JP2012077980A - Control method of refrigerating cycle device - Google Patents

Control method of refrigerating cycle device Download PDF

Info

Publication number
JP2012077980A
JP2012077980A JP2010222575A JP2010222575A JP2012077980A JP 2012077980 A JP2012077980 A JP 2012077980A JP 2010222575 A JP2010222575 A JP 2010222575A JP 2010222575 A JP2010222575 A JP 2010222575A JP 2012077980 A JP2012077980 A JP 2012077980A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
temperature
heat exchanger
circulation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010222575A
Other languages
Japanese (ja)
Inventor
Keiko Shiromoto
恵子 城本
Akira Okuyama
亮 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2010222575A priority Critical patent/JP2012077980A/en
Publication of JP2012077980A publication Critical patent/JP2012077980A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of controlling a refrigerating cycle device that contributes to reduction of power consumption.SOLUTION: A first temperature condition and a first pressure condition which establish a constant pressure specific heat of a first value of a refrigerant in a circulation path 25 are set in a control circuit 72. The temperature and pressure in the circulation path 25 are adjusted by the operation of the control circuit 72 for the first temperature condition and the first pressure condition. If at least either the temperature or pressure deviates from the first temperature condition or the first pressure condition for a predetermined period during adjustment of temperature and pressure, a second temperature condition and a second pressure condition which establish a constant pressure specific heat of a second value, being smaller than the first value, are set in the control circuit 72. The temperature and pressure in the circulation path 25 are adjusted by the operation of the control circuit 72 for the second temperature condition and the second pressure condition.

Description

本発明は空気調和機といった冷凍サイクル装置の制御方法に関する。   The present invention relates to a method for controlling a refrigeration cycle apparatus such as an air conditioner.

超臨界域で圧力が一定に維持されても、温度の変化に応じて大きく定圧比熱を変化させる物質は広く知られる。こういった物質には例えば二酸化炭素(CO2)が挙げられる。空気調和機では冷媒としてそうした物質の超臨界域での利用が模索される。定圧比熱が大きければ、少ない循環流量で室内の空気に効率的に熱エネルギーが伝達される。消費電力は低減されることができる。   Even if the pressure is kept constant in the supercritical region, substances that change the constant-pressure specific heat greatly according to the temperature change are widely known. An example of such a substance is carbon dioxide (CO2). In air conditioners, the use of such substances as refrigerants in the supercritical region is sought. If the constant pressure specific heat is large, heat energy is efficiently transmitted to the indoor air with a small circulation flow rate. The power consumption can be reduced.

特開2001−241800号公報JP 2001-241800 A 特開2008−215717号公報JP 2008-215717 A 特開平5−231730号公報JP-A-5-231730

その一方で、こういった超臨界状態の物質では温度の変化に応じて著しく定圧比熱が変化することから、環境温度すなわち外気の温度に応じて冷凍回路の運転状態は大きく変動する。運転状態の変動は冷媒の温度の変動を引き起こす。したがって、冷凍回路では圧力調整が継続的に実施されてしまう。こうした不安定なサイクルの圧力調整には様々な構成機器の制御や各サイクルの制御が駆使されなければならないことから、消費電力は増加してしまう。温度および圧力が早期に目標温度や目標圧力に収束すれば、消費電力は低減されることができる。   On the other hand, since the constant-pressure specific heat changes remarkably according to the temperature change in such a supercritical substance, the operation state of the refrigeration circuit greatly varies depending on the environmental temperature, that is, the temperature of the outside air. Variations in operating conditions cause refrigerant temperature variations. Therefore, pressure adjustment is continuously performed in the refrigeration circuit. Since the control of various components and the control of each cycle must be used for the pressure adjustment of such an unstable cycle, the power consumption increases. If the temperature and pressure converge to the target temperature and target at an early stage, power consumption can be reduced.

本発明は、上記実状に鑑みてなされたもので、消費電力の低減に寄与する冷凍サイクル装置の制御方法を提供することを目的とする。   This invention is made | formed in view of the said actual condition, and it aims at providing the control method of the refrigerating-cycle apparatus which contributes to reduction of power consumption.

上記目的を達成するために、本発明の一形態によれば、超臨界状態の第1定圧比熱を確立する温度を含む第1温度域で単位温度変化あたりに定圧比熱の第1変化量を示し、前記第1定圧比熱よりも低い超臨界状態の第2定圧比熱を確立する温度を含む第2温度域で単位温度変化あたりに前記第1変化量よりも小さい定圧比熱の第2変化量を示す冷媒を第1熱交換器および第2熱交換器の間で循環経路に沿って循環させ、前記冷媒の熱量に応じて前記第1熱交換器から前記第2熱交換器に熱エネルギーを運搬する工程と、制御回路に前記第1温度域内で第1温度条件を設定する工程と、前記第1温度条件に向けて前記制御回路の働きで前記循環経路内の温度および圧力を調整する工程と、前記温度および前記圧力の調整中に前記温度が前記第1温度条件から所定の期間にわたって逸脱すると、前記制御回路に前記第2温度域内で第2温度条件を設定する工程と、前記第2温度条件に向けて前記制御回路の働きで前記循環経路内の温度および圧力を調整する工程とを備えることを特徴とする冷凍サイクル装置の制御方法が提供される。   In order to achieve the above object, according to one aspect of the present invention, the first change amount of the constant pressure specific heat per unit temperature change is shown in the first temperature range including the temperature establishing the first constant pressure specific heat in the supercritical state. The second change amount of the constant pressure specific heat is smaller than the first change amount per unit temperature change in the second temperature range including the temperature establishing the second constant pressure specific heat in the supercritical state lower than the first constant pressure specific heat. A refrigerant is circulated along a circulation path between the first heat exchanger and the second heat exchanger, and heat energy is conveyed from the first heat exchanger to the second heat exchanger according to the amount of heat of the refrigerant. A step of setting a first temperature condition in the first temperature range in the control circuit, and a step of adjusting the temperature and pressure in the circulation path by the action of the control circuit toward the first temperature condition; During the adjustment of the temperature and the pressure, the temperature is the first Deviating from the temperature condition over a predetermined period of time, setting the second temperature condition in the second temperature range in the control circuit, and the temperature in the circulation path by the action of the control circuit toward the second temperature condition And a step of adjusting the pressure. A method for controlling the refrigeration cycle apparatus is provided.

制御回路に第1温度条件が設定されると、第1温度条件に向けて循環経路内の温度および圧力は調整される。超臨界状態の第1定圧比熱が確立されると、高い定圧比熱の領域で冷凍サイクル装置は運転されることができる。効率的な運転が実現される。制御回路内で第1温度条件が第2温度条件に切り替えられると、冷媒は定圧比熱の第2変化量を示す。第1変化量は第2変化量に縮小されることから、第1温度域の冷媒に比べて第2温度域の冷媒の温度および圧力は安定化しやすい。したがって、冷媒は早期に第2温度条件を満足することが予想される。その結果、制御に伴う余分な消費電力は低減されることができる。   When the first temperature condition is set in the control circuit, the temperature and pressure in the circulation path are adjusted toward the first temperature condition. When the first constant pressure specific heat in the supercritical state is established, the refrigeration cycle apparatus can be operated in a high constant pressure specific heat region. Efficient operation is realized. When the first temperature condition is switched to the second temperature condition in the control circuit, the refrigerant exhibits a second change amount of the constant pressure specific heat. Since the first change amount is reduced to the second change amount, the temperature and pressure of the refrigerant in the second temperature range are more easily stabilized than the refrigerant in the first temperature range. Therefore, the refrigerant is expected to satisfy the second temperature condition at an early stage. As a result, extra power consumption associated with control can be reduced.

冷凍サイクルの制御方法は、前記循環経路に組み込まれて、前記冷媒を貯留する空間を区画する冷媒溜めの貯留量に応じて前記循環経路内で前記冷媒の温度および圧力を調整する工程と、暖房運転時に前記循環経路内で前記冷媒の圧力が所定圧に達すると、前記循環経路から前記冷媒溜めを切り離す工程とをさらに備えてもよい。冷媒の圧力が所定圧まで上昇すると、冷凍サイクル装置は定常運転に移行する。したがって、冷媒溜めが切り離されても循環経路内で冷媒の圧力変動は回避される。冷媒溜めの切り離しに応じて冷媒の流路は短縮化されることから、冷媒の圧力損失は低減される。冷媒は効率的に熱エネルギーを運搬することができる。   The method for controlling the refrigeration cycle includes the steps of adjusting the temperature and pressure of the refrigerant in the circulation path according to the storage amount of the refrigerant reservoir that is incorporated in the circulation path and partitions the space for storing the refrigerant, and heating The method may further include a step of separating the refrigerant reservoir from the circulation path when the pressure of the refrigerant reaches a predetermined pressure in the circulation path during operation. When the refrigerant pressure rises to a predetermined pressure, the refrigeration cycle apparatus shifts to steady operation. Therefore, even if the refrigerant reservoir is disconnected, the refrigerant pressure fluctuation is avoided in the circulation path. Since the refrigerant flow path is shortened in accordance with the separation of the refrigerant reservoir, the pressure loss of the refrigerant is reduced. The refrigerant can efficiently carry heat energy.

冷凍サイクルの制御方法は、前記第1熱交換器および第3熱交換器の間で1次側循環経路に沿って1次側冷媒を循環させ、圧縮機および膨張弁の間で前記第1熱交換器または前記第3熱交換器に、前記圧縮機で高温高圧に圧縮された1次側冷媒を供給し、前記第1熱交換器で前記1次側冷媒から前記冷媒に熱エネルギーを移動させる工程と、前記圧縮機で高温高圧に圧縮された前記1次側冷媒から、前記冷媒溜め内の前記冷媒に第4熱交換器で熱エネルギーを移動させる工程と、前記循環経路から前記冷媒溜めが切り離される際に、前記1次側循環経路から前記第4熱交換器を切り離す工程とをさらに備えてもよい。第1熱交換器および第2熱交換器は2次側の搬送回路を形成する。その一方で、第1熱交換器および第3熱交換器は1次側の冷凍回路を形成する。搬送回路では圧力の調整にあたって1次側冷媒が利用される。圧力の調整に固有の電気加熱装置や冷却装置は省略されることができる。圧力の調整にあたって空気調和機の消費電力の増加は回避されることができる。第4熱交換器の切り離しに応じて1次側冷媒の流路は短縮化されることから、1次側冷媒の圧力損失は低減される。1次側冷媒は効率的に熱エネルギーを運搬することができる。   The control method of the refrigeration cycle is such that the primary side refrigerant is circulated along the primary side circulation path between the first heat exchanger and the third heat exchanger, and the first heat is between the compressor and the expansion valve. A primary side refrigerant compressed to a high temperature and a high pressure by the compressor is supplied to the exchanger or the third heat exchanger, and heat energy is transferred from the primary side refrigerant to the refrigerant by the first heat exchanger. A step of transferring thermal energy by a fourth heat exchanger from the primary side refrigerant compressed to a high temperature and high pressure by the compressor to the refrigerant in the refrigerant reservoir, and the refrigerant reservoir from the circulation path. A step of separating the fourth heat exchanger from the primary-side circulation path when being separated. The first heat exchanger and the second heat exchanger form a secondary side transfer circuit. On the other hand, the first heat exchanger and the third heat exchanger form a primary side refrigeration circuit. In the transfer circuit, the primary side refrigerant is used for adjusting the pressure. Electric heating devices and cooling devices specific to the pressure adjustment can be omitted. In adjusting the pressure, an increase in power consumption of the air conditioner can be avoided. Since the flow path of the primary side refrigerant is shortened according to the disconnection of the fourth heat exchanger, the pressure loss of the primary side refrigerant is reduced. The primary refrigerant can carry heat energy efficiently.

冷媒には例えば二酸化炭素が挙げられる。超臨界状態の二酸化炭素は、一定圧力であっても、温度の変化に応じて大きく定圧比熱を変化させる。したがって、環境温度すなわち外気の温度に応じて冷凍回路の運転状態は大きく変動する。運転状態の変動は冷媒の温度の変動を引き起こす。こうした二酸化炭素が冷媒に利用されても、本形態に係る制御方法によれば、効率的に熱エネルギーが利用されるとともに、消費電力は低減されることができる。前記第1温度条件および前記第2温度条件で前記循環経路内の圧力は一定に維持されればよい。   An example of the refrigerant is carbon dioxide. Carbon dioxide in the supercritical state greatly changes the constant pressure specific heat according to the temperature change even at a constant pressure. Therefore, the operating state of the refrigeration circuit varies greatly depending on the environmental temperature, that is, the temperature of the outside air. Variations in operating conditions cause refrigerant temperature variations. Even when such carbon dioxide is used as a refrigerant, according to the control method according to the present embodiment, heat energy can be efficiently used and power consumption can be reduced. The pressure in the circulation path only needs to be kept constant under the first temperature condition and the second temperature condition.

以上のように本発明の一形態によれば、消費電力の低減に寄与する冷凍サイクル装置の制御方法が提供される。   As described above, according to one aspect of the present invention, a method for controlling a refrigeration cycle apparatus that contributes to a reduction in power consumption is provided.

