TWI508360B - Method of making current collector - Google Patents

Method of making current collector Download PDF

Info

Publication number
TWI508360B
TWI508360B TW103123449A TW103123449A TWI508360B TW I508360 B TWI508360 B TW I508360B TW 103123449 A TW103123449 A TW 103123449A TW 103123449 A TW103123449 A TW 103123449A TW I508360 B TWI508360 B TW I508360B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
layer
metal layer
metal
current collector
Prior art date
Application number
TW103123449A
Other languages
Chinese (zh)
Other versions
TW201601374A (en
Inventor
Yang Wei
Yang Wu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Application granted granted Critical
Publication of TWI508360B publication Critical patent/TWI508360B/en
Publication of TW201601374A publication Critical patent/TW201601374A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

集流體的製備方法Method for preparing current collector

本發明涉及一種集流體的製備方法,尤其涉及一種基於奈米碳管結構的集流體的製備方法。The invention relates to a method for preparing a current collector, in particular to a method for preparing a current collector based on a carbon nanotube structure.

集流體係電化學電池的一個重要主要組成部分。在電化學電池中,集流體表面通常承載電極活性材料並接觸電解液,能為電化學反應提供電子通道,以加快電子轉移,並將電子傳輸到外電路形成電流。因此,集流體的性能與電化學電池的性能密切相關。An important part of the electrochemical system of the current collecting system. In electrochemical cells, the surface of the current collector typically carries the electrode active material and contacts the electrolyte, providing an electron path for the electrochemical reaction to accelerate electron transfer and transport the electrons to an external circuit to form a current. Therefore, the performance of the current collector is closely related to the performance of the electrochemical cell.

先前的集流體通常由導電金屬層製備,如銅箔及鋁箔等。然,這些金屬層極容易被氧化形成一層鈍化膜,或者在電解液中被腐蝕形成一絕緣層,該鈍化膜或者絕緣層極大地增加了電極活性材料和該金屬層的接觸電阻,從而降低了電化學電池的容量及能量轉換效率。Previous current collectors are typically prepared from conductive metal layers such as copper foil and aluminum foil. However, these metal layers are easily oxidized to form a passivation film, or are etched in the electrolyte to form an insulating layer, which greatly increases the contact resistance between the electrode active material and the metal layer, thereby reducing the contact resistance. The capacity and energy conversion efficiency of electrochemical cells.

有鑒於此,提供一種與電極活性材料之間具有較小接觸電阻的集流體的製備方法實為必要。In view of this, it is necessary to provide a method of preparing a current collector having a small contact resistance with an electrode active material.

一種集流體的製備方法,包括:提供一奈米碳管層,所述奈米碳管層具有相對的第一表面及第二表面,該奈米碳管層包括複數奈米碳管,至少部分奈米碳管間隔設置形成複數微孔;在所述奈米碳管層的第一表面電鍍一第一金屬層,在所述奈米碳管層的第二表面電鍍一第二金屬層,形成一奈米碳管複合層;及撕開所述奈米碳管複合層,使所述奈米碳管層分割為第一子奈米碳管層及第二子奈米碳管層,所述第一子奈米碳管層貼附於所述第一金屬層的表面,所述第二子奈米碳管層貼附於所述第二金屬層的表面。A method for preparing a current collector, comprising: providing a carbon nanotube layer having an opposite first surface and a second surface, the carbon nanotube layer comprising a plurality of carbon nanotubes, at least a portion The carbon nanotubes are spaced apart to form a plurality of micropores; a first metal layer is plated on the first surface of the carbon nanotube layer, and a second metal layer is plated on the second surface of the carbon nanotube layer to form a carbon nanotube composite layer; and tearing the carbon nanotube composite layer to divide the carbon nanotube layer into a first sub-carbon nanotube layer and a second sub-carbon nanotube layer, A first sub-carbon nanotube layer is attached to a surface of the first metal layer, and the second sub-carbon nanotube layer is attached to a surface of the second metal layer.

一種集流體的製備方法,包括:提供一第一金屬層;提供一奈米碳管層,所述奈米碳管層包括相對的第一表面及第二表面,將所述奈米碳管層的第一表面貼附於所述第一金屬層的表面;在所述奈米碳管層的第二表面電鍍一第二金屬層,形成一奈米碳管複合層;及撕開所述奈米碳管複合層,使所述奈米碳管層形成一第一子奈米碳管層貼附於所述第一金屬層的表面,一第二子奈米碳管層貼附於所述第二金屬層的表面,形成兩個集流體。A method for preparing a current collector, comprising: providing a first metal layer; providing a carbon nanotube layer, wherein the carbon nanotube layer comprises an opposite first surface and a second surface, the carbon nanotube layer a first surface is attached to the surface of the first metal layer; a second metal layer is plated on the second surface of the carbon nanotube layer to form a carbon nanotube composite layer; and the naphthalene is torn open a carbon nanotube composite layer, wherein the carbon nanotube layer forms a first sub-carbon nanotube layer attached to a surface of the first metal layer, and a second sub-carbon nanotube layer is attached to the The surface of the second metal layer forms two current collectors.

與先前技術相比較,由本發明提供的集流體的製備方法,通過電鍍的方式使所述奈米碳管牢固的夾持於第一金屬層及第二金屬層之間,然後再分離的方式形成集流體,可一次得到兩個以上的集流體,使所述奈米碳管層牢固的固定與所述第一金屬層或第二金屬層表面,並且阻斷了金屬層與電解液直接接觸,從而可阻止電解液與金屬層之間的腐蝕反應,降低了腐蝕產物對集流體與電極材料層之間的接觸電阻的影響,提高的電池容量及轉換效率。Compared with the prior art, in the method for preparing a current collector provided by the present invention, the carbon nanotubes are firmly clamped between the first metal layer and the second metal layer by electroplating, and then formed by separation. The current collector can obtain more than two current collectors at a time, so that the carbon nanotube layer is firmly fixed to the surface of the first metal layer or the second metal layer, and the metal layer is directly contacted with the electrolyte. Thereby, the corrosion reaction between the electrolyte and the metal layer can be prevented, the influence of the corrosion product on the contact resistance between the current collector and the electrode material layer, the battery capacity and the conversion efficiency are improved.

