JP2012079727A - Photoelectric conversion element and method for manufacturing the same - Google Patents

Photoelectric conversion element and method for manufacturing the same Download PDF

Info

Publication number
JP2012079727A
JP2012079727A JP2010220542A JP2010220542A JP2012079727A JP 2012079727 A JP2012079727 A JP 2012079727A JP 2010220542 A JP2010220542 A JP 2010220542A JP 2010220542 A JP2010220542 A JP 2010220542A JP 2012079727 A JP2012079727 A JP 2012079727A
Authority
JP
Japan
Prior art keywords
layer
light absorption
photoelectric conversion
absorption layer
element group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010220542A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
健志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010220542A priority Critical patent/JP2012079727A/en
Publication of JP2012079727A publication Critical patent/JP2012079727A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the following problems: the loss of Cu is caused on a light absorption layer side in manufacturing or due to aged deterioration, so that photoelectric conversion efficiency may be decreased; and mutual diffusion between a buffer layer and a light absorption layer becomes excessive, so that photoelectric conversion efficiency may be decreased.SOLUTION: A photoelectric conversion element includes: a light absorption layer which includes a compound semiconductor comprising Cu, a III-B group element and Se and capable of performing photoelectric conversion; a semiconductor layer provided on one side of the light absorption layer and including an element group A (the element group A is at least one selected from among Cd, Zn and In) and S; and an intermediate layer provided between the light absorption layer and the semiconductor layer and including the element group A, Cu and S.

Description

本願は光電変換素子およびその製造方法に関するものである。   The present application relates to a photoelectric conversion element and a manufacturing method thereof.

光電変換素子は年々さらに光電変換効率の高いものが求められてきており、このような光電変換素子の光吸収層としてCIS膜あるいはCIGS膜が用いられ、それらの光吸収層上に積層する最適なバッファ層の開発が進められている。例えば特許文献1には、光吸収層であるp型のCIS膜上に、バッファ層としてCdとCISとを同時蒸着したn型の混層を形成した光電変換素子が記載されている。   A photoelectric conversion element having a higher photoelectric conversion efficiency has been demanded year by year, and a CIS film or a CIGS film is used as a light absorption layer of such a photoelectric conversion element, and is optimally stacked on the light absorption layer. The buffer layer is being developed. For example, Patent Document 1 describes a photoelectric conversion element in which an n-type mixed layer in which Cd and CIS are vapor-deposited simultaneously as a buffer layer is formed on a p-type CIS film that is a light absorption layer.

特開平6−45248号公報JP-A-6-45248

しかしながら、特許文献1の光電変換素子では、製造時または経年劣化によって、バッファ層の構成元素であるCdが光吸収層へ拡散する傾向がある。このようなCdの拡散が過剰に進行するとバッファ層にCd欠損が生じて光電変換効率が低下する場合があった。よって、本発明はこのような問題を解決し、光電変換効率の低下を抑制可能な信頼性が高い光電変換素子を提供することを目的とする。   However, in the photoelectric conversion element of Patent Document 1, Cd, which is a constituent element of the buffer layer, tends to diffuse into the light absorption layer during manufacturing or due to aging. If the diffusion of Cd proceeds excessively, Cd deficiency may occur in the buffer layer and the photoelectric conversion efficiency may decrease. Therefore, an object of the present invention is to solve such problems and to provide a highly reliable photoelectric conversion element capable of suppressing a decrease in photoelectric conversion efficiency.

上記に鑑みて本発明の光電変換素子は、Cu、III−B族元素およびSeを有する光電変換可能な化合物半導体を含む光吸収層と、該光吸収層の一方側に設けられた元素群A(ここで元素群AはCd、ZnおよびInの少なくとも1種である)およびSを含む半導体層と、前記光吸収層と前記半導体層との間に設けられた前記元素群A、CuおよびSを含む中間層とを有する。   In view of the above, the photoelectric conversion element of the present invention includes a light absorption layer containing a compound semiconductor capable of photoelectric conversion having Cu, a group III-B element and Se, and an element group A provided on one side of the light absorption layer. (Here, element group A is at least one of Cd, Zn and In) and S, and the element group A, Cu and S provided between the light absorption layer and the semiconductor layer. And an intermediate layer.