本発明の第1実施形態に係る空気調和機の構成を概略的に示す図である。It is a figure showing roughly the composition of the air harmony machine concerning a 1st embodiment of the present invention. 第1実施形態に係る空気調和機の制御系の構成を概略的に示すブロック図である。It is a block diagram showing roughly the composition of the control system of the air harmony machine concerning a 1st embodiment. 暖房運転時に第1冷媒および第2冷媒の流れを示す図である。It is a figure which shows the flow of a 1st refrigerant | coolant and a 2nd refrigerant | coolant at the time of heating operation. 暖房運転時に冷媒タンクが切り離された際に第1冷媒および第2冷媒の流れを示す図である。It is a figure which shows the flow of a 1st refrigerant | coolant and a 2nd refrigerant | coolant when a refrigerant | coolant tank is cut away at the time of heating operation. 冷房運転時に第1冷媒および第2冷媒の流れを示す図である。It is a figure which shows the flow of a 1st refrigerant | coolant and a 2nd refrigerant | coolant at the time of air_conditionaing | cooling operation. 冷房運転時に冷媒タンクが切り離された際に第1冷媒および第2冷媒の流れを示す図である。It is a figure which shows the flow of a 1st refrigerant | coolant and a 2nd refrigerant | coolant when a refrigerant | coolant tank is cut off at the time of air_conditionaing | cooling operation. 暖房運転時の制御の一具体例を示すフローチャートである。It is a flowchart which shows a specific example of the control at the time of heating operation. CO2(二酸化炭素)の定圧比熱を示すグラフである。It is a graph which shows the constant-pressure specific heat of CO2 (carbon dioxide). 本発明の第2実施形態に係る空気調和機の構成を概略的に示す図である。It is a figure which shows roughly the structure of the air conditioner which concerns on 2nd Embodiment of this invention.

以下、添付図面を参照しつつ本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は本発明の第1実施形態に係る冷凍サイクル装置すなわち空気調和機11の構成を概略的に示す。空気調和機11は1次冷媒回路12および2次冷媒回路13を備える。1次冷媒回路12は冷凍回路を構成する。1次冷媒回路12では例えばアンモニアやプロパンといった自然冷媒が冷媒(以下「第1冷媒」という)として使用される。ただし、第1冷媒にはアンモニアやプロパン以外の物質が利用されてもよい。第1冷媒にはできる限り大気圧に近い圧力で相変化する自然物質が利用されることが望まれる。第1冷媒は例えば室外の空気との間で熱エネルギーをやり取りする。   FIG. 1 schematically shows the configuration of a refrigeration cycle apparatus, that is, an air conditioner 11 according to a first embodiment of the present invention. The air conditioner 11 includes a primary refrigerant circuit 12 and a secondary refrigerant circuit 13. The primary refrigerant circuit 12 constitutes a refrigeration circuit. In the primary refrigerant circuit 12, a natural refrigerant such as ammonia or propane is used as a refrigerant (hereinafter referred to as “first refrigerant”). However, substances other than ammonia and propane may be used for the first refrigerant. It is desirable that a natural substance that changes phase at a pressure as close to atmospheric pressure as possible is used for the first refrigerant. The first refrigerant exchanges heat energy with, for example, outdoor air.

2次冷媒回路13は搬送回路を構成する。2次冷媒回路13では例えばCO2(二酸化酸素)といった自然冷媒が冷媒(以下「第2冷媒」という)として使用される。ただし、第2冷媒にはCO2以外の物質が利用されてもよい。第2冷媒にはできる限り生物に負担の少ない自然物質が利用されることが望まれる。第2冷媒は第1冷媒との間で熱エネルギーをやり取りすると同時に室内の空気との間で熱エネルギーをやり取りする。   The secondary refrigerant circuit 13 constitutes a conveyance circuit. In the secondary refrigerant circuit 13, a natural refrigerant such as CO2 (oxygen dioxide) is used as a refrigerant (hereinafter referred to as "second refrigerant"). However, a substance other than CO2 may be used for the second refrigerant. As the second refrigerant, it is desirable to use a natural substance that has as little burden on living organisms as possible. The second refrigerant exchanges thermal energy with the first refrigerant, and at the same time exchanges thermal energy with the indoor air.

1次冷媒回路12は圧縮機14を備える。圧縮機14は第1循環経路15に組み込まれる。第1循環経路15は四方弁16の第1口16aおよび第2口16bを相互に結ぶ。圧縮機14の吸込口14aは四方弁16の第1口16aに接続される。第1口16aから気冷媒は圧縮機14の吸込口14aに供給される。圧縮機14は低圧の気冷媒を規定の高温高圧まで圧縮する。圧縮機14の吐出口14bは四方弁16の第2口16bに接続される。圧縮機14の吐出口14bから気冷媒は四方弁16の第2口16bに供給される。第1循環経路15は例えば銅管などの冷媒配管で形成される。第1冷媒にアンモニアが利用される場合には、冷媒配管にはアンモニアに対して耐腐食性を有する管、例えばステンレス鋼(SUS)管が使用される。   The primary refrigerant circuit 12 includes a compressor 14. The compressor 14 is incorporated in the first circulation path 15. The first circulation path 15 connects the first port 16a and the second port 16b of the four-way valve 16 to each other. The suction port 14 a of the compressor 14 is connected to the first port 16 a of the four-way valve 16. The gas refrigerant is supplied from the first port 16 a to the suction port 14 a of the compressor 14. The compressor 14 compresses the low-pressure gas refrigerant to a prescribed high temperature and high pressure. The discharge port 14 b of the compressor 14 is connected to the second port 16 b of the four-way valve 16. The gas refrigerant is supplied from the discharge port 14 b of the compressor 14 to the second port 16 b of the four-way valve 16. The first circulation path 15 is formed of a refrigerant pipe such as a copper pipe. When ammonia is used as the first refrigerant, a pipe having corrosion resistance to ammonia, such as a stainless steel (SUS) pipe, is used as the refrigerant pipe.

四方弁16の第3口16cおよび第4口16dには第2循環経路17が接続される。第2循環経路17は四方弁16の第3口16cおよび第4口16dを相互に結ぶ。第2循環経路17には、室外熱交換器18、膨張弁19および冷媒−冷媒熱交換器21が順番に組み込まれる。室外熱交換器18は第1口18aおよび第2口18bを有する。第1口18aおよび第2口18bの間で冷媒は室外熱交換器18を通過する。室外熱交換器18は、通過する冷媒と周囲の空気との間で熱エネルギーの交換を実現する。室外熱交換器18の第1口18aは四方弁16の第3口16cに接続される。四方弁16の働きで、室外熱交換器18の第1口18aは、圧縮機14の吸込口14aおよび圧縮機14の吐出口14bのうちいずれかに切り替え可能に接続される。室外熱交換器18の第2口18bには膨張弁19が接続される。第2循環経路17は例えば銅管などの冷媒配管で形成されればよい。第1冷媒にアンモニアが利用される場合には、冷媒配管にはアンモニアに対して耐腐食性を有する管、例えばステンレス鋼(SUS)管が使用される。   A second circulation path 17 is connected to the third port 16 c and the fourth port 16 d of the four-way valve 16. The second circulation path 17 connects the third port 16c and the fourth port 16d of the four-way valve 16 to each other. In the second circulation path 17, an outdoor heat exchanger 18, an expansion valve 19, and a refrigerant-refrigerant heat exchanger 21 are sequentially incorporated. The outdoor heat exchanger 18 has a first port 18a and a second port 18b. The refrigerant passes through the outdoor heat exchanger 18 between the first port 18a and the second port 18b. The outdoor heat exchanger 18 realizes heat energy exchange between the refrigerant passing therethrough and ambient air. The first port 18 a of the outdoor heat exchanger 18 is connected to the third port 16 c of the four-way valve 16. By the action of the four-way valve 16, the first port 18a of the outdoor heat exchanger 18 is switchably connected to either the suction port 14a of the compressor 14 or the discharge port 14b of the compressor 14. An expansion valve 19 is connected to the second port 18 b of the outdoor heat exchanger 18. The second circulation path 17 may be formed of a refrigerant pipe such as a copper pipe. When ammonia is used as the first refrigerant, a pipe having corrosion resistance to ammonia, such as a stainless steel (SUS) pipe, is used as the refrigerant pipe.

室外熱交換器18に関連づけられて送風ファン22が設置される。送風ファン22は羽根車の回転に応じて気流を生成する。気流は室外熱交換器18を通過する。羽根車の毎分回転数に応じて送風ファン22から送られる気流の流量は調整される。気流の流量に応じて室外熱交換器18では冷媒と空気との間で交換される熱エネルギー量が調整されることができる。こうした熱エネルギー量の調整に従って第1冷媒の温度や圧力は変化する。   A blower fan 22 is installed in association with the outdoor heat exchanger 18. The blower fan 22 generates an air flow according to the rotation of the impeller. The airflow passes through the outdoor heat exchanger 18. The flow rate of the airflow sent from the blower fan 22 is adjusted according to the number of revolutions per minute of the impeller. The amount of heat energy exchanged between the refrigerant and the air can be adjusted in the outdoor heat exchanger 18 according to the flow rate of the airflow. The temperature and pressure of the first refrigerant change according to the adjustment of the heat energy amount.

冷媒−冷媒熱交換器21は1次冷媒回路12の第2循環経路17を提供する第1流通路23を備える。第1流通路23は第1口23aおよび第2口23bを有する。第1口23aおよび第2口23bの間で冷媒は第1流通路23を通過する。第1流通路23の第1口23aは膨張弁19に接続される。第1流通路23の第2口23bは四方弁16の第4口16dに接続される。四方弁16の働きで、第1流通路23の第2口23bは、圧縮機14の吸込口14aおよび吐出口14bのうちいずれかに切り替え可能に接続される。四方弁16の切り替えに応じて、圧縮機14の働きで圧縮された第1冷媒は室外熱交換器18または冷媒−冷媒熱交換器21に選択的に供給される。   The refrigerant-refrigerant heat exchanger 21 includes a first flow path 23 that provides the second circulation path 17 of the primary refrigerant circuit 12. The first flow passage 23 has a first port 23a and a second port 23b. The refrigerant passes through the first flow passage 23 between the first port 23a and the second port 23b. The first port 23 a of the first flow passage 23 is connected to the expansion valve 19. The second port 23 b of the first flow passage 23 is connected to the fourth port 16 d of the four-way valve 16. By the action of the four-way valve 16, the second port 23b of the first flow passage 23 is switchably connected to either the suction port 14a or the discharge port 14b of the compressor 14. In response to switching of the four-way valve 16, the first refrigerant compressed by the action of the compressor 14 is selectively supplied to the outdoor heat exchanger 18 or the refrigerant-refrigerant heat exchanger 21.

同時に、冷媒−冷媒熱交換器21は第2流通路24を備える。第2流通路24は例えば第1流通路23に平行に延びる。第2流通路24は第1口24aおよび第2口24bを有する。第1口24aおよび第2口24bの間で冷媒は第2流通路24を通過する。第2流通路24の第1口24aおよび第2口24bには循環経路25が接続される。循環経路25は第2流通路24の第1口24aおよび第2口24bを相互に結ぶ。循環経路25には、ポンプ26および室内熱交換器27が組み込まれる。このように冷媒−冷媒熱交換器21は1次冷媒回路12の第2循環経路17に組み込まれると同時に2次冷媒回路13の循環経路25に組み込まれる。第2流通路24内の第2冷媒と第1流通路23内の第1冷媒との間で熱エネルギーの交換が実現される。熱エネルギーの交換にあたって例えば第1流通路23の配管と第2流通路24の配管とは相互に接触すればよい。   At the same time, the refrigerant-refrigerant heat exchanger 21 includes a second flow passage 24. The second flow path 24 extends, for example, in parallel with the first flow path 23. The second flow passage 24 has a first port 24a and a second port 24b. The refrigerant passes through the second flow passage 24 between the first port 24a and the second port 24b. A circulation path 25 is connected to the first port 24 a and the second port 24 b of the second flow passage 24. The circulation path 25 connects the first port 24a and the second port 24b of the second flow passage 24 to each other. A pump 26 and an indoor heat exchanger 27 are incorporated in the circulation path 25. As described above, the refrigerant-refrigerant heat exchanger 21 is incorporated into the second circulation path 17 of the primary refrigerant circuit 12 and simultaneously into the circulation path 25 of the secondary refrigerant circuit 13. Exchange of thermal energy is realized between the second refrigerant in the second flow passage 24 and the first refrigerant in the first flow passage 23. In exchanging the heat energy, for example, the pipe of the first flow path 23 and the pipe of the second flow path 24 may be in contact with each other.

