パラレル信号からシリアル信号へ変換するパラレル/シリアル変換手段を介して前記インターフェース基板に伝送するとともに、シリアル信号からパラレル信号へ変換するシリアル/パラレル変換手段を備えたインターフェース基板により、各対のスイッチング素子を制御する駆動制御信号に分割し、前記駆駆動基板に伝送するようにした。 (7) In the above power conversion device, there are a plurality of pairs of the lower arm switching element and the upper arm switching element, and for each pair, a drive circuit board for controlling on / off of each arm switching element and the drive circuit An interface board is provided between the upper logic control unit that transmits the drive control signal to the board, and a plurality of drive control signals for controlling the lower arm switching element and the upper arm switching element of each pair from the upper logic unit are parallel signals. Each pair of switching elements is controlled by an interface board having serial / parallel conversion means for converting serial signals to parallel signals. Divided into drive control signals, It was set to be transmitted to the substrate.

本発明の信号伝送回路によれば、正論理と負論理の相補信号を独立したチャンネルで伝送する相補信号伝送路を設け、受信側で両者の排他的論理和に基づいて送信側が正常であるか、あるいは伝送路にノイズが混入したことなどを確実に検出することができ、さらに、スイッチング時の基準電位の変動による誤動作ついても確実に防止できる。   According to the signal transmission circuit of the present invention, the complementary signal transmission path for transmitting the complementary signals of the positive logic and the negative logic through independent channels is provided, and whether the transmission side is normal on the reception side based on the exclusive OR of both. In addition, it is possible to reliably detect the presence of noise in the transmission line, and it is possible to reliably prevent malfunction caused by fluctuations in the reference potential during switching.

また、本発明の駆動回路によれば、アイソレータICに到るまでの信号伝送回路に上述の異常が生じた場合、これを確実に検出して誤動作を防止することができ、しかも、下アームスイッチング素子駆動用信号と、上アームスイッチング素子駆動用信号が同時にオンとなるような異常を確実に防止することができる。   In addition, according to the drive circuit of the present invention, when the above-described abnormality occurs in the signal transmission circuit up to the isolator IC, this can be reliably detected to prevent malfunction, and lower arm switching. It is possible to reliably prevent an abnormality in which the element driving signal and the upper arm switching element driving signal are simultaneously turned on.

本発明の実施例1の信号伝送回路の構成図である。It is a block diagram of the signal transmission circuit of Example 1 of this invention. 図1の信号伝送回路の動作波形のイメージ図である。It is an image figure of the operation | movement waveform of the signal transmission circuit of FIG. 本発明の実施例2の信号伝送回路の構成図である。It is a block diagram of the signal transmission circuit of Example 2 of this invention. 本発明の実施例3の同時オン防止機能のゲート駆動回路の概念図である。It is a conceptual diagram of the gate drive circuit of the simultaneous ON prevention function of Example 3 of the present invention. 本発明の実施例4の絶縁手段を対で設けた信号伝送回路の構成図であるIt is a block diagram of the signal transmission circuit which provided the insulation means of Example 4 of this invention in a pair. 従来の3相インバータ駆動回路のブロック図である。It is a block diagram of the conventional three-phase inverter drive circuit. 本発明の実施例5に示す3相インバータ駆動回路のブロック図である。It is a block diagram of the three-phase inverter drive circuit shown in Example 5 of this invention. 従来の電力変換器の構成図である。It is a block diagram of the conventional power converter.

