JP2012079572A - Forming method for convexoconcave membrane electrode assembly - Google Patents

Forming method for convexoconcave membrane electrode assembly Download PDF

Info

Publication number
JP2012079572A
JP2012079572A JP2010224553A JP2010224553A JP2012079572A JP 2012079572 A JP2012079572 A JP 2012079572A JP 2010224553 A JP2010224553 A JP 2010224553A JP 2010224553 A JP2010224553 A JP 2010224553A JP 2012079572 A JP2012079572 A JP 2012079572A
Authority
JP
Japan
Prior art keywords
mea
polymer electrolyte
mold
electrode assembly
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010224553A
Other languages
Japanese (ja)
Inventor
Daisuke Ino
大輔 猪野
Akira Taomoto
昭 田尾本
Masato Aizawa
将徒 相澤
Tetsuaki Hirayama
哲章 平山
Junichi Kondo
淳一 近藤
Hisaaki Gyoten
久朗 行天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010224553A priority Critical patent/JP2012079572A/en
Publication of JP2012079572A publication Critical patent/JP2012079572A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To conduct an unevenness processing to a membrane electrode assembly (MEA) while keeping a uniform interface structure of a polymer electrolyte membrane 14 and a catalyst layer 13.SOLUTION: In this forming method, a uniform interface structure of a polymer electrolyte membrane 14 and a catalyst layer 13 is kept by conducting an unevenness processing simultaneously to the MEA with a membrane electrode assembly which is applied with the catalyst layer 13 in advance on a cathode side of the polymer electrolyte membrane 14, a pitch L, a metal mold 11 made based on a dimension of width W and height H of a convexoconcave structure, and a mold support 18.

Description

本発明は、燃料電池用膜電極接合体の製造方法および前記燃料電池用膜電極接合体を用いた燃料電池に関するものである。   The present invention relates to a method for producing a membrane electrode assembly for a fuel cell and a fuel cell using the membrane electrode assembly for a fuel cell.

高分子電解質膜を用いた固体高分子型燃料電池は、近年における電解質や触媒技術の発展により性能の向上が著しくなり、高効率の発電方法の一つとして期待されている。高効率の固体高分子型燃料電池を得るには、膜電極接合体(MEA)内における界面、すなわち固体高分子膜と白金などの金属触媒を含む触媒層との間の界面において、化学反応に関わる化学物質、酸素やプロトン、水などの物質輸送が非常に重要であると考えられている。例えばこの界面の構造を工夫する試みの一つとして、高分子電解質膜の表面に凹凸を形成する方法が報告されている(例えば非特許文献1)。凹凸構造を形成すると、MEA内における界面の面積が向上し、さらに界面における物質輸送速度も改善されるため、燃料電池の発電効率が向上することが期待できる。高分子電解質膜の表面における凹凸構造によって、燃料電池の電流電圧出力特性を向上させるには、凹凸構造のピッチ(周期)が狭く、かつ凹凸構造の高低差が大きくなるほど適していると考えられる。   Solid polymer fuel cells using polymer electrolyte membranes are expected to be one of highly efficient power generation methods due to the remarkable improvement in performance due to the recent development of electrolyte and catalyst technology. In order to obtain a high-efficiency polymer electrolyte fuel cell, a chemical reaction occurs at an interface in a membrane electrode assembly (MEA), that is, an interface between a solid polymer membrane and a catalyst layer containing a metal catalyst such as platinum. The transport of chemical substances involved, such as oxygen, protons and water, is considered very important. For example, as one of attempts to devise this interface structure, a method of forming irregularities on the surface of a polymer electrolyte membrane has been reported (for example, Non-Patent Document 1). When the concavo-convex structure is formed, the area of the interface in the MEA is improved, and the material transport speed at the interface is also improved, so that it is expected that the power generation efficiency of the fuel cell is improved. In order to improve the current voltage output characteristics of the fuel cell by the uneven structure on the surface of the polymer electrolyte membrane, it is considered that the narrower the pitch (period) of the uneven structure and the greater the difference in height of the uneven structure, the more suitable.

このような凹凸構造を形成する方法としては、特許文献1に開示された化学的、機械的な研磨法等により膜表面に凹凸構造を付ける方法や、特許文献2に開示された凹形状の穴を持つモールドに電解質をキャスティングし成膜する方法などが報告されている。   As a method for forming such a concavo-convex structure, a method for forming a concavo-convex structure on the film surface by a chemical or mechanical polishing method disclosed in Patent Document 1, or a concave hole disclosed in Patent Document 2 is used. A method of casting an electrolyte on a mold having a film and forming a film has been reported.