室内熱交換器27は第1口27aおよび第2口27bを有する。第1口27aおよび第2口27bの間で冷媒は室内熱交換器27を通過する。室内熱交換器27は、通過する冷媒と周囲の空気との間で熱エネルギーの交換を実現する。室内熱交換器27の第1口27aはポンプ26に接続される。ポンプ26の働きで第2冷媒は循環経路25を循環する。室内熱交換器27の第2口27bには第2流通路24の第1口24aが接続される。ポンプ26はいわゆる双方向ポンプに構成される。すなわち、ポンプ26は、室外熱交換器27および冷媒−冷媒熱交換器21の順で循環経路25に沿って第2冷媒を循環させることができ、反対に、冷媒−冷媒熱交換器21および室外熱交換器27の順で循環経路25に沿って第2冷媒を循環させることができる。   The indoor heat exchanger 27 has a first port 27a and a second port 27b. The refrigerant passes through the indoor heat exchanger 27 between the first port 27a and the second port 27b. The indoor heat exchanger 27 realizes heat energy exchange between the refrigerant passing therethrough and ambient air. A first port 27 a of the indoor heat exchanger 27 is connected to the pump 26. The second refrigerant circulates in the circulation path 25 by the action of the pump 26. The first port 24 a of the second flow passage 24 is connected to the second port 27 b of the indoor heat exchanger 27. The pump 26 is configured as a so-called bidirectional pump. That is, the pump 26 can circulate the second refrigerant along the circulation path 25 in the order of the outdoor heat exchanger 27 and the refrigerant-refrigerant heat exchanger 21, and conversely, the refrigerant-refrigerant heat exchanger 21 and the outdoor The second refrigerant can be circulated along the circulation path 25 in the order of the heat exchanger 27.

室内熱交換器27に関連づけられて送風ファン28が設置される。送風ファン28は羽根車の回転に応じて気流を生成する。気流は室内熱交換器27を通過する。羽根車の毎分回転数に応じて送風ファン28から送られる気流の流量は調整される。気流の流量に応じて室内熱交換器27では冷媒と空気との間で交換される熱エネルギー量が調整されることができる。こうした熱エネルギー量の調整に従って第2冷媒の温度や圧力は変化する。   A blower fan 28 is installed in association with the indoor heat exchanger 27. The blower fan 28 generates an air flow according to the rotation of the impeller. The airflow passes through the indoor heat exchanger 27. The flow rate of the airflow sent from the blower fan 28 is adjusted according to the number of revolutions per minute of the impeller. The amount of heat energy exchanged between the refrigerant and the air can be adjusted in the indoor heat exchanger 27 in accordance with the flow rate of the airflow. The temperature and pressure of the second refrigerant change according to the adjustment of the heat energy amount.

循環経路25には切り離し自在に冷媒溜めすなわち冷媒タンク29が接続される。冷媒タンク29の接続にあたって冷媒−冷媒熱交換器21と室内熱交換器27との間で循環経路25には分岐経路31が接続される。分岐経路31は第1分岐点32と第2分岐点33とを相互に接続する。第1分岐点32および第2分岐点33は冷媒−冷媒熱交換器21と室内熱交換器27との間に配置される。分岐経路31に冷媒タンク29は接続される。   A refrigerant reservoir, that is, a refrigerant tank 29 is connected to the circulation path 25 in a detachable manner. A branch path 31 is connected to the circulation path 25 between the refrigerant-refrigerant heat exchanger 21 and the indoor heat exchanger 27 when the refrigerant tank 29 is connected. The branch path 31 connects the first branch point 32 and the second branch point 33 to each other. The first branch point 32 and the second branch point 33 are disposed between the refrigerant-refrigerant heat exchanger 21 and the indoor heat exchanger 27. The refrigerant tank 29 is connected to the branch path 31.

冷媒タンク29は内部空間29aを区画する。冷媒タンク29の内部空間29aに第2冷媒が貯留される。2次冷媒回路13では暖房運転時に超臨界圧が確立される。その一方で、冷房運転時には2次冷媒回路13で超臨界圧未満の圧力が確立される。その結果、冷房運転時に要求される冷媒量は暖房運転時に要求される冷媒量より小さい。冷房運転時には余剰の冷媒は冷媒タンク29に貯留されることができる。こうして暖房運転時に十分な冷媒量が確保される。   The refrigerant tank 29 defines an internal space 29a. The second refrigerant is stored in the internal space 29 a of the refrigerant tank 29. In the secondary refrigerant circuit 13, a supercritical pressure is established during heating operation. On the other hand, a pressure lower than the supercritical pressure is established in the secondary refrigerant circuit 13 during the cooling operation. As a result, the refrigerant amount required during the cooling operation is smaller than the refrigerant amount required during the heating operation. Excess refrigerant can be stored in the refrigerant tank 29 during the cooling operation. Thus, a sufficient amount of refrigerant is ensured during heating operation.

冷媒タンク29には第1補助経路34が接続される。第1補助経路34の一端は冷媒タンク29に接続される。第1補助経路34の他端はポンプ26および冷媒−冷媒熱交換器21の間で循環経路25に接続される。第2補助経路35は第1補助経路34から第3分岐点36で分岐する。第2補助経路35はポンプ26および室内熱交換器27の間で循環経路25に接続される。   A first auxiliary path 34 is connected to the refrigerant tank 29. One end of the first auxiliary path 34 is connected to the refrigerant tank 29. The other end of the first auxiliary path 34 is connected to the circulation path 25 between the pump 26 and the refrigerant-refrigerant heat exchanger 21. The second auxiliary path 35 branches from the first auxiliary path 34 at a third branch point 36. The second auxiliary path 35 is connected to the circulation path 25 between the pump 26 and the indoor heat exchanger 27.

2次冷媒回路13には第1流路制御装置37が組み込まれる。第1流路制御装置37は第1流量調整弁38、第2流量調整弁39、第3流量調整弁41および第4流量調整弁42を備える。第1流量調整弁38は第3分岐点36および循環経路25の間で第1補助経路34に挿入される。第2流量調整弁39は第2補助経路35に挿入される。暖房運転時には第1流量調整弁38は閉じられる。第1流量調整弁38は第2冷媒の流通を阻止する。その結果、第2流量調整弁39の開度に応じて所定の流量の第2冷媒が冷媒タンク29からポンプ26の吸い込み側に供給される。冷房運転時には第2流量調整弁39は閉じられる。第2流量調整弁39は第2冷媒の流通を阻止する。その結果、第1流量調整弁38の開度に応じて所定の流量の第2冷媒が冷媒タンク29からポンプ26の吸い込み側に供給される。第3流量調整弁41は第1分岐点32と第2分岐点33との間で分岐経路31に挿入される。第4流量調整弁42は第1分岐点32と第2分岐点33との間で循環経路25に挿入される。   A first flow path control device 37 is incorporated in the secondary refrigerant circuit 13. The first flow path control device 37 includes a first flow rate adjustment valve 38, a second flow rate adjustment valve 39, a third flow rate adjustment valve 41, and a fourth flow rate adjustment valve 42. The first flow rate adjusting valve 38 is inserted into the first auxiliary path 34 between the third branch point 36 and the circulation path 25. The second flow rate adjustment valve 39 is inserted into the second auxiliary path 35. During the heating operation, the first flow rate adjustment valve 38 is closed. The first flow rate adjustment valve 38 prevents the second refrigerant from flowing. As a result, the second refrigerant having a predetermined flow rate is supplied from the refrigerant tank 29 to the suction side of the pump 26 in accordance with the opening degree of the second flow rate adjustment valve 39. During the cooling operation, the second flow rate adjustment valve 39 is closed. The second flow rate adjustment valve 39 prevents the second refrigerant from flowing. As a result, the second refrigerant having a predetermined flow rate is supplied from the refrigerant tank 29 to the suction side of the pump 26 in accordance with the opening degree of the first flow rate adjustment valve 38. The third flow rate adjustment valve 41 is inserted into the branch path 31 between the first branch point 32 and the second branch point 33. The fourth flow rate adjustment valve 42 is inserted into the circulation path 25 between the first branch point 32 and the second branch point 33.

ここで、1次冷媒回路12は第4熱交換器45を備える。第4熱交換器45は第2循環経路17に接続される。第2循環経路17には第1分岐路46および第2分岐路47が接続される。第1分岐路46は冷媒−冷媒熱交換器21と四方弁16との間で第2循環経路17から分岐する。第1分岐路46は第4分岐点48および第5分岐点49の間で第2循環経路17を迂回する。この第1分岐路46に第4熱交換器45は組み込まれる。こうして第4熱交換器45には暖房運転時に圧縮機14および膨張弁19の間で高温高圧の第1冷媒が流通する。このとき、第4熱交換器45は冷媒タンク29内の第2冷媒に第1冷媒から熱エネルギーを移動させる。熱エネルギーの移動に応じて冷媒タンク29内で第2冷媒は気化し膨張する。冷媒タンク29内の圧力は高められる。圧力の上昇に応じて冷媒タンク29から超臨界圧の第2冷媒が吐き出される。第4熱交換器45は、例えば銅やアルミニウムといった比較的に高い熱伝導率の材料から成形される配管で形成されればよい。配管は、例えば冷媒タンク29の内部空間29aを囲む伝熱性の壁体に巻き付けられてもよく、冷媒タンク29の内部空間29a内に配置されてもよい。本実施形態では第4熱交換器45は暖房運転時に冷媒−冷媒熱交換器21の上流に配置される。したがって、第4熱交換器45では冷媒−冷媒熱交換器21の放熱に先立って効率的に第2冷媒は加熱されることができる。ただし、第4熱交換器45で第2冷媒の加熱が十分に実現される限り、第4熱交換器45は少なくとも圧縮機14の第2口14bと膨張弁19との間に組み込まれればよい。   Here, the primary refrigerant circuit 12 includes a fourth heat exchanger 45. The fourth heat exchanger 45 is connected to the second circulation path 17. A first branch path 46 and a second branch path 47 are connected to the second circulation path 17. The first branch path 46 branches from the second circulation path 17 between the refrigerant-refrigerant heat exchanger 21 and the four-way valve 16. The first branch path 46 bypasses the second circulation path 17 between the fourth branch point 48 and the fifth branch point 49. The fourth heat exchanger 45 is incorporated in the first branch path 46. Thus, the first heat exchanger 45 and the expansion valve 19 flow through the fourth heat exchanger 45 between the compressor 14 and the expansion valve 19 during the heating operation. At this time, the fourth heat exchanger 45 moves thermal energy from the first refrigerant to the second refrigerant in the refrigerant tank 29. The second refrigerant evaporates and expands in the refrigerant tank 29 in accordance with the movement of thermal energy. The pressure in the refrigerant tank 29 is increased. As the pressure rises, the supercritical second refrigerant is discharged from the refrigerant tank 29. The 4th heat exchanger 45 should just be formed with piping shape | molded from the material of comparatively high heat conductivity, such as copper and aluminum, for example. For example, the pipe may be wound around a heat conductive wall surrounding the internal space 29 a of the refrigerant tank 29, or may be arranged in the internal space 29 a of the refrigerant tank 29. In the present embodiment, the fourth heat exchanger 45 is disposed upstream of the refrigerant-refrigerant heat exchanger 21 during the heating operation. Therefore, in the fourth heat exchanger 45, the second refrigerant can be efficiently heated prior to the heat radiation of the refrigerant-refrigerant heat exchanger 21. However, as long as the heating of the second refrigerant is sufficiently realized by the fourth heat exchanger 45, the fourth heat exchanger 45 may be incorporated at least between the second port 14b of the compressor 14 and the expansion valve 19. .

第2分岐路47は膨張弁19と第1流通路23の第1口23aとの間で第2循環経路17から分岐する。第2分岐路47は第6分岐点51および第7分岐点52の間で第2循環経路17を迂回する。第2分岐路47は第8分岐点53および第9分岐点54の間で第1分岐路46と第1冷媒の経路を共通化する。第8分岐点53および第9分岐点54の間で第1分岐路46に第4熱交換器45が組み込まれる。こうして第4熱交換器45には冷房運転時に膨張後の第1冷媒が流通する。このとき、第4熱交換器45は冷媒タンク29内の第2冷媒から第1冷媒に熱エネルギーを移動させる。第1冷媒の吸熱作用に基づき冷媒タンク29内で第2冷媒は凝縮する。冷媒タンク29内の圧力は低下する。圧力の低下に応じて冷媒タンク29内に第2冷媒は貯留される。こうして冷媒タンク29および第4熱交換器45は圧力調整ユニットを形成する。圧力調整ユニットは暖房運転時および冷房運転時に第1冷媒の熱エネルギーに基づき2次冷媒回路13内で第2冷媒の圧力を調整する。本実施形態では第4熱交換器45は冷房運転時に冷媒−冷媒熱交換器21の上流に配置される。したがって、第4熱交換器45では冷媒−冷媒熱交換器21の吸熱に先立って効率的に第2冷媒は冷却されることができる。ただし、第4熱交換器45で第2冷媒の冷却が十分に実現される限り、第4熱交換器45は少なくとも膨張弁19と圧縮機14の第1口14aとの間に組み込まれればよい。   The second branch path 47 branches from the second circulation path 17 between the expansion valve 19 and the first port 23 a of the first flow path 23. The second branch path 47 bypasses the second circulation path 17 between the sixth branch point 51 and the seventh branch point 52. The second branch path 47 shares the path of the first branch path 46 and the first refrigerant between the eighth branch point 53 and the ninth branch point 54. A fourth heat exchanger 45 is incorporated in the first branch 46 between the eighth branch point 53 and the ninth branch point 54. Thus, the expanded first refrigerant flows through the fourth heat exchanger 45 during the cooling operation. At this time, the fourth heat exchanger 45 moves thermal energy from the second refrigerant in the refrigerant tank 29 to the first refrigerant. The second refrigerant condenses in the refrigerant tank 29 based on the endothermic action of the first refrigerant. The pressure in the refrigerant tank 29 decreases. The second refrigerant is stored in the refrigerant tank 29 as the pressure decreases. Thus, the refrigerant tank 29 and the fourth heat exchanger 45 form a pressure adjustment unit. The pressure adjustment unit adjusts the pressure of the second refrigerant in the secondary refrigerant circuit 13 based on the thermal energy of the first refrigerant during the heating operation and the cooling operation. In the present embodiment, the fourth heat exchanger 45 is disposed upstream of the refrigerant-refrigerant heat exchanger 21 during the cooling operation. Therefore, in the fourth heat exchanger 45, the second refrigerant can be efficiently cooled prior to the heat absorption of the refrigerant-refrigerant heat exchanger 21. However, as long as the cooling of the second refrigerant is sufficiently realized by the fourth heat exchanger 45, the fourth heat exchanger 45 may be incorporated at least between the expansion valve 19 and the first port 14a of the compressor 14. .