以下、本発明の実施の形態について図面を使用して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[実施例1]
図1に本発明の第1の実施例である信号伝送回路を示す。信号Aは送信信号で、反転回路1〜4により構成される相補信号発生回路11により、正論理信号Cと負論理信号Dとからなる相補信号を生成する。20は伝送線路であり、コモンモードノイズの影響を受け難くするためにツイストすることが望ましい。
受信側では、反転回路5、6でそれぞれ正論理と負論理を受信して反転信号を出力する。10は相補信号か否かを判定する相補信号判定回路で、例えば、排他的論理和回路により構成できる。
すなわち、相補信号判定回路10は、反転回路5、6を介して、正論理出力と負論理出力とを入力し、これらが相補信号か否かを判定し、相補信号ならば“Hi”を同相信号ならば“Lo”を出力する。この信号は送信側が正常に動作しているか、若しくは、伝送路や受信回路に不具合が無いかを判断する安否信号として活用できる。
[Example 1]
FIG. 1 shows a signal transmission circuit according to a first embodiment of the present invention. The signal A is a transmission signal, and a complementary signal composed of a positive logic signal C and a negative logic signal D is generated by a complementary signal generation circuit 11 composed of inverting circuits 1 to 4. Reference numeral 20 denotes a transmission line, which is preferably twisted to make it less susceptible to common mode noise.
On the receiving side, the inverting circuits 5 and 6 receive positive logic and negative logic, respectively, and output inverted signals. Reference numeral 10 denotes a complementary signal determination circuit for determining whether or not the signal is a complementary signal, which can be constituted by, for example, an exclusive OR circuit.
That is, the complementary signal determination circuit 10 inputs a positive logic output and a negative logic output via the inverting circuits 5 and 6 and determines whether or not these are complementary signals. If it is a phase signal, “Lo” is output. This signal can be used as a safety signal for determining whether the transmission side is operating normally or whether there is a defect in the transmission path or the reception circuit.

ところで、送信信号の遷移時には正論理と負論理とが同一の信号を出力する期間が存在する。
このような遷移時のわずかなグリッジをマスクするための所望の時定数を持ったLPF(ローパスフィルタ)を出力段に設けると信号遷移時のグリッジをマスクできる。これにより正論理出力と相補信号判定回路出力との論理積をとることで正常に伝送された信号を再生でき信頼性を確保することができる。
なお、送信側のディセーブルや、伝送線路に異常がある場合は、相補信号判定回路の出力は“Lo”レベルとなり、信号伝送が正常でないと判断できる。この場合は、制御対象がフェールセーフに動作するように制御する。
By the way, there is a period in which the positive logic and the negative logic output the same signal at the transition of the transmission signal.
If an LPF (low-pass filter) having a desired time constant for masking such a slight glitch at the time of transition is provided in the output stage, the glitch at the time of signal transition can be masked. Thus, by taking the logical product of the positive logic output and the complementary signal determination circuit output, the signal transmitted normally can be reproduced and the reliability can be ensured.
If the transmission side is disabled or the transmission line is abnormal, the complementary signal determination circuit outputs “Lo” level, and it can be determined that the signal transmission is not normal. In this case, control is performed so that the controlled object operates in a fail-safe manner.

図2に、図1の信号伝送回路におけるA点〜Gの実施例1における信号変化(HiからLoあるいはLoからHi)を時系列で表した。
A点は、例えば、インバータ等の電力変換装置を制御するための制御信号として、図2Aに示されるような信号が入力されており、B点には、反転回路1によりAを反転させた信号が入力される。同様に、C点には反転回路3により再度反転され、結局A点と同じ位相の信号が出力される。
In FIG. 2, signal changes (from Hi to Lo or from Lo to Hi) in Example 1 from point A to G in the signal transmission circuit of FIG. 1 are shown in time series.
For example, a signal as shown in FIG. 2A is input to the point A as a control signal for controlling a power converter such as an inverter. A signal obtained by inverting A by the inverting circuit 1 is input to the point B. Is entered. Similarly, the point C is inverted again by the inversion circuit 3, and eventually a signal having the same phase as the point A is output.

一方D点には、反転回路1、2、4を介することにより、A点に対し反転した位相の信号が出力される。C点、D点の信号は、ツイストされた伝送線路20をそれぞれ反転回路5、6に入力される。
ここで、伝送線路20に異常がない場合は、例えば、反転回路5及び6の排他的論理和を出力する相補信号判定回路10の出力は、図2Eに示されるように、C点の信号及びD点の信号が、同時にHiまたはLoになった瞬間のみLoとなるが、LPFにより、この瞬時のLoは、除外されるので、反転回路5及び7を介したF点の信号との論理積が、AND回路8から出力される。AND回路8からの出力は、結局A点の信号と同位相のものとなり、電力変換装置等の制御信号として使用される。
On the other hand, a signal having a phase inverted with respect to the point A is output to the point D through the inverting circuits 1, 2, and 4. The signals at points C and D are input to the inverting circuits 5 and 6 through the twisted transmission line 20 respectively.
Here, when there is no abnormality in the transmission line 20, for example, the output of the complementary signal determination circuit 10 that outputs the exclusive OR of the inverting circuits 5 and 6, as shown in FIG. Although the signal at point D becomes Lo only at the moment when it becomes Hi or Lo at the same time, this momentary Lo is excluded by the LPF, so the logical product with the signal at point F via the inverting circuits 5 and 7 Is output from the AND circuit 8. The output from the AND circuit 8 eventually has the same phase as the signal at point A, and is used as a control signal for the power conversion device or the like.