特開平9−320616号公報JP-A-9-320616 特開2005−53198号公報JP 2005-53198 A

J. Am. Chem. Soc., 2006, 128, 12963J. et al. Am. Chem. Soc. , 2006, 128, 12963

しかしながら、前記従来の構成では、凹凸構造を微細化するとMEAの製造過程においていくつかの困難が生じる。ここでの微細化の意味するスケールは、典型的には凹凸構造のピッチがマイクロメートルのオーダーかそれ以下である。例えば、ピッチに対して凹凸構造の高低差が大きくなると、凸部の機械的強度が弱まり、折れたり倒れることがある。凹凸構造が大きく乱れてしまい、凹凸構造の設計思想を電流電圧特性の向上に反映できなくなるという課題を有していた。また、MEA内の界面に均一性にも問題が生じる。例えば高分子電解質膜に凹凸構造を施し、その表面上に触媒層を塗布しMEAの界面を作成する従来の方法では、凹部に触媒層を塗布することが難しく、高分子電解質膜と触媒層の間の界面が均一なMEAを作成することが難しいという課題を有していた。   However, in the conventional configuration, when the concavo-convex structure is miniaturized, some difficulties occur in the MEA manufacturing process. The scale that means the miniaturization here is typically that the pitch of the concavo-convex structure is on the order of micrometers or less. For example, when the height difference of the concavo-convex structure with respect to the pitch is increased, the mechanical strength of the convex portion is weakened and may be broken or fall down. The uneven structure is greatly disturbed, and the design concept of the uneven structure cannot be reflected in the improvement of the current-voltage characteristics. There is also a problem with uniformity at the interface within the MEA. For example, in a conventional method in which an uneven structure is applied to a polymer electrolyte membrane and a catalyst layer is applied on the surface thereof to create an MEA interface, it is difficult to apply the catalyst layer to the recess. There was a problem that it was difficult to create an MEA having a uniform interface.

本発明は、前記従来の課題を解決するもので、凹凸構造を有する高分子電解質を有する燃料電池において、MEAの製造方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide an MEA manufacturing method in a fuel cell having a polymer electrolyte having a concavo-convex structure.

前記従来の課題を解決するために、本発明の凹凸MEAの形成方法は、ピッチL、凹凸構造の高さHおよび幅Wで規定される金属製のモールド及びモールド受けと、高分子電解質膜の表面に塗布された触媒層を有するMEAを用いる。高分子電解質膜のガラス転移温度付近まで加熱されたMEAをモールドに圧着させ、MEA全体に凹凸構造の加工を行う。   In order to solve the above-described conventional problems, the method for forming a concavo-convex MEA according to the present invention includes a metal mold and mold receiver defined by the pitch L, the height H and the width W of the concavo-convex structure, and a polymer electrolyte membrane. An MEA having a catalyst layer applied to the surface is used. The MEA heated to near the glass transition temperature of the polymer electrolyte membrane is pressure-bonded to the mold, and the uneven structure is processed on the entire MEA.

本構成によって、高分子電解質膜と触媒層の界面において、理想的なサブマイクロ構造を有するMEAを作成することができる。   With this configuration, an MEA having an ideal sub-microstructure can be created at the interface between the polymer electrolyte membrane and the catalyst layer.

本発明の凹凸触媒層の形成方法によれば、固体高分子型燃料電池の電流−電圧発電特性において、電流が250mA/cm2以下の範囲において、出力電圧を3〜5%向上させることができる。 According to the method for forming a concavo-convex catalyst layer of the present invention, in the current-voltage power generation characteristics of the solid polymer fuel cell, the output voltage can be improved by 3 to 5% in the range where the current is 250 mA / cm 2 or less. .

本発明の実施の形態1における凹凸触媒層の形成方法の模式図Schematic diagram of the formation method of the uneven catalyst layer in Embodiment 1 of the present invention 本発明の実施の形態1における電流電圧(L=10)出力特性を示すグラフThe graph which shows the current-voltage (L = 10) output characteristic in Embodiment 1 of this invention 本発明の実施の形態1における電圧出力のピッチ依存性を示すグラフThe graph which shows the pitch dependence of the voltage output in Embodiment 1 of this invention

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における凹凸触媒層の形成方法の模式図である。
(Embodiment 1)
FIG. 1 is a schematic diagram of a method for forming an uneven catalyst layer in Embodiment 1 of the present invention.