1次冷媒回路12には第2流路制御装置56が組み込まれる。第2流路制御装置56は第5流量調整弁57、第6流量調整弁58、第7流量調整弁59、第8流量調整弁61、第9流量調整弁62および第10流量調整弁63を備える。第5流量調整弁57は第4分岐点48および第5分岐点49の間で第2循環経路17に挿入される。第4流量調整弁は第4分岐点48および第8分岐点53の間で第1分岐路46に挿入される。第7流量調整弁59は第9分岐点54および第5分岐点49の間で第1分岐路46に挿入される。第8流量調整弁61は第6分岐点51および第7分岐点52の間で第2循環経路17に挿入される。第9流量調整弁62は第6分岐点51および第8分岐点53の間で第2分岐路47に挿入される。第10流量調整弁63は第9分岐点54および第7分岐点52の間で第2分岐路47に挿入される。   A second flow path control device 56 is incorporated in the primary refrigerant circuit 12. The second flow control device 56 includes a fifth flow rate adjustment valve 57, a sixth flow rate adjustment valve 58, a seventh flow rate adjustment valve 59, an eighth flow rate adjustment valve 61, a ninth flow rate adjustment valve 62, and a tenth flow rate adjustment valve 63. Prepare. The fifth flow rate adjusting valve 57 is inserted into the second circulation path 17 between the fourth branch point 48 and the fifth branch point 49. The fourth flow rate adjusting valve is inserted into the first branch path 46 between the fourth branch point 48 and the eighth branch point 53. The seventh flow rate adjusting valve 59 is inserted into the first branch path 46 between the ninth branch point 54 and the fifth branch point 49. The eighth flow regulating valve 61 is inserted into the second circulation path 17 between the sixth branch point 51 and the seventh branch point 52. The ninth flow rate adjustment valve 62 is inserted into the second branch path 47 between the sixth branch point 51 and the eighth branch point 53. The tenth flow rate adjusting valve 63 is inserted into the second branch path 47 between the ninth branch point 54 and the seventh branch point 52.

2次冷媒回路13では第2分岐点33と室内熱交換器27との間で循環経路25に第1温度計67および第1圧力計68が挿入される。第1温度計67は暖房運転時に室内熱交換器27の入口で第2冷媒の温度を測定する。第1圧力計68は暖房運転時に室内熱交換器27の入口で第2冷媒の圧力を測定する。同様に、ポンプ26と室内熱交換器27との間で循環経路25には第2温度計69および第2圧力計71が挿入される。第2温度計69は冷房運転時に室内熱交換器27の入口で第2冷媒の温度を測定する。第2圧力計71は冷房運転時に室内熱交換器27の入口で第2冷媒の圧力を測定する。   In the secondary refrigerant circuit 13, a first thermometer 67 and a first pressure gauge 68 are inserted in the circulation path 25 between the second branch point 33 and the indoor heat exchanger 27. The first thermometer 67 measures the temperature of the second refrigerant at the inlet of the indoor heat exchanger 27 during heating operation. The first pressure gauge 68 measures the pressure of the second refrigerant at the inlet of the indoor heat exchanger 27 during heating operation. Similarly, a second thermometer 69 and a second pressure gauge 71 are inserted into the circulation path 25 between the pump 26 and the indoor heat exchanger 27. The second thermometer 69 measures the temperature of the second refrigerant at the inlet of the indoor heat exchanger 27 during the cooling operation. The second pressure gauge 71 measures the pressure of the second refrigerant at the inlet of the indoor heat exchanger 27 during the cooling operation.

図2に示されるように、空気調和機11は制御回路72を備える。制御回路72には室温計73、第1および第2温度計67、69、第1および第2圧力計68、71、第3〜第10流量調整弁41、42、57〜59、61〜63、送風ファン22、28、膨張弁19および圧縮機14が接続される。室温計73は室温を測定する。室温は室内の気温に相当する。室内に少なくとも室内熱交換器27が設置される。冷媒−冷媒熱交換器21および第4熱交換器45を含め1次冷媒回路12は室外に設置される。したがって、室内では第1冷媒の侵入は回避される。室温計73は制御回路72に室温信号を供給する。室温信号は室温を特定する。室温信号は例えば所定の時間間隔で出力される。   As shown in FIG. 2, the air conditioner 11 includes a control circuit 72. The control circuit 72 includes a room temperature meter 73, first and second thermometers 67 and 69, first and second pressure gauges 68 and 71, third to tenth flow rate adjusting valves 41, 42, 57 to 59, 61 to 63. The blower fans 22, 28, the expansion valve 19 and the compressor 14 are connected. The room temperature meter 73 measures the room temperature. Room temperature corresponds to the indoor temperature. At least an indoor heat exchanger 27 is installed in the room. The primary refrigerant circuit 12 including the refrigerant-refrigerant heat exchanger 21 and the fourth heat exchanger 45 is installed outdoors. Therefore, the intrusion of the first refrigerant is avoided indoors. The room temperature meter 73 supplies a room temperature signal to the control circuit 72. The room temperature signal specifies the room temperature. The room temperature signal is output at a predetermined time interval, for example.

第1温度計67は制御回路72に第1温度信号を供給する。第1温度信号は、第1温度計67で計測される第2冷媒の温度を特定する。第1圧力計68は制御回路72に第1圧力信号を供給する。第1圧力信号は、第1圧力計68で計測される第2冷媒の圧力を特定する。同様に、第2温度計69は制御回路72に第2温度信号を供給する。第2温度信号は、第2温度計69で計測される第2冷媒の温度を特定する。第2圧力計71は制御回路72に第2圧力信号を供給する。第2圧力信号は、第2圧力計71で計測される第2冷媒の圧力を特定する。   The first thermometer 67 supplies a first temperature signal to the control circuit 72. The first temperature signal specifies the temperature of the second refrigerant measured by the first thermometer 67. The first pressure gauge 68 supplies a first pressure signal to the control circuit 72. The first pressure signal specifies the pressure of the second refrigerant measured by the first pressure gauge 68. Similarly, the second thermometer 69 supplies a second temperature signal to the control circuit 72. The second temperature signal specifies the temperature of the second refrigerant measured by the second thermometer 69. The second pressure gauge 71 supplies a second pressure signal to the control circuit 72. The second pressure signal specifies the pressure of the second refrigerant measured by the second pressure gauge 71.

制御回路72は第3〜第10流量調整弁41、42、57〜59、61〜63、送風ファン22、28、膨張弁19および圧縮機14にそれぞれ制御信号を供給する。制御信号には、流量調整弁の開度(ゼロすなわち閉弁を含む)やファンの毎分回転数、膨張弁19の開度、圧縮機14の駆動周波数が記述される。第3〜第10流量制御弁41、42、57〜59、61〜63は制御信号で特定される開度で開弁したり閉弁したりする。送風ファン22、28は制御信号で特定される毎分回転数で回転する。毎分回転数に応じて送風ファン22、28の送風量は調整される。膨張弁19は制御信号で特定される開度で開弁する。圧縮機14は制御信号で特定される周波数で動作する。膨張弁19の開度や圧縮機14の動作周波数に応じて第1冷媒の吐出圧は調整される。   The control circuit 72 supplies control signals to the third to tenth flow rate adjustment valves 41, 42, 57 to 59, 61 to 63, the blower fans 22 and 28, the expansion valve 19 and the compressor 14, respectively. The control signal describes the opening degree of the flow rate adjusting valve (including zero, ie, closing), the rotational speed of the fan per minute, the opening degree of the expansion valve 19, and the driving frequency of the compressor 14. The third to tenth flow control valves 41, 42, 57 to 59, 61 to 63 are opened or closed at the opening degree specified by the control signal. The blower fans 22 and 28 rotate at the number of rotations per minute specified by the control signal. The amount of air blown by the blower fans 22 and 28 is adjusted according to the number of rotations per minute. The expansion valve 19 opens at an opening specified by the control signal. The compressor 14 operates at a frequency specified by the control signal. The discharge pressure of the first refrigerant is adjusted according to the opening degree of the expansion valve 19 and the operating frequency of the compressor 14.

次に空気調和機11の動作を簡単に説明する。暖房運転時には1次冷媒回路12では第8流量調整弁61は開放され第9および第10流量調整弁62、63は閉じられる。同時に第7流量調整弁59は開放される。図3に示されるように、圧縮機14が作動すると、圧縮機によって高温高圧に圧縮された第1冷媒が冷媒−冷媒熱交換器21に供給される。第1流通路23内の第1冷媒から相変化に応じて第2流通路24内の第2冷媒に熱エネルギーは伝達される。室外熱交換器18には膨張後の第1冷媒が到達する。室外熱交換器18で第1冷媒は外気から吸熱する。吸熱に応じて第1冷媒は蒸発する。蒸発した第1冷媒は圧縮機14に流入する。   Next, the operation of the air conditioner 11 will be briefly described. During the heating operation, in the primary refrigerant circuit 12, the eighth flow rate adjustment valve 61 is opened and the ninth and tenth flow rate adjustment valves 62, 63 are closed. At the same time, the seventh flow rate adjustment valve 59 is opened. As shown in FIG. 3, when the compressor 14 is operated, the first refrigerant compressed to high temperature and high pressure by the compressor is supplied to the refrigerant-refrigerant heat exchanger 21. Thermal energy is transferred from the first refrigerant in the first flow passage 23 to the second refrigerant in the second flow passage 24 in accordance with the phase change. The expanded first refrigerant reaches the outdoor heat exchanger 18. The first refrigerant absorbs heat from the outside air in the outdoor heat exchanger 18. The first refrigerant evaporates according to the heat absorption. The evaporated first refrigerant flows into the compressor 14.

1次冷媒回路12では第5流量調整弁57および第6流量調整弁58の開度に応じて第4分岐点48から第2循環経路17および第1分岐路46に冷媒は分配される。第1冷媒は圧力調整ユニットの第4熱交換器45を流通する。第4熱交換器45は高温高圧の第1冷媒から冷媒タンク29内の第2冷媒に熱エネルギーを伝達する。第2冷媒は過熱される。第2冷媒は膨張する。その結果、第1冷媒の熱エネルギーに基づき2次冷媒回路13内で第2冷媒の圧力は高められる。冷媒タンク29内で第2冷媒の密度は低下する。冷媒タンク29内で第2冷媒の貯留量は低下する。こうして2次冷媒回路13内で超臨界圧が確立される。   In the primary refrigerant circuit 12, the refrigerant is distributed from the fourth branch point 48 to the second circulation path 17 and the first branch path 46 according to the opening degrees of the fifth flow rate adjustment valve 57 and the sixth flow rate adjustment valve 58. The first refrigerant flows through the fourth heat exchanger 45 of the pressure adjustment unit. The fourth heat exchanger 45 transfers thermal energy from the high temperature and pressure first refrigerant to the second refrigerant in the refrigerant tank 29. The second refrigerant is overheated. The second refrigerant expands. As a result, the pressure of the second refrigerant is increased in the secondary refrigerant circuit 13 based on the thermal energy of the first refrigerant. In the refrigerant tank 29, the density of the second refrigerant decreases. The amount of the second refrigerant stored in the refrigerant tank 29 decreases. Thus, a supercritical pressure is established in the secondary refrigerant circuit 13.

2次冷媒回路13では第3流量調整弁41は開放され第4流量調整弁42は閉じられる。したがって、冷媒タンク29は循環経路25に接続される。ポンプ26が作動すると、超臨界圧の第2冷媒は冷媒−冷媒熱交換器21、冷媒タンク29および室内熱交換器27の順番で循環する。第2冷媒は冷媒−冷媒熱交換器21で第1冷媒から熱エネルギーを受け取る。第2冷媒は室内熱交換器27に送り込まれる。室内熱交換器27で第2冷媒から室内の空気に熱エネルギーは移動する。室内の空気は暖められる。   In the secondary refrigerant circuit 13, the third flow rate adjustment valve 41 is opened and the fourth flow rate adjustment valve 42 is closed. Therefore, the refrigerant tank 29 is connected to the circulation path 25. When the pump 26 operates, the supercritical second refrigerant circulates in the order of the refrigerant-refrigerant heat exchanger 21, the refrigerant tank 29, and the indoor heat exchanger 27. The second refrigerant receives heat energy from the first refrigerant in the refrigerant-refrigerant heat exchanger 21. The second refrigerant is sent into the indoor heat exchanger 27. The heat energy is transferred from the second refrigerant to the indoor air by the indoor heat exchanger 27. The indoor air is warmed.