10‧‧‧集流體10‧‧‧ Collector

110‧‧‧奈米碳管層110‧‧‧Nano carbon tube layer

120‧‧‧第一金屬層120‧‧‧First metal layer

130‧‧‧第二金屬層130‧‧‧Second metal layer

111‧‧‧第一表面111‧‧‧ first surface

112‧‧‧微孔112‧‧‧Micropores

113‧‧‧第二表面113‧‧‧ second surface

11‧‧‧奈米碳管複合層11‧‧‧Nano Carbon Tube Composite Layer

114‧‧‧第一子奈米碳管層114‧‧‧First sub-carbon nanotube layer

116‧‧‧第二子奈米碳管層116‧‧‧Second sub-carbon nanotube layer

140‧‧‧電極片140‧‧‧electrode

圖1係本發明第一實施例提供的集流體的製備方法的流程圖。1 is a flow chart showing a method of preparing a current collector according to a first embodiment of the present invention.

圖2係本發明第一實施例提供的集流體中奈米碳管膜的結構示意圖。2 is a schematic view showing the structure of a carbon nanotube film in a current collector according to a first embodiment of the present invention.

圖3係本發明第一實施例提供的集流體中奈米碳管層的結構示意圖。3 is a schematic structural view of a carbon nanotube layer in a current collector according to a first embodiment of the present invention.

圖4係本發明第一實施例在所述奈米碳管層表面電鍍金屬層的流程圖。Figure 4 is a flow chart showing the plating of a metal layer on the surface of the carbon nanotube layer in the first embodiment of the present invention.

圖5為本發明第一實施例提供的集流體的製備方法中撕開所述奈米碳管複合層的流程圖。FIG. 5 is a flow chart of tearing apart the carbon nanotube composite layer in the method for preparing a current collector according to the first embodiment of the present invention.

圖6為本發明第二實施例提供的集流體的製備方法的流程圖。FIG. 6 is a flow chart of a method for preparing a current collector according to a second embodiment of the present invention.

下面將結合附圖及具體實施例,對本發明提供的集流體及其製備方法作進一步的詳細說明。The current collector and the preparation method thereof provided by the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.

請參閱圖1,本發明還提供一種集流體10的製備方法,包括以下步驟:Referring to FIG. 1, the present invention also provides a method for preparing a current collector 10, comprising the following steps:

步驟S10,提供一奈米碳管層110,所述奈米碳管層110包括相對的第一表面111及第二表面113;Step S10, providing a carbon nanotube layer 110, the carbon nanotube layer 110 includes an opposite first surface 111 and a second surface 113;

步驟S11,在所述奈米碳管層110的第一表面111電鍍一第一金屬層120,在所述奈米碳管層110的第二表面113電鍍一第二金屬層130,形成一奈米碳管複合層11;及In step S11, a first metal layer 120 is plated on the first surface 111 of the carbon nanotube layer 110, and a second metal layer 130 is plated on the second surface 113 of the carbon nanotube layer 110 to form a Carbon tube composite layer 11; and

步驟S12,撕開所述奈米碳管複合層11,使所述奈米碳管層110分割為第一子奈米碳管層114及第二子奈米碳管層116,所述第一子奈米碳管層114貼附於所述第一金屬層120的表面,所述第二子奈米碳管層116貼附於所述第二金屬層130的表面。Step S12, tearing the carbon nanotube composite layer 11 to divide the carbon nanotube layer 110 into a first sub-carbon nanotube layer 114 and a second sub-carbon nanotube layer 116, the first The sub-carbon nanotube layer 114 is attached to the surface of the first metal layer 120, and the second sub-carbon nanotube layer 116 is attached to the surface of the second metal layer 130.

請一併參閱圖2及圖3,在步驟S10中,所述奈米碳管層110可設置於一基板(圖未示)的表面,也可通過一固定框懸空設置,從而使所述奈米碳管層110在後續的溶液中能夠懸空設置。所述基板可為絕緣基板或導電基板。由於所述奈米碳管層110為一自支撐結構,因此可通過間隔設置的支撐體支撐,將所述奈米碳管層110懸空設置。所述奈米碳管結構可包括複數層疊設置的奈米碳管膜,所述複數奈米碳管膜層疊且交叉設置,不同層奈米碳管膜中的奈米碳管之間相互交織形成一網狀結構。每一奈米碳管膜包括複數奈米碳管,所述複數奈米碳管沿同一方向擇優取向排列。所述擇優取向係指在奈米碳管膜中大多數奈米碳管的整體延伸方向基本朝同一方向。而且,所述大多數奈米碳管的整體延伸方向基本平行於奈米碳管膜的表面。進一步地,所述奈米碳管膜中多數奈米碳管係通過凡得瓦力首尾相連。所述奈米碳管層110包括複數微孔112,所述複數微孔112沿垂直於奈米碳管層110厚度的方向貫穿所述奈米碳管層110。本實施例中,所述奈米碳管層110通過一固定框懸空設置。Referring to FIG. 2 and FIG. 3 together, in step S10, the carbon nanotube layer 110 may be disposed on a surface of a substrate (not shown), or may be suspended by a fixed frame, thereby The carbon nanotube layer 110 can be suspended in a subsequent solution. The substrate may be an insulating substrate or a conductive substrate. Since the carbon nanotube layer 110 is a self-supporting structure, the carbon nanotube layer 110 can be suspended by a support provided at intervals. The carbon nanotube structure may comprise a plurality of stacked carbon nanotube membranes, the plurality of carbon nanotube membranes being stacked and arranged in a cross, and the carbon nanotubes in different layers of carbon nanotube membranes are interwoven A mesh structure. Each of the carbon nanotube membranes comprises a plurality of carbon nanotubes, the plurality of carbon nanotubes being arranged in a preferred orientation in the same direction. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film extend substantially in the same direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube membrane are connected end to end by van der Waals force. The carbon nanotube layer 110 includes a plurality of micropores 112 that extend through the carbon nanotube layer 110 in a direction perpendicular to the thickness of the carbon nanotube layer 110. In this embodiment, the carbon nanotube layer 110 is suspended by a fixed frame.