ところが、例えば、伝送線路20のいずれかの箇所で、ノイズが取り込まれ、本来Loを継続すべき期間に所定期間以上のHiが出力され、反転位相にあるべきC点とD点の出力が、所定期間以上ともにHiになり、相補信号判定回路10が出力する排他的論理和が所定期間以上Loになってしまう。
また、送信側に異常が発生したり、ツイストされた伝送線路20のいずれかの線路に断線等が生じた場合、Lo出力を所定期間以上継続するため、その間、他の伝送線路20がLoとなったとき、同様に、相補信号判定回路10が出力する排他的論理和が所定期間以上Loになる。
そうなると、E点のLPFの出力がLoに、AND回路8の出力がLoとなり、電力変換装置等の制御信号がLoとなり、遮断される。
However, for example, noise is taken in any part of the transmission line 20, Hi is output for a predetermined period or longer during a period in which Lo should be continued, and the outputs at points C and D that should be in the inverted phase are: Both become Hi for a predetermined period or more, and the exclusive OR output from the complementary signal determination circuit 10 becomes Lo for a predetermined period or more.
In addition, when an abnormality occurs on the transmission side or when any one of the twisted transmission lines 20 is disconnected, the Lo output is continued for a predetermined period or longer. Similarly, the exclusive OR output from the complementary signal determination circuit 10 becomes Lo for a predetermined period or longer.
When this happens, the output of the LPF at point E becomes Lo, the output of the AND circuit 8 becomes Lo, and the control signal of the power converter or the like becomes Lo, and is shut off.

[実施例2]
図3に本発明の第2の実施例である信号伝送回路を示す。信号Aは送信信号で、差動信号出力回路31により、差動信号伝送線路20dに差動信号を出力する。受信側には、所定レベル以上の入力電位差があったときのみ動作するよう、入力にオフセットを設けた差動受信回路32a及び32bを対で設けて受信する。
対の差動受信回路32aは正論理を出力し、32bは負論理を出力し、それぞれの入力端子は、差動信号伝送線路20dの一方の伝送線路と他方の伝送回路を、+入力端子、−入力端子を逆転して、いわゆる、たすき掛けで接続されている。
[Example 2]
FIG. 3 shows a signal transmission circuit according to a second embodiment of the present invention. The signal A is a transmission signal, and the differential signal output circuit 31 outputs the differential signal to the differential signal transmission line 20d. On the receiving side, a differential receiving circuit 32a and 32b having an input offset is provided in pairs so as to operate only when there is an input potential difference of a predetermined level or higher.
The pair of differential receiving circuits 32a outputs positive logic, 32b outputs negative logic, and each input terminal is connected to one transmission line of the differential signal transmission line 20d and the other transmission circuit, + input terminal, -The input terminals are reversed and connected by so-called hooking.

10は前記対の差動受信回路32a、32bの出力が相補信号か否かを判定する相補信号判定回路で、実施例1と同様に、送信側が正常に動作しているか、若しくは、伝送路や受信回路に不具合が無いかを判断する安否信号として活用できる。
なお、この実施例においても、送信信号の遷移時には正論理と負論理とが同一の信号を出力する期間が存在する。そこで、このような遷移時のわずかなグリッジをマスクするための所望の時定数を持ったLPF(ローパスフィルタ)を出力段に設けると信号遷移時のグリッジをマスクできる。これにより正論理出力と相補信号判定回路出力との論理積を採ることで正常に伝送された信号を再生でき信頼性を確保することができる。
Reference numeral 10 denotes a complementary signal determination circuit for determining whether the output of the pair of differential reception circuits 32a and 32b is a complementary signal. As in the first embodiment, the transmission side is operating normally, It can be used as a safety signal for judging whether or not the receiving circuit has a problem.
In this embodiment as well, there is a period in which the positive logic and the negative logic output the same signal at the transition of the transmission signal. Therefore, if a low pass filter (LPF) having a desired time constant for masking such a slight glitch at the time of transition is provided in the output stage, the glitch at the time of signal transition can be masked. Thus, by taking the logical product of the positive logic output and the complementary signal determination circuit output, the signal transmitted normally can be reproduced and the reliability can be ensured.