制御回路72では目標温度および目標圧力が設定される。制御回路72は第1温度計67および第1圧力計68から第1温度信号および第1圧力信号を取得する。信号の取得は例えば所定の時間間隔で定期的に実施されればよい。温度変化に比べて圧力変化は速いことから、第1圧力信号の取得の時間間隔は第1温度信号の取得の時間間隔より短く設定されてもよい。制御回路72は、目標温度に室内熱交換器27の入口温度を一致させ、目標圧力に室内熱交換器27の入口圧力を一致させるべく、室内熱交換器27の入口温度と目標温度との比較、並びに、室内熱交換器27の入口圧力と目標圧力との比較に基づき送風ファン28の毎分回転数を制御する。こうした制御にあたって制御回路72から送風ファン28に制御信号が供給される。   In the control circuit 72, a target temperature and a target pressure are set. The control circuit 72 acquires the first temperature signal and the first pressure signal from the first thermometer 67 and the first pressure gauge 68. The signal acquisition may be performed periodically at predetermined time intervals, for example. Since the pressure change is faster than the temperature change, the time interval for acquiring the first pressure signal may be set shorter than the time interval for acquiring the first temperature signal. The control circuit 72 compares the inlet temperature of the indoor heat exchanger 27 with the target temperature so that the inlet temperature of the indoor heat exchanger 27 matches the target temperature and the inlet pressure of the indoor heat exchanger 27 matches the target pressure. In addition, the number of revolutions per minute of the blower fan 28 is controlled based on the comparison between the inlet pressure of the indoor heat exchanger 27 and the target pressure. In such control, a control signal is supplied from the control circuit 72 to the blower fan 28.

こうした毎分回転数の制御に代えて、1次冷媒回路12の膨張弁19の開度や圧縮機14の動作周波数が制御されてもよい。制御回路72は、目標温度に室内熱交換器27の入口温度を一致させ、目標圧力に室内熱交換器27の入口圧力を一致させるべく、室内熱交換器27の入口温度と目標温度との比較、並びに、室内熱交換器27の入口圧力と目標圧力との比較に基づき膨張弁19の開度および圧縮機14の動作を制御する。こうした制御にあたって制御回路72から膨張弁19および圧縮機14に制御信号が供給される。送風ファン28の制御と、膨張弁19および圧縮機14の制御とは同時に実施されてもよく順番に交互に実施されてもよい。   Instead of controlling the number of revolutions per minute, the opening degree of the expansion valve 19 of the primary refrigerant circuit 12 and the operating frequency of the compressor 14 may be controlled. The control circuit 72 compares the inlet temperature of the indoor heat exchanger 27 with the target temperature so that the inlet temperature of the indoor heat exchanger 27 matches the target temperature and the inlet pressure of the indoor heat exchanger 27 matches the target pressure. In addition, the opening degree of the expansion valve 19 and the operation of the compressor 14 are controlled based on the comparison between the inlet pressure of the indoor heat exchanger 27 and the target pressure. In such control, control signals are supplied from the control circuit 72 to the expansion valve 19 and the compressor 14. The control of the blower fan 28 and the control of the expansion valve 19 and the compressor 14 may be performed simultaneously or alternately in order.

その後、第1温度信号で特定される入口温度が特定の温度範囲(例えば目標温度の±1度)に入り、第1圧力信号で特定される入口圧力が特定の圧力範囲(例えば目標圧力の±0.1MPa)に入ると、図4に示されるように、制御回路72は循環経路25から冷媒タンク29を切り離す。第3流量調整弁41が閉じられ第4流量調整弁42が開放される。このとき、空気調和機11は、負荷変動(例えば室温の変動)に曝されない限り、安定した定常運転で動作する。したがって、室内熱交換器27の入口温度は特定の温度範囲に維持され、室内熱交換器27の入口圧力は特定の圧力範囲に維持される。冷媒タンク29が切り離されても循環経路25内で第2冷媒の圧力変動は回避される。冷媒タンク29の切り離しに応じて第2冷媒の流路は短縮化されることから、第2冷媒の圧力損失は低減される。第2冷媒は効率的に熱エネルギーを運搬することができる。   Thereafter, the inlet temperature specified by the first temperature signal enters a specific temperature range (for example, ± 1 degree of the target temperature), and the inlet pressure specified by the first pressure signal changes to the specific pressure range (for example, ±± of the target pressure). (0.1 MPa), the control circuit 72 disconnects the refrigerant tank 29 from the circulation path 25 as shown in FIG. The third flow rate adjustment valve 41 is closed and the fourth flow rate adjustment valve 42 is opened. At this time, the air conditioner 11 operates in a stable steady operation unless exposed to load fluctuations (for example, room temperature fluctuations). Therefore, the inlet temperature of the indoor heat exchanger 27 is maintained in a specific temperature range, and the inlet pressure of the indoor heat exchanger 27 is maintained in a specific pressure range. Even if the refrigerant tank 29 is disconnected, the pressure fluctuation of the second refrigerant is avoided in the circulation path 25. Since the flow path of the second refrigerant is shortened in accordance with the separation of the refrigerant tank 29, the pressure loss of the second refrigerant is reduced. The second refrigerant can carry heat energy efficiently.

冷媒タンク29の切り離しと同時に、制御回路72は1次冷媒回路12で第2循環経路17から第4熱交換器45を切り離す。第6流量調整弁58および第7流量調整弁59のうち少なくともいずれかが閉じられる。両方が閉じられてもよい。こうした第1分岐路46の切り離しに応じて第1冷媒の流路は短縮化されることから、第1冷媒の圧力損失は低減される。第1冷媒は効率的に熱エネルギーを運搬することができる。   Simultaneously with the disconnection of the refrigerant tank 29, the control circuit 72 disconnects the fourth heat exchanger 45 from the second circulation path 17 in the primary refrigerant circuit 12. At least one of the sixth flow rate adjustment valve 58 and the seventh flow rate adjustment valve 59 is closed. Both may be closed. Since the flow path of the first refrigerant is shortened according to the disconnection of the first branch path 46, the pressure loss of the first refrigerant is reduced. The first refrigerant can carry heat energy efficiently.

冷房運転時には1次冷媒回路12では第5流量調整弁57は開放され第6および第7流量調整弁58、59は閉じられる。同時に第10流量調整弁63は開放される。図5に示されるように、圧縮機14が作動すると、圧縮機によって高温高圧に圧縮された第1冷媒が室外熱交換器18に供給される。室外熱交換器18で第1冷媒は外気に熱を放出する。熱の放出に応じて第1冷媒は凝縮する。凝縮した第1冷媒は冷媒−冷媒熱交換器21に供給される。第1流通路23内の第1冷媒は相変化に応じて第2流通路24内の第2冷媒から吸熱する。吸熱に応じて第1冷媒は蒸発する。蒸発した第1冷媒は圧縮機14に流入する。   During the cooling operation, in the primary refrigerant circuit 12, the fifth flow rate adjusting valve 57 is opened and the sixth and seventh flow rate adjusting valves 58, 59 are closed. At the same time, the tenth flow rate adjustment valve 63 is opened. As shown in FIG. 5, when the compressor 14 operates, the first refrigerant compressed to a high temperature and high pressure by the compressor is supplied to the outdoor heat exchanger 18. In the outdoor heat exchanger 18, the first refrigerant releases heat to the outside air. The first refrigerant condenses as the heat is released. The condensed first refrigerant is supplied to the refrigerant-refrigerant heat exchanger 21. The first refrigerant in the first flow passage 23 absorbs heat from the second refrigerant in the second flow passage 24 according to the phase change. The first refrigerant evaporates according to the heat absorption. The evaporated first refrigerant flows into the compressor 14.

1次冷媒回路12では第8流量調整弁61および第9流量調整弁62の開度に応じて第6分岐点51から第2循環経路17および第2分岐路47に冷媒は分配される。第1冷媒は圧力調整ユニットの第4熱交換器45を流通する。第4熱交換器45で膨張後の第1冷媒は冷媒タンク29内の第2冷媒から吸熱する。第2冷媒は過冷却される。その結果、第1冷媒の吸熱作用に基づき2次冷媒回路13内で第2冷媒の圧力は低下する。冷媒タンク29内で第2冷媒の密度は高められる。冷媒タンク29内で第2冷媒の貯留量は増加する。こうして2次冷媒回路13内で超臨界圧未満の圧力が確立される。   In the primary refrigerant circuit 12, the refrigerant is distributed from the sixth branch point 51 to the second circulation path 17 and the second branch path 47 in accordance with the opening degrees of the eighth flow rate adjustment valve 61 and the ninth flow rate adjustment valve 62. The first refrigerant flows through the fourth heat exchanger 45 of the pressure adjustment unit. The first refrigerant expanded in the fourth heat exchanger 45 absorbs heat from the second refrigerant in the refrigerant tank 29. The second refrigerant is supercooled. As a result, the pressure of the second refrigerant decreases in the secondary refrigerant circuit 13 based on the endothermic action of the first refrigerant. The density of the second refrigerant is increased in the refrigerant tank 29. The amount of the second refrigerant stored in the refrigerant tank 29 increases. In this way, a pressure lower than the supercritical pressure is established in the secondary refrigerant circuit 13.

2次冷媒回路13では第3流量調整弁41は開放され第4流量調整弁42は閉じられる。したがって、冷媒タンク29は循環経路25に接続される。ポンプ26が作動すると、図5に示されるように、ポンプ26は暖房運転時とは反対向きに第2冷媒を循環させる。すなわち、超臨界圧未満の第2冷媒は室内熱交換器27、冷媒タンク29および冷媒−冷媒熱交換器21の順番で循環する。第1冷媒は冷媒−冷媒熱交換器21で第2冷媒から吸熱し、室内熱交換器27に送り込まれる。室内熱交換器27で第2冷媒は室内の空気から熱エネルギーを奪う。室内の空気は冷却される。   In the secondary refrigerant circuit 13, the third flow rate adjustment valve 41 is opened and the fourth flow rate adjustment valve 42 is closed. Therefore, the refrigerant tank 29 is connected to the circulation path 25. When the pump 26 is operated, as shown in FIG. 5, the pump 26 circulates the second refrigerant in the opposite direction to that during the heating operation. That is, the second refrigerant having a pressure lower than the supercritical pressure circulates in the order of the indoor heat exchanger 27, the refrigerant tank 29, and the refrigerant-refrigerant heat exchanger 21. The first refrigerant absorbs heat from the second refrigerant in the refrigerant-refrigerant heat exchanger 21 and is sent to the indoor heat exchanger 27. In the indoor heat exchanger 27, the second refrigerant takes heat energy from the indoor air. Indoor air is cooled.

前述と同様に、制御回路72では目標温度および目標圧力が設定される。制御回路72は第2温度計69および第2圧力計71から第2温度信号および第2圧力信号を取得する。信号の取得は例えば所定の時間間隔で定期的に実施されればよい。温度変化に比べて圧力変化は速いことから、第2圧力信号の取得の時間間隔は第2温度信号の取得の時間間隔より短く設定されてもよい。制御回路72は、暖房運転時と同様に、目標温度に室内熱交換器27の入口温度を一致させ、目標圧力に室内熱交換器27の入口圧力を一致させるべく、室内熱交換器27の入口温度と目標温度との比較、並びに、室内熱交換器27の入口圧力と目標圧力との比較に基づき送風ファン28の毎分回転数を制御する。前述と同様に、毎分回転数の制御に代えて、1次冷媒回路12の膨張弁19の開度や圧縮機14の動作周波数が制御されてもよい。送風ファン28の制御と、膨張弁19および圧縮機14の制御とは同時に実施されてもよく順番に交互に実施されてもよい。   As described above, the target temperature and the target pressure are set in the control circuit 72. The control circuit 72 acquires the second temperature signal and the second pressure signal from the second thermometer 69 and the second pressure gauge 71. The signal acquisition may be performed periodically at predetermined time intervals, for example. Since the pressure change is faster than the temperature change, the time interval for acquiring the second pressure signal may be set shorter than the time interval for acquiring the second temperature signal. As in the heating operation, the control circuit 72 matches the inlet temperature of the indoor heat exchanger 27 with the target temperature, and matches the inlet pressure of the indoor heat exchanger 27 with the target pressure. Based on the comparison between the temperature and the target temperature, and the comparison between the inlet pressure of the indoor heat exchanger 27 and the target pressure, the number of revolutions per minute of the blower fan 28 is controlled. Similarly to the above, instead of controlling the number of revolutions per minute, the opening degree of the expansion valve 19 of the primary refrigerant circuit 12 and the operating frequency of the compressor 14 may be controlled. The control of the blower fan 28 and the control of the expansion valve 19 and the compressor 14 may be performed simultaneously or alternately in order.