在步驟S11中,所述第一金屬層120通過電鍍的方式形成在所述奈米碳管層110的第一表面111。請參閱圖4,具體的,所述第一金屬層120的電鍍方法包括如下步驟:In step S11, the first metal layer 120 is formed on the first surface 111 of the carbon nanotube layer 110 by electroplating. Referring to FIG. 4 , specifically, the plating method of the first metal layer 120 includes the following steps:

步驟S111,提供一含有金屬離子的溶液;Step S111, providing a solution containing metal ions;

步驟S112,將所述奈米碳管層110浸入所述溶液中,所述奈米碳管層110的第一表面111及第二表面113暴露於溶液中,並與溶液中的一電極片平行且間隔設置;Step S112, the carbon nanotube layer 110 is immersed in the solution, and the first surface 111 and the second surface 113 of the carbon nanotube layer 110 are exposed to the solution and parallel to an electrode sheet in the solution. And interval setting;

步驟S113,在所述奈米碳管層110與所述電極片之間形成一電勢差,使金屬離子還原為金屬並電鍍在所述奈米碳管層110的第一表面111及第二表面113,形成所述第一金屬層120及第二金屬層130。Step S113, forming a potential difference between the carbon nanotube layer 110 and the electrode sheet, reducing metal ions to metal and plating on the first surface 111 and the second surface 113 of the carbon nanotube layer 110. Forming the first metal layer 120 and the second metal layer 130.

在步驟S111中,含有金屬離子的溶液的形成方法不限,只要保證所述溶液中能夠形成金屬離子即可。所述金屬離子的濃度可根據所需第一金屬層120及第二金屬層130的厚度等實際需要進行選擇。本實施例中,所述溶液通過將硫酸銅溶解於水中的方式形成銅離子溶液。In step S111, the method of forming the solution containing the metal ions is not limited as long as metal ions can be formed in the solution. The concentration of the metal ions can be selected according to actual needs such as the thickness of the first metal layer 120 and the second metal layer 130. In this embodiment, the solution forms a copper ion solution by dissolving copper sulfate in water.

在步驟S112中,所述奈米碳管層110與所述電極片間隔設置,所述間隔距離距離為可為0.5厘米~3厘米,也可根據實際需要進行選擇。所述電極片包括惰性石墨電極片、鉑電極片、不銹鋼電極片及層狀奈米碳管結構,其面積大於等於奈米碳管薄膜的面積。所述電極片起到電極的作用,只要導電性好,且具有惰性即可滿足要求。所述奈米碳管層110懸浮於所述金屬離子溶液中,具體的,由於所述奈米碳管層110通過固定框懸空設置,因此將其浸入金屬離子溶液中時,位於固定框之間的奈米碳管層110懸浮於所述溶液中。本實施例中,所述電極片為銅片,且所述銅片的面積大於所述奈米碳管層110的面積。In step S112, the carbon nanotube layer 110 is spaced apart from the electrode sheet, and the distance between the spacers may be 0.5 cm to 3 cm, which may also be selected according to actual needs. The electrode sheet comprises an inert graphite electrode sheet, a platinum electrode sheet, a stainless steel electrode sheet and a layered carbon nanotube structure, the area of which is greater than or equal to the area of the carbon nanotube film. The electrode sheet functions as an electrode, and as long as the conductivity is good and inert, it can meet the requirements. The carbon nanotube layer 110 is suspended in the metal ion solution. Specifically, since the carbon nanotube layer 110 is suspended by a fixing frame, when it is immersed in the metal ion solution, it is located between the fixed frames. The carbon nanotube layer 110 is suspended in the solution. In this embodiment, the electrode sheet is a copper sheet, and an area of the copper sheet is larger than an area of the carbon nanotube layer 110.

在步驟S113中,在奈米碳管層110與電極片之間形成一電勢差,並使電極片與電源正極相連作陽極,奈米碳管層110與電源負極相連作陰極,金屬離子在作為陰極的奈米碳管層110上發生還原反應,形成金屬顆粒並附著在所述奈米碳管的管壁上。另,在電鍍的過程中,所述奈米碳管層110中奈米碳管的表面形成複數懸掛鍵,使得所述金屬顆粒通過所述奈米碳管的懸掛鍵與所述奈米碳管緊密結合。進一步,所述金屬顆粒在所述奈米碳管層110的表面彼此相互連結,形成一連續的結構,從而使第一金屬層120及第二金屬層130均為一連續的結構。另,部分金屬離子還原為金屬顆粒附著在所述微孔112位置處的奈米碳管表面,並使得第一金屬層120與第二金屬層130在該微孔112位置處相互融合形成一體結構。In step S113, a potential difference is formed between the carbon nanotube layer 110 and the electrode sheet, and the electrode sheet is connected to the anode of the power source as an anode, and the carbon nanotube layer 110 is connected to the cathode of the power source as a cathode, and the metal ion is used as a cathode. A reduction reaction occurs on the carbon nanotube layer 110 to form metal particles and adhere to the tube wall of the carbon nanotube. In addition, during the electroplating process, the surface of the carbon nanotubes in the carbon nanotube layer 110 forms a plurality of dangling bonds, such that the metal particles pass through the dangling bonds of the carbon nanotubes and the carbon nanotubes. Closely integrated. Further, the metal particles are connected to each other on the surface of the carbon nanotube layer 110 to form a continuous structure, so that the first metal layer 120 and the second metal layer 130 are both continuous structures. In addition, a portion of the metal ions are reduced to a surface of the carbon nanotubes where the metal particles adhere to the micropores 112, and the first metal layer 120 and the second metal layer 130 are fused to each other at the position of the micropores 112 to form an integral structure. .