[実施例3]
図4に本発明の第3の実施例である信号伝送回路を示す。この実施例は、上下アームの駆動制御信号の排他的論理和を用いて、駆動基板側で上下アームの同時オンを防止する機能に関するものである。A_Uは上アーム駆動指令信号、A_Lは下アーム駆動指令信号、51a、51bは伝送線路20を介して駆動回路部に信号を送信するための駆動回路である。
上下アームの駆動指令信号が駆動基板側で相補信号であるか否かを排他的論理和回路50で判定する。
[Example 3]
FIG. 4 shows a signal transmission circuit according to a third embodiment of the present invention. This embodiment relates to the function of preventing the upper and lower arms from being turned on simultaneously on the drive substrate side using the exclusive OR of the upper and lower arm drive control signals. A_U is an upper arm drive command signal, A_L is a lower arm drive command signal, and 51 a and 51 b are drive circuits for transmitting signals to the drive circuit unit via the transmission line 20.
The exclusive OR circuit 50 determines whether or not the drive command signals for the upper and lower arms are complementary signals on the drive substrate side.

この排他的論理和回路50は駆動指令の切り替わり時には“Lo”レベルが出力されるが、後段のパルスストレッチ回路54により、所望のデッドタイムになるように“Lo”パルスの幅を伸長するAND回路53a、53bにより、各アームの駆動指令信号との論理積を採って各アームの駆動制御信号G_U、G_Lを生成する。
本実施例により、信号伝送中のノイズ等の原因で上下アーム駆動切り替え時のデッドタイムが短くなっても、駆動回路基板側で所望の時間以上のデッドタイムを確保することが可能になる。
This exclusive OR circuit 50 outputs a “Lo” level when the drive command is switched, but an AND circuit that expands the width of the “Lo” pulse so that a desired dead time is reached by a pulse stretch circuit 54 in the subsequent stage. 53a and 53b take the logical product with the drive command signal of each arm to generate the drive control signals G_U and G_L of each arm.
According to the present embodiment, even if the dead time at the time of switching between upper and lower arm driving is shortened due to noise or the like during signal transmission, it becomes possible to ensure a dead time longer than a desired time on the drive circuit board side.

[実施例4]
図5に本発明の第4の実施例である絶縁信号伝送回路を示す。この実施例は、実施例1をベースにしており、相違点のみを説明する。
相補信号発生回路11は、その出力段にAND回路41、42を設けており、イネーブル信号(EN)により出力を制御し、ディセーブル時は双方を“Lo”に制御する。
この実施例の伝送線路20の代わりにデジタル信号の絶縁手段であるデジタルアイソレータ61、62を設けて、絶縁をとる。相補信号判定回路10により、受信した相補信号が正常か否かを判断し、異常であればAND回路8により出力Gを“Lo”に制御する。
本発明によりデジタルアイソレータ部のコモンモードノイズによる誤動作に伴う誤オン(誤ってオンに制御する)を防止することができる。
[Example 4]
FIG. 5 shows an insulated signal transmission circuit according to a fourth embodiment of the present invention. This embodiment is based on the first embodiment, and only differences will be described.
The complementary signal generation circuit 11 is provided with AND circuits 41 and 42 at its output stage, and controls the output by an enable signal (EN), and controls both to “Lo” when disabled.
In place of the transmission line 20 of this embodiment, digital isolators 61 and 62 which are digital signal insulating means are provided for insulation. The complementary signal determination circuit 10 determines whether or not the received complementary signal is normal. If it is abnormal, the AND circuit 8 controls the output G to “Lo”.
According to the present invention, it is possible to prevent erroneous ON (which is erroneously controlled to ON) due to a malfunction due to common mode noise in the digital isolator section.