また、本発明の光電変換素子の製造方法は、前記元素群AおよびSを含有するアンモニア水溶液に前記光吸収層を浸漬した後、前記アンモニア水溶液の温度を単調増加させることで前記光吸収層上に元素群A硫化物層を形成する溶液成長工程と、該溶液成長工程の後に前記元素群A硫化物層を熱処理して、該元素群A硫化物層を前記中間層と前記半導体層とにする熱処理工程とを有する。   In the method for producing a photoelectric conversion element of the present invention, the light absorption layer is immersed in an aqueous ammonia solution containing the element groups A and S, and then the temperature of the aqueous ammonia solution is monotonously increased so that the light absorption layer is formed on the light absorption layer. A solution growth step of forming an element group A sulfide layer on the substrate, and heat-treating the element group A sulfide layer after the solution growth step so that the element group A sulfide layer is formed into the intermediate layer and the semiconductor layer. Heat treatment step.

本発明によれば、半導体層の構成元素である元素群Aが中間層や半導体層から光吸収層側へ拡散したとしても、元素群Aの欠損を中間層に含有させたCuによって補償することができる。その結果、光電変換効率の低下を長期にわたり抑制することができる。   According to the present invention, even when the element group A, which is a constituent element of the semiconductor layer, diffuses from the intermediate layer or the semiconductor layer to the light absorption layer side, the defect of the element group A is compensated by Cu contained in the intermediate layer. Can do. As a result, a decrease in photoelectric conversion efficiency can be suppressed over a long period.

本発明の実施形態にかかる光電変換素子の断面模式図である。It is a cross-sectional schematic diagram of the photoelectric conversion element concerning embodiment of this invention. 本発明の実施形態にかかる光電変換素子の拡大断面写真である。It is an expanded sectional photograph of the photoelectric conversion element concerning embodiment of this invention. 本発明の実施形態にかかる光電変換素子の組成分布を示すグラフである。It is a graph which shows the composition distribution of the photoelectric conversion element concerning embodiment of this invention.

以下、本発明の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

<基板>
図1において、基板5は光電変換素子10を支持するためのものである。基板5に用いられる材料としては、ガラス、セラミックス、樹脂、および金属などが挙げられる。ここでは、基板5として、厚さ1〜3mm程度の青板ガラス(ソーダライムガラス)が用いられているものとする。
<Board>
In FIG. 1, a substrate 5 is for supporting a photoelectric conversion element 10. Examples of the material used for the substrate 5 include glass, ceramics, resin, and metal. Here, a blue plate glass (soda lime glass) having a thickness of about 1 to 3 mm is used as the substrate 5.

<下部電極>
下部電極層4は、基板5の一主面上に設けられた、Mo、Al、Ti、Ta、またはAuなどの金属、あるいはこれらの金属の積層構造体からなる導体である。下部電極層4は、スパッタ方または蒸着法などの公知の薄膜形成方法を用いて、0.2〜1μm程度の厚みに形成される。
<Lower electrode>
The lower electrode layer 4 is a conductor made of a metal such as Mo, Al, Ti, Ta, or Au provided on one main surface of the substrate 5 or a laminated structure of these metals. The lower electrode layer 4 is formed to a thickness of about 0.2 to 1 μm using a known thin film forming method such as sputtering or vapor deposition.

<光吸収層>
光吸収層1は、下部電極層4の上に設けられた、カルコパイライト系(以下CIS系とも言う)のCu、III−B族元素およびSeを有する光電変換可能な化合物半導体を含み、p型の導電型を有する。この光吸収層1は、1〜3μm程度の厚みを有している。
<Light absorption layer>
The light absorption layer 1 includes a chalcopyrite-based (hereinafter also referred to as CIS-based) Cu, III-B group element and Se-convertible compound semiconductor provided on the lower electrode layer 4, and is p-type Have the conductivity type. The light absorption layer 1 has a thickness of about 1 to 3 μm.

ここで、I−III−VI族化合物とは、IB族元素と、IIIB族元素と、VIB族元素(換言すれば、11族元素、13族元素、16族元素ともいう)との化合物であり、本実施形態としては、Cu(In、Ga)Se(CIGSとも言う)などが挙げられる。 Here, the I-III-VI group compound is a compound of a group IB element, a group IIIB element, and a group VIB element (in other words, a group 11 element, a group 13 element, or a group 16 element). Examples of this embodiment include Cu (In, Ga) Se 2 (also referred to as CIGS).

このような光吸収層1については、スパッタ法、蒸着法などのいわゆる真空プロセスによって形成可能であるほか、光吸収層1の構成元素を含む溶液を下部電極層4の上に塗布し、その後、乾燥・熱処理を行う、いわゆる塗布法あるいは印刷法と称されるプロセスによって形成することもできる。   Such a light absorption layer 1 can be formed by a so-called vacuum process such as a sputtering method or a vapor deposition method, and a solution containing the constituent elements of the light absorption layer 1 is applied on the lower electrode layer 4, and then It can also be formed by a so-called coating method or printing method in which drying and heat treatment are performed.