所述在陽極與陰極之間形成電勢差的方法包括在陽極與陰極之間施加恒流、恒壓或掃描電勢等。本實施例中,在正電極與負電極之間形成電勢差的方法為施加恒壓,陽極與陰極之間施加的電壓為0.5~1.2伏特,時間為0.5小時~4小時。The method of forming a potential difference between the anode and the cathode includes applying a constant current, a constant voltage, a scanning potential, or the like between the anode and the cathode. In the present embodiment, the method of forming a potential difference between the positive electrode and the negative electrode is to apply a constant voltage, and a voltage applied between the anode and the cathode is 0.5 to 1.2 volts for a time of 0.5 hours to 4 hours.

進一步,在步驟S112中,所述第一金屬層120及第二金屬層130也可分步形成,具體的,也可先將所述奈米碳管層110的第二表面113貼附於一基板(圖未示),僅使第一表面111暴露在金屬離子溶液中,先在第一表面111電鍍形成第一金屬層120;然後再將電鍍有第一金屬層120的奈米碳管層110反轉,使所述奈米碳管層110的第二表面113暴露在金屬離子溶液中,並與所述電極片相對設置,然後在第二表面113電鍍所述第二金屬層130。Further, in step S112, the first metal layer 120 and the second metal layer 130 may also be formed in steps. Specifically, the second surface 113 of the carbon nanotube layer 110 may be attached to the first surface 113. a substrate (not shown), only exposing the first surface 111 to the metal ion solution, first forming a first metal layer 120 on the first surface 111; and then plating the carbon nanotube layer of the first metal layer 120 The 110 is reversed, exposing the second surface 113 of the carbon nanotube layer 110 to a metal ion solution, and disposed opposite the electrode sheet, and then plating the second metal layer 130 on the second surface 113.

進一步,在電鍍第二金屬層130的過程中,部分第二金屬層130貫穿所述微孔112,從而與所述第一金屬層120接觸並形成一體結構,將所述奈米碳管層110夾持於所述第一金屬層120與第二金屬層130之間。可以理解,由於所述奈米碳管層110浸入所述金屬離子溶液中,因此,所述金屬離子同時在所述奈米碳管層110的第一表面111及第二表面113電鍍,即所述第二金屬層130與所述第一金屬層120可同時形成。Further, in the process of plating the second metal layer 130, a portion of the second metal layer 130 penetrates through the micro holes 112 to contact the first metal layer 120 and form an integrated structure, and the carbon nanotube layer 110 is The first metal layer 120 and the second metal layer 130 are sandwiched between the first metal layer 120 and the second metal layer 130. It can be understood that, since the carbon nanotube layer 110 is immersed in the metal ion solution, the metal ions are simultaneously plated on the first surface 111 and the second surface 113 of the carbon nanotube layer 110, that is, The second metal layer 130 and the first metal layer 120 may be formed simultaneously.

進一步,電鍍形成所述第二金屬層130之後,還可以進一步包括一採用清洗溶液清洗並烘乾所述奈米碳管層110、所述第一金屬層120及第二金屬層130的步驟,以去除殘留的其他雜質,並使第一金屬層120及第二金屬層130更加牢固的鍵合於所述奈米碳管層110的表面。After the second metal layer 130 is formed by electroplating, the method further includes a step of cleaning and drying the carbon nanotube layer 110, the first metal layer 120 and the second metal layer 130 by using a cleaning solution. The remaining impurities are removed, and the first metal layer 120 and the second metal layer 130 are more firmly bonded to the surface of the carbon nanotube layer 110.

在步驟S12中,所述奈米碳管複合層11可通過在所述奈米碳管複合層11相對的兩個表面施加相反方向的作用力,使所述奈米碳管複合層11分為兩部分。請一併參閱圖5,所述奈米碳管複合層11的斷開方法包括如下步驟:In step S12, the carbon nanotube composite layer 11 can divide the carbon nanotube composite layer 11 into two by applying opposite forces on opposite surfaces of the carbon nanotube composite layer 11. Two parts. Referring to FIG. 5 together, the method for disconnecting the carbon nanotube composite layer 11 includes the following steps:

步驟S121,向所述奈米碳管複合層11相對的兩個表面施加相反方向的作用力F,F’;Step S121, applying opposite forces F, F' to the opposite surfaces of the carbon nanotube composite layer 11;

步驟S122,持續施加該所用力F、F’,使所述奈米碳管複合層11中的奈米碳管層110從中間分開,分別貼附於所述第一金屬層120及第二金屬層130的表面,形成兩個集流體10。In step S122, the applied force F, F' is continuously applied, and the carbon nanotube layer 110 in the carbon nanotube composite layer 11 is separated from the middle and attached to the first metal layer 120 and the second metal, respectively. On the surface of layer 130, two current collectors 10 are formed.