[実施例5]
図6に従来の3相インバータのゲート駆動のトポロジーを示す。上位論理制御部70と3相(U、V、W)の上下各アームの駆動指令信号は、光ファイバによる伝送路20で各アームのゲートドライバ(71a〜71f)に接続されている。図7に本発明の3相インバータのゲート駆動のトポロジーを示す。上位論理制御部76と各アームのゲートドライバ(72a〜72f)との間にはインターフェース基板75を設ける。上位論理制御部76からの各アームの駆動指令信号はパラレル/シリアル変換回路73によりシリアル信号に変換され、インターフェース基板75のシリアル/パラレル変換回路74に伝送線路22を介して伝送される。シリアル/パラレル変換回路74によりパラレル信号変換された各アームの駆動指令信号をインターフェース基板75から各アームのゲートドライバ(72a〜72f)に絶縁伝送路23を介して伝送する。
本実施例の伝送路22には実施例1に示した信号伝送回路を用いることで信号伝送の信頼性を向上することができる。また、前記絶縁伝送路には実施例4に示した絶縁伝送手段を用いることで信号伝送の信頼性を向上することができる。
[Example 5]
FIG. 6 shows a gate drive topology of a conventional three-phase inverter. The upper logical control unit 70 and the drive command signals for the upper and lower arms of the three phases (U, V, W) are connected to the gate drivers (71a to 71f) of each arm through the transmission path 20 using optical fibers. FIG. 7 shows the topology of the gate drive of the three-phase inverter of the present invention. An interface board 75 is provided between the upper logic control unit 76 and the gate drivers (72a to 72f) of each arm. The drive command signal for each arm from the upper logic control unit 76 is converted into a serial signal by the parallel / serial conversion circuit 73 and transmitted to the serial / parallel conversion circuit 74 of the interface board 75 via the transmission line 22. The drive command signal of each arm converted into the parallel signal by the serial / parallel conversion circuit 74 is transmitted from the interface board 75 to the gate driver (72a to 72f) of each arm via the insulated transmission path 23.
The signal transmission reliability can be improved by using the signal transmission circuit shown in the first embodiment for the transmission line 22 of the present embodiment. Further, the reliability of signal transmission can be improved by using the insulated transmission means shown in the fourth embodiment for the insulated transmission path.

以上説明したように、本発明によれば、正論理と負論理の相補信号を独立したチャンネルで伝送する相補信号伝送路を設け、受信側で両者の排他的論理和に基づいて送信側が正常であるか、あるいは伝送路にノイズが混入したことなどを確実に検出することができるので、例えば、アイソレータIC等を利用すれば、大幅なコストアップを招くことなく、電力変換装置等様々な分野において、信号伝送の信頼性を抜本的に高める手段として広く利用されることが期待できる。   As described above, according to the present invention, a complementary signal transmission path for transmitting positive and negative complementary signals through independent channels is provided, and the transmission side is normal on the reception side based on the exclusive OR of both. For example, if an isolator IC or the like is used, it is possible to reliably detect the presence of noise in the transmission line or the like in various fields such as a power converter without causing a significant cost increase. Therefore, it can be expected to be widely used as a means of drastically increasing the reliability of signal transmission.

1〜7:反転回路(NOT回路)
8、41、42:論理積回路
10:排他的論理和回路
31:差動駆動回路
32:オフセット付差動受信回路
61、62:アイソレータ
70、76:上位論理制御部
71、72:ドライバ
75:インターフェース回路
73、74:シリアル/パラレル変換回路。
1 to 7: Inversion circuit (NOT circuit)
8, 41, 42: logical product circuit 10: exclusive OR circuit 31: differential drive circuit 32: differential reception circuit 61 with offset, 62: isolator 70, 76: upper logical control unit 71, 72: driver 75: Interface circuits 73 and 74: serial / parallel conversion circuits.