<半導体層>
半導体層2は、光吸収層1の上に設けられた、該光吸収層1の導電型とは異なるn型の導電型を有するものである。半導体層2は元素群A(ここで元素群AはCd、ZnおよびInの少なくとも1種である)およびSを含んだ化合物半導体である。このような化合物半導体としては、元素群Aの硫化物(以下、元素群Aの硫化物を元素群A硫化物という)を含んだものであり、CdS系化合物、ZnS系化合物およびIn系化合物が挙げられる。CdS系化合物とは、CdSを含んでいるがそれ以外にもCd(OH)やCdOを含んだ混晶化合物であってもよいことをいう。同様にZnS系化合物とは、ZnSを含んでいるがそれ以外にもZn(OH)やZnOを含んだ混晶化合物であってもよいことをいう。同様にIn系化合物とは、Inを含んでいるがそれ以外にもIn(OH)やInを含んだ混晶化合物であってもよいことをいう。
<Semiconductor layer>
The semiconductor layer 2 is provided on the light absorption layer 1 and has an n-type conductivity type different from the conductivity type of the light absorption layer 1. The semiconductor layer 2 is a compound semiconductor containing element group A (where element group A is at least one of Cd, Zn, and In) and S. Such a compound semiconductor includes a sulfide of element group A (hereinafter, the sulfide of element group A is referred to as element group A sulfide), and includes a CdS compound, a ZnS compound, and In 2 S 3. System compounds. The CdS compound means that it contains CdS but may be a mixed crystal compound containing Cd (OH) 2 or CdO. Similarly, a ZnS-based compound means that a mixed crystal compound containing ZnS but also containing Zn (OH) 2 or ZnO may be used. Similarly, an In 2 S 3 -based compound includes In 2 S 3 , but may also be a mixed crystal compound containing In (OH) 3 or In 2 O 3 in addition thereto.

光電変換素子10では、このヘテロ接合を構成する光吸収層1と半導体層2とにおいて光電変換が生じることから、光吸収層1と半導体層2とが光電変換層となっている。   In the photoelectric conversion element 10, since photoelectric conversion occurs in the light absorption layer 1 and the semiconductor layer 2 constituting the heterojunction, the light absorption layer 1 and the semiconductor layer 2 are photoelectric conversion layers.

また、本実施形態においては、半導体層2はCBD法によって、例えばCdS系の組成で構成され、1〜30nmの厚みに形成されることが好ましい。   Moreover, in this embodiment, it is preferable that the semiconductor layer 2 is comprised by the CBD method, for example by CdS type composition, and is formed in thickness of 1-30 nm.

<上部電極層>
上部電極層6は、半導体層2の上に設けられた、n型の導電型を有する透明導電膜である。上部電極層6は、光電変換層において生じた電荷を半導体層2を介して取り出す電極として設けられている。
<Upper electrode layer>
The upper electrode layer 6 is a transparent conductive film having an n-type conductivity provided on the semiconductor layer 2. The upper electrode layer 6 is provided as an electrode for extracting charges generated in the photoelectric conversion layer through the semiconductor layer 2.

また、上部電極層6は半導体層2よりも低い抵抗率を有する物質、例えば錫を含んだ酸化インジウム(ITO)などによって構成される。   The upper electrode layer 6 is made of a material having a resistivity lower than that of the semiconductor layer 2, for example, indium oxide (ITO) containing tin.

上部電極層6は、スパッタ法、蒸着法などによって形成される。   The upper electrode layer 6 is formed by sputtering, vapor deposition, or the like.

なお、半導体層2、上部電極層6は、光吸収層1が吸収する光の波長領域に対して光透過性を有する物質によって構成されることが好ましく、また、半導体層2、上部電極層6は、屈折率が略同一であることが好ましい。これにより、光吸収層1での光の吸収効率の低下が抑制される。   Note that the semiconductor layer 2 and the upper electrode layer 6 are preferably made of a material having light transmittance with respect to the wavelength region of light absorbed by the light absorption layer 1, and the semiconductor layer 2 and the upper electrode layer 6. Are preferably substantially the same in refractive index. Thereby, the fall of the light absorption efficiency in the light absorption layer 1 is suppressed.

<グリッド電極>
グリッド電極7はAgなどの金属からなる集電部と連結部とからなり(不図示)、光電変換素子10において発生して上部電極層6において取り出された電荷を集電する役割を担う。これにより上部電極層6の薄層化が可能となる。
<Grid electrode>
The grid electrode 7 includes a current collector made of a metal such as Ag and a connecting part (not shown), and plays a role of collecting charges generated in the photoelectric conversion element 10 and taken out in the upper electrode layer 6. Thereby, the upper electrode layer 6 can be thinned.