在步驟S121,所述兩個作用力F、F’的大小可根據所述奈米碳管層110、所述第一金屬層120及第二金屬層130的厚度進行選擇,以使所述奈米碳管層110能夠分開。所述兩個作用力F、F’施加於奈米碳管複合層11相對的兩個表面,從而可將奈米碳管複合層11沿厚度方向分開,即將奈米碳管層110分割為兩片面積基本相同的第一子奈米碳管層114及第二子奈米碳管層116,分別對應貼附於所述第一金屬層120及第二金屬層130的表面,從而形成兩個面積基本相同的集流體10,並且所述集流體10的面積基本等於分割前所述奈米碳管複合層11的面積。也就是說,所述第一子奈米碳管層114與第二子奈米碳管層116的面積基本等於分割前所述奈米碳管層110的面積。In step S121, the magnitudes of the two forces F, F' may be selected according to the thickness of the carbon nanotube layer 110, the first metal layer 120, and the second metal layer 130, so that the The carbon nanotube layer 110 can be separated. The two forces F, F' are applied to the opposite surfaces of the carbon nanotube composite layer 11, so that the carbon nanotube composite layer 11 can be separated in the thickness direction, that is, the carbon nanotube layer 110 is divided into two. The first sub-carbon nanotube layer 114 and the second sub-nanocarbon tube layer 116 having substantially the same sheet area are respectively attached to the surfaces of the first metal layer 120 and the second metal layer 130, thereby forming two The current collectors 10 are substantially the same in area, and the area of the current collectors 10 is substantially equal to the area of the carbon nanotube composite layer 11 before division. That is, the area of the first sub-carbon nanotube layer 114 and the second sub-carbon nanotube layer 116 is substantially equal to the area of the carbon nanotube layer 110 before division.

所述分開方法可根據需要進行選擇,例如利用膠帶貼附在所述第一金屬層120及第二金屬層130的表面,然後再拉開所述膠帶。也可以利用鑷子等夾持工具,將所述奈米碳管複合層11分開。進一步,在所述奈米碳管複合層11厚度滿足條件的情況下,也可利用刀片等切割工具將所述奈米碳管複合層11分開。本實施例中,通過撕開所述奈米碳管複合層11的方式向所述奈米碳管複合層11施加作用力F、F’。The separation method may be selected as needed, for example, by tape attached to the surfaces of the first metal layer 120 and the second metal layer 130, and then the tape is pulled apart. It is also possible to separate the carbon nanotube composite layer 11 by using a gripping tool such as a tweezers. Further, in the case where the thickness of the carbon nanotube composite layer 11 satisfies the condition, the carbon nanotube composite layer 11 may be separated by a cutting tool such as a blade. In the present embodiment, the force F, F' is applied to the carbon nanotube composite layer 11 by tearing the carbon nanotube composite layer 11.

可以理解,也可將所述奈米碳管複合層11的一表面固定,而對所述奈米碳管複合層11的另一表面施加作用力F的方式使所述奈米碳管複合層11分開。It can be understood that one surface of the carbon nanotube composite layer 11 can also be fixed, and the carbon nanotube composite layer can be applied by applying a force F to the other surface of the carbon nanotube composite layer 11. 11 separate.

在步驟S122中,在持續施加作用力F、F’的過程中,奈米碳管層110在作用力F、F’的作用下分開,形成第一子奈米碳管層114及第二子奈米碳管層116,並且所述第一子奈米碳管層114貼附於所述第一金屬層120的表面,並通過奈米碳管表面的懸掛鍵與所述第一金屬層120結合;所述第二子奈米碳管層116貼附於所述第二金屬層130的表面,並通過奈米碳管表面的懸掛鍵與所述第二金屬層130的表面。在分離的過程中,所述第一子奈米碳管層114與第二子奈米碳管層116的厚度基本相同,且分別均勻分佈於所述第一金屬層120及第二金屬層130的表面。所述第一子奈米碳管層114中的奈米碳管基本平行於所述第一金屬層120的表面,所述第二子奈米碳管層116中的奈米碳管基本平行於所述第二金屬層130的表面。In step S122, in the process of continuously applying the forces F, F', the carbon nanotube layer 110 is separated by the forces F, F' to form the first sub-carbon nanotube layer 114 and the second sub-portion. a carbon nanotube layer 116, and the first sub-carbon nanotube layer 114 is attached to the surface of the first metal layer 120 and passes through a dangling bond on the surface of the carbon nanotube and the first metal layer 120 The second sub-carbon nanotube layer 116 is attached to the surface of the second metal layer 130 and passes through a dangling bond on the surface of the carbon nanotube to the surface of the second metal layer 130. During the separation process, the first sub-carbon nanotube layer 114 and the second sub-carbon nanotube layer 116 have substantially the same thickness and are uniformly distributed on the first metal layer 120 and the second metal layer 130, respectively. s surface. The carbon nanotubes in the first sub-carbon nanotube layer 114 are substantially parallel to the surface of the first metal layer 120, and the carbon nanotubes in the second sub-carbon nanotube layer 116 are substantially parallel to The surface of the second metal layer 130.

本發明實施例提供的集流體的製備方法具有以下優點:通過電鍍的方式在所述奈米碳管層的表面形成第一金屬層及第二金屬層,能夠使所述第一金屬層及第二金屬層牢固的鍵合於所述奈米碳管層的表面,從而避免在後續應用中奈米碳管的漂移或脫落;該奈米碳管層可阻斷金屬層與具有一定腐蝕性的電解液直接接觸,從而可阻止電解液與金屬層之間的腐蝕反應,使所述金屬層不被腐蝕,降低了腐蝕產物對集流體與電極材料層之間的接觸電阻的影響;再者,由於所述奈米碳管層具有良好的導電性,且該奈米碳管層直接與所述電極材料層接觸且與該電極材料層能較好地結合,從而進一步降低了所述集流體與所述電極活性材料層之間的接觸電阻;最後,通過電鍍形成所述第一金屬層及第二金屬層然後再撕開的方式,能夠一次製備出兩個集流體,從而提高了所述集流體的製備效率。The method for preparing a current collector according to an embodiment of the present invention has the following advantages: forming a first metal layer and a second metal layer on a surface of the carbon nanotube layer by electroplating, enabling the first metal layer and the first metal layer The two metal layers are firmly bonded to the surface of the carbon nanotube layer to avoid drift or shedding of the carbon nanotubes in subsequent applications; the carbon nanotube layer blocks the metal layer and is corrosive The electrolyte is in direct contact, thereby preventing the corrosion reaction between the electrolyte and the metal layer, so that the metal layer is not corroded, and the influence of the corrosion product on the contact resistance between the current collector and the electrode material layer is reduced; Since the carbon nanotube layer has good electrical conductivity, and the carbon nanotube layer is in direct contact with the electrode material layer and can be well combined with the electrode material layer, thereby further reducing the current collector and Contact resistance between the electrode active material layers; finally, by forming the first metal layer and the second metal layer by electroplating and then tearing them apart, two current collectors can be prepared at one time, thereby improving Said fluid current production efficiency.