Claims (7)

送信信号に基づいて正論理と負論理の相補信号を出力する相補信号駆動回路と、
前記相補信号をそれぞれ独立したチャンネルで伝送する相補信号伝送路と、
前記相補信号伝送路の信号を受信して、両者の排他的論理和に基づいて、両者が相補信号であるか否かを判定する相補信号判定回路と、
前記相補信号判定回路の出力信号と前記送信信号との論理積を受信信号とすることを特徴とする信号伝送回路。
A complementary signal driving circuit that outputs complementary signals of positive logic and negative logic based on the transmission signal;
A complementary signal transmission path for transmitting the complementary signals through independent channels;
A complementary signal determination circuit that receives the signal of the complementary signal transmission path and determines whether or not both are complementary signals based on the exclusive OR of the two;
A signal transmission circuit comprising: a logical product of an output signal of the complementary signal determination circuit and the transmission signal as a reception signal.
請求項1に記載の信号伝送回路において、
前記相補信号駆動回路の前段に、相補信号の双方とイネーブル信号との論理積を出力する論理積回路を設け、ディセーブル時には前記相補信号駆動回路双方の出力が同一レベルの信号を出力することを特徴とする信号伝送回路。
The signal transmission circuit according to claim 1,
An AND circuit that outputs a logical product of both the complementary signal and the enable signal is provided in the preceding stage of the complementary signal drive circuit, and when disabled, both complementary signal drive circuits output the same level signal. A characteristic signal transmission circuit.
送信信号に基づいて、差動信号伝送線路に差動信号を出力する差動信号出力回路と、
前記差動信号伝送線からの差動信号を、それぞれ正負逆転して入力されるとともに、入力電位差が所定以上の場合動作する一対の比較回路と、
前記一対の比較回路の出力信号の排他的論理和を出力する排他的論理和回路と、
前記一対の比較回路のいずれかの信号と前記排他的論理和回路の出力の論理積を受信信号とする信号伝送回路。
A differential signal output circuit for outputting a differential signal to the differential signal transmission line based on the transmission signal;
A differential signal from the differential signal transmission line is input with the polarity reversed, and a pair of comparison circuits that operate when the input potential difference is greater than or equal to a predetermined value,
An exclusive OR circuit that outputs an exclusive OR of the output signals of the pair of comparison circuits;
A signal transmission circuit using a logical product of one of the pair of comparison circuits and the output of the exclusive OR circuit as a reception signal.
前記排他的論理和回路の後段に、グリッジをマスクするための時定数を備えたローパスフィルタを設け、該ローパスフィルタの出力信号と前記一対の比較回路のいずれかの信号との論理積を受信信号とすることを特徴とする請求項1または3に記載の信号伝送回路。   A low-pass filter having a time constant for masking glitch is provided after the exclusive OR circuit, and a logical product of the output signal of the low-pass filter and one of the pair of comparison circuits is received signal. The signal transmission circuit according to claim 1, wherein: 駆動制御信号の入力側と駆動制御信号の出力側がアイソレータICにより絶縁されている駆動回路において、
前記送信信号として駆動制御信号が前記アイソレータICに到るまでの信号伝送回路に、請求項1ないし3に記載の信号伝送回路を用いたことを特徴とする駆動回路。
In the drive circuit in which the input side of the drive control signal and the output side of the drive control signal are insulated by the isolator IC,
4. A drive circuit using the signal transmission circuit according to claim 1 as a signal transmission circuit until a drive control signal reaches the isolator IC as the transmission signal.
主電源端子間に直列に接続された下アームスイッチング素子及び上アームスイッチング素子と、前記下アームスイッチング素子及び上アームスイッチング素子のそれぞれをオン/オフを制御する駆動回路基板と、該駆動回路基板に駆動制御信号を伝送する上位論理制御部を有する電力変換装置において、