図1において、金属モールド11は金属膜の表面上にピッチL、凸構造の幅W及び高さHの寸法で凸加工したものである。モールド受け18は金属膜をピッチL凹構造の幅W及び高さHの寸法で穴状の凹加工したものである。金属モールド11及びモールド受け18はフォトリソグラフィーや電鋳法によって作成することができる。材料は高圧力下でも延性を示しかつ加工を施しやすい遷移金属が適しており、代表的にはNiなどが利用しやすい。モールド11及びモールド受け18の表面には撥水処理膜12が施してある。この撥水加工処理により、ホットプレス後のモールド11及びモールド受け18と触媒層13又は高分子電解質膜14の分離が容易になる。   In FIG. 1, a metal mold 11 is formed by convex processing on the surface of a metal film with dimensions of pitch L, convex structure width W and height H. The mold receiver 18 is obtained by processing a metal film into a hole-shaped recess with dimensions of a pitch W concave structure having a width W and a height H. The metal mold 11 and the mold receiver 18 can be formed by photolithography or electroforming. As the material, a transition metal that exhibits ductility even under high pressure and is easily processed is suitable, and typically Ni or the like is easily used. A water repellent film 12 is applied to the surfaces of the mold 11 and the mold receiver 18. This water-repellent treatment facilitates separation of the mold 11 and mold receiver 18 after hot pressing from the catalyst layer 13 or the polymer electrolyte membrane 14.

本発明の凹凸触媒層の形成方法により触媒層13及び高分子電解質膜14を同時に加工するには、あらかじめ高分子電解質膜14のカソード側の両面にスプレー塗布法などにより触媒層を10〜20μmの厚みで塗布し、一般的に広く用いられているMEAを作成する。このMEAに十分水分を含ませた後に、高分子電解質膜のガラス転移温度付近の140℃までゆっくりと加熱する。MEAをモールド11とモールド受け18の間に挿入し、ホットプレス加工を行うとMEAに凹凸加工を施すことができる。   In order to simultaneously process the catalyst layer 13 and the polymer electrolyte membrane 14 by the method for forming an uneven catalyst layer according to the present invention, the catalyst layer is formed on the both sides of the cathode side of the polymer electrolyte membrane 14 in advance by a spray coating method or the like. The MEA is applied in a thickness and generally used widely. After sufficient moisture is contained in this MEA, it is slowly heated to 140 ° C. near the glass transition temperature of the polymer electrolyte membrane. When the MEA is inserted between the mold 11 and the mold receiver 18 and hot pressing is performed, the MEA can be subjected to uneven processing.

(実施例1)
図2は本発明の実施の形態1における電流電圧出力特性図である。曲線21は実施の形態1における電流電圧出力特性である。モールドの寸法はピッチL=10μm、幅W=5μm、高さH=5μmである。曲線22は比較例1における電流電圧出力特性である。比較例1では、凹凸加工を施す前のMEAを使用した。その他の構成は実施例1と同様である。
Example 1
FIG. 2 is a current-voltage output characteristic diagram according to Embodiment 1 of the present invention. A curve 21 is a current-voltage output characteristic in the first embodiment. The mold dimensions are pitch L = 10 μm, width W = 5 μm, and height H = 5 μm. A curve 22 is a current-voltage output characteristic in Comparative Example 1. In the comparative example 1, MEA before performing uneven | corrugated processing was used. Other configurations are the same as those of the first embodiment.

図2では、電流が250mA/cm2以下の範囲において、出力電圧が3%から5%向上していることがわかる。凹凸加工の電流電圧出力特性への効果をより明らかにするために、ピッチLを10μmから2μmまで減少させた。ピッチLと幅Wの比率は2:1に固定した。結果を図3に示す。ピッチLを減少させて凹凸加工を微細化すると出力電圧向上の効果がより顕著になることがわかる。 In FIG. 2, it can be seen that the output voltage is improved by 3% to 5% when the current is in the range of 250 mA / cm 2 or less. In order to clarify the effect of the unevenness processing on the current-voltage output characteristics, the pitch L was decreased from 10 μm to 2 μm. The ratio of pitch L to width W was fixed at 2: 1. The results are shown in FIG. It can be seen that the effect of improving the output voltage becomes more prominent when the pitch L is reduced and the unevenness processing is refined.

本発明にかかるMEAは、膜電極接合体の両面にサブマイクロメートルの凹凸構造を有し燃料電池の膜電極接合体として有用である。   The MEA according to the present invention has a submicrometer uneven structure on both surfaces of a membrane electrode assembly and is useful as a membrane electrode assembly for a fuel cell.