<中間層>
中間層3は、光吸収層1と半導体層2との間に設けられており、元素群A、CuおよびSを含んでいる。
<Intermediate layer>
The intermediate layer 3 is provided between the light absorption layer 1 and the semiconductor layer 2 and contains element groups A, Cu, and S.

例えば図1に示すように、積層された断面について、光電変換可能な化合物半導体を含む光吸収層1としてCuInGaSe系の組成、光吸収層1の一方側に設けられた半導体層2としてCdS系の組成、光吸収層1と半導体層2との間に設けられた中間層3としてCuCdS系の組成とした場合において、図2に示される各ポイントで表面の組成分析を行うと、図3のCu、Cd、Sの組成分布グラフになる。   For example, as shown in FIG. 1, with respect to the laminated cross-section, a CuInGaSe-based composition is used as the light-absorbing layer 1 including a compound semiconductor capable of photoelectric conversion, and a CdS-based semiconductor layer 2 is provided on one side of the light-absorbing layer 1. When the composition of the surface is analyzed at each point shown in FIG. 2 in the case where the composition is a CuCdS-based composition as the intermediate layer 3 provided between the light absorption layer 1 and the semiconductor layer 2, the Cu of FIG. , Cd, S composition distribution graph.

さらに本発明の実施形態にかかる光電変換素子において、中間層3における元素群A、CuおよびSの平均組成比を、原子%でCu>S>元素群Aとすれば、経年変化によって生じる半導体層2でのCd等の元素A群の欠損箇所の増加に応じて、欠損をより補償し易くなる。   Furthermore, in the photoelectric conversion element according to the embodiment of the present invention, if the average composition ratio of the element groups A, Cu, and S in the intermediate layer 3 is set to Cu> S> element group A in atomic%, the semiconductor layer generated by secular change As the number of missing portions of the element A group, such as Cd, increases at 2, the defect becomes easier to compensate.

さらに本発明の実施形態にかかる光電変換素子において、元素群AはCdおよびZnの少なくとも1種であり、光吸収層1はさらに元素群AおよびSを含み、光吸収層1におけるCu、元素群AおよびSの平均組成比は、原子%でCu>元素群A>Sであるものとすれば、光吸収層1の中間層3側表面部にpnホモが形成されるとともに、光吸収層1と中間層3とが互いの構成元素を含み組成が近づくことによってヘテロ接合をより良好にすることができる。その結果、光電変換効率をより高めることができる。   Furthermore, in the photoelectric conversion element according to the embodiment of the present invention, the element group A is at least one of Cd and Zn, the light absorption layer 1 further includes the element groups A and S, Cu in the light absorption layer 1, element group Assuming that the average composition ratio of A and S is Cu> element group A> S in atomic%, pn homo is formed on the intermediate layer 3 side surface portion of the light absorption layer 1, and the light absorption layer 1 And the intermediate layer 3 contain each other's constituent elements and the composition approaches, so that the heterojunction can be made better. As a result, the photoelectric conversion efficiency can be further increased.

さらに本発明の実施形態にかかる光電変換素子において、半導体層2はさらにCuを含み、半導体層2における元素群A、SおよびCuの平均組成比は、原子%でS>元素群A>Cuであるものとすれば、半導体層2と中間層3との熱力学的な特性を近づけることができ、応力による破損を抑制できる。   Furthermore, in the photoelectric conversion element according to the embodiment of the present invention, the semiconductor layer 2 further includes Cu, and the average composition ratio of the element groups A, S, and Cu in the semiconductor layer 2 is S> element group A> Cu in atomic%. If it exists, the thermodynamic characteristic of the semiconductor layer 2 and the intermediate | middle layer 3 can be closely approached, and the failure | damage by stress can be suppressed.

さらに本発明の実施形態にかかる光電変換素子は、中間層3における元素群Aの組成比は光吸収層1側ほど少なく、Cuの組成比は光吸収層1側ほど多い場合、中間層3から光吸収層1への元素A群の過剰な拡散を制御することができる。よって、光吸収層1の半導体特性が変化するのを抑制し、高い光電変換効率を長期にわたり良好に維持することができる。   Furthermore, in the photoelectric conversion element according to the embodiment of the present invention, when the composition ratio of the element group A in the intermediate layer 3 is as small as the light absorption layer 1 side and the composition ratio of Cu is as large as the light absorption layer 1 side, Excessive diffusion of the element A group into the light absorption layer 1 can be controlled. Therefore, it can suppress that the semiconductor characteristic of the light absorption layer 1 changes, and can maintain high photoelectric conversion efficiency favorably over a long period of time.