前記上位論理制御部から前記駆動回路基板に入力した下アームスイッチング素子駆動用信号と、上アームスイッチング素子駆動用信号との排他的論理和に基づいて、前記下アームスイッチング素子駆動用信号と前記上アームスイッチング素子駆動用信号との関係が相補信号であるか否かを判定する排他的論理和回路を有し、前記排他的論理和回路の出力と前記下アームスイッチング素子駆動用信号あるいは上アームスイッチング素子との論理積により、前記下アームスイッチング素子あるいは上アームスイッチング素子のそれぞれをオンに制御することを特徴とする電力変換装置。
A lower arm switching element and an upper arm switching element connected in series between main power supply terminals, a drive circuit board for controlling on / off of each of the lower arm switching element and the upper arm switching element, and the drive circuit board In a power converter having a higher-order logic control unit that transmits a drive control signal,
Based on the exclusive OR of the lower arm switching element driving signal and the upper arm switching element driving signal input to the driving circuit board from the upper logic control unit, the lower arm switching element driving signal and the upper arm switching element driving signal An exclusive OR circuit that determines whether the relationship between the arm switching element driving signal and the arm switching element driving signal is a complementary signal; the output of the exclusive OR circuit and the lower arm switching element driving signal or upper arm switching Each of the lower arm switching element or the upper arm switching element is controlled to be turned on by a logical product with the element.
請求項6記載の電力変換装置において、
前記下アームスイッチング素子及び上アームスイッチング素子の対が複数あり、それぞれの対について、各アームスイッチング素子のオン/オフを制御する駆動回路基板と該駆動回路基板に駆動制御信号を伝送する上位論理制御部との間にインターフェース基板を設け、前記上位論理部から各対の下アームスイッチング素子及び上アームスイッチング素子を制御する複数の駆動制御信号を、パラレル信号からシリアル信号へ変換するパラレル/シリアル変換手段を介して前記インターフェース基板に伝送するとともに、シリアル信号からパラレル信号へ変換するシリアル/パラレル変換手段を備えたインターフェース基板により、各対のスイッチング素子を制御する駆動制御信号に分割し、前記駆駆動基板に伝送することを特徴とする電力変換装置。
The power conversion device according to claim 6, wherein
There are a plurality of pairs of the lower arm switching element and the upper arm switching element, and for each pair, a driving circuit board that controls on / off of each arm switching element and a higher-level logic control that transmits a driving control signal to the driving circuit board Parallel / serial conversion means for converting a plurality of drive control signals for controlling the lower arm switching element and the upper arm switching element of each pair from the higher-order logic unit from a parallel signal to a serial signal by providing an interface board between them The drive board is divided into drive control signals for controlling each pair of switching elements by an interface board having serial / parallel conversion means for converting from serial signals to parallel signals. Power transmission characterized by Apparatus.
JP2010220470A 2010-09-30 2010-09-30 Signal transmission circuit, switching element drive circuit, and power conversion device Active JP5416673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010220470A JP5416673B2 (en) 2010-09-30 2010-09-30 Signal transmission circuit, switching element drive circuit, and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010220470A JP5416673B2 (en) 2010-09-30 2010-09-30 Signal transmission circuit, switching element drive circuit, and power conversion device