11 金属モールド
12 撥水処理膜
13 触媒層
14 高分子電解質膜
15 ピッチ (L)
16 凹凸構造の幅 (W)
17 凹凸構造の高さ (H)
18 モールド受け
21 実施の形態1における電流電圧出力特性
22 比較例1における電流電圧出力特性
11 Metal mold 12 Water repellent film 13 Catalyst layer 14 Polymer electrolyte film 15 Pitch (L)
16 Uneven structure width (W)
17 Uneven structure height (H)
18 Mold Receiver 21 Current-Voltage Output Characteristics in Embodiment 1 22 Current-Voltage Output Characteristics in Comparative Example 1

Claims (2)

ピッチL、凹凸構造の高さHおよび幅Wで規定される金属製のモールド及びモールド受けと、
高分子電解質膜の表面に塗布された触媒層を有する膜電極接合体(MEA)を有し、
高分子電解質膜のガラス転移温度付近まで加熱された膜電極接合体をモールドに圧着させることにより、MEA全体に凹凸構造の加工を行うMEAの製造方法。
Metal mold and mold receiver defined by pitch L, height H and width W of the concavo-convex structure,
A membrane electrode assembly (MEA) having a catalyst layer applied to the surface of the polymer electrolyte membrane;
A method for producing an MEA, wherein a membrane electrode assembly heated to near the glass transition temperature of a polymer electrolyte membrane is pressure-bonded to a mold to process a concavo-convex structure on the entire MEA.
前記モールド及びモールド受けが、凹凸構造のピッチ 2≦L≦10μmを満たすMEAの製造方法。   The method for producing MEA, wherein the mold and the mold receiver satisfy a pitch 2 ≦ L ≦ 10 μm of the concavo-convex structure.
JP2010224553A 2010-10-04 2010-10-04 Forming method for convexoconcave membrane electrode assembly Pending JP2012079572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010224553A JP2012079572A (en) 2010-10-04 2010-10-04 Forming method for convexoconcave membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010224553A JP2012079572A (en) 2010-10-04 2010-10-04 Forming method for convexoconcave membrane electrode assembly

Publications (1)

Publication Number Publication Date
JP2012079572A true JP2012079572A (en) 2012-04-19

Family

ID=46239572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010224553A Pending JP2012079572A (en) 2010-10-04 2010-10-04 Forming method for convexoconcave membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP2012079572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140146012A (en) * 2013-06-14 2014-12-24 주식회사 엘지화학 Method for manufacturing membrane eletrode assembly, membrane eletrode assembly and fuel cell comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140146012A (en) * 2013-06-14 2014-12-24 주식회사 엘지화학 Method for manufacturing membrane eletrode assembly, membrane eletrode assembly and fuel cell comprising the same
KR101715447B1 (en) * 2013-06-14 2017-03-13 주식회사 엘지화학 Method for manufacturing membrane eletrode assembly, membrane eletrode assembly and fuel cell comprising the same

Similar Documents

Publication Publication Date Title
Mukhopadhyay et al. Mass transfer and reaction kinetic enhanced electrode for high‐performance aqueous flow batteries
JP5759687B2 (en) Water electrolysis cell
JP5833587B2 (en) Corrosion-resistant and conductive nanocarbon coating method using stainless steel as a base material, and fuel cell separator manufacturing method using the same
JP2008239369A (en) Method for refining carbon nanowall (cnw), refined carbon nanowall, method for manufacturing catalyst layer for fuel cell, catalyst layer for fuel cell, and polymer electrolyte fuel cell
JP2010272437A (en) Method of manufacturing catalyst electrode used for membrane electrode conjugant, catalyst electrode used for membrane electrode conjugant, method of manufacturing membrane electrode conjugant, membrane electrode conjugant, and fuel cell
EP3624241A1 (en) Method of manufacturing an electrochemical reactor flow guide
US20140083843A1 (en) Preparation apparatus for porous alumina template
DE60336483D1 (en) DISPERSION OF ION EXCHANGE POLYMER, METHOD OF MANUFACTURING THEREOF AND USE THEREOF
JP6225716B2 (en) Titanium material for separator of polymer electrolyte fuel cell and method for producing the same
TWI508360B (en) Method of making current collector
JP6108042B2 (en) Titanium material, separator, polymer electrolyte fuel cell, and method for producing titanium material
JP5229297B2 (en) Manufacturing method of fuel cell
CN102473934B (en) Method for operating polymer fuel cell
JP2012079572A (en) Forming method for convexoconcave membrane electrode assembly
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP2010027574A (en) Electrode for fuel cell, and manufacturing method of electrode for fuel cell
JP2009218161A5 (en)
Zhang et al. Effects of the nanoimprint pattern on the performance of a MEMS-based micro direct methanol fuel cell
KR102027600B1 (en) Electrochemical cell
JP2009104882A (en) Fuel cell
JP7035665B2 (en) Separator, cell, and fuel cell
JP4988963B2 (en) Method for producing polymer electrolyte membrane for fuel cell
JPH11204119A (en) Solid polyelectrolyte fuel cell and manufacture thereof
JP2009004384A (en) Manufacturing method of membrane electrode assembly of polymer electrolyte fuel cell
JP2004253293A (en) Electrode for fuel cell, fuel cell, and manufacturing method of electrode for fuel cell