その後、第2温度信号で特定される入口温度が特定の温度範囲(例えば目標温度の±1度)に入り、第2圧力信号で特定される入口圧力が特定の圧力範囲(例えば目標圧力の±0.1MPa)に入ると、図6に示されるように、制御回路72は循環経路25から冷媒タンク29を切り離す。第3流量調整弁41が閉じられ第4流量調整弁42が開放される。このとき、空気調和機11は、負荷変動(例えば室温の変動)に曝されない限り、安定した定常運転で動作する。したがって、室内熱交換器27の入口温度は特定の温度範囲に維持され、室内熱交換器27の入口圧力は特定の圧力範囲に維持される。冷媒タンク29が切り離されても循環経路25内で第2冷媒の圧力変動は回避される。冷媒タンク29の切り離しに応じて第2冷媒の流路は短縮化されることから、第2冷媒の圧力損失は低減される。第2冷媒は効率的に熱エネルギーを運搬することができる。   Thereafter, the inlet temperature specified by the second temperature signal enters a specific temperature range (for example, ± 1 degree of the target temperature), and the inlet pressure specified by the second pressure signal changes to the specific pressure range (for example, ±± of the target pressure). (0.1 MPa), the control circuit 72 disconnects the refrigerant tank 29 from the circulation path 25 as shown in FIG. The third flow rate adjustment valve 41 is closed and the fourth flow rate adjustment valve 42 is opened. At this time, the air conditioner 11 operates in a stable steady operation unless exposed to load fluctuations (for example, room temperature fluctuations). Therefore, the inlet temperature of the indoor heat exchanger 27 is maintained in a specific temperature range, and the inlet pressure of the indoor heat exchanger 27 is maintained in a specific pressure range. Even if the refrigerant tank 29 is disconnected, the pressure fluctuation of the second refrigerant is avoided in the circulation path 25. Since the flow path of the second refrigerant is shortened in accordance with the separation of the refrigerant tank 29, the pressure loss of the second refrigerant is reduced. The second refrigerant can carry heat energy efficiently.

冷媒タンク29の切り離しと同時に、制御回路72は1次冷媒回路12で第2循環経路17から第4熱交換器45を切り離す。第9流量調整弁62および第10流量調整弁63のうち少なくともいずれかが閉じられる。両方が閉じられてもよい。こうした第1分岐路46の切り離しに応じて第1冷媒の流路は短縮化されることから、第1冷媒の圧力損失は低減される。第1冷媒は効率的に熱エネルギーを運搬することができる。   Simultaneously with the disconnection of the refrigerant tank 29, the control circuit 72 disconnects the fourth heat exchanger 45 from the second circulation path 17 in the primary refrigerant circuit 12. At least one of the ninth flow rate adjustment valve 62 and the tenth flow rate adjustment valve 63 is closed. Both may be closed. Since the flow path of the first refrigerant is shortened according to the disconnection of the first branch path 46, the pressure loss of the first refrigerant is reduced. The first refrigerant can carry heat energy efficiently.

この実施形態では室内の温度変化に応じて目標温度および目標圧力は変更されてもよい。すなわち、制御回路72では、最初に、循環経路25内で第2冷媒の第1値の定圧比熱を確立する第1温度条件および第1圧力条件が設定される。第1温度条件および第1圧力条件は予め制御回路72内のデータテーブルに格納される。制御回路72の働きで第1温度条件および第1圧力条件に向けて循環経路25内の温度および圧力は調整される。前述のように、循環経路25内の温度および圧力の調整にあたって送風ファン28の毎分回転数が制御されればよく膨張弁19の開度や圧縮機14の動作周波数が制御されればよい。温度および圧力の調整中に循環経路25内の温度および圧力が第1温度条件および第1圧力条件にそれぞれ入ると、前述のように制御回路72は循環経路25から冷媒タンク29を切り離す。このとき、1次冷媒回路12で同時に第1分岐路46が第2循環経路17から切り離される。温度および圧力の調整中に温度および圧力のうち少なくともいずれか一方がそれぞれ第1温度条件または第1圧力条件から所定の期間にわたって逸脱すると、制御回路72では、第1温度条件および第1圧力条件に代えて、第1値よりも小さい第2値の定圧比熱を確立する第2温度条件および第2圧力条件が設定される。第2温度条件および第2圧力条件は予め制御回路72内のデータテーブルに格納される。再び制御回路72の働きで第2温度条件および第2圧力条件に向けて循環経路25内の温度および圧力は調整される。前述のように、循環経路25内の温度および圧力の調整にあたって送風ファン28の毎分回転数が制御されればよく膨張弁19の開度や圧縮機14の動作周波数が制御されればよい。循環経路25内の温度および圧力が第2温度条件および第2圧力条件にそれぞれ入ると、前述のように制御回路72は循環経路25から冷媒タンク29を切り離し第2循環経路17から第1分岐路46を切り離す。   In this embodiment, the target temperature and the target pressure may be changed according to the temperature change in the room. That is, in the control circuit 72, first, a first temperature condition and a first pressure condition that establish a constant pressure specific heat of the first value of the second refrigerant in the circulation path 25 are set. The first temperature condition and the first pressure condition are stored in a data table in the control circuit 72 in advance. The temperature and pressure in the circulation path 25 are adjusted toward the first temperature condition and the first pressure condition by the action of the control circuit 72. As described above, in adjusting the temperature and pressure in the circulation path 25, the rotational speed per minute of the blower fan 28 may be controlled, and the opening degree of the expansion valve 19 and the operating frequency of the compressor 14 may be controlled. When the temperature and pressure in the circulation path 25 enter the first temperature condition and the first pressure condition during the adjustment of the temperature and pressure, respectively, the control circuit 72 disconnects the refrigerant tank 29 from the circulation path 25 as described above. At this time, the first branch path 46 is simultaneously disconnected from the second circulation path 17 in the primary refrigerant circuit 12. If at least one of temperature and pressure deviates from the first temperature condition or the first pressure condition for a predetermined period during the adjustment of the temperature and pressure, the control circuit 72 changes the first temperature condition and the first pressure condition to each other. Instead, a second temperature condition and a second pressure condition that establish a constant-pressure specific heat having a second value smaller than the first value are set. The second temperature condition and the second pressure condition are stored in advance in a data table in the control circuit 72. Again, the temperature and pressure in the circulation path 25 are adjusted toward the second temperature condition and the second pressure condition by the action of the control circuit 72. As described above, in adjusting the temperature and pressure in the circulation path 25, the rotational speed per minute of the blower fan 28 may be controlled, and the opening degree of the expansion valve 19 and the operating frequency of the compressor 14 may be controlled. When the temperature and pressure in the circulation path 25 enter the second temperature condition and the second pressure condition, respectively, the control circuit 72 disconnects the refrigerant tank 29 from the circulation path 25 and the first branch path from the second circulation path 17 as described above. 46 is cut off.

詳述すると、図7に示されるように、制御回路72はステップS1で様々な変数を初期化する。ステップS2で制御回路72は目標温度Tsetに第1設定温度値Tset1を設定する。ステップS3で制御回路72は目標圧力Psetに第1設定圧力値Pset1を設定する。第1設定温度値Tset1および第1設定圧力値Pset1の詳細は後述される。制御回路72はステップS4で変数nに「0(ゼロ)」値を設定し変数Hに任意値「5」を設定する。   Specifically, as shown in FIG. 7, the control circuit 72 initializes various variables in step S1. In step S2, the control circuit 72 sets the first set temperature value Tset1 as the target temperature Tset. In step S3, the control circuit 72 sets the first set pressure value Pset1 as the target pressure Pset. Details of the first set temperature value Tset1 and the first set pressure value Pset1 will be described later. In step S4, the control circuit 72 sets a value “0 (zero)” to the variable n and sets an arbitrary value “5” to the variable H.

ステップS5で制御回路72は第1温度信号および第1圧力信号を取得する。制御回路72は第1温度信号および第1圧力信号に基づき室内熱交換器27の入口温度T[℃]および入口圧力P[MPa]を特定する。続くステップS6で制御回路72は第1温度条件に入口温度Tを照らし合わせ第1圧力条件に入口圧力Pを照らし合わせる。第1温度条件は例えば第1設定温度値Tset1の±1度の温度範囲に設定される。第1圧力条件は例えば第1設定圧力値Pset1の±0.1MPaの圧力範囲に設定される。第1圧力条件にはできる限り低い圧力範囲が設定される。圧力が低ければ、例えば配管などの壁厚は薄くなることができる。壁厚の薄肉化は空気調和機11の軽量化や製造コストの縮減に寄与する。第1温度条件には、できる限り高い定圧比熱を得ることができる温度範囲が設定される。高い定圧比熱は冷媒流量の縮減に寄与する。少ない冷媒流量で効率的に室内は暖められることができる。第1温度条件の温度範囲内で入口温度Tが特定され第1圧力条件の圧力範囲内で入口圧力Pが特定されると、ステップS7で制御回路72は前述のように循環経路25から冷媒タンク29を切り離す。その後、室内熱交換器27の負荷が変動しない限り、入口温度Tおよび入口圧力Pは第1温度条件および第1圧力条件を満足し続ける。空気調和機11は安定した暖房運転を実現する。   In step S5, the control circuit 72 acquires the first temperature signal and the first pressure signal. The control circuit 72 specifies the inlet temperature T [° C.] and the inlet pressure P [MPa] of the indoor heat exchanger 27 based on the first temperature signal and the first pressure signal. In subsequent step S6, the control circuit 72 compares the inlet temperature T with the first temperature condition and the inlet pressure P with the first pressure condition. For example, the first temperature condition is set to a temperature range of ± 1 degree of the first set temperature value Tset1. The first pressure condition is set, for example, within a pressure range of ± 0.1 MPa of the first set pressure value Pset1. A pressure range as low as possible is set as the first pressure condition. If the pressure is low, the wall thickness of, for example, piping can be reduced. The reduction in wall thickness contributes to reducing the weight of the air conditioner 11 and reducing the manufacturing cost. The first temperature condition is set to a temperature range in which as high a constant pressure specific heat as possible can be obtained. A high constant pressure specific heat contributes to a reduction in the refrigerant flow rate. The room can be efficiently warmed with a small refrigerant flow rate. When the inlet temperature T is specified within the temperature range of the first temperature condition and the inlet pressure P is specified within the pressure range of the first pressure condition, in step S7, the control circuit 72 causes the refrigerant tank from the circulation path 25 as described above. 29 is cut off. Thereafter, as long as the load of the indoor heat exchanger 27 does not vary, the inlet temperature T and the inlet pressure P continue to satisfy the first temperature condition and the first pressure condition. The air conditioner 11 realizes stable heating operation.

ステップS6で入口温度Tが第1温度条件の温度範囲から逸脱したり入口圧力Pが第1圧力条件の圧力範囲から逸脱したりすると、ステップS8で制御回路72は圧力調整の回数nを判断する。圧力調整の回数nが所定の回数H(ここでは「5回」)に満たなければ、ステップS9で制御回路72は2次冷媒回路13の圧力調整を実施する。前述のように、例えば送風ファン28の毎分回転数が調整される。続くステップS10で圧力調整の回数nが計数される。その後、制御回路72の処理はステップS5に戻る。こうして室内熱交換器27の入口温度Tおよび入口圧力Pは調整される。第2冷媒で第1値の定圧比熱が確立される。   If the inlet temperature T deviates from the temperature range of the first temperature condition or the inlet pressure P deviates from the pressure range of the first pressure condition in step S6, the control circuit 72 determines the number n of pressure adjustments in step S8. . If the number n of pressure adjustments does not reach the predetermined number H (here, “5 times”), the control circuit 72 adjusts the pressure of the secondary refrigerant circuit 13 in step S9. As described above, for example, the number of rotations per minute of the blower fan 28 is adjusted. In subsequent step S10, the number n of pressure adjustments is counted. Thereafter, the process of the control circuit 72 returns to step S5. Thus, the inlet temperature T and the inlet pressure P of the indoor heat exchanger 27 are adjusted. A first value of constant pressure specific heat is established with the second refrigerant.

ステップS6で入口温度Tが第1温度条件の温度範囲から逸脱し続けたり入口圧力Pが第1圧力条件の圧力範囲から逸脱し続けたりすると、ステップS8で圧力調整の回数nが既定値Hに達する。このとき、制御回路72はステップS11に移行する。ステップS11で制御回路72は目標温度Tsetに第2設定温度値Tset2設定する。続くステップS12で制御回路72は目標圧力Psetに第2設定圧力値Pset2を設定する。第2設定温度値Tset2および第2設定圧力値Pset2の詳細は後述される。   If the inlet temperature T continues to deviate from the temperature range of the first temperature condition in step S6 or the inlet pressure P continues to deviate from the pressure range of the first pressure condition, the number n of pressure adjustments becomes the default value H in step S8. Reach. At this time, the control circuit 72 proceeds to step S11. In step S11, the control circuit 72 sets the second set temperature value Tset2 to the target temperature Tset. In subsequent step S12, the control circuit 72 sets the second set pressure value Pset2 to the target pressure Pset. Details of the second set temperature value Tset2 and the second set pressure value Pset2 will be described later.