請一併參閱圖6,本發明第二實施例提供一種集流體10的製備方法,包括如下步驟:Referring to FIG. 6 together, a second embodiment of the present invention provides a method for preparing a current collector 10, including the following steps:

步驟S20,提供一第一金屬層120;Step S20, providing a first metal layer 120;

步驟S21,提供一奈米碳管層110,所述奈米碳管層110包括相對的第一表面111及第二表面113,將所述奈米碳管層110的第一表面111貼附於所述第一金屬層120的表面;In step S21, a carbon nanotube layer 110 is provided. The carbon nanotube layer 110 includes an opposite first surface 111 and a second surface 113. The first surface 111 of the carbon nanotube layer 110 is attached to the first surface 111. a surface of the first metal layer 120;

步驟S22,在所述奈米碳管層110的第二表面113電鍍一第二金屬層130,形成一奈米碳管複合層11;及Step S22, plating a second metal layer 130 on the second surface 113 of the carbon nanotube layer 110 to form a carbon nanotube composite layer 11;

步驟S23,撕開所述奈米碳管複合層11,使所述奈米碳管層110形成一第一子奈米碳管層114貼附於所述第一金屬層120的表面,一第二子奈米碳管層116貼附於所述第二金屬層130的表面。Step S23, tearing the carbon nanotube composite layer 11 so that the carbon nanotube layer 110 forms a first sub-carbon nanotube layer 114 attached to the surface of the first metal layer 120. A second sub-carbon nanotube layer 116 is attached to the surface of the second metal layer 130.

本發明第二實施例提供的集流體10的製備方法與第一實施例基本相同,其不同在於,現將所述奈米碳管層110的第一表面111與所述第一金屬層120貼附,然後再在第二表面113沈積第二金屬層130。The method for preparing the current collector 10 provided by the second embodiment of the present invention is substantially the same as that of the first embodiment, except that the first surface 111 of the carbon nanotube layer 110 and the first metal layer 120 are attached. Attached, a second metal layer 130 is then deposited on the second surface 113.

在步驟S21中,所述第一金屬層120與所述奈米碳管層110緊密結合,所述第一金屬層120起到支撐所述奈米碳管層110的作用,所述第一金屬層120的厚度可根據需要進行選擇,以支撐所述奈米碳管層110。本實施例中,所述第一金屬層120可為10微米,從而使得所述集流體10具有一定的機械強度。In step S21, the first metal layer 120 is tightly coupled to the carbon nanotube layer 110, and the first metal layer 120 functions to support the carbon nanotube layer 110, the first metal The thickness of layer 120 can be selected as needed to support the carbon nanotube layer 110. In this embodiment, the first metal layer 120 may be 10 micrometers, so that the current collector 10 has a certain mechanical strength.

在步驟S22中,所述第二金屬層130的沈積的過程中,對應微孔112位置處的第二金屬層130將貫穿所述奈米碳管層110的微孔112,並與所述第一金屬層120融合在一起,使所述奈米碳管層110牢固的固定與所述第一金屬層120與第二金屬層130之間。In step S22, during the deposition of the second metal layer 130, the second metal layer 130 at the position corresponding to the micropores 112 will penetrate the micropores 112 of the carbon nanotube layer 110, and A metal layer 120 is fused together to firmly secure the carbon nanotube layer 110 between the first metal layer 120 and the second metal layer 130.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

no

10‧‧‧集流體 10‧‧‧ Collector

110‧‧‧奈米碳管層 110‧‧‧Nano carbon tube layer

120‧‧‧第一金屬層 120‧‧‧First metal layer

130‧‧‧第二金屬層 130‧‧‧Second metal layer

111‧‧‧第一表面 111‧‧‧ first surface

112‧‧‧微孔 112‧‧‧Micropores

113‧‧‧第二表面 113‧‧‧ second surface

11‧‧‧奈米碳管複合層 11‧‧‧Nano Carbon Tube Composite Layer

114‧‧‧第一子奈米碳管層 114‧‧‧First sub-carbon nanotube layer

116‧‧‧第二子奈米碳管層 116‧‧‧Second sub-carbon nanotube layer

Claims (12)