<光電変換素子の製造方法>
次に、上記構成を有する光電変換装置の製造プロセスについて説明する。
<Method for producing photoelectric conversion element>
Next, a manufacturing process of the photoelectric conversion device having the above configuration will be described.

以下においては、I−III−VI族化合物半導体からなる光吸収層1(例えば、Cu、In、GaおよびSeを含むCIGS等)が塗布法を用いて形成され、さらに、中間層3および半導体層2以降が形成される場合を例として説明する。   In the following, a light absorption layer 1 (for example, CIGS containing Cu, In, Ga and Se) made of an I-III-VI group compound semiconductor is formed by a coating method, and further, the intermediate layer 3 and the semiconductor layer An example in which two or more are formed will be described.

洗浄された基板5の略全面に、スパッタ法でMoからなる下部電極層4が成膜される。そして、下部電極層4上に光吸収層1と後述する中間層3と、半導体層2とが順次形成される。   A lower electrode layer 4 made of Mo is formed on substantially the entire surface of the cleaned substrate 5 by sputtering. Then, the light absorption layer 1, an intermediate layer 3 described later, and the semiconductor layer 2 are sequentially formed on the lower electrode layer 4.

光吸収層1は、まず、下部電極層4が形成された後、光吸収層1を形成するための溶液が下部電極層4の表面に塗布され、乾燥によって皮膜が形成される。その後、該皮膜が熱処理されることで光吸収層1が形成される。   In the light absorption layer 1, first, after the lower electrode layer 4 is formed, a solution for forming the light absorption layer 1 is applied to the surface of the lower electrode layer 4, and a film is formed by drying. Then, the light absorption layer 1 is formed by heat-treating the coating.

光吸収層1を形成するための溶液は、カルコゲン元素含有機化合物と塩基性有機溶剤とを含む溶媒に、I−B族金属およびIII−B族金属を直接溶解することで作成され、I−B族金属およびIII−B族金属の合計濃度が1重量%以上の溶液とされる。   The solution for forming the light absorption layer 1 is prepared by directly dissolving a group IB metal and a group III-B metal in a solvent containing a chalcogen element-containing compound and a basic organic solvent. The total concentration of the group B metal and the group III-B metal is 1% by weight or more.

なお、溶液の塗布にはスピンコーター、スクリーン印刷、ディッピング、スプレー、ダイコータなど様々な方法の適用が可能である。   Note that various methods such as spin coater, screen printing, dipping, spraying, and die coater can be applied to the solution.

カルコゲン元素含有有機化合物とは、カルコゲン元素を含む有機化合物である。カルコゲン元素としては、VI−B族元素のうちのS、Se、Teをいう。カルコゲン元素含有有機化合物としては、例えば、チオール、スルフィド、セレノール、テルノール等が挙げられる。   The chalcogen element-containing organic compound is an organic compound containing a chalcogen element. As a chalcogen element, S, Se, and Te among VI-B group elements are said. Examples of the chalcogen element-containing organic compound include thiol, sulfide, selenol, and Ternol.

金属を混合溶媒に直接溶解させるというのは、単体金属または合金の地金を、直接、混合溶媒に混入し、溶解させることをいう。乾燥は、還元雰囲気下で行われることが望ましい。乾燥温度は例えば、50〜300℃である。熱処理は、酸化防止のために水素や窒素雰囲気などの還元雰囲気下で行われることが望ましい。熱処理温度は、例えば、400〜600℃である。   To directly dissolve a metal in a mixed solvent means to dissolve a single metal or alloy ingot directly into the mixed solvent and dissolve it. Drying is desirably performed in a reducing atmosphere. The drying temperature is, for example, 50 to 300 ° C. The heat treatment is preferably performed in a reducing atmosphere such as hydrogen or nitrogen atmosphere to prevent oxidation. The heat treatment temperature is, for example, 400 to 600 ° C.

光吸収層1が形成された後、中間層3および半導体層2はCBD法によって形成されるが、光吸収層1を後工程のスパッタリングによるダメージから保護できる程度の厚みであることが好ましい。   After the light absorption layer 1 is formed, the intermediate layer 3 and the semiconductor layer 2 are formed by the CBD method, but it is preferable that the thickness be such that the light absorption layer 1 can be protected from damage due to sputtering in a subsequent step.

