KR20130064656A - Method of fabricating solar cell - Google Patents

Method of fabricating solar cell Download PDF

Info

Publication number
KR20130064656A
KR20130064656A KR1020110131371A KR20110131371A KR20130064656A KR 20130064656 A KR20130064656 A KR 20130064656A KR 1020110131371 A KR1020110131371 A KR 1020110131371A KR 20110131371 A KR20110131371 A KR 20110131371A KR 20130064656 A KR20130064656 A KR 20130064656A
Authority
KR
South Korea
Prior art keywords
solar cell
precursor
electrode layer
back electrode
layer
Prior art date
Application number
KR1020110131371A
Other languages
Korean (ko)
Inventor
이승엽
윤희경
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020110131371A priority Critical patent/KR20130064656A/en
Publication of KR20130064656A publication Critical patent/KR20130064656A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A method for fabricating a solar cell is provided to improve the electrical and optical characteristics of the solar cell by reducing the generation of stress due to the expansion of a volume. CONSTITUTION: A back electrode layer(200) is formed on a support substrate(100). A precursor(30) of a light absorption layer is formed on the back electrode layer. A diffusion groove(32) is formed in the precursor. The diffusion groove exposes the upper surface of the back electrode layer. A selenization process is performed on the precursor.

Description

태양전지의 제조방법{METHOD OF FABRICATING SOLAR CELL}Manufacturing method of solar cell {METHOD OF FABRICATING SOLAR CELL}

실시예는 태양전지의 제조방법에 관한 것이다.The embodiment relates to a method of manufacturing a solar cell.

태양광 발전을 위한 태양전지의 제조방법은 다음과 같다. 먼저, 기판이 제공되고, 상기 기판 상에 후면전극층이 형성되고, 레이저에 의해서 패터닝되어, 다수 개의 이면전극들이 형성된다.A manufacturing method of a solar cell for solar power generation is as follows. First, a substrate is provided, a back electrode layer is formed on the substrate, and patterned by a laser to form a plurality of back electrodes.

이후, 상기 이면전극들 상에 광 흡수층, 버퍼층 및 고저항 버퍼층이 차례로 형성된다. 상기 광 흡수층을 형성하기 위해서 구리, 인듐, 갈륨, 셀레늄을 동시 또는 구분하여 증발시키면서 광 흡수층을 형성하는 방법 등 다양한 방법이 사용되고 있다. Thereafter, a light absorbing layer, a buffer layer, and a high resistance buffer layer are sequentially formed on the back electrodes. In order to form the light absorbing layer, various methods such as a method of forming a light absorbing layer while simultaneously or separately evaporating copper, indium, gallium, and selenium have been used.

이후, 상기 광 흡수층 상에 황화 카드뮴(CdS)을 포함하는 버퍼층이 스퍼터링 공정에 의해서 형성된다. 이후, 상기 버퍼층 상에 징크 옥사이드(ZnO)를 포함하는 고저항 버퍼층이 스퍼터링 공정에 의해서 형성된다. 이후, 상기 광 흡수층, 상기 버퍼층 및 상기 고저항 버퍼층에 홈 패턴이 형성될 수 있다.Thereafter, a buffer layer containing cadmium sulfide (CdS) is formed on the light absorbing layer by a sputtering process. Thereafter, a high resistance buffer layer including zinc oxide (ZnO) is formed on the buffer layer by a sputtering process. Thereafter, a groove pattern may be formed in the light absorbing layer, the buffer layer, and the high resistance buffer layer.

이후, 상기 고저항 버퍼층 상에 투명한 도전물질이 적층되고, 상기 홈패턴이 상기 투명한 도전물질이 채워진다. 이후, 상기 투명전극층 등에 홈 패턴이 형성되어, 다수 개의 태양전지들이 형성될 수 있다. 상기 투명전극들 및 상기 이면전극들은 서로 미스 얼라인되며, 상기 투명전극들 및 상기 이면전극들은 상기 접속배선들에 의해서 각각 전기적으로 연결된다. 이에 따라서, 다수 개의 태양전지들이 서로 전기적으로 직렬로 연결될 수 있다.Thereafter, a transparent conductive material is stacked on the high resistance buffer layer, and the groove pattern is filled with the transparent conductive material. Thereafter, a groove pattern is formed in the transparent electrode layer, and a plurality of solar cells may be formed. The transparent electrodes and the back electrodes are misaligned with each other, and the transparent electrodes and the back electrodes are electrically connected to each other by the connection wirings. Accordingly, a plurality of solar cells can be electrically connected in series with each other.