一種集流體的製備方法,包括:
提供一奈米碳管層,所述奈米碳管層具有相對的第一表面及第二表面,該奈米碳管層包括複數奈米碳管,至少部分奈米碳管間隔設置形成複數微孔;
在所述奈米碳管層的第一表面電鍍一第一金屬層,在所述奈米碳管層的第二表面電鍍一第二金屬層,形成一奈米碳管複合層;及
撕開所述奈米碳管複合層,使所述奈米碳管層沿其厚度方向分割為第一子奈米碳管層及第二子奈米碳管層,所述第一子奈米碳管層貼附於所述第一金屬層的表面,所述第二子奈米碳管層貼附於所述第二金屬層的表面。
A method for preparing a current collector, comprising:
Providing a carbon nanotube layer having an opposite first surface and a second surface, the carbon nanotube layer comprising a plurality of carbon nanotubes, at least a portion of the carbon nanotubes being spaced apart to form a plurality of microtubes hole;
Depositing a first metal layer on the first surface of the carbon nanotube layer, and plating a second metal layer on the second surface of the carbon nanotube layer to form a carbon nanotube composite layer; and tearing The carbon nanotube composite layer divides the carbon nanotube layer into a first sub-carbon nanotube layer and a second sub-carbon nanotube layer along a thickness direction thereof, the first sub-nanocarbon tube A layer is attached to a surface of the first metal layer, and the second sub-carbon nanotube layer is attached to a surface of the second metal layer.
如請求項1所述的集流體的製備方法,其中,所述奈米碳管層為一自支撐結構,由複數奈米碳管組成,所述複數微孔沿所述奈米碳管層的厚度方向貫穿所述奈米碳管層。The method for preparing a current collector according to claim 1, wherein the carbon nanotube layer is a self-supporting structure composed of a plurality of carbon nanotubes, and the plurality of micropores are along the carbon nanotube layer. The thickness direction penetrates the carbon nanotube layer. 如請求項2所述的集流體的製備方法,其中,在電鍍過程中對應於微孔位置處的所述第一金屬層及第二金屬層相互融合形成一體結構。The method of preparing a current collector according to claim 2, wherein the first metal layer and the second metal layer corresponding to the position of the micropore in the electroplating process are fused to each other to form an integral structure. 如請求項2所述的集流體的製備方法,其中,所述第一金屬層及第二金屬層的電鍍過程包括如下步驟:
提供一含有金屬離子的溶液;
將所述奈米碳管層浸入所述溶液中,並與溶液中的一電極片平行且間隔設置,所述奈米碳管層的第一表面及第二表面暴露於所述金屬離子溶液中;
在所述奈米碳管層與所述電極片之間形成一電勢差,使金屬離子還原金屬並電鍍在所述奈米碳管層的第一表面及第二表面,形成所述第一金屬層及第二金屬層。
The method of preparing a current collector according to claim 2, wherein the plating process of the first metal layer and the second metal layer comprises the following steps:
Providing a solution containing a metal ion;
Immersing the carbon nanotube layer into the solution and disposed in parallel with and spaced apart from an electrode sheet in the solution, the first surface and the second surface of the carbon nanotube layer being exposed to the metal ion solution ;
Forming a potential difference between the carbon nanotube layer and the electrode sheet, causing metal ions to reduce metal and electroplating on the first surface and the second surface of the carbon nanotube layer to form the first metal layer And a second metal layer.
如請求項4所述的集流體的製備方法,其中,所述第一金屬層在所述奈米碳管層的第一表面形成一連續的結構,所述第二金屬層在所述奈米碳管層的第二表面形成一連續的結構。The method of preparing a current collector according to claim 4, wherein the first metal layer forms a continuous structure on the first surface of the carbon nanotube layer, and the second metal layer is in the nanometer. The second surface of the carbon tube layer forms a continuous structure. 如請求項4所述的集流體的製備方法,其中,所述奈米碳管層浸入金屬離子溶液中且懸浮設置,位於固定框中的奈米碳管層懸空設置。The method for preparing a current collector according to claim 4, wherein the carbon nanotube layer is immersed in the metal ion solution and suspended, and the carbon nanotube layer located in the fixed frame is suspended. 如請求項1所述的集流體的製備方法,其中,所述奈米碳管層包括複數層疊且交叉設置的奈米碳管膜,所述複數奈米碳管膜之間通過凡得瓦力結合,每一奈米碳管膜包括複數奈米碳管沿同一方向擇優取向排列,相鄰的奈米碳管膜中的奈米碳管之間具有一交叉角度α,且該α大於0度且小於等於90度。The method for preparing a current collector according to claim 1, wherein the carbon nanotube layer comprises a plurality of stacked and interdigitated carbon nanotube membranes, and the plurality of carbon nanotube membranes pass through a van der Waals force In combination, each of the carbon nanotube membranes comprises a plurality of carbon nanotubes arranged in a preferred orientation in the same direction, and the carbon nanotubes in the adjacent carbon nanotube membranes have an intersection angle α, and the α is greater than 0 degrees. And less than or equal to 90 degrees. 如請求項1所述的集流體的製備方法,其中,所述沿所述奈米碳管複合層的厚度方向撕開所述奈米碳管複合層具體包括:
向所述奈米碳管複合層相對的兩個表面方向施加相反方向的作用力F,F’;
持續施加該所用力F、F’,使所述奈米碳管複合層中的奈米碳管層從中間分開,分別貼附於所述第一金屬層及第二金屬層的表面,形成兩個集流體。
The method for preparing a current collector according to claim 1, wherein the tearing the carbon nanotube composite layer along the thickness direction of the carbon nanotube composite layer comprises:
Applying forces F, F' in opposite directions to opposite surface directions of the carbon nanotube composite layer;
The force F, F' is continuously applied, and the carbon nanotube layers in the carbon nanotube composite layer are separated from the middle, and are respectively attached to the surfaces of the first metal layer and the second metal layer to form two a current collector.
如請求項8所述的集流體的製備方法,其中,所述作用力F的施加方向垂直於所述第一表面,所述作用力F’的施加方向垂直於所述第二表面。The method of producing a current collector according to claim 8, wherein the application direction of the force F is perpendicular to the first surface, and the application direction of the force F' is perpendicular to the second surface. 如請求項8所述的集流體的製備方法,其中,所述第一子奈米碳管層中的奈米碳管平行於所述第一金屬層的表面;所述第二子奈米碳管層中的奈米碳管平行於所述第二金屬層的表面。The method of preparing a current collector according to claim 8, wherein the carbon nanotubes in the first sub-carbon nanotube layer are parallel to a surface of the first metal layer; the second sub-nanocarbon The carbon nanotubes in the tube layer are parallel to the surface of the second metal layer. 一種集流體的製備方法,包括:
提供一第一金屬層;
提供一奈米碳管層,所述奈米碳管層包括相對的第一表面及第二表面,將所述奈米碳管層的第一表面貼附於所述第一金屬層的表面;
在所述奈米碳管層的第二表面電鍍一第二金屬層,形成一奈米碳管複合層;及
撕開所述奈米碳管複合層,使所述奈米碳管層形成一第一子奈米碳管層貼附於所述第一金屬層的表面,一第二子奈米碳管層貼附於所述第二金屬層的表面,形成兩個集流體。
A method for preparing a current collector, comprising:
Providing a first metal layer;
Providing a carbon nanotube layer, the carbon nanotube layer including an opposite first surface and a second surface, the first surface of the carbon nanotube layer is attached to a surface of the first metal layer;
Depositing a second metal layer on the second surface of the carbon nanotube layer to form a carbon nanotube composite layer; and tearing the carbon nanotube composite layer to form the carbon nanotube layer A first sub-carbon nanotube layer is attached to the surface of the first metal layer, and a second sub-carbon nanotube layer is attached to the surface of the second metal layer to form two current collectors.
如請求項11所述的集流體的製備方法,其中,所述第二金屬層的沈積的過程中,對應微孔位置處的第二金屬層貫穿所述奈米碳管層的微孔,並與所述第一金屬層融合在一起。
The method of preparing a current collector according to claim 11, wherein, in the deposition of the second metal layer, the second metal layer corresponding to the position of the micropore penetrates the micropores of the carbon nanotube layer, and Blending with the first metal layer.
TW103123449A 2014-06-17 2014-07-08 Method of making current collector TWI508360B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410269132.4A CN105449221B (en) 2014-06-17 2014-06-17 The preparation method of collector