Publications (2)

Publication Number Publication Date
JP2012080156A true JP2012080156A (en) 2012-04-19
JP5416673B2 JP5416673B2 (en) 2014-02-12

Family

ID=46239949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010220470A Active JP5416673B2 (en) 2010-09-30 2010-09-30 Signal transmission circuit, switching element drive circuit, and power conversion device

Country Status (1)

Country Link
JP (1) JP5416673B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051547A (en) * 2011-08-31 2013-03-14 Renesas Electronics Corp Semiconductor integrated circuit and driving device including the same
JP2013240227A (en) * 2012-05-16 2013-11-28 Renesas Electronics Corp Power circuit and matrix converter
JP2018160865A (en) * 2017-03-24 2018-10-11 シナプティクス・ジャパン合同会社 Digital signal transmission apparatus, clock signal transmission apparatus, and reception circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930560B1 (en) 2015-01-30 2016-06-08 株式会社京三製作所 High frequency insulated gate driver circuit and gate circuit driving method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573456A (en) * 1980-05-02 1982-01-08 Siemens Ag Differential data transmission line receiver
JPS6349843U (en) * 1986-09-18 1988-04-04
JPS63171049U (en) * 1986-12-24 1988-11-08
JPH0191661A (en) * 1987-10-02 1989-04-11 Yokogawa Electric Corp Controlling circuit for switching power unit
JPH03222552A (en) * 1990-01-29 1991-10-01 Fujitsu Ltd Fault detection circuit for balanced transmission interface
JPH0746290A (en) * 1993-07-29 1995-02-14 Toshiba Corp State detection circuit
JP2000115259A (en) * 1998-10-08 2000-04-21 Nec Corp Input correction circuit for cmos circuit
JP2002142465A (en) * 2000-10-31 2002-05-17 Meidensha Corp Semiconductor power converter
JP2006170657A (en) * 2004-12-13 2006-06-29 Nsk Ltd Disconnection detecting circuit
JP2010213246A (en) * 2009-03-12 2010-09-24 Ricoh Co Ltd Receiving device, driver, and image forming apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573456A (en) * 1980-05-02 1982-01-08 Siemens Ag Differential data transmission line receiver
JPS6349843U (en) * 1986-09-18 1988-04-04
JPS63171049U (en) * 1986-12-24 1988-11-08
JPH0191661A (en) * 1987-10-02 1989-04-11 Yokogawa Electric Corp Controlling circuit for switching power unit
JPH03222552A (en) * 1990-01-29 1991-10-01 Fujitsu Ltd Fault detection circuit for balanced transmission interface
JPH0746290A (en) * 1993-07-29 1995-02-14 Toshiba Corp State detection circuit
JP2000115259A (en) * 1998-10-08 2000-04-21 Nec Corp Input correction circuit for cmos circuit
JP2002142465A (en) * 2000-10-31 2002-05-17 Meidensha Corp Semiconductor power converter
JP2006170657A (en) * 2004-12-13 2006-06-29 Nsk Ltd Disconnection detecting circuit
JP2010213246A (en) * 2009-03-12 2010-09-24 Ricoh Co Ltd Receiving device, driver, and image forming apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051547A (en) * 2011-08-31 2013-03-14 Renesas Electronics Corp Semiconductor integrated circuit and driving device including the same
JP2015149731A (en) * 2011-08-31 2015-08-20 ルネサスエレクトロニクス株式会社 semiconductor device
JP2013240227A (en) * 2012-05-16 2013-11-28 Renesas Electronics Corp Power circuit and matrix converter
US9520804B2 (en) 2012-05-16 2016-12-13 Renesas Electronics Corporation Power converter and matrix converter
JP2018160865A (en) * 2017-03-24 2018-10-11 シナプティクス・ジャパン合同会社 Digital signal transmission apparatus, clock signal transmission apparatus, and reception circuit
JP7007809B2 (en) 2017-03-24 2022-02-10 シナプティクス・ジャパン合同会社 Digital signal transmission device, clock signal transmission device, and reception circuit

Also Published As

Publication number Publication date
JP5416673B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
EP2353941B1 (en) Vehicle communication control device
US10116227B2 (en) System and method for pulse driving for reducing number of optical fibers
JP5253012B2 (en) Power semiconductor drive circuit device and signal transmission circuit device used therefor
US9214877B2 (en) Gate driving circuit having a fault detecting circuit for a semiconductor switching device
EP1619782B1 (en) Power converter with short circuit protection
EP3687066B1 (en) Low power cycle to cycle bit transfer in gate drivers
TW201325087A (en) Signal transmitting circuit
JP5416673B2 (en) Signal transmission circuit, switching element drive circuit, and power conversion device
JP6428753B2 (en) Power conversion device control system
JP2018133892A (en) Gate driving device and gate driving method of power semiconductor
JP5462880B2 (en) Power converter
JP3831355B2 (en) Gate driving method, gate driving circuit, and gate driving power IC
JP6390691B2 (en) Signal transmission circuit
WO2017099191A1 (en) Signal transfer circuit
US10333499B2 (en) Signal transmission circuit and vehicle
KR20060121098A (en) Circuit arrangement with error feedback for activating power semiconductor switch and associated method
WO2021241137A1 (en) Fault detection device and method therefor
JP5669686B2 (en) Gate drive device for switching element
US9502954B2 (en) Signal transmission circuit and power conversion device equipped with same
JP2014011708A (en) Bidirectional communication system, semiconductor driving device, and power conversion device
CN111264024B (en) Inverter device, control circuit thereof, and motor drive system
JP6772810B2 (en) Power converter control system
KR101319789B1 (en) A switching device and a method for malfunction preventing of the same
WO2017104544A1 (en) Control system for power conversion device
JP7342573B2 (en) power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131115

R150 Certificate of patent or registration of utility model

Ref document number: 5416673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150