이와 같이, 태양광을 전기에너지로 변환시키기 위해서, 다양한 형태의 태양광 발전장치가 제조되고, 사용될 수 있다. 이와 같은 태양광 발전장치는 특허 공개 공보 10-2008-0088744 등에 개시된다.As such, in order to convert sunlight into electrical energy, various types of photovoltaic devices may be manufactured and used. Such a photovoltaic device is disclosed in Patent Publication No. 10-2008-0088744 and the like.

한편, 이러한 태양전지에서 상기 후면전극층 상에 광 흡수층을 형성하는 과정에서 상기 후면전극층 및 상기 광 흡수층의 접착력이 저하될 수 있고 이로 인해, 전기적 션트패스(shunt path) 및 전기적 손실이 발생할 수 있다. 또한, 상기 광 흡수층이 형성되면서 부피팽창으로 인해 응력이 증가할 수 있다는 문제가 있다.Meanwhile, in the process of forming the light absorbing layer on the back electrode layer in such a solar cell, the adhesion between the back electrode layer and the light absorbing layer may be lowered, thereby causing an electrical shunt path and an electrical loss. In addition, there is a problem that the stress may increase due to volume expansion while the light absorbing layer is formed.

실시예는 신뢰성이 향상된 태양전지를 제공할 수 있다. The embodiment can provide a solar cell having improved reliability.

실시예에 따른 태양전지의 제조 방법은 지지기판 상에 후면전극층을 형성하는 단계; 상기 후면전극층 상에 광 흡수층의 프리커서를 형성하는 단계; 상기 프리커서에 확산홈을 형성하는 단계; 및 상기 프리커서를 셀레니제이션(Selenization)하는 단계를 포함한다.A method of manufacturing a solar cell according to an embodiment includes forming a back electrode layer on a support substrate; Forming a precursor of a light absorbing layer on the back electrode layer; Forming a diffusion groove in the precursor; And selenization of the precursor.

실시예에 따른 태양전지의 제조 방법은 셀레니제이션하는 단계를 포함하고, 상기 셀레니제이션하는 단계에서는 프리커서에 형성된 확산홈을 따라서 셀레늄(Se)이 확산될 수 있다. 따라서, 상기 확산홈을 통해서 상기 셀레늄의 확산이 용이하게 이루어질 수 있다. 또한, 상기 셀레늄 확산 시, 부피 팽창에 의한 응력 발생을 감소시킬 수 있다. 즉, 상기 셀레늄이 균일하게 반응하고, 응력 발생을 줄일 수 있어, 상기 후면전극층 및 상기 광 흡수층의 계면 접합을 향상할 수 있다. 따라서, 태양전지의 전기적, 광학적 특성을 향상시킬 수 있다.A method of manufacturing a solar cell according to an embodiment includes a step of selenization, and in the step of selenization, selenium (Se) may be diffused along a diffusion groove formed in the precursor. Accordingly, the selenium may be easily diffused through the diffusion groove. In addition, during the selenium diffusion, it is possible to reduce the generation of stress due to volume expansion. That is, the selenium reacts uniformly, and stress generation can be reduced, thereby improving interface bonding between the back electrode layer and the light absorbing layer. Therefore, the electrical and optical characteristics of the solar cell can be improved.

도 1 내지 도 5는 실시예예 다른 태양전지의 제조 방법을 설명하기 위한 단면도들이다.1 to 5 are cross-sectional views illustrating a method of manufacturing another solar cell according to an embodiment.

실시예들의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 “상/위(on)”에 또는 “하/아래(under)”에 형성된다는 기재는, 직접(directly) 또는 다른 층을 개재하여 형성되는 것을 모두 포함한다. 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다. In the description of embodiments, each layer, region, pattern, or structure may be “on” or “under” the substrate, each layer, region, pad, or pattern. Substrate formed in ”includes all formed directly or through another layer. Criteria for the top / bottom or bottom / bottom of each layer will be described with reference to the drawings.