ステップS13で制御回路72は第1温度信号および第1圧力信号を取得する。制御回路72は第1温度信号および第1圧力信号に基づき室内熱交換器27の入口温度Tおよび入口圧力Pを特定する。続くステップS14で制御回路72は第2温度条件に入口温度Tを照らし合わせ第2圧力条件に入口圧力Pを照らし合わせる。第2温度条件は例えば第2設定温度値Tset2の±1度の温度範囲に設定される。第2圧力条件は例えば第2設定圧力値Pset2の±0.1MPaの圧力範囲に設定される。ここでは、第1圧力条件および第2圧力条件は一致してもよく重なり合ってもよい。第2温度条件には、第1温度条件よりも低い定圧比熱を得ることができる温度範囲が設定される。第2温度条件の温度範囲内で入口温度Tが特定され第2圧力条件の圧力範囲内で入口圧力Pが特定されると、ステップS15で制御回路72は前述のように循環経路25から冷媒タンク29を切り離す。その後、室内熱交換器27の負荷が変動しない限り、入口温度Tおよび入口圧力Pは第2温度条件および第2圧力条件を満足し続ける。空気調和機11は安定した暖房運転を実現する。   In step S13, the control circuit 72 acquires the first temperature signal and the first pressure signal. The control circuit 72 specifies the inlet temperature T and the inlet pressure P of the indoor heat exchanger 27 based on the first temperature signal and the first pressure signal. In subsequent step S14, the control circuit 72 compares the inlet temperature T with the second temperature condition and the inlet pressure P with the second pressure condition. For example, the second temperature condition is set to a temperature range of ± 1 degree of the second set temperature value Tset2. The second pressure condition is set, for example, within a pressure range of ± 0.1 MPa of the second set pressure value Pset2. Here, the first pressure condition and the second pressure condition may coincide or overlap. A temperature range in which a constant pressure specific heat lower than that of the first temperature condition can be obtained is set as the second temperature condition. When the inlet temperature T is specified within the temperature range of the second temperature condition and the inlet pressure P is specified within the pressure range of the second pressure condition, in step S15, the control circuit 72 causes the refrigerant tank from the circulation path 25 as described above. 29 is cut off. Thereafter, as long as the load of the indoor heat exchanger 27 does not fluctuate, the inlet temperature T and the inlet pressure P continue to satisfy the second temperature condition and the second pressure condition. The air conditioner 11 realizes stable heating operation.

ステップS14で入口温度Tが第2温度条件の温度範囲から逸脱したり入口圧力Pが第2圧力条件の圧力範囲から逸脱したりすると、ステップS16で制御回路72は2次冷媒回路13の圧力調整を実施する。前述のように、例えば送風ファン28の毎分回転数が調整される。その後、制御回路72の処理はステップS13に戻る。こうして室内熱交換器27の入口温度Tおよび入口圧力Pは調整される。第2冷媒で第2値の定圧比熱が確立される。   When the inlet temperature T deviates from the temperature range of the second temperature condition in step S14 or the inlet pressure P deviates from the pressure range of the second pressure condition, the control circuit 72 adjusts the pressure of the secondary refrigerant circuit 13 in step S16. To implement. As described above, for example, the number of rotations per minute of the blower fan 28 is adjusted. Thereafter, the process of the control circuit 72 returns to step S13. Thus, the inlet temperature T and the inlet pressure P of the indoor heat exchanger 27 are adjusted. A second value of constant pressure specific heat is established with the second refrigerant.

図8に示されるように、超臨界CO2の定圧比熱は圧力の低下に応じて温度依存性を強める。言い換えれば、圧力が低下すると、温度の変化に応じて定圧比熱は大きく変動する。圧力が一定に維持される場合には、定圧比熱の最大値を確立する温度に近づくにつれて定圧比熱の温度依存性は高まる。定圧比熱が大きければ、少ない冷媒流量で効率的に室内は暖められることができる。その一方で、定圧比熱の温度依存性が高いと、負荷の変動に応じてCO2の温度および圧力は変動しやすい。CO2の温度および圧力は目標温度および目標圧力に収束しづらい。   As shown in FIG. 8, the constant-pressure specific heat of supercritical CO2 increases the temperature dependence as the pressure decreases. In other words, when the pressure decreases, the constant pressure specific heat greatly fluctuates according to a change in temperature. When the pressure is kept constant, the temperature dependence of the constant pressure specific heat increases as the temperature approaches the temperature at which the maximum value of the constant pressure specific heat is established. If the constant pressure specific heat is large, the room can be efficiently warmed with a small refrigerant flow rate. On the other hand, if the temperature dependence of the constant pressure specific heat is high, the temperature and pressure of CO2 are likely to fluctuate according to the fluctuation of the load. The temperature and pressure of CO2 are difficult to converge to the target temperature and target pressure.

例えば、前述の空気調和機11で第2冷媒にCO2が使用される場合に、第1設定圧力値Pset1および第2設定圧力値Pset2に8.5[MPa]が設定されると、第1設定温度値Tset1には定圧比熱の最大値を確立する温度(=約摂氏37.5度)が設定される。したがって、入口温度Tが第1温度条件の温度範囲に留まり続ければ、高い定圧比熱に基づき効率的に安定した暖房運転は実現されることができる。ただし、室内熱交換器27の負荷変動が増大すると、2次冷媒回路13の圧力調整が継続的に実施される。この場合には、第1設定温度値Tset1に代えて第2設定温度値Tset2が使用される。第2設定温度値Tset2では例えば最大値よりも低い定圧比熱を確立する温度(例えば摂氏44度)が設定される。その結果、室内熱交換器27の負荷変動に対して定圧比熱の温度依存性は和らげられる。したがって、比較的に簡単に入口温度Tは第2温度条件の温度範囲に留まり続けることができる。圧力調整の動作、すなわち、送風ファン28の毎分回転数の制御や膨張弁19の開度の制御、圧縮機14の動作周波数の制御は抑制されることができる。その結果、消費電力は抑制される。しかも、第1温度条件に比べて第2温度条件では比較的に早期に入口温度Tおよび入口圧力Pは目標温度および目標圧力の収束することから、循環経路25から冷媒タンク29は早期に切り離されることができ、第2循環経路17から第1分岐路46は早期に切り離されることができる。こうした早期の切り離しは一層の消費電力の抑制に寄与する。   For example, when CO2 is used as the second refrigerant in the air conditioner 11 described above, the first setting is set when 8.5 [MPa] is set in the first set pressure value Pset1 and the second set pressure value Pset2. In the temperature value Tset1, a temperature (= about 37.5 degrees Celsius) that establishes the maximum value of constant pressure specific heat is set. Therefore, if the inlet temperature T remains in the temperature range of the first temperature condition, an efficient and stable heating operation can be realized based on the high constant pressure specific heat. However, when the load fluctuation of the indoor heat exchanger 27 increases, the pressure adjustment of the secondary refrigerant circuit 13 is continuously performed. In this case, the second set temperature value Tset2 is used instead of the first set temperature value Tset1. In the second set temperature value Tset2, for example, a temperature (for example, 44 degrees Celsius) that establishes a constant pressure specific heat lower than the maximum value is set. As a result, the temperature dependence of the constant pressure specific heat is reduced with respect to the load fluctuation of the indoor heat exchanger 27. Accordingly, the inlet temperature T can be kept within the temperature range of the second temperature condition relatively easily. The pressure adjustment operation, that is, the control of the number of revolutions per minute of the blower fan 28, the control of the opening degree of the expansion valve 19, and the control of the operating frequency of the compressor 14 can be suppressed. As a result, power consumption is suppressed. In addition, since the inlet temperature T and the inlet pressure P converge on the target temperature and the target pressure relatively early in the second temperature condition as compared with the first temperature condition, the refrigerant tank 29 is disconnected from the circulation path 25 at an early stage. The first branch path 46 can be disconnected from the second circulation path 17 at an early stage. Such early separation contributes to further reduction of power consumption.

なお、前述のように入口温度Tおよび入口圧力Pが第2温度条件および第2圧力条件を満足して空気調和機11の動作が安定する場合には、所定の期間後に、再び第2温度条件および第2圧力条件に代えて第1温度条件および第1圧力条件が使用されてもよい。この場合には、期間の判定にあたって例えば室内温度が計測されてもよい。室内温度の変動が抑制されれば、室内熱交換器27の負荷は安定する。したがって、第1温度条件および第1圧力条件に戻されても、第2冷媒の温度および圧力は早期に目標温度および目標圧力に収束すると予想される。   As described above, when the inlet temperature T and the inlet pressure P satisfy the second temperature condition and the second pressure condition and the operation of the air conditioner 11 is stabilized, the second temperature condition is again obtained after a predetermined period. Instead of the second pressure condition, the first temperature condition and the first pressure condition may be used. In this case, for example, the room temperature may be measured when determining the period. If fluctuations in the room temperature are suppressed, the load on the indoor heat exchanger 27 is stabilized. Therefore, even if the first temperature condition and the first pressure condition are restored, the temperature and pressure of the second refrigerant are expected to converge to the target temperature and the target pressure at an early stage.

以上のような空気調和機11では、圧力調整ユニットの働きで、1次冷媒回路12の第1冷媒の熱エネルギーに基づき2次冷媒回路13内で第2冷媒の圧力は調整される。圧力の調整にあたって第1冷媒が利用される。圧力の調整に固有の電気加熱装置や冷却装置は省略されることができる。圧力の調整にあたって空気調和機の消費電力の増加は回避されることができる。   In the air conditioner 11 as described above, the pressure of the second refrigerant is adjusted in the secondary refrigerant circuit 13 based on the thermal energy of the first refrigerant in the primary refrigerant circuit 12 by the action of the pressure adjustment unit. The first refrigerant is used for adjusting the pressure. Electric heating devices and cooling devices specific to the pressure adjustment can be omitted. In adjusting the pressure, an increase in power consumption of the air conditioner can be avoided.

しかも、空気調和機11では、圧力調整ユニットは、第1冷媒の吸熱作用に基づき第2冷媒の圧力を低下させることができる。2次冷媒回路13では、周囲の環境温度に関係なく確実に超臨界圧未満の圧力が確立されることができる。2次冷媒回路13では冷房運転用に第2冷媒の圧力は確実に調整されることができる。効率的な冷房運転が実現されることができる。   Moreover, in the air conditioner 11, the pressure adjustment unit can reduce the pressure of the second refrigerant based on the endothermic action of the first refrigerant. In the secondary refrigerant circuit 13, a pressure lower than the supercritical pressure can be reliably established regardless of the ambient environmental temperature. In the secondary refrigerant circuit 13, the pressure of the second refrigerant can be reliably adjusted for the cooling operation. An efficient cooling operation can be realized.

図9は本発明の第2実施形態に係る冷凍サイクル装置すなわち空気調和機11aの構成を概略的に示す。図中、前述の第1実施形態の構成と均等な構成には同一の参照符号が付されそれらの詳細な説明は割愛される。この第2実施形態では1次冷媒回路12に第1内部熱交換器74および第2内部熱交換器75が組み込まれる。第1および第2内部熱交換器74、75の組み込みにあたって第1循環経路15には第3分岐路76が接続される。第3分岐路76は四方弁16の第1口16aと圧縮機14の吸込口14aとの間で分岐点77から分岐点78まで第1循環経路15に迂回路を形成する。   FIG. 9 schematically shows a configuration of a refrigeration cycle apparatus, that is, an air conditioner 11a according to the second embodiment of the present invention. In the drawing, the same reference numerals are given to the equivalent components to those of the first embodiment described above, and their detailed description is omitted. In the second embodiment, a first internal heat exchanger 74 and a second internal heat exchanger 75 are incorporated in the primary refrigerant circuit 12. A third branch path 76 is connected to the first circulation path 15 when incorporating the first and second internal heat exchangers 74 and 75. The third branch path 76 forms a detour in the first circulation path 15 from the branch point 77 to the branch point 78 between the first port 16 a of the four-way valve 16 and the suction port 14 a of the compressor 14.

第1内部熱交換器74は第1通路74aおよび第2通路74bを備える。第1通路74aは分岐点77および分岐点78の間で第3分岐路76に組み込まれる。第1冷媒は四方弁16の第1口16aから第1通路74aを通過して圧縮機14に至る。第2通路74bは冷媒−冷媒熱交換器21および膨張弁19の間で第2循環経路17に組み込まれる。ここでは第2通路74bは第6分岐点51と膨張弁19との間に配置される。第1通路74a内の冷媒と第2通路74b内の冷媒との間で熱エネルギーが交換される。熱エネルギーの交換にあたって例えば第1通路74aの配管と第2通路74bの配管とは相互に接触すればよい。   The first internal heat exchanger 74 includes a first passage 74a and a second passage 74b. The first passage 74 a is incorporated into the third branch path 76 between the branch point 77 and the branch point 78. The first refrigerant passes from the first port 16 a of the four-way valve 16 through the first passage 74 a and reaches the compressor 14. The second passage 74 b is incorporated in the second circulation path 17 between the refrigerant-refrigerant heat exchanger 21 and the expansion valve 19. Here, the second passage 74 b is disposed between the sixth branch point 51 and the expansion valve 19. Thermal energy is exchanged between the refrigerant in the first passage 74a and the refrigerant in the second passage 74b. For example, the piping of the first passage 74a and the piping of the second passage 74b may be in contact with each other when exchanging thermal energy.