以下、中間層3および半導体層2の製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the intermediate | middle layer 3 and the semiconductor layer 2 is demonstrated in detail.

まず、元素群AおよびSを含有するアンモニア水溶液に光吸収層1を浸漬した後、アンモニア水溶液の温度を単調増加させることで光吸収層1上に元素群A硫化物層を形成する(この工程を溶液成長工程という)。そして、該溶液成長工程の後に元素群A硫化物層を熱処理して、該元素群A硫化物層を中間層3と半導体層2とにすることができる(この工程を熱処理工程という)。   First, after the light absorption layer 1 is immersed in an aqueous ammonia solution containing the element groups A and S, the element group A sulfide layer is formed on the light absorption layer 1 by monotonically increasing the temperature of the aqueous ammonia solution (this step) Is called a solution growth process). Then, after the solution growth step, the element group A sulfide layer can be heat treated to make the element group A sulfide layer into the intermediate layer 3 and the semiconductor layer 2 (this step is referred to as a heat treatment step).

例えば、Cd源であるCdIとS源であるチオ尿素SC(NHとを加えたph11〜13のNH溶液を、30℃から53℃まで温度を1〜10分間かけて単調増加させ、53℃からは一定温度に1〜10分間かけて保持する。 For example, an NH 3 solution of ph 11 to 13 containing CdI 2 as a Cd source and thiourea SC (NH 2 ) 2 as an S source is monotonically increased from 30 ° C. to 53 ° C. over 1 to 10 minutes. And hold at a constant temperature from 53 ° C. over 1 to 10 minutes.

このように温度を単調増加させることによって、元素群A硫化物層を形成する前半の成膜速度を遅くして膜密度を高くし、後半は成膜速度を速めて膜密度を低くする。これによって光吸収層1側の膜密度が高く、上部電極層6側の膜密度が低い元素群A硫化物層を得
ることができる。
By monotonously increasing the temperature in this way, the film formation rate is increased by increasing the film formation speed in the first half of forming the element group A sulfide layer, and the film density is increased by increasing the film formation speed in the second half. Thereby, an element group A sulfide layer having a high film density on the light absorption layer 1 side and a low film density on the upper electrode layer 6 side can be obtained.

そしてこのような溶液成長工程の後、熱処理すると、元素群A硫化物層の光吸収層1側の部位は、膜密度が高いために積極的に元素群Aが光吸収層1側へ拡散することとなる。そして、その元素群Aが抜けたところには光吸収層1からCuが積極的に拡散し、結果としてCuと元素群Aとの相互拡散が生じて中間層3が形成されると考えられる。このような熱処理工程は、好ましくは、窒素雰囲気中で100〜300℃で3〜180分間熱処理する工程である。   Then, after such a solution growth step, when heat treatment is performed, the element group A sulfide layer actively diffuses the element group A toward the light absorption layer 1 because the film density is high at the site on the light absorption layer 1 side. It will be. Then, it is considered that Cu is positively diffused from the light absorption layer 1 where the element group A is missing, and as a result, mutual diffusion between Cu and the element group A occurs and the intermediate layer 3 is formed. Such a heat treatment step is preferably a step of heat treatment at 100 to 300 ° C. for 3 to 180 minutes in a nitrogen atmosphere.

一方、元素群A硫化物層の光吸収層1とは反対側の膜密度が低い部位は、比較的原子半径が大きい元素群A(例えばCd)が拡散せずにある程度残留しやすい状態になっており、上記熱処理工程で半導体層2が形成されるものと考えられる。   On the other hand, the portion of the element group A sulfide layer having a low film density on the side opposite to the light absorbing layer 1 is in a state where the element group A (for example, Cd) having a relatively large atomic radius does not diffuse and remains to some extent. It is considered that the semiconductor layer 2 is formed by the heat treatment step.

あるいは、上記のような熱処理を別途実施しなくても、溶液成長工程における成膜温度がある程度高ければ、元素群A硫化物層の成膜の前半では光吸収層1からCuが溶液中に溶け出し、この溶け出したCuを取り込みながら元素群A硫化物層が成長する。これにより、中間層3を形成することができる。そして元素群A硫化物層の成膜の後半では元素群A硫化物層の成長によってCuの溶け出しが抑制され、この状態で元素群A硫化物層が成長する。これにより、半導体層2を形成することができる。   Alternatively, even if the heat treatment as described above is not performed separately, if the deposition temperature in the solution growth process is high to some extent, Cu is dissolved from the light absorption layer 1 into the solution in the first half of the deposition of the element group A sulfide layer. The element group A sulfide layer grows while taking in the dissolved Cu. Thereby, the intermediate layer 3 can be formed. In the latter half of the formation of the element group A sulfide layer, the dissolution of Cu is suppressed by the growth of the element group A sulfide layer, and the element group A sulfide layer grows in this state. Thereby, the semiconductor layer 2 can be formed.