도면에서 각 층(막), 영역, 패턴 또는 구조물들의 두께나 크기는 설명의 명확성 및 편의를 위하여 변형될 수 있으므로, 실제 크기를 전적으로 반영하는 것은 아니다. The thickness or the size of each layer (film), region, pattern or structure in the drawings may be modified for clarity and convenience of explanation, and thus does not entirely reflect the actual size.

이하, 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1 내지 도 5를 참조하여, 실시예에 따른 태양전지의 제조 방법을 상세하게 설명한다. 도 1 내지 도 5는 실시예예 다른 태양전지의 제조 방법을 설명하기 위한 단면도들이다.1 to 5, a method of manufacturing a solar cell according to an embodiment will be described in detail. 1 to 5 are cross-sectional views illustrating a method of manufacturing another solar cell according to an embodiment.

먼저, 도 1을 참조하면, 지지기판(100) 상에 스퍼터링 공정에 의해서 몰리브덴 등과 같은 금속이 증착되고, 후면전극층(200)이 형성된다. 상기 후면전극층(200)은 공정 조건이 서로 다른 두 번의 공정들에 의해서 형성될 수 있다.First, referring to FIG. 1, a metal such as molybdenum is deposited on a support substrate 100 by a sputtering process, and a back electrode layer 200 is formed. The rear electrode layer 200 may be formed by two processes having different process conditions.

상기 지지기판(100) 및 상기 후면전극층(200) 사이에는 확산 방지막과 같은 추가적인 층이 개재될 수 있다.An additional layer such as a diffusion barrier may be interposed between the support substrate 100 and the back electrode layer 200.

이어서, 상기 후면전극층(200) 상에 광 흡수층의 프리커서(30)가 형성된다. 상기 광 흡수층의 프리커서(30)는 스퍼터링 공정 또는 증발법 등에 의해서 형성될 수 있다.Subsequently, the precursor 30 of the light absorbing layer is formed on the back electrode layer 200. The precursor 30 of the light absorbing layer may be formed by a sputtering process or an evaporation method.

상기 광 흡수층의 프리커서(30)는 예를 들어, 구리-갈륨 합금층 및 인듐 층으로 이루어진 소정 조성비의 적층 프리커서(30)막이 스퍼터링 공정에 의해 형성될 수 있다. 또한, 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정에 의해서 형성될 수 있다. 따라서, 상기 광 흡수층의 프리커서(30)는, 구리, 인듐 및 갈륨의 구성 원소로 이루질 수 있다.The precursor 30 of the light absorbing layer may be formed by, for example, a stacked precursor 30 film having a predetermined composition ratio consisting of a copper-gallium alloy layer and an indium layer. It may also be formed by a sputtering process using a copper target, an indium target, and a gallium target. Therefore, the precursor 30 of the light absorbing layer may be made of constituent elements of copper, indium and gallium.

이어서, 도 2를 참조하면, 상기 프리커서(30)에 확산홈(32)을 형성한다. 상기 확산홈(32)은 상기 후면전극층(200)의 상면을 노출한다. 상기 확산홈(32)의 면적은 상기 프리커서(30)의 면적에 대해 30 % 내지 50 % 일 수 있다. 상기 확산홈(32)을 통해 추후에 상기 프리커서(30)를 셀레니제이션(Selenization) 할 때, 셀레늄(Se)이 원활하게 확산될 수 있다. 상기 확산홈(32)의 면적이 상기 프리커서(30)의 면적에 대해 30 % 미만일 경우, 상기 셀레늄이 용이하게 확산되는 효과가 미미할 수 있다. 또한, 상기 확산홈(32)의 면적이 상기 프리커서(30)의 면적에 대해 50 %를 초과할 경우, 상대적으로 상기 프리커서(30)의 면적이 작아질 수 있다. 상기 확산홈(32)은 상기 프리커서(30)를 핀(pin)으로 긁어내어 형성될 수 있다. 그러나 실시예가 이에 한정되는 것은 아니고 상기 확산홈(32)을 형성하기 위한 다양한 방법이 이용될 수 있다. Next, referring to FIG. 2, diffusion grooves 32 are formed in the precursor 30. The diffusion groove 32 exposes an upper surface of the back electrode layer 200. The area of the diffusion groove 32 may be 30% to 50% of the area of the precursor 30. When selenization of the precursor 30 later through the diffusion groove 32, selenium (Se) can be smoothly diffused. When the area of the diffusion groove 32 is less than 30% of the area of the precursor 30, the effect that the selenium is easily diffused may be insignificant. In addition, when the area of the diffusion groove 32 exceeds 50% of the area of the precursor 30, the area of the precursor 30 may be relatively small. The diffusion groove 32 may be formed by scraping the precursor 30 with a pin. However, the embodiment is not limited thereto, and various methods for forming the diffusion groove 32 may be used.