第2内部熱交換器75は第1通路75aおよび第2通路75bを備える。第1通路75aは分岐点77および分岐点78の間で第1循環経路15に組み込まれる。第1冷媒は四方弁16の第1口16aから第1通路75aを通過して圧縮機14に至る。第2通路75bは膨張弁19および室外熱交換器18の間で第2循環経路17に組み込まれる。こうして第1通路75a内の冷媒と第2通路75b内の冷媒との間で熱エネルギーが交換される。熱エネルギーの交換にあたって例えば第1通路75aの配管と第2通路75bの配管とは相互に接触すればよい。   The second internal heat exchanger 75 includes a first passage 75a and a second passage 75b. The first passage 75 a is incorporated in the first circulation path 15 between the branch point 77 and the branch point 78. The first refrigerant passes from the first port 16 a of the four-way valve 16 through the first passage 75 a and reaches the compressor 14. The second passage 75 b is incorporated in the second circulation path 17 between the expansion valve 19 and the outdoor heat exchanger 18. Thus, heat energy is exchanged between the refrigerant in the first passage 75a and the refrigerant in the second passage 75b. In exchanging the heat energy, for example, the pipe of the first passage 75a and the pipe of the second passage 75b may be in contact with each other.

分岐点77と分岐点78との間で第3分岐路76には第1開閉弁81が挿入される。分岐点77と分岐点78との間で第1循環経路15には第2開閉弁82が挿入される。第1開閉弁81および第2開閉弁82は弁体の開閉に応じて第1冷媒の流通と遮断とを切り替える。   A first on-off valve 81 is inserted into the third branch path 76 between the branch point 77 and the branch point 78. A second on-off valve 82 is inserted in the first circulation path 15 between the branch point 77 and the branch point 78. The first opening / closing valve 81 and the second opening / closing valve 82 switch between the flow and blocking of the first refrigerant in accordance with the opening / closing of the valve element.

暖房運転時には第1開閉弁81は開弁し第2開閉弁82は閉弁する。その結果、第1冷媒は四方弁16の第1口16aから第3分岐路76に流入する。第2通路74b内の冷媒から第1通路74a内の冷媒に熱エネルギーは移動する。熱エネルギーを受け取った第1冷媒は圧縮機14の吸い込み側に供給される。第4熱交換器45に供給される第1冷媒の温度は上昇する。冷媒タンク29内で第2冷媒の圧力は応答性よく上昇する。その一方で、冷房運転時には第1開閉弁81は閉弁し第2開閉弁82は開弁する。その結果、第1冷媒は分岐点77と分岐点78との間で第1循環経路15を流通する。第2通路75b内の冷媒から第1通路75a内の冷媒に熱エネルギーは移動する。その結果、熱エネルギーを受け取った第1冷媒は圧縮機14の吸い込み側に供給される。第4熱交換器45に供給される第1冷媒の温度は低下する。冷媒タンク29内で第2冷媒の圧力は応答性よく下降する。   During the heating operation, the first on-off valve 81 is opened and the second on-off valve 82 is closed. As a result, the first refrigerant flows from the first port 16 a of the four-way valve 16 into the third branch path 76. Thermal energy moves from the refrigerant in the second passage 74b to the refrigerant in the first passage 74a. The first refrigerant that has received the heat energy is supplied to the suction side of the compressor 14. The temperature of the 1st refrigerant | coolant supplied to the 4th heat exchanger 45 rises. In the refrigerant tank 29, the pressure of the second refrigerant rises with good responsiveness. On the other hand, during the cooling operation, the first on-off valve 81 is closed and the second on-off valve 82 is opened. As a result, the first refrigerant flows through the first circulation path 15 between the branch point 77 and the branch point 78. Thermal energy moves from the refrigerant in the second passage 75b to the refrigerant in the first passage 75a. As a result, the first refrigerant that has received the thermal energy is supplied to the suction side of the compressor 14. The temperature of the 1st refrigerant | coolant supplied to the 4th heat exchanger 45 falls. In the refrigerant tank 29, the pressure of the second refrigerant falls with good responsiveness.

11 冷凍サイクル装置としての空気調和機、17 1次側循環経路(第2循環経路)、18 第3熱交換器としての室外熱交換器、19 膨張弁、21 第1熱交換器としての冷媒−冷媒熱交換器、25 循環経路、27 第2熱交換器としての室内熱交換器、29 冷媒溜めとしての冷媒タンク、45 第4熱交換器、72 制御回路。   DESCRIPTION OF SYMBOLS 11 Air conditioner as refrigeration cycle apparatus, 17 Primary side circulation path (second circulation path), 18 Outdoor heat exchanger as third heat exchanger, 19 Expansion valve, 21 Refrigerant as first heat exchanger Refrigerant heat exchanger, 25 circulation path, 27 indoor heat exchanger as second heat exchanger, 29 refrigerant tank as refrigerant reservoir, 45 fourth heat exchanger, 72 control circuit.

Claims (4)

超臨界状態の第1定圧比熱を確立する温度を含む第1温度域で単位温度変化あたりに定圧比熱の第1変化量を示し、前記第1定圧比熱よりも低い超臨界状態の第2定圧比熱を確立する温度を含む第2温度域で単位温度変化あたりに前記第1変化量よりも小さい定圧比熱の第2変化量を示す冷媒を第1熱交換器および第2熱交換器の間で循環経路に沿って循環させ、前記冷媒の熱量に応じて前記第1熱交換器から前記第2熱交換器に熱エネルギーを運搬する工程と、
制御回路に前記第1温度域内で第1温度条件を設定する工程と、
前記第1温度条件に向けて前記制御回路の働きで前記循環経路内の温度および圧力を調整する工程と、
前記温度および前記圧力の調整中に前記温度が前記第1温度条件から所定の期間にわたって逸脱すると、前記制御回路に前記第2温度域内で第2温度条件を設定する工程と、
前記第2温度条件に向けて前記制御回路の働きで前記循環経路内の温度および圧力を調整する工程と
を備えることを特徴とする冷凍サイクル装置の制御方法。
The first constant pressure specific heat per unit temperature change in the first temperature range including the temperature that establishes the first constant pressure specific heat in the supercritical state, and the second constant pressure specific heat in the supercritical state lower than the first constant pressure specific heat. A refrigerant that exhibits a second change amount of constant pressure specific heat that is smaller than the first change amount per unit temperature change in a second temperature range including a temperature that establishes the temperature is circulated between the first heat exchanger and the second heat exchanger. Circulating along the path and conveying thermal energy from the first heat exchanger to the second heat exchanger according to the amount of heat of the refrigerant;
Setting a first temperature condition in the first temperature range in the control circuit;
Adjusting the temperature and pressure in the circulation path by the action of the control circuit toward the first temperature condition;
Setting the second temperature condition within the second temperature range in the control circuit when the temperature deviates from the first temperature condition for a predetermined period during the adjustment of the temperature and the pressure;
And a step of adjusting the temperature and pressure in the circulation path by the action of the control circuit toward the second temperature condition.
請求項1に記載の冷凍サイクル装置の制御方法において、
前記循環経路に組み込まれて、前記冷媒を貯留する空間を区画する冷媒溜めの貯留量に応じて前記循環経路内で前記冷媒の温度および圧力を調整する工程と、
暖房運転時に前記循環経路内で前記冷媒の圧力が所定圧に達すると、前記循環経路から前記冷媒溜めを切り離す工程と
をさらに備えることを特徴とする冷凍サイクル装置の制御方法。
In the control method of the refrigerating cycle device according to claim 1,
Adjusting the temperature and pressure of the refrigerant in the circulation path according to the storage amount of the refrigerant reservoir that is incorporated in the circulation path and partitions the space for storing the refrigerant;
A control method for a refrigeration cycle apparatus, further comprising a step of separating the refrigerant reservoir from the circulation path when the pressure of the refrigerant reaches a predetermined pressure in the circulation path during heating operation.
請求項2に記載の冷凍サイクル装置の制御方法において、
前記第1熱交換器および第3熱交換器の間で1次側循環経路に沿って1次側冷媒を循環させ、圧縮機および膨張弁の間で前記第1熱交換器または前記第2熱交換器に、前記圧縮機で高温高圧に圧縮された1次側冷媒を供給し、前記第1熱交換器で前記1次側冷媒から前記冷媒に熱エネルギーを移動させる工程と、
前記圧縮機で高温高圧に圧縮された前記1次側冷媒から、前記冷媒溜め内の前記冷媒に第4熱交換器で熱エネルギーを移動させる工程と、
前記循環経路から前記冷媒溜めが切り離される際に、前記1次側循環経路から前記第4熱交換器を切り離す工程と
をさらに備えることを特徴とする冷凍サイクル装置の制御方法。
In the control method of the refrigerating cycle device according to claim 2,
A primary-side refrigerant is circulated along the primary-side circulation path between the first heat exchanger and the third heat exchanger, and the first heat exchanger or the second heat is interposed between the compressor and the expansion valve. Supplying a primary side refrigerant compressed to a high temperature and high pressure by the compressor to the exchanger, and transferring thermal energy from the primary side refrigerant to the refrigerant in the first heat exchanger;
A step of transferring thermal energy by a fourth heat exchanger from the primary side refrigerant compressed to high temperature and high pressure by the compressor to the refrigerant in the refrigerant reservoir;
And a step of separating the fourth heat exchanger from the primary circulation path when the refrigerant reservoir is separated from the circulation path.
請求項1〜3のいずれか1項に記載の冷凍サイクル装置の制御方法において、前記第1温度条件および前記第2温度条件で前記循環経路内の圧力は一定に維持されることを特徴とする冷凍サイクル装置の制御方法。 The control method of the refrigerating cycle device according to any one of claims 1 to 3, wherein the pressure in the circulation path is maintained constant under the first temperature condition and the second temperature condition. Control method of refrigeration cycle apparatus.
JP2010222575A 2010-09-30 2010-09-30 Control method of refrigerating cycle device Pending JP2012077980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010222575A JP2012077980A (en) 2010-09-30 2010-09-30 Control method of refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010222575A JP2012077980A (en) 2010-09-30 2010-09-30 Control method of refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2012077980A true JP2012077980A (en) 2012-04-19

Family

ID=46238443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010222575A Pending JP2012077980A (en) 2010-09-30 2010-09-30 Control method of refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2012077980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106989478A (en) * 2017-02-24 2017-07-28 深圳达实智能股份有限公司 Applied to the isobaric method for controlling frequency conversion of hospital's size chilled water pump in parallel and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159738A (en) * 1992-11-25 1994-06-07 Daikin Ind Ltd Device for cooling heat generating element of air conditioner
JP2005241074A (en) * 2004-02-25 2005-09-08 Mitsubishi Heavy Ind Ltd Air conditioner
JP2008209075A (en) * 2007-02-27 2008-09-11 Mitsubishi Heavy Ind Ltd Air conditioner
WO2009011197A1 (en) * 2007-07-18 2009-01-22 Mitsubishi Electric Corporation Refrigerating cycle device and method for controlling operation of the same
JP2010127494A (en) * 2008-11-26 2010-06-10 Corona Corp Heat pump type water heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159738A (en) * 1992-11-25 1994-06-07 Daikin Ind Ltd Device for cooling heat generating element of air conditioner
JP2005241074A (en) * 2004-02-25 2005-09-08 Mitsubishi Heavy Ind Ltd Air conditioner
JP2008209075A (en) * 2007-02-27 2008-09-11 Mitsubishi Heavy Ind Ltd Air conditioner
WO2009011197A1 (en) * 2007-07-18 2009-01-22 Mitsubishi Electric Corporation Refrigerating cycle device and method for controlling operation of the same
JP2010127494A (en) * 2008-11-26 2010-06-10 Corona Corp Heat pump type water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106989478A (en) * 2017-02-24 2017-07-28 深圳达实智能股份有限公司 Applied to the isobaric method for controlling frequency conversion of hospital's size chilled water pump in parallel and device
CN106989478B (en) * 2017-02-24 2020-02-14 深圳达实智能股份有限公司 Isobaric frequency conversion control method and device applied to large and small parallel chilled water pumps in hospital

Similar Documents

Publication Publication Date Title
EP3500805A1 (en) Systems and methods for controlling a refrigeration system
US11959652B2 (en) Machine learning apparatus, air conditioning system, and machine learning method
JP5514787B2 (en) Environmental test equipment
US11092376B2 (en) Refrigeration device comprising multiple storage chambers
JP4795709B2 (en) Constant temperature and humidity device
EP3101362B1 (en) Air-conditioning device
US20150253020A1 (en) Air-conditioning apparatus
WO2014122922A1 (en) Heating system
JP2008128628A (en) Refrigerating device
BR112015008205B1 (en) air conditioner
CN106016541A (en) Natural cooling machine room air conditioner and supercooling degree control method thereof
WO2014115497A1 (en) Heater system
JP2007322024A (en) Large temperature difference air conditioning system
CN107076469B (en) Refrigerator and refrigerant flow control method
CN101558267A (en) Freezing device
JPWO2019167250A1 (en) Air conditioner
US11221166B2 (en) Refrigerator system
EP3358923B1 (en) Cooling system with reduced pressure drop
JP2017166773A (en) Heat pump type cold/hot water supply system
JP2012077980A (en) Control method of refrigerating cycle device
US20210033324A1 (en) Heat pump system
JP2012077978A (en) Refrigerating cycle device
JP2012077979A (en) Refrigerating cycle device and control method thereof
JP2017067320A (en) Air conditioner
JP2016114319A (en) Heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401