なおここで、元素群A硫化物層としてInSを成膜する場合は、アンモニア水溶液ではなく酸性溶液で成膜する場合がある。   Here, in the case where InS is formed as the element group A sulfide layer, the film may be formed using an acidic solution instead of an aqueous ammonia solution.

本実施形態においては、中間層3および半導体層2が形成された後、上部電極層6として錫を含んだ酸化インジウム(ITO)などがスパッタ法、蒸着法で形成される。   In the present embodiment, after the intermediate layer 3 and the semiconductor layer 2 are formed, indium oxide (ITO) containing tin or the like is formed as the upper electrode layer 6 by sputtering or vapor deposition.

上部電極層6が形成された後、グリッド電極7がAgなどの金属粉を樹脂バインダーなどに分散させた導電性ペーストをパターン状に印刷し、これを乾燥固化することで形成される。   After the upper electrode layer 6 is formed, the grid electrode 7 is formed by printing a conductive paste in which a metal powder such as Ag is dispersed in a resin binder or the like, and drying and solidifying this.

1:光吸収層
2:半導体層
3:中間層
4:下部電極層
5:基板
6:上部電極層
7:グリッド電極
10:光電変換素子
1: Light absorption layer 2: Semiconductor layer 3: Intermediate layer 4: Lower electrode layer 5: Substrate 6: Upper electrode layer 7: Grid electrode 10: Photoelectric conversion element

Claims (6)

Cu、III−B族元素およびSeを有する光電変換可能な化合物半導体を含む光吸収層と、
該光吸収層の一方側に設けられた元素群A(ここで元素群AはCd、ZnおよびInの少なくとも1種である)およびSを含む半導体層と、
前記光吸収層と前記半導体層との間に設けられた前記元素群A、CuおよびSを含む中間層と
を有する光電変換素子。
A light absorbing layer comprising a compound semiconductor capable of photoelectric conversion having Cu, a group III-B element and Se;
A semiconductor layer containing element group A (where element group A is at least one of Cd, Zn and In) and S provided on one side of the light absorption layer;
The photoelectric conversion element which has the intermediate | middle layer containing the said element group A, Cu, and S provided between the said light absorption layer and the said semiconductor layer.
前記中間層における前記元素群A、CuおよびSの平均組成比は、原子%でCu>S>元素群Aである請求項1に記載の光電変換素子。   2. The photoelectric conversion element according to claim 1, wherein an average composition ratio of the element groups A, Cu and S in the intermediate layer is Cu> S> element group A in atomic%. 前記元素群AはCdおよびZnの少なくとも1種であり、前記光吸収層はさらに前記元素群AおよびSを含み、前記光吸収層におけるCu、前記元素群AおよびSの平均組成比は、原子%でCu>元素群A>Sである請求項1または2に記載の光電変換素子。   The element group A is at least one of Cd and Zn, the light absorption layer further includes the element groups A and S, and an average composition ratio of Cu and the element groups A and S in the light absorption layer is an atom The photoelectric conversion element according to claim 1, wherein Cu> element group A> S in%. 前記半導体層はさらにCuを含み、前記半導体層における前記元素群A、SおよびCuの平均組成比は、原子%でS>元素群A>Cuである請求項1〜3のいずれかに記載の光電変換素子。   The semiconductor layer further includes Cu, and an average composition ratio of the element groups A, S, and Cu in the semiconductor layer is S> element group A> Cu in atomic%. Photoelectric conversion element. 前記中間層における前記元素群Aの組成比は前記光吸収層側ほど少なく、Cuの組成比は前記光吸収層側ほど多い請求項1〜4のいずれかに記載の光電変換素子。   5. The photoelectric conversion element according to claim 1, wherein the composition ratio of the element group A in the intermediate layer is smaller toward the light absorption layer side, and the composition ratio of Cu is greater toward the light absorption layer side. 請求項1〜5のいずれかに記載の光電変換素子の製造方法であって、
前記元素群AおよびSを含有するアンモニア水溶液に前記光吸収層を浸漬した後、
前記アンモニア水溶液の温度を単調増加させることで前記光吸収層上に元素群A硫化物層を形成する溶液成長工程と、
該溶液成長工程の後に前記元素群A硫化物層を熱処理して、該元素群A硫化物層を前記中間層と前記半導体層とにする熱処理工程と
を有する光電変換素子の製造方法。
It is a manufacturing method of the photoelectric conversion element in any one of Claims 1-5,
After immersing the light absorption layer in an aqueous ammonia solution containing the element groups A and S,
A solution growth step of forming an element group A sulfide layer on the light absorption layer by monotonically increasing the temperature of the aqueous ammonia solution;
A method for producing a photoelectric conversion element, comprising: a heat treatment step of heat-treating the element group A sulfide layer after the solution growth step so that the element group A sulfide layer becomes the intermediate layer and the semiconductor layer.
JP2010220542A 2010-09-30 2010-09-30 Photoelectric conversion element and method for manufacturing the same Pending JP2012079727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010220542A JP2012079727A (en) 2010-09-30 2010-09-30 Photoelectric conversion element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010220542A JP2012079727A (en) 2010-09-30 2010-09-30 Photoelectric conversion element and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012079727A true JP2012079727A (en) 2012-04-19

Family

ID=46239670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010220542A Pending JP2012079727A (en) 2010-09-30 2010-09-30 Photoelectric conversion element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012079727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012165500A1 (en) * 2011-05-31 2015-02-23 京セラ株式会社 Photoelectric conversion element and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145099A (en) * 1991-11-21 1993-06-11 Fuji Electric Co Ltd Compound semiconductor thin film optoelectric transducer and manufacture thereof
JPH0645248A (en) * 1992-07-24 1994-02-18 Matsushita Electric Ind Co Ltd Manufacture of semiconductor thin film with chalcopyrite structure, thin-film solar cell, and light-emitting device
JPH10117005A (en) * 1996-10-15 1998-05-06 Matsushita Electric Ind Co Ltd Solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145099A (en) * 1991-11-21 1993-06-11 Fuji Electric Co Ltd Compound semiconductor thin film optoelectric transducer and manufacture thereof
JPH0645248A (en) * 1992-07-24 1994-02-18 Matsushita Electric Ind Co Ltd Manufacture of semiconductor thin film with chalcopyrite structure, thin-film solar cell, and light-emitting device
JPH10117005A (en) * 1996-10-15 1998-05-06 Matsushita Electric Ind Co Ltd Solar battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012165500A1 (en) * 2011-05-31 2015-02-23 京セラ株式会社 Photoelectric conversion element and manufacturing method thereof
US9064993B2 (en) 2011-05-31 2015-06-23 Kyocera Corporation Photoelectric conversion device and method of manufacturing photoelectric conversion device

Similar Documents

Publication Publication Date Title
WO2009110092A1 (en) Laminated structuer of cis-type solar battery and integrated structure
KR20080009346A (en) Process of preparing buffer layer of solar cell
JP2011129631A (en) Method of manufacturing cis thin film solar cell
US9496452B2 (en) Method of absorber surface repairing by solution process
JP5178904B1 (en) CZTS thin film solar cell and method for manufacturing the same
JP2012004287A (en) Cis-based thin film solar cell
JP2001044464A (en) METHOD OF FORMING Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR LAYER AND MANUFACTURE OF THIN-FILM SOLAR CELL
WO2011136249A1 (en) Photoelectric conversion element, photoelectric conversion device, and method for manufacturing photoelectric conversion element
TWI509821B (en) Photovoltaic device and method for fabricating the same
JP5881717B2 (en) Solar cell and manufacturing method thereof
US10361331B2 (en) Photovoltaic structures having multiple absorber layers separated by a diffusion barrier
JP2012079727A (en) Photoelectric conversion element and method for manufacturing the same
JP5641850B2 (en) Photoelectric conversion element and manufacturing method thereof
JP5595246B2 (en) Photoelectric conversion element and photoelectric conversion device
JP2005303201A (en) Compound semiconductor, solar cell, and method for manufacturing them
WO2012115267A1 (en) Photoelectric conversion element and photoelectric conversion device
TWI463685B (en) Multi-layer stacked film, method for manufacturing the same, and solar cell utilizing the same
WO2012115265A1 (en) Photoelectric conversion element and photoelectric conversion device
US20210210645A1 (en) Chalcogenide solar cell having transparent conducting oxide back contact, and method of manufacturing the chalcogenide solar cell
KR20130064656A (en) Method of fabricating solar cell
KR101055103B1 (en) Solar cell and manufacturing method thereof
JP5878416B2 (en) Chalcopyrite solar cell and method for manufacturing the same
JP2013211498A (en) Chalcopyrite solar cell and manufacturing method of the same
KR101306475B1 (en) Solar cell and method of fabricating the same
JP5305862B2 (en) Thin film solar cell manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111