한편, 상기 후면전극층(200)을 형성하는 단계 이후에 상기 후면전극층(200)에 상기 지지기판(100)의 상면을 노출하는 관통홈(도시하지 않음, 이하 동일)을 형성하는 단계를 더 포함하고, 상기 확산홈(32)은 상기 관통홈과 이격되어 위치할 수 있다. 즉, 상기 확산홈(32) 및 상기 관통홈이 어긋나게 위치할 수 있다. 상기 관통홈은 상기 지지기판(100)의 상면을 노출하고, 상기 관통홈에 의해서, 상기 후면전극층(200)은 다수 개의 후면전극들로 구분된다. 상기 확산홈(32)이 상기 관통홈과 이격되어 위치함으로써, 상기 지지기판(100의 상면이 상기 셀레늄에 직접적으로 노출되는 것을 방지할 수 있다. On the other hand, after the step of forming the back electrode layer 200 further comprises the step of forming a through groove (not shown, the same below) to expose the top surface of the support substrate 100 in the back electrode layer 200 The diffusion groove 32 may be spaced apart from the through groove. That is, the diffusion groove 32 and the through groove may be offset. The through groove exposes the top surface of the support substrate 100, and the back electrode layer 200 is divided into a plurality of back electrodes by the through groove. Since the diffusion groove 32 is spaced apart from the through groove, the upper surface of the support substrate 100 may be prevented from being directly exposed to the selenium.

이어서, 도 3 및 도 4를 참조하면, 상기 프리커서(30)를 셀레니제이션(Selenization)하는 단계를 거칠 수 있다. 상기 금속 프리커서(30) 막은 셀레니제이션(selenization) 공정에 의해서, 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(300)이 형성된다.Next, referring to FIGS. 3 and 4, the precursor 30 may be subjected to selenization. In the metal precursor 30 film, a light absorption layer 300 of a copper-indium-gallium selenide system (Cu (In, Ga) Se 2; CIGS system) is formed by a selenization process.

여기서, 셀레니제이션 공정은 셀렌 및/또는 황 함유 가스로 이루어진 분위기 속에서 저온에서 열처리하는 공정을 말한다.Here, the selenization process refers to a process of heat treatment at low temperature in an atmosphere made of selenium and / or sulfur-containing gas.

이와는 다르게, 구리 타겟 및 인듐 타겟 만을 사용하거나, 구리 타겟 및 갈륨 타겟을 사용하는 스퍼터링 공정 및 셀레니제이션 공정에 의해서, CIS계 또는 CIG계 광 흡수층(300)이 형성될 수 있다.Alternatively, the CIS-based or CIG-based optical absorption layer 300 can be formed by using only a copper target and an indium target, or by a sputtering process and a selenization process using a copper target and a gallium target.