Publications (2)

Publication Number Publication Date
TWI508360B true TWI508360B (en) 2015-11-11
TW201601374A TW201601374A (en) 2016-01-01

Family

ID=54835672

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103123449A TWI508360B (en) 2014-06-17 2014-07-08 Method of making current collector

Country Status (3)

Country Link
US (1) US20150361573A1 (en)
CN (1) CN105449221B (en)
TW (1) TWI508360B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368865A (en) * 2018-02-09 2021-02-12 深圳前海优容科技有限公司 Battery, battery cell, current collector and preparation method thereof
CN108539153B (en) * 2018-03-27 2022-10-14 电子科技大学 Metal lithium composite negative electrode material and preparation method thereof
CN109216703A (en) * 2018-09-06 2019-01-15 珠海光宇电池有限公司 A kind of flexible, porous collector and preparation method thereof
CN111048789B (en) * 2019-12-26 2023-01-24 珠海冠宇电池股份有限公司 Current collector and preparation method and application thereof
CN111900413B (en) * 2020-08-11 2021-09-28 珠海冠宇电池股份有限公司 Current collector and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201403933A (en) * 2012-07-13 2014-01-16 Hon Hai Prec Ind Co Ltd Thin film lithium ion battery
TW201403914A (en) * 2012-07-13 2014-01-16 Hon Hai Prec Ind Co Ltd Method for making lithium ion battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634306A (en) * 1950-04-26 1953-04-07 Douglas B Cruikshank Method of battery manufacture
CN102315454A (en) * 2011-08-02 2012-01-11 大连丽昌新材料有限公司 A kind of preparation of composite collector and the application in the lithium ion flow battery thereof
CN103187573B (en) * 2011-12-28 2016-01-20 清华大学 Lithium ion cell electrode
CN102738469A (en) * 2012-07-11 2012-10-17 中国第一汽车股份有限公司 Soft type polymeric compound lithium battery and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201403933A (en) * 2012-07-13 2014-01-16 Hon Hai Prec Ind Co Ltd Thin film lithium ion battery
TW201403914A (en) * 2012-07-13 2014-01-16 Hon Hai Prec Ind Co Ltd Method for making lithium ion battery

Also Published As

Publication number Publication date
CN105449221A (en) 2016-03-30
CN105449221B (en) 2018-04-03
US20150361573A1 (en) 2015-12-17
TW201601374A (en) 2016-01-01

Similar Documents

Publication Publication Date Title
TWI508360B (en) Method of making current collector
JP4702304B2 (en) Fuel cell separator, fuel cell separator manufacturing method, and fuel cell
TWI469428B (en) Current collector, electrochemical cell electrode and electrochemical cell
Kim et al. Current collectors for flexible lithium ion batteries: A review of materials
TWI484690B (en) Method for making current collector
JP6220337B2 (en) Gas diffusion electrode, method of manufacturing the gas diffusion electrode, and cell using the gas diffusion electrode
CN101386985B (en) Method for preparing AAO formwork on transparent electrode and corresponding device
US10844508B2 (en) Method for making nanoporous copper
RU2006117787A (en) ELECTRODE FOR USE IN THE SECONDARY BATTERY, METHOD OF ITS PRODUCTION AND SECONDARY BATTERY
JP2016522972A (en) Rechargeable battery with wafer current collector and assembly method
JP2018190725A (en) Lithium ion battery negative electrode and lithium ion battery
CN111640947A (en) Current collector and negative electrode of lithium ion battery and preparation methods of current collector and negative electrode
JP5890367B2 (en) FUEL CELL SEPARATOR, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL SEPARATOR
WO2015127081A1 (en) Current collector for lead acid battery
JP2016537210A (en) Migration and manufacturing of wire arrays using electronic assist technology
CN210897476U (en) Lithium ion battery pole piece structure with multilayer diaphragm
CN105185679B (en) TEM (transmission electron microscope) micro-grid
TWI464946B (en) Method for making lithium ion battery electrode
Jing-zhong et al. Preparation of separated and open end TiO2 nanotubes
CN202384440U (en) Lead-acid storage battery assembled by lead-plastic compound grid cast frame screened and paste-coated polar plates
JP2002042790A (en) Method for manufacturing battery electrode and device for manufacturing battery electrode
JP2005032569A (en) Complex of fluororesin and carbon particulate, gas diffusion electrode, and fuel cell
TWI539479B (en) Method of making field emitter
US11374133B2 (en) Metal matrix composites for contacts on solar cells
Lee et al. Miniature H2/O2 fuel cells using TiO2 nanotube substrates and sputtered Pt catalyst