상기 셀레니제이션하는 단계는 상기 확산홈(32)을 따라서 수행될 수 있다. 즉, 상기 셀레니제이션하는 단계에서는 상기 확산홈(32)을 따라서 셀레늄(Se)(40)이 확산될 수 있다. 따라서, 상기 확산홈(32)을 통해서 상기 셀레늄(40)의 확산이 용이하게 이루어질 수 있다. 또한, 상기 셀레늄(40) 확산 시 부피 팽창에 의한 응력 발생을 감소시킬 수 있다. 즉, 상기 셀레늄(40)이 균일하게 반응하고, 응력 발생을 줄일 수 있어, 상기 후면전극층(200) 및 상기 광 흡수층의 계면 접합을 향상할 수 있다. 따라서, 태양전지의 전기적, 광학적 특성을 향상시킬 수 있다.The selenization may be performed along the diffusion groove 32. That is, in the selenization step, selenium (Se) 40 may be diffused along the diffusion groove 32. Accordingly, the selenium 40 may be easily diffused through the diffusion groove 32. In addition, it is possible to reduce the generation of stress due to volume expansion when the selenium 40 diffusion. That is, the selenium 40 may react uniformly and reduce stress generation, thereby improving interface bonding between the back electrode layer 200 and the light absorbing layer. Therefore, the electrical and optical characteristics of the solar cell can be improved.

이어서, 도 5를 참조하면, 상기 광 흡수층(300) 상에 버퍼층(400)을 형성하는 단계를 거친다. 여기서, 황화 카드뮴이 스퍼터링 공정 또는 용액성장법(chemical bath depositon;CBD) 등에 의해서 증착되고, 상기 버퍼층(400)이 형성된다.Subsequently, referring to FIG. 5, a buffer layer 400 is formed on the light absorbing layer 300. Here, cadmium sulfide is deposited by a sputtering process or a chemical bath deposit (CBD) or the like, and the buffer layer 400 is formed.

이후, 상기 버퍼층(400) 상에 징크 옥사이드가 스퍼터링 공정 등에 의해서 증착되고, 상기 고저항 버퍼층(500)이 형성될 수 있다.Thereafter, zinc oxide may be deposited on the buffer layer 400 by a sputtering process, and the high resistance buffer layer 500 may be formed.

상기 버퍼층(400) 및 상기 고저항 버퍼층(500)은 낮은 두께로 증착된다. 예를 들어, 상기 버퍼층(400) 및 상기 고저항 버퍼층(500)의 두께는 약 1㎚ 내지 약 80㎚이다.The buffer layer 400 and the high resistance buffer layer 500 are deposited to a low thickness. For example, the thickness of the buffer layer 400 and the high resistance buffer layer 500 is about 1 nm to about 80 nm.

이어서, 상기 고저항 버퍼층(500) 상에 전면전극층(600)을 형성하는 단계를 거친다. 상기 전면전극층(600)은 알루미늄이 도핑된 징크 옥사이드 등과 같은 투명한 도전물질이 상기 고저항 버퍼층(500) 상에 스퍼터링 공정에 의해서 증착되어 형성될 수 있다.Subsequently, the front electrode layer 600 is formed on the high resistance buffer layer 500. The front electrode layer 600 may be formed by depositing a transparent conductive material such as zinc oxide doped with aluminum on the high resistance buffer layer 500 by a sputtering process.

상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다. The features, structures, effects and the like described in the foregoing embodiments are included in at least one embodiment of the present invention and are not necessarily limited to one embodiment. In addition, the features, structures, effects, and the like illustrated in the embodiments may be combined or modified with respect to other embodiments by those skilled in the art to which the embodiments belong. Therefore, it should be understood that the present invention is not limited to these combinations and modifications.

또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. It can be seen that various modifications and applications are possible. For example, each component specifically shown in the embodiments may be modified. It is to be understood that the present invention may be embodied in many other specific forms without departing from the spirit or essential characteristics thereof.

Claims (7)

지지기판 상에 후면전극층을 형성하는 단계;
상기 후면전극층 상에 광 흡수층의 프리커서를 형성하는 단계;
상기 프리커서에 확산홈을 형성하는 단계; 및
상기 프리커서를 셀레니제이션(Selenization)하는 단계를 포함하는 태양전지의 제조 방법.
Forming a back electrode layer on the support substrate;
Forming a precursor of a light absorbing layer on the back electrode layer;
Forming a diffusion groove in the precursor; And
The method of manufacturing a solar cell comprising the selenization (Selenization).
제1항에 있어서,
상기 확산홈은 상기 후면전극층의 상면을 노출하는 태양전지의 제조 방법.
The method of claim 1,
The diffusion groove is a method of manufacturing a solar cell to expose the top surface of the back electrode layer.
제1항에 있어서,
상기 확산홈의 면적은 상기 프리커서의 면적에 대해 30 % 내지 50 %인 태양전지의 제조 방법.
The method of claim 1,
The area of the diffusion groove is a solar cell manufacturing method of 30% to 50% of the area of the precursor.
제1항에 있어서,
상기 확산홈을 형성하는 단계는 상기 프리커서를 핀(pin)으로 긁어내는 태양전지의 제조 방법.
The method of claim 1,
Forming the diffusion groove is a method of manufacturing a solar cell scraping the precursor with a pin (pin).
제1항에 있어서,
상기 셀레니제이션하는 단계는 상기 확산홈을 따라서 수행되는 태양전지의 제조 방법.
The method of claim 1,
The selenization step is a solar cell manufacturing method is performed along the diffusion groove.
제1항에 있어서,
상기 셀레니제이션하는 단계에서는 상기 확산홈을 따라서 셀레늄(Se)이 확산되는 태양전지의 제조 방법.
The method of claim 1,
In the selenization step, the selenium (Se) is diffused along the diffusion groove manufacturing method of a solar cell.
제1항에 있어서,
상기 후면전극층을 형성하는 단계 이후에 상기 후면전극층에 상기 지지기판의 상면을 노출하는 관통홈을 형성하는 단계를 더 포함하고, 상기 확산홈은 상기 관통홈과 이격되어 위치하는 태양전지의 제조 방법.
The method of claim 1,
And forming a through groove exposing the top surface of the support substrate on the back electrode layer after forming the back electrode layer, wherein the diffusion groove is spaced apart from the through groove.
KR1020110131371A 2011-12-08 2011-12-08 Method of fabricating solar cell KR20130064656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110131371A KR20130064656A (en) 2011-12-08 2011-12-08 Method of fabricating solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110131371A KR20130064656A (en) 2011-12-08 2011-12-08 Method of fabricating solar cell

Publications (1)

Publication Number Publication Date
KR20130064656A true KR20130064656A (en) 2013-06-18

Family

ID=48861564

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110131371A KR20130064656A (en) 2011-12-08 2011-12-08 Method of fabricating solar cell

Country Status (1)

Country Link
KR (1) KR20130064656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701176A (en) * 2021-03-23 2021-04-23 南昌凯迅光电有限公司 Gallium arsenide thin film solar cell and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701176A (en) * 2021-03-23 2021-04-23 南昌凯迅光电有限公司 Gallium arsenide thin film solar cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101219948B1 (en) Solar cell apparatus and method of fabricating the same
KR20150031889A (en) Solar cell
KR101283072B1 (en) Solar cell apparatus and method of fabricating the same
TWI509821B (en) Photovoltaic device and method for fabricating the same
JP5918765B2 (en) Solar power plant
KR101181095B1 (en) Solar cell and method for manufacturing the same
KR20130136739A (en) Solar cell and method of fabricating the same
KR101210034B1 (en) Solar cell and method of fabricating the same
KR101306529B1 (en) Solar cell and method of fabricating the same
KR101349429B1 (en) Photovoltaic apparatus
KR101272997B1 (en) Solar cell apparatus and method of fabricating the same
KR101134730B1 (en) Solar cell apparatus and method of fabricating the same
KR101262501B1 (en) Solar cell apparatus and method of fabricating the same
KR20130064656A (en) Method of fabricating solar cell
KR101806545B1 (en) Solar cell apparatus and method of fabricating the same
KR101865953B1 (en) Solar cell and method of fabricating the same
KR101382819B1 (en) Photovoltaic apparatus and method of fabricating the same
KR101765922B1 (en) Solar cell apparatus and method of fabricating the same
KR101306436B1 (en) Solar cell apparatus and method of fabricating the same
KR101231398B1 (en) Solar cell apparatus and method of fabricating the same
KR101273123B1 (en) Solar cell apparatus and method of fabricating the same
KR101349596B1 (en) Solar cell and method of fabricating the same
KR101306527B1 (en) Photovoltaic apparatus
KR101189366B1 (en) Solar cell apparatus and method of fabricating the same
KR20150031978A (en) Solar cell

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination