JP2012077338A - Copper-titanium alloy and wrought product, electronic component, and connector each using the same - Google Patents
Copper-titanium alloy and wrought product, electronic component, and connector each using the same Download PDFInfo
- Publication number
- JP2012077338A JP2012077338A JP2010222382A JP2010222382A JP2012077338A JP 2012077338 A JP2012077338 A JP 2012077338A JP 2010222382 A JP2010222382 A JP 2010222382A JP 2010222382 A JP2010222382 A JP 2010222382A JP 2012077338 A JP2012077338 A JP 2012077338A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- rolling
- crystal grains
- titanium copper
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 229910001069 Ti alloy Inorganic materials 0.000 title abstract description 5
- 239000013078 crystal Substances 0.000 claims abstract description 96
- 239000002245 particle Substances 0.000 claims abstract description 81
- 238000005452 bending Methods 0.000 claims abstract description 54
- 239000010936 titanium Substances 0.000 claims abstract description 49
- 239000010949 copper Substances 0.000 claims abstract description 11
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 238000005498 polishing Methods 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910001122 Mischmetal Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052790 beryllium Inorganic materials 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 abstract description 6
- 238000011282 treatment Methods 0.000 description 70
- 238000005096 rolling process Methods 0.000 description 54
- 239000000243 solution Substances 0.000 description 50
- 230000032683 aging Effects 0.000 description 38
- 230000000052 comparative effect Effects 0.000 description 32
- 239000000463 material Substances 0.000 description 29
- 238000010438 heat treatment Methods 0.000 description 23
- 238000000034 method Methods 0.000 description 22
- 229910000881 Cu alloy Inorganic materials 0.000 description 21
- 238000005097 cold rolling Methods 0.000 description 20
- 238000001816 cooling Methods 0.000 description 19
- 238000012360 testing method Methods 0.000 description 19
- 239000002244 precipitate Substances 0.000 description 16
- 239000000956 alloy Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000006104 solid solution Substances 0.000 description 10
- 238000000137 annealing Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000005482 strain hardening Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000010731 rolling oil Substances 0.000 description 7
- 230000035882 stress Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 6
- 229910010165 TiCu Inorganic materials 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 3
- 238000000265 homogenisation Methods 0.000 description 3
- 229910004353 Ti-Cu Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000003483 aging Methods 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- AQXQGFFJZVRMRY-UHFFFAOYSA-N [Cu].[Ti].[Cu].[Ti] Chemical compound [Cu].[Ti].[Cu].[Ti] AQXQGFFJZVRMRY-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001330 spinodal decomposition reaction Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
本発明は、例えばコネクタ等の電子部品用部材に好適なチタン銅及びこれを用いた伸銅品、電子部品及びコネクタに関する。 The present invention relates to titanium copper suitable for a member for electronic parts such as a connector, for example, a drawn copper product using the same, an electronic part and a connector.
近年では携帯端末などに代表される電子機器の小型化が益々進み、従ってそれに使用されるコネクタは狭ピッチ化及び低背化の傾向が著しい。小型のコネクタほどピン幅が狭く、小さく折り畳んだ加工形状となるため、使用する部材には、必要なバネ性を得るための高い強度と、過酷な曲げ加工に耐えることのできる、優れた曲げ加工性が求められる。この点、チタンを含有する銅合金(以下、「チタン銅」と称する。)は、比較的強度が高く、応力緩和特性にあっては銅合金中最も優れているため、特に強度が要求される信号系端子用部材として古くから使用されてきた。 In recent years, electronic devices typified by portable terminals and the like have been increasingly miniaturized, and accordingly, connectors used for such devices tend to have a narrow pitch and a low profile. The smaller the connector, the narrower the pin width and the smaller the folded shape, so the members used will have high strength to obtain the necessary spring properties and excellent bending that can withstand severe bending. Sex is required. In this regard, a titanium-containing copper alloy (hereinafter referred to as “titanium copper”) has a relatively high strength and is most excellent in the copper alloy in terms of stress relaxation characteristics. It has been used for a long time as a signal system terminal member.
チタン銅は時効硬化型の銅合金である。溶体化処理によって溶質原子であるTiの過飽和固溶体を形成させ、その状態から低温で比較的長時間の熱処理を施すと、スピノーダル分解によって、母相中にTi濃度の周期的変動である変調構造が発達し、強度が向上する。この際、問題となるのは、強度と曲げ加工性が相反する特性を有する点である。すなわち、強度を向上させると曲げ加工性が損なわれ、逆に、曲げ加工性を重視すると所望の強度が得られないということである。一般に、冷間圧延の圧下率を高くするほど、導入される転位量が多くなって転位密度が高くなるため、析出に寄与する核生成サイトが増え、時効処理後の強度を高くすることができるが、圧下率を高くしすぎると曲げ加工性が悪化する。このため、強度及び曲げ加工性の両立を図ることが課題とされてきた。 Titanium copper is an age-hardening type copper alloy. When a supersaturated solid solution of Ti, which is a solute atom, is formed by solution treatment and heat treatment is performed at a low temperature for a relatively long time from that state, a modulation structure that is a periodic variation of Ti concentration in the parent phase is caused by spinodal decomposition. Develop and improve strength. At this time, the problem is that the strength and the bending workability are contradictory. That is, if the strength is improved, the bending workability is impaired, and conversely, if the bending workability is emphasized, a desired strength cannot be obtained. In general, the higher the rolling reduction in cold rolling, the more dislocations are introduced and the dislocation density is higher, so that the number of nucleation sites contributing to precipitation increases and the strength after aging treatment can be increased. However, if the rolling reduction is too high, the bending workability deteriorates. For this reason, it has been an object to achieve both strength and bending workability.
そこで、Fe、Co、Ni、Siなどの第三元素を添加する(特許文献1)、母相中に固溶する不純物元素群の濃度を規制し、これらを第二相粒子(Cu−Ti−X系粒子)として所定の分布形態で析出させて変調構造の規則性を高くする(特許文献2)、結晶粒を微細化させるのに有効な微量添加元素と第二相粒子の密度を規定する(特許文献3)、結晶粒を微細化する(特許文献4)などの観点から、チタン銅の強度と曲げ加工性の両立を図ろうとする技術が提案されている。 Therefore, a third element such as Fe, Co, Ni, Si or the like is added (Patent Document 1), the concentration of the impurity element group that dissolves in the matrix phase is regulated, and these elements are added to the second phase particles (Cu-Ti- X-type particles) are precipitated in a predetermined distribution form to increase the regularity of the modulation structure (Patent Document 2), and the density of the trace additive elements and second-phase particles effective to refine the crystal grains is specified. From the viewpoints of (Patent Document 3) and refining crystal grains (Patent Document 4), a technique has been proposed which attempts to achieve both the strength and bending workability of titanium copper.
チタン銅の場合、母相であるα相に対して整合性の悪いβ相(TiCu3)と、整合性の良いβ’相(TiCu4)が存在し、β相は曲げ加工性に悪影響を与える一方で、β’相を均一かつ微細に分散させることが強度と曲げ加工性の両立に寄与するとして、β相を抑制しつつβ’相を微細分散させたチタン銅も提案されている(特許文献5)。 In the case of titanium copper, there are a β phase (TiCu 3 ) having poor consistency with the α phase as a parent phase and a β ′ phase (TiCu 4 ) having good consistency, and the β phase has an adverse effect on bending workability. On the other hand, evenly and finely dispersing the β ′ phase contributes to both strength and bending workability, and titanium copper in which the β ′ phase is finely dispersed while suppressing the β phase has also been proposed ( Patent Document 5).
結晶方位に着目し、I{420}/I0{420}>1.0及びI{220}/I0{220}≦3.0を満たすように結晶配向を制御することで、強度、曲げ加工性及び耐応力緩和性を改善した技術も提案されている(特許文献6)。 By paying attention to the crystal orientation and controlling the crystal orientation to satisfy I {420} / I 0 {420}> 1.0 and I {220} / I 0 {220} ≦ 3.0, the strength and bending A technique for improving workability and stress relaxation resistance has also been proposed (Patent Document 6).
結晶方位と最大結晶粒径、最小結晶粒径の差に着目し、I{420}/I0{420}>1.0及びI{220}/I0{220}≦4.0を満たすように結晶配向を制御し、(最大結晶粒径−最小結晶粒径)/平均結晶粒径が0.20以下を満たすように結晶粒径の大きさを制御することで、強度、曲げ加工性及び耐応力緩和性を改善した技術も提案されている(特許文献7)。 Focusing on the difference between the crystal orientation and the maximum crystal grain size and the minimum crystal grain size, I {420} / I 0 {420}> 1.0 and I {220} / I 0 {220} ≦ 4.0 are satisfied. By controlling the crystal orientation and controlling the crystal grain size so that (maximum crystal grain size-minimum crystal grain size) / average crystal grain size is 0.20 or less, strength, bending workability and A technique with improved stress relaxation resistance has also been proposed (Patent Document 7).
このように、これまでチタン銅の強度及び曲げ加工性の改善のために各種の手法が研究されてきているが、未だその改善の余地は残されている。
そこで、本発明はこれまでとは別異の観点からチタン銅の特性改善を試み、優れた強度及び曲げ加工性を有するチタン銅及びこれを用いた伸銅品、電子部品及びコネクタを提供することを課題とする。
Thus, various methods have been studied so far for improving the strength and bending workability of titanium copper, but there is still room for improvement.
Therefore, the present invention attempts to improve the properties of titanium copper from a different viewpoint from the past, and provides titanium copper having excellent strength and bending workability, and a copper-drawn product, an electronic component and a connector using the same. Is an issue.
本発明者は、強度及び曲げ加工性の両立を図るための検討過程において、チタン銅の製造工程を、従来一般的に行われる手法とは異なる方法で実施することを考えた。即ち、従来は、最終溶体化処理→冷間圧延→時効処理の順序によりチタン銅を製造していたものを、本発明においては、最終溶体化処理→時効処理→冷間圧延の順序でチタン銅を製造し、この場合の最終溶体化処理および冷間圧延を適正な条件とすることにより、強度及び曲げ加工性の双方に優れたチタン銅が得られることを見出した。 The present inventor considered that the titanium copper manufacturing process is carried out by a method different from a conventionally performed method in an examination process for achieving both strength and bending workability. That is, in the past, titanium copper was produced in the order of final solution treatment → cold rolling → aging treatment. In the present invention, titanium copper was produced in the order of final solution treatment → aging treatment → cold rolling. It was found that titanium copper excellent in both strength and bending workability can be obtained by making the final solution treatment and cold rolling in this case appropriate conditions.
本発明者はその原因を調査するために、本発明の実施の形態に係るチタン銅の組織を調査したところ、結晶粒径、結晶粒界内に存在する第二相粒子の個数密度及び圧延面表面の結晶粒の方位の関係に特徴点を見出した。つまり、本発明の実施の形態に係るチタン銅は、結晶粒径が小さく、結晶粒界内には第二相粒子が殆ど存在せず、圧延表面から結晶粒の方位を観察した場合に、特定の方位を向く結晶粒の面積率が高いことが分かった。 In order to investigate the cause, the present inventor investigated the structure of titanium copper according to the embodiment of the present invention, the crystal grain size, the number density of the second phase particles existing in the crystal grain boundary, and the rolling surface. A feature point was found in the relationship of the orientation of crystal grains on the surface. That is, the titanium copper according to the embodiment of the present invention has a small crystal grain size, there are almost no second phase particles in the crystal grain boundary, and it is specified when the crystal grain orientation is observed from the rolling surface. It was found that the area ratio of the crystal grains facing the orientation was high.
上記知見を基礎として完成した本発明は一側面において、Tiを1.0〜5.0質量%含有し、残部銅及び不可避的不純物からなるチタン銅であって、電子顕微鏡による圧延面の電解研磨後の表面の組織観察において、平均結晶粒径が20μm以下、結晶粒内に存在する粒径1μmより大きい第二相粒子の平均個数密度(X)が15×103個/mm2以下、結晶粒内に存在する粒径100nm〜1μmの第二相粒子の平均個数密度(Y)が3.5×103〜35×103個/mm2であり、圧延面の電解研磨後の表面をEBSP測定した場合に{111}から20°以内の範囲の結晶粒の割合が15〜90%であるチタン銅である。 The present invention completed on the basis of the above knowledge is, in one aspect, titanium copper containing 1.0 to 5.0% by mass of Ti and the balance copper and unavoidable impurities, and electropolishing of the rolled surface by an electron microscope In the subsequent observation of the structure of the surface, the average crystal grain size is 20 μm or less, the average number density (X) of second phase particles larger than 1 μm in the crystal grains is 15 × 10 3 particles / mm 2 or less, crystals The average number density (Y) of the second phase particles having a particle diameter of 100 nm to 1 μm existing in the grains is 3.5 × 10 3 to 35 × 10 3 particles / mm 2 , and the surface after electrolytic polishing of the rolled surface is When measured by EBSP, the proportion of crystal grains in the range of {111} to 20 ° is 15 to 90%.
本発明に係るチタン銅の一実施態様では、伸びが3.0%以上、引張強さが850MPa以上である。 In one embodiment of titanium copper according to the present invention, the elongation is 3.0% or more and the tensile strength is 850 MPa or more.
本発明に係るチタン銅の別の一実施形態では、曲げ表面の平均粗さRaが2.0μm以下である。 In another embodiment of the titanium-copper according to the present invention, the average roughness Ra of the bending surface is 2.0 μm or less.
本発明に係る銅合金の更に別の一実施形態では、第3元素群としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、Ag、Be、ミッシュメタル及びPよりなる群から選択される1種又は2種以上を、合計で0〜1.0質量%含有する。 In still another embodiment of the copper alloy according to the present invention, the third element group includes Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, Ag, Be, and Misch metal. And 1 or 2 or more selected from the group consisting of P and 0 to 1.0% by mass in total.
本発明は別の一側面において、上記チタン銅からなる伸銅品である。 In another aspect, the present invention is a copper-drawn product made of the above titanium copper.
本発明は更に別の一側面において、上記チタン銅を備えた電子部品である。 In another aspect of the present invention, an electronic component comprising the titanium copper.
本発明は更に別の一側面において、上記チタン銅を備えたコネクタである。 In another aspect of the present invention, the connector includes the titanium copper.
本発明によれば、優れた強度及び曲げ加工性を有するチタン銅及びこれを用いた伸銅品、電子部品及びコネクタが得られる。 ADVANTAGE OF THE INVENTION According to this invention, the titanium copper which has the outstanding intensity | strength and bending workability, the copper-stretched article using this, an electronic component, and a connector are obtained.
−チタン銅の組成−
<Ti含有量>
Tiが1.0質量%未満ではチタン銅本来の変調構造の形成による強化機構を充分に得ることができないことから十分な強度が得られず、逆に5.0質量%を超えると粗大なTiCu3が析出し易くなり、強度及び曲げ加工性が劣化する傾向にある。従って、本発明の実施の形態に係る銅合金中のTiの含有量は、1.0〜5.0質量%であり、好ましくは1.5〜4.5質量%、更に好ましくは2.0〜4.0質量%である。このようにTiの含有量を適正化することで、電子部品用に適した強度及び曲げ加工性を共に実現することができる。
-Composition of titanium copper-
<Ti content>
If Ti is less than 1.0% by mass, a sufficient strengthening mechanism cannot be obtained due to the formation of the original modulation structure of titanium-copper. On the other hand, if Ti exceeds 5.0% by mass, coarse TiCu is not obtained. 3 tends to precipitate, and the strength and bending workability tend to deteriorate. Therefore, the content of Ti in the copper alloy according to the embodiment of the present invention is 1.0 to 5.0 mass%, preferably 1.5 to 4.5 mass%, more preferably 2.0. It is -4.0 mass%. Thus, by optimizing the Ti content, both strength and bending workability suitable for electronic components can be realized.
<第3元素>
第3元素をチタン銅に添加すると、Tiが十分に固溶する高い温度で溶体化処理をしても結晶粒が容易に微細化し、強度を向上させる効果がある。また、所定の第3元素は変調構造の形成を促進する。更に、TiCu3等の析出を抑制する効果もあるため、チタン銅本来の時効硬化能が得られるようになる。
<Third element>
When the third element is added to titanium copper, there is an effect that the crystal grains are easily refined and the strength is improved even if solution treatment is performed at a high temperature at which Ti is sufficiently dissolved. In addition, the predetermined third element promotes the formation of the modulation structure. Further, since it has an effect of suppressing precipitation of TiCu 3 and the like, the original age hardening ability of titanium copper can be obtained.
第3元素としては、Mn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、Ag、Be、ミッシュメタル及びPを単独で添加するか、又は2種以上を複合添加してもよい。ここでミッシュメタルとは、Ce、La、Dy、Nd、Yなどを含む希土類元素の混合物である。 As the third element, Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, Ag, Be, Misch metal and P are added alone, or two or more kinds are added. Multiple additions may be made. Here, misch metal is a mixture of rare earth elements including Ce, La, Dy, Nd, Y and the like.
これらの元素は、合計で0.02質量%以上含有するとその効果が現れだすが、合計で1.0質量%を超えるとTiの固溶限を狭くして粗大な第二相粒子を析出し易くなり、強度は若干向上するが曲げ加工性が劣化する。同時に、粗大な第二相粒子は、曲げ部の肌荒れを助長し、プレス加工での金型磨耗を促進させる。従って、第3元素群としてMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、Ag、Be、ミッシュメタル及びPよりなる群から選択される1種又は2種以上を合計で0〜1.0質量%含有することができ、合計で0.02〜1.0質量%、好ましくは0.05〜0.5質量%含有するのが好ましい。 When these elements contain 0.02% by mass or more in total, the effect appears, but when the total exceeds 1.0% by mass, the solid solubility limit of Ti is narrowed and coarse second-phase particles are precipitated. It becomes easy and the strength is slightly improved, but the bending workability is deteriorated. At the same time, the coarse second-phase particles promote roughening of the bent portion and promote die wear during press working. Therefore, one or two selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, Ag, Be, Misch metal and P as the third element group The seeds or more can be contained in a total amount of 0 to 1.0% by mass, and the total amount is 0.02 to 1.0% by mass, preferably 0.05 to 0.5% by mass.
−チタン銅の表面性状−
<結晶粒径>
本発明の実施の形態に係るチタン銅の一例を図1に示す。チタン銅の強度を向上させるためには結晶粒が小さいほど好ましい。そこで、好ましい平均結晶粒径は20μm以下、より好ましくは15μm以下であり、例えば5〜15μmである。下限について特に制限はないが、未再結晶領域が無く均一に再結晶させるためには、1μm以上が好ましい。本実施形態において「平均結晶粒径」は、光学顕微鏡又は電子顕微鏡による観察で圧延面の電解研磨後の表面の組織観察に対してJIS G0551の直線交差線分法により測定した。
-Surface properties of titanium copper-
<Crystal grain size>
An example of titanium copper according to an embodiment of the present invention is shown in FIG. In order to improve the strength of titanium copper, the smaller the crystal grains, the better. Therefore, a preferable average crystal grain size is 20 μm or less, more preferably 15 μm or less, for example, 5 to 15 μm. Although there is no restriction | limiting in particular about a minimum, In order to recrystallize uniformly without an unrecrystallized area | region, 1 micrometer or more is preferable. In the present embodiment, the “average crystal grain size” was measured by the linear crossing line method of JIS G0551 with respect to the structure observation of the surface after electrolytic polishing of the rolled surface by observation with an optical microscope or an electron microscope.
<第二相粒子>
本発明において「第二相粒子」とは母相の成分組成とは異なる組成の粒子を指す(例えば図1の粒子11参照)。第二相粒子は種々の熱処理途中に析出するCuとTiを主成分とした粒子であり、具体的にはTiCu3粒子又は第3元素群の構成要素X(具体的にはMn、Fe、Mg、Co、Ni、Cr、V、Nb、Mo、Zr、Si、B、Ag、Be、ミッシュメタル及びPの何れか)を含むCu−Ti−X系粒子として現れる。またCu−X系粒子、Ti−X系粒子も、この「第二相粒子」に含む。
<Second phase particles>
In the present invention, the “second phase particle” refers to a particle having a composition different from the component composition of the matrix (see, for example, the particle 11 in FIG. 1). The second phase particles are particles mainly composed of Cu and Ti precipitated during various heat treatments. Specifically, the TiCu 3 particles or the component X of the third element group (specifically, Mn, Fe, Mg) , Co, Ni, Cr, V, Nb, Mo, Zr, Si, B, Ag, Be, Misch metal, and P). Cu-X-based particles and Ti-X-based particles are also included in the "second phase particles".
本発明では、第二相粒子を粒径100nm以上1.0μm以下のものと、粒径1.0μmを超えるものの二種類に分け、それらの平均個数密度(Y)、(X)を規定している。粒径100nm以上1.0μm以下の第二相粒子は主に時効処理時に析出したものであり、粒径1.0μmを超える第二相粒子は主に時効処理を行う前に析出して残留していたものが時効処理時に更に成長したものであると考えられる。また、100nm〜1.0μmの一部は最終溶体化処理で固溶せずに残留していたものであるとも考えられる。なお、前者の粒径を100nm以上としたのは、あまりにも微細な第二相粒子はカウントするのが困難だからである。 In the present invention, the second phase particles are classified into two types, those having a particle size of 100 nm to 1.0 μm and those having a particle size exceeding 1.0 μm, and their average number density (Y), (X) is defined. Yes. Second phase particles having a particle size of 100 nm or more and 1.0 μm or less are mainly precipitated at the time of aging treatment, and second phase particles having a particle size of more than 1.0 μm are mainly precipitated and remain before aging treatment. It was thought that what had been grown further during the aging treatment. Moreover, it is thought that a part of 100 nm-1.0 micrometer was what was not melt | dissolved in the final solution treatment but remained. The reason why the former particle size is set to 100 nm or more is that it is difficult to count too fine second-phase particles.
従って、粒径100nm以上1.0μm以下の第二相粒子の平均個数密度(Y)は、溶体化処理および時効処理における条件を反映し、粒径1.0μmを超える第二相粒子の平均個数密度(X)は時効処理における条件に加えて溶体化処理終了時までの熱処理条件も反映する。 Therefore, the average number density (Y) of the second phase particles having a particle size of 100 nm to 1.0 μm reflects the conditions in the solution treatment and the aging treatment, and the average number of second phase particles having a particle size of more than 1.0 μm. The density (X) reflects the heat treatment conditions up to the end of the solution treatment in addition to the conditions in the aging treatment.
粒径粒径100nm以上1.0μm以下の第二相粒子の平均個数密度(Y)は、中間および最終溶体化の条件(溶体化温度、保持時間)と時効処理により決定される。溶体化時に冷却温度が早くなると、結晶粒径は小さく、平均個数密度(Y)は小さくなる。また、溶体化温度が高く、保持時間が長くなると平均個数密度(Y)は小さくなる。平均個数密度(Y)は、時効処理の度合を小さく(例:低温短時間)行うと小さくなり、時効処理の度合を大きく(例:高温長時間)行うと大きくなる。平均個数密度(Y)が小さ過ぎると時効処理の度合が不十分であること(亜時効)を示し、必要な強度が得られない。その上、平均個数密度(Y)が小さ過ぎると時効後に冷間圧延した場合に、加工硬化の度合いが少なく、強度が低下する。一方、平均個数密度(Y)が大きすぎても今度は時効処理の度合が過剰であったこと(過時効)を示し、ピーク強度が得られる時効処理条件を超えて強度が低下するとともに曲げ加工性が悪化する。 The average number density (Y) of the second phase particles having a particle size of 100 nm to 1.0 μm is determined by intermediate and final solution conditions (solution temperature, holding time) and aging treatment. If the cooling temperature becomes faster during solution treatment, the crystal grain size becomes smaller and the average number density (Y) becomes smaller. Further, when the solution temperature is high and the holding time is long, the average number density (Y) is small. The average number density (Y) decreases when the degree of aging treatment is reduced (eg, low temperature for a short time) and increases when the degree of aging treatment is increased (eg, high temperature for a long time). If the average number density (Y) is too small, the degree of aging treatment is insufficient (sub-aging), and the required strength cannot be obtained. In addition, if the average number density (Y) is too small, the degree of work hardening is small and the strength decreases when cold rolling is performed after aging. On the other hand, even if the average number density (Y) is too large, this indicates that the degree of aging treatment is excessive (overaging), and the strength decreases beyond the aging treatment conditions for obtaining the peak strength, and bending is performed. Sex worsens.
本実施形態に係るチタン銅では、圧延面の電解研磨後の表面の検鏡によって観察される粒径100nm以上1.0μm以下の第二相粒子の平均個数密度(Y)が3.5×103〜35×103個/mm2であることが、強度及び曲げ加工性の良好なバランスを得る上で適切であり、より好ましくは3.5×103〜22.5×103個/mm2、更に好ましくは4.5×103〜15×103個/mm2、更により好ましくは5.5×103〜15×103個/mm2、もっとも好ましくは6.5×103〜12×103個/mm2である。この個数密度は、従来のチタン銅で言えば過時効条件のときに得られる個数密度に相当する。3.5×103個/mm2以下の場合には最終冷間圧延後の加工硬化の度合いが小さくなり強度が低下する。 In the titanium copper according to the present embodiment, the average number density (Y) of the second phase particles having a particle diameter of 100 nm or more and 1.0 μm or less, which is observed by a speculum of the surface after electrolytic polishing of the rolled surface, is 3.5 × 10. 3 to 35 × 10 3 pieces / mm 2 is appropriate for obtaining a good balance between strength and bending workability, and more preferably 3.5 × 10 3 to 22.5 × 10 3 pieces / mm 2. mm 2 , more preferably 4.5 × 10 3 to 15 × 10 3 pieces / mm 2 , still more preferably 5.5 × 10 3 to 15 × 10 3 pieces / mm 2 , most preferably 6.5 × 10 3 to 12 × 10 3 pieces / mm 2 . This number density corresponds to the number density obtained in the case of the overaging condition in the case of conventional titanium copper. In the case of 3.5 × 10 3 pieces / mm 2 or less, the degree of work hardening after the final cold rolling is reduced and the strength is lowered.
一方、粒径1.0μmを超える第二相粒子の平均個数密度(X)は、平均個数密度(Y)と同様に時効処理の影響も受けるが、時効処理前の熱処理条件、とりわけ最終の溶体化処理条件の影響を受ける。最終の溶体化処理を適切に行うことにより、それ以前の工程で析出した第二相粒子を固溶させることができるが、溶体化処理の条件が不適切であれば第二相粒子が残留したり、新たに析出したりする。粒径1.0μmを超える第二相粒子は粒径1.0μm以下のものに比べて強度及び曲げ加工性に与える悪影響が大きいので、極力少ないことが望ましい。 On the other hand, the average number density (X) of the second phase particles having a particle size exceeding 1.0 μm is affected by the aging treatment similarly to the average number density (Y), but the heat treatment conditions before the aging treatment, particularly the final solution. Affected by processing conditions. By appropriately performing the final solution treatment, the second phase particles precipitated in the previous step can be dissolved, but if the conditions of the solution treatment are inappropriate, the second phase particles remain. Or newly deposited. Since the second phase particles having a particle size exceeding 1.0 μm have a greater adverse effect on the strength and bending workability than those having a particle size of 1.0 μm or less, it is desirable that the second phase particles be as small as possible.
従って、本発明に係るチタン銅の好ましい一実施形態においては、表面の検鏡によって観察される粒径1.0μmを超える第二相粒子の平均個数密度(X)が15×103個/mm2以下であり、より好ましくは12×103個/mm2以下であり、例えば1.5×103〜12×103個/mm2とすることができる。 Therefore, in a preferred embodiment of the titanium-copper according to the present invention, the average number density (X) of the second phase particles having a particle diameter of more than 1.0 μm observed by surface microscopy is 15 × 10 3 particles / mm. 2 or less, more preferably 12 × 10 3 pieces / mm 2 or less, for example, 1.5 × 10 3 to 12 × 10 3 pieces / mm 2 .
本発明においては、第二相粒子の粒径を顕微鏡によって観察したときに、第二相粒子を取り囲む最小円の直径として定義する。 In the present invention, the diameter of the second phase particles is defined as the diameter of the smallest circle surrounding the second phase particles when observed with a microscope.
<結晶方位>
本実施形態に係るチタン銅は、{111}面から20°以内の範囲の方位の結晶粒の面積率が特徴的である。本発明で規定した成分の範囲のチタン銅の結晶構造は面心立方構造であるため、原子が最も密になる面は{111}面であり、この面は「すべり面」と呼ばれる。冷間圧延をはじめとする塑性加工を続けることにより結晶が回転していき、{111}面に近い方位に結晶粒の方位が集まってくる。
<Crystal orientation>
The titanium copper according to this embodiment is characterized by the area ratio of crystal grains having an orientation within 20 ° from the {111} plane. Since the crystal structure of titanium copper within the range of the components specified in the present invention is a face-centered cubic structure, the surface where the atoms are most dense is the {111} surface, and this surface is called a “slip surface”. By continuing the plastic working such as cold rolling, the crystal rotates, and the orientation of crystal grains gathers in the orientation close to the {111} plane.
{111}面から20°以内の範囲の方位の結晶粒の面積率は結晶粒に加わったひずみの量により決まる。ひずみの量が多くなるほど{111}面から20°以内の範囲の方位の結晶粒の面積率は増える。しかし、{111}面から20°以内の範囲の方位の結晶粒の面積率が多すぎると結晶粒に多くのひずみがたまっているため、曲げ性が低下する。逆に、{111}面から20°以内の範囲の方位の結晶粒の面積率が少なすぎると、加工硬化の度合いが小さく、強度が不足する場合がある。 The area ratio of crystal grains having an orientation within 20 ° from the {111} plane is determined by the amount of strain applied to the crystal grains. As the amount of strain increases, the area ratio of crystal grains having an orientation within 20 ° from the {111} plane increases. However, if the area ratio of crystal grains having an orientation in the range of 20 ° or less from the {111} plane is too much, a large amount of strain is accumulated in the crystal grains, so that the bendability is deteriorated. Conversely, if the area ratio of crystal grains having an orientation within 20 ° from the {111} plane is too small, the degree of work hardening may be small and the strength may be insufficient.
なお、従来の手順(溶体化処理→圧延→時効処理)によりチタン銅を製造する場合は、時効の熱処理により結晶粒内のひずみが解放され、{111}面から20°以内の範囲の方位の結晶粒の面積率に特徴的な傾向は表れない。 In addition, when manufacturing titanium copper by the conventional procedure (solution treatment → rolling → aging treatment), strain in the crystal grains is released by the aging heat treatment, and the orientation is within 20 ° from the {111} plane. There is no characteristic tendency in the area ratio of crystal grains.
結晶材料の結晶方位分布の測定方法としては、EBSP法(Electro Back Scattering Pattern)がある。SEM内にセットした試料に電子線を照射した時に発生するEBSPをコンピューターに取り込み、既知の結晶系のデータを用いて、連続的に自動解析することで数万〜数十万点以上の測定ポイントに関する位置データと結晶方位データ(3次元オイラー角表示)が得られる。さらに、前述の結晶方位データからコンピューターによりODF(Orient Distribution Function:結晶方位分布関数)を計算することで、それぞれの結晶粒の結晶方位を色分けして表示することができる。図4に、倍率3000倍で結晶方位を色分けして表示した方位マッピング図と標準ステレオ三角形図の例を示す。図4の標準ステレオ三角形図に示すように、本実施形態に係るチタン銅は、{111}面から20°の範囲の方位の結晶粒の面積率に特徴を有しており、図4の方位マッピング図では、結晶粒20a〜20lが、{111}面から20°以内の範囲の方位の結晶粒である。 As a method for measuring the crystal orientation distribution of a crystal material, there is an EBSP method (Electro Back Scattering Pattern). EBSP generated when an electron beam is irradiated to a sample set in the SEM is loaded into a computer, and continuously and automatically analyzed using data of known crystal systems. Position data and crystal orientation data (three-dimensional Euler angle display) are obtained. Furthermore, by calculating ODF (Orient Distribution Function) from the above crystal orientation data by a computer, the crystal orientation of each crystal grain can be displayed in different colors. FIG. 4 shows an example of an orientation mapping diagram and a standard stereo triangle diagram in which crystal orientations are color-coded at a magnification of 3000 times. As shown in the standard stereo triangle diagram of FIG. 4, the titanium copper according to the present embodiment is characterized by the area ratio of crystal grains having an orientation in a range of 20 ° from the {111} plane. In the mapping diagram, the crystal grains 20a to 20l are crystal grains having an orientation within a range of 20 ° from the {111} plane.
本実施形態に係るチタン銅においては、チタン銅の圧延面を電解研磨後により組織現出させ、その表面を走査型顕微鏡(SEM)に付属の後方散乱電子回折像(EBSP)により測定した場合に、{111}面から20°以内の範囲の方位の結晶粒の面積率が15〜90%となるように制御すること好ましく、より好ましくは30〜90%、更に好ましくは45〜90%である。面積率が15%以下では結晶方位がばらばらなために、曲げ性が向上しない。また面積率が90%を超える場合には、冷間加工により結晶粒に多くの歪みがたまりすぎるため、曲げ性が低下する。本実施形態においては、試料座標系を、図2に示すように、チタン銅1の圧延方向に平行な方向を[100](RD方向)、[100]と垂直且つチタン銅1の厚さ方向と平行な方向を[001](ND方向)、チタン銅1の幅方向と平行な[010](TD方向)と定義する。(結晶座標系は、ブラベー格子のa1,a2,a3軸方向を、それぞれ[100]、[010]、[001]として定義する)。 In the titanium copper according to the present embodiment, when the rolled surface of titanium copper is textured after electrolytic polishing, the surface is measured by a backscattered electron diffraction image (EBSP) attached to a scanning microscope (SEM). , It is preferable to control so that the area ratio of crystal grains having an orientation within 20 ° from the {111} plane is 15 to 90%, more preferably 30 to 90%, still more preferably 45 to 90%. . If the area ratio is 15% or less, the bendability is not improved because the crystal orientation varies. On the other hand, when the area ratio exceeds 90%, a large amount of distortion is accumulated in the crystal grains due to cold working, so that the bendability is lowered. In the present embodiment, as shown in FIG. 2, the sample coordinate system has a direction parallel to the rolling direction of the titanium copper 1 as [100] (RD direction), perpendicular to [100] and the thickness direction of the titanium copper 1. Is defined as [001] (ND direction) and [010] (TD direction) parallel to the width direction of the titanium copper 1. (The crystal coordinate system defines the a 1 , a 2 , and a 3 axis directions of the Bravais lattice as [100], [010], and [001], respectively).
{111}面から20°以内の範囲の方位の結晶粒の面積率を制御する方法としては、時効処理後の圧延加工度を変更すること、冷間圧延時の圧延油の粘度を変更すること、圧延荷重を変更すること等によって行うことができる。具体的には、圧延加工度、圧延油の粘度、圧延荷重を高くするなどして、金属材料に歪みが入りやすい状態とすることにより、極密度を高めることができる。 As a method of controlling the area ratio of crystal grains having an orientation within 20 ° from the {111} plane, changing the rolling work degree after aging treatment, changing the viscosity of rolling oil during cold rolling It can be performed by changing the rolling load. Specifically, the pole density can be increased by increasing the rolling process, the viscosity of the rolling oil, and the rolling load so that the metal material is easily distorted.
−チタン銅の特性−
本実施形態に係る銅合金は一実施形態において以下の特性を兼備することができる。
(A)圧延平行方向の0.2%耐力が850MPa以上
(B)BadwayのW曲げ試験を行う際の曲げ表面の平均粗さRaが2.0μm以下、好ましくは1.0μm以下
(C)圧延平行方向の伸びが3%以上
(D)導電率が10%IACS以上16%IACS以下
-Characteristics of titanium copper-
The copper alloy which concerns on this embodiment can have the following characteristics in one Embodiment.
(A) The 0.2% proof stress in the rolling parallel direction is 850 MPa or more. (B) The average roughness Ra of the bending surface when performing the Badway W bending test is 2.0 μm or less, preferably 1.0 μm or less. (C) Rolling Elongation in parallel direction is 3% or more (D) Conductivity is 10% IACS or more and 16% IACS or less
本実施形態に係る銅合金は別の一実施形態において以下の特性を兼備することができる。
(A)圧延平行方向の0.2%耐力が940MPa以上1000MPa以下
(B)BadwayのW曲げ試験を行う際の曲げ表面の表面粗さRaが0.5μm以上0.7μm以下
(C)圧延平行方向の伸びが6%以上12%以下
(D)導電率が10%IACS以上16%IACS以下
The copper alloy which concerns on this embodiment can have the following characteristics in another one Embodiment.
(A) 0.2% proof stress in the rolling parallel direction is 940 MPa or more and 1000 MPa or less. (B) The surface roughness Ra of the bending surface when performing the B-way W bending test is 0.5 μm or more and 0.7 μm or less. (C) Rolling parallel Elongation in direction is 6% or more and 12% or less (D) Conductivity is 10% or more and 16% or less IACS
本実施形態に係る銅合金は別の一実施形態において以下の特性を兼備することができる。
(A)圧延平行方向の0.2%耐力が1000MPa以上1100MPa以下
(B)BadwayのW曲げ試験を行う際の曲げ表面の平均粗さRaが0.5μm以上0.9μm以下
(C)圧延平行方向の伸びが6%以上10.0%以下
(D)導電率が10%IACS以上16%IACS以下
The copper alloy which concerns on this embodiment can have the following characteristics in another one Embodiment.
(A) 0.2% proof stress in the rolling parallel direction is 1000 MPa or more and 1100 MPa or less. (B) Average roughness Ra of the bending surface when performing the B-way W bending test is 0.5 μm or more and 0.9 μm or less. (C) Rolling parallel. Elongation in direction is 6% to 10.0% (D) Conductivity is 10% IACS to 16% IACS
−用途−
本実施形態に係るチタン銅は種々の伸銅品、例えば板、条、箔、管、棒及び線として提供されることができる。本発明に係るチタン銅は、限定的ではないが、スイッチ、コネクタ、ジャック、端子、リレー、電池等の電子部品の材料として好適に使用することができる。
-Application-
Titanium copper according to this embodiment can be provided as various copper products, for example, plates, strips, foils, tubes, bars and wires. The titanium copper according to the present invention is not limited, but can be suitably used as a material for electronic components such as switches, connectors, jacks, terminals, relays, and batteries.
−チタン銅の製造方法−
本実施形態に係るチタン銅は、特に最終の溶体化処理及びそれ以降の工程で適切な熱処理及び冷間圧延を実施することにより製造可能である。以下に、好適な製造例を工程毎に順次説明する。
-Manufacturing method of titanium copper-
Titanium copper according to the present embodiment can be manufactured by performing appropriate heat treatment and cold rolling particularly in the final solution treatment and the subsequent steps. Below, a suitable manufacture example is demonstrated one by one for every process.
1)インゴット製造
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない場合がある。よって、溶け残りをなくすため、FeやCr等の高融点の第3元素は、添加してから十分に攪拌したうえで、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第3元素の溶解後に添加すればよい。従って、Cuに、Mn、Fe、Mg、Co、Ni、Cr、V、Nb、Ag、Be、ミッシュメタル、Mo、Zr、Si、B及びPよりなる群から選択される1種又は2種以上を合計で0〜1.0質量%含有するように添加し、次いでTiを1.0〜5.0質量%含有するように添加してインゴットを製造することが望ましい。
1) Ingot production Ingot production by melting and casting is basically performed in a vacuum or in an inert gas atmosphere. If there is any undissolved additive element in dissolution, it may not work effectively for strength improvement. Therefore, in order to eliminate undissolved residue, it is necessary to add a high melting point third element such as Fe or Cr, and after sufficiently stirring, hold for a certain period of time. On the other hand, since Ti is relatively easily dissolved in Cu, it may be added after the third element is dissolved. Therefore, Cu is one or more selected from the group consisting of Mn, Fe, Mg, Co, Ni, Cr, V, Nb, Ag, Be, Misch metal, Mo, Zr, Si, B and P. It is desirable to add a total of 0 to 1.0 mass%, and then add Ti to include 1.0 to 5.0 mass% to produce an ingot.
2)均質化焼鈍及び熱間圧延
インゴット製造時に生じた凝固偏析や晶出物は粗大なので均質化焼鈍でできるだけ母相に固溶させて小さくし、可能な限り無くすことが望ましい。これは曲げ割れの防止に効果があるからである。具体的には、インゴット製造工程後には、900〜970℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施するのが好ましい。液体金属脆性を防止するために、熱延前及び熱延中は960℃以下とするのが好ましい。
2) Homogenization annealing and hot rolling Solidification segregation and crystallized material generated during ingot production are coarse, so it is desirable to make it as small as possible by dissolving it in the parent phase as much as possible by homogenization annealing. This is because it is effective in preventing bending cracks. Specifically, after the ingot manufacturing process, it is preferable to perform hot rolling after heating to 900 to 970 ° C. and performing homogenization annealing for 3 to 24 hours. In order to prevent liquid metal embrittlement, the temperature is preferably 960 ° C. or less before and during hot rolling.
3)第一溶体化処理
その後、冷延と焼鈍を適宜繰り返してから溶体化処理を行うのが好ましい。ここで予め溶体化を行っておく理由は、最終の溶体化処理での負担を軽減させるためである。すなわち、最終の溶体化処理では、第二相粒子を固溶させるための熱処理ではなく、既に溶体化されてあるのだから、その状態を維持しつつ再結晶のみ起こさせればよいので、軽めの熱処理で済む。具体的には、第一溶体化処理は加熱温度を850〜900℃とし、2〜10分間行えばよい。そのときの昇温速度及び冷却速度においても極力速くし、ここでは第二相粒子が析出しないようにするのが好ましい。なお、第一溶体化処理は行わなくても良い。
3) First solution treatment It is then preferable to perform the solution treatment after appropriately repeating cold rolling and annealing. The reason why the solution treatment is performed in advance is to reduce the burden in the final solution treatment. That is, in the final solution treatment, it is not a heat treatment for dissolving the second phase particles, but is already in solution, so it is only necessary to cause recrystallization while maintaining that state. Just heat treatment. Specifically, the first solution treatment may be performed at a heating temperature of 850 to 900 ° C. for 2 to 10 minutes. In this case, it is preferable to increase the heating rate and the cooling rate as much as possible so that the second phase particles do not precipitate. Note that the first solution treatment may not be performed.
4)中間圧延
最終の溶体化処理前の中間圧延における加工度を高くするほど、最終の溶体化処理における再結晶粒が均一かつ微細に生成するので、中間圧延の加工度は高めに設定する。好ましくは70〜99%である。加工度は{((圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100%}で定義される。また、中間圧延の途中で、溶体化処理を数回行うことも可能である。溶体化条件は850℃〜900℃程度で2〜10分程度行えばよい。
4) Intermediate rolling Since the recrystallized grains in the final solution treatment are generated more uniformly and finely as the degree of processing in the intermediate rolling before the final solution treatment is higher, the degree of processing in the intermediate rolling is set higher. Preferably it is 70 to 99%. The degree of work is defined by {((thickness before rolling−thickness after rolling) / thickness before rolling) × 100%}. In addition, the solution treatment can be performed several times during the intermediate rolling. The solution condition may be about 850 ° C. to 900 ° C. for about 2 to 10 minutes.
5)最終溶体化処理
最終溶体化処理前の銅合金素材中には、鋳造又中間圧延過程で生成された析出物が存在する。この析出物は、曲げ性及び時効後の機械的特性増加を妨げる場合があるため、最終の溶体化処理では、銅合金素材中の析出物を完全に固溶させる温度に銅合金素材を加熱することが望ましい。しかしながら、析出物を完全に無くすまで高温に加熱すると、析出物による粒界のピン止め効果が無くなり、結晶粒が急激に粗大化する。また、極端に第二相粒子の平均個数密度(Y)が小さくなる。結晶粒が急激に粗大化すると強度が低下する傾向にある。
5) Final solution treatment In the copper alloy material before the final solution treatment, there are precipitates generated during the casting or intermediate rolling process. Since this precipitate may hinder bendability and increase in mechanical properties after aging, in the final solution treatment, the copper alloy material is heated to a temperature at which the precipitate in the copper alloy material is completely dissolved. It is desirable. However, if the precipitate is heated to a high temperature until it is completely eliminated, the grain boundary pinning effect due to the precipitate disappears, and the crystal grains become coarser rapidly. In addition, the average number density (Y) of the second phase particles becomes extremely small. When crystal grains become coarser, the strength tends to decrease.
このため、加熱温度としては、溶体化前の銅合金素材が、第二相粒子組成の固溶限付近になるまで加熱する。Tiの添加量が1.0〜5.0質量%の範囲でTiの固溶限が添加量と等しくなる温度(本発明では「固溶限温度」という。)は550〜1000℃程度であり、例えばTiの固溶限温度は、Ti濃度1.0質量%で600℃、Ti濃度1.5質量%で680℃、Ti濃度2.0質量%で730℃、Ti濃度3.0質量%で800℃、Ti濃度4.0質量%で840℃、Ti濃度5.0質量%で885℃である。 For this reason, as a heating temperature, it heats until the copper alloy raw material before solution forming becomes the solid solution limit vicinity of a 2nd phase particle composition. The temperature at which the solid solubility limit of Ti becomes equal to the addition amount when the addition amount of Ti is in the range of 1.0 to 5.0% by mass (referred to as “solid solubility limit temperature” in the present invention) is about 550 to 1000 ° C. For example, the solid solution temperature of Ti is 600 ° C. when the Ti concentration is 1.0% by mass, 680 ° C. when the Ti concentration is 1.5% by mass, 730 ° C. when the Ti concentration is 2.0% by mass, and the Ti concentration is 3.0% by mass. At 800 ° C., Ti concentration of 4.0% by mass, 840 ° C. and Ti concentration of 5.0% by mass, 885 ° C.
本実施形態においては、溶体化前の銅合金素材が、550〜1000℃のTiの固溶限温度付近、より典型的には550〜1000℃のTiの固溶限温度に比べて0〜20℃高い温度、好ましくは0〜15℃高い温度、更に好ましくは0〜10℃高い温度になるまで加熱するのが好ましい。 In this embodiment, the copper alloy material before solution treatment is near the solid solution limit temperature of Ti at 550 to 1000 ° C., more typically 0 to 20 compared to the solid solution limit temperature of Ti at 550 to 1000 ° C. It is preferable to heat until a temperature higher by 0 ° C., preferably a temperature higher by 0 to 15 ° C., more preferably higher by 0 to 10 ° C.
最終溶体化処理における粗大な第二相粒子の発生を抑制するために、銅合金素材の加熱及び冷却は、出来るだけ急速に行うのが好ましい。具体的には、第二相粒子組成の固溶限付近の温度よりも50〜500℃程度、好ましくは150〜500℃程度高くした雰囲気中に銅合金素材を配置することにより急速加熱を行える。この場合、銅合金素材が200℃に達した後の昇温速度を40℃/s以上、好ましくは45℃/s以上として、銅合金素材を加熱する。冷却は水冷等により行われる。この場合、Tiの合金素材が加熱最高温度から200℃に冷却されるまでの冷却速度を90℃/s以上、好ましくは冷却速度100℃/s以上として、銅合金素材を冷却するのが好ましい。 In order to suppress the generation of coarse second-phase particles in the final solution treatment, it is preferable to heat and cool the copper alloy material as quickly as possible. Specifically, rapid heating can be performed by placing the copper alloy material in an atmosphere that is about 50 to 500 ° C., preferably about 150 to 500 ° C. higher than the temperature near the solid solubility limit of the second phase particle composition. In this case, the copper alloy material is heated at a temperature increase rate of 40 ° C./s or higher, preferably 45 ° C./s or higher after the copper alloy material reaches 200 ° C. Cooling is performed by water cooling or the like. In this case, it is preferable to cool the copper alloy material at a cooling rate of 90 ° C./s or higher, preferably 100 ° C./s or higher, until the Ti alloy material is cooled from the maximum heating temperature to 200 ° C.
更に、本実施形態に係る最終溶体化処理においては、加熱から冷却までの時間、即ち、銅合金素材がTiの固溶限温度付近の温度に至った時から冷却を開始するまでの時間(=保持時間)をできるだけ短くするのが好ましい。本実施形態では、保持時間を5秒未満、更には3秒以下とすることが好ましい。保持時間をできるだけ短くすることにより、結晶粒の粗大化を抑制できる。その上、極端に第二相粒子の平均個数密度(Y)が小さくなることを防止できる。 Furthermore, in the final solution treatment according to the present embodiment, the time from heating to cooling, that is, the time from when the copper alloy material reaches a temperature near the solid solution limit temperature of Ti until the start of cooling (= It is preferable to make the holding time as short as possible. In the present embodiment, the holding time is preferably less than 5 seconds, and more preferably 3 seconds or less. By shortening the holding time as much as possible, coarsening of crystal grains can be suppressed. In addition, the average number density (Y) of the second phase particles can be prevented from becoming extremely small.
6)時効処理
最終溶体化処理に引き続いて、時効処理を行う。従来は最終溶体化処理の後は冷間圧延を行うことが通例であったが、本実施形態に係るチタン銅を得る上では最終溶体化処理の後、冷間圧延を行わずに直ちに時効処理を行うことが好ましい。従来の工程では、曲げ性と強度を両立することができなかった。高加工度では高強度だが曲げ性が悪く、低加工度では曲げ性には優れるが強度は不足した。時効処理はTi−Cu系の微細な析出物が適切な大きさと間隔で均質に分布するように、ピーク強度が得られる時効処理条件で実施する。ここで、ピーク強度とは例えば時効処理時間を一定として(例えば10時間)、時効処理温度を変化させた場合(例えば350、375、400、425、450、475、500℃の各時効処理温度で時効処理をした場合)に、最も強度(引張強さ)が高くなる条件で時効処理した場合の強度をいう。このときの時効条件は従来の工程の時効条件よりもやや高温で行うとよい。具体的には、材料温度350〜500℃で0.1〜20時間加熱することが好ましく、材料温度380〜480℃で1〜16時間加熱することがより好ましく、材料温度380〜480℃で4〜16時間加熱することがより好ましい。時効時間が4時間以下で短い場合には、第二相粒子の平均個数密度(Y)が小さく、最終冷間圧延後の強度の増加が小さくなる。
6) Aging treatment An aging treatment is performed following the final solution treatment. Conventionally, it was customary to perform cold rolling after the final solution treatment, but in order to obtain titanium copper according to the present embodiment, after the final solution treatment, aging treatment is performed immediately without performing cold rolling. It is preferable to carry out. In the conventional process, it was not possible to achieve both bendability and strength. High workability was high strength but poor bendability, and low workability was excellent in bendability but lacked strength. The aging treatment is carried out under aging treatment conditions that provide peak intensity so that fine precipitates of Ti-Cu system are uniformly distributed at appropriate sizes and intervals. Here, the peak intensity is, for example, when the aging treatment time is constant (for example, 10 hours) and the aging treatment temperature is changed (for example, at aging treatment temperatures of 350, 375, 400, 425, 450, 475, and 500 ° C.). The strength when aging treatment is performed under the condition that the strength (tensile strength) is the highest. The aging conditions at this time may be performed at a slightly higher temperature than the aging conditions of the conventional process. Specifically, it is preferable to heat at a material temperature of 350 to 500 ° C. for 0.1 to 20 hours, more preferably to heat at a material temperature of 380 to 480 ° C. for 1 to 16 hours, and 4 at a material temperature of 380 to 480 ° C. It is more preferable to heat for ~ 16 hours. When the aging time is shorter than 4 hours, the average number density (Y) of the second phase particles is small, and the increase in strength after the final cold rolling is small.
7)最終冷間圧延(仕上げ圧延)
上記時効処理後、最終冷間圧延を行うことにより、チタン銅の強度を高めることができる。高い強度を得ることを目的とする場合は加工度を5%以上、好ましくは10%以上、より好ましくは15%以上とする。但し、加工度が高すぎると{111}面から20°以内の範囲の方位の結晶粒の面積率が高くなり、曲げ性が悪化することから加工度を35%以下、好ましくは30%以下、より好ましくは25%以下とする。なお、時効後の圧延方法を歪みが入りやすい条件にすると、圧延面の電解研磨後の表面の{111}面から20°以内の範囲の方位の結晶粒の面積率が急激に増加するため、本実施形態では、同一加工度でも材料表面に歪みの入りにくい条件で圧延することが好ましい。
7) Final cold rolling (finish rolling)
After the aging treatment, the strength of titanium copper can be increased by performing final cold rolling. When the purpose is to obtain high strength, the degree of processing is 5% or more, preferably 10% or more, more preferably 15% or more. However, if the degree of work is too high, the area ratio of crystal grains having an orientation within 20 ° from the {111} plane increases, and the bendability deteriorates, so the degree of work is 35% or less, preferably 30% or less. More preferably, it is 25% or less. In addition, when the rolling method after aging is made into a condition where distortion is likely to occur, the area ratio of crystal grains having an orientation within 20 ° from the {111} plane of the surface after electrolytic polishing of the rolled surface rapidly increases. In the present embodiment, it is preferable to perform rolling under conditions where the material surface is less likely to be strained even at the same degree of processing.
このため、本実施形態においては、最終冷間圧延の圧延荷重は材料の幅方向の単位長さ当たりで115kg/mm以下とするのが好ましく、より好ましくは100kg/mm以下であり、例えば、100〜85kg/mmである。なお、通常は、最終冷間圧延の圧延荷重は工業的に短時間で圧延するために、通常150〜200kg/mmからそれ以上の圧延荷重で実施される。圧延荷重が高ければ高いほど、板厚方向に材料を圧縮する力が強くなり、より短時間で所望の板厚まで材料を小さくすることができるからである。圧延油の粘度は本発明では13cST未満とするのが好ましく、10cST以下とするのが更に好ましく、より好ましくは7cST以下、更に好ましくは6.8〜3cSTである。なお、通常は、工業的に短時間で圧延するためには7〜25cST程度からそれ以上の粘度の圧延油を使用するのが一般的である(例えば特開2006−307288号では7〜13cSTである)。圧延油の粘度が高いほど、速い圧延速度でも圧延に最適な潤滑油厚みを得られるため、圧延速度を高めることが可能となり、より短時間で圧延できる。 For this reason, in this embodiment, the rolling load of the final cold rolling is preferably 115 kg / mm or less per unit length in the width direction of the material, more preferably 100 kg / mm or less. ~ 85 kg / mm. Normally, the final cold rolling is performed at a rolling load of 150 to 200 kg / mm or more in order to industrially roll in a short time. This is because the higher the rolling load, the stronger the force to compress the material in the plate thickness direction, and the material can be reduced to the desired plate thickness in a shorter time. In the present invention, the viscosity of the rolling oil is preferably less than 13 cST, more preferably 10 cST or less, more preferably 7 cST or less, and further preferably 6.8 to 3 cST. Normally, rolling oil having a viscosity of about 7 to 25 cST or higher is generally used for industrial rolling in a short time (for example, 7 to 13 cST in JP 2006-307288 A). is there). As the viscosity of the rolling oil is higher, the optimum lubricating oil thickness can be obtained even at a higher rolling speed, so that the rolling speed can be increased and rolling can be performed in a shorter time.
8)歪取焼鈍
最終の冷間圧延の後、電子部品に適用するのに必要な応力緩和特性を得るため、歪取焼鈍を行う。歪取焼鈍の条件は慣用の条件でよいが、具体的には、材料温度200℃以上550℃未満で0.001〜20時間加熱の条件で行うのが好ましく、低温であれば長時間(例えば材料温度200〜300℃で12〜20時間加熱)、高温であれば短時間(例えば材料温度300〜400℃で0.001〜12時間加熱)の条件で行うのがより好ましい。また要求特性によっては本工程を省略することも可能である。
8) Straightening annealing After the final cold rolling, straightening annealing is performed in order to obtain stress relaxation characteristics necessary for application to electronic components. The conditions for strain relief annealing may be conventional conditions. Specifically, it is preferably performed under the conditions of heating at a material temperature of 200 ° C. or more and less than 550 ° C. for 0.001 to 20 hours. If the material temperature is 200 to 300 ° C. and heated for 12 to 20 hours, and if it is high temperature, it is more preferable to carry out under conditions of a short time (for example, heating at a material temperature of 300 to 400 ° C. for 0.001 to 12 hours). Depending on the required characteristics, this step can be omitted.
なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト、酸洗等の工程を行なうことができることは理解できるだろう。 A person skilled in the art will understand that steps such as grinding, polishing, shot blasting, and pickling for removing oxide scale on the surface can be appropriately performed between the above steps.
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
実施例の銅合金を製造するに際しては、活性金属であるTiが第2成分として添加されるため、溶製には真空溶解炉を用いた。また、本発明で規定した元素以外の不純物元素の混入による予想外の副作用が生じることを未然に防ぐため、原料は比較的純度の高いものを厳選して使用した。 When manufacturing the copper alloy of the example, Ti, which is an active metal, is added as the second component, so a vacuum melting furnace was used for melting. In addition, in order to prevent unexpected side effects due to mixing of impurity elements other than the elements defined in the present invention, raw materials having a relatively high purity were carefully selected and used.
表1に記載の濃度のTiを添加し、場合により第3元素を更に添加して、残部銅及び不可避的不純物の組成を有するインゴットに対して900〜970℃で3時間加熱する均質化焼鈍の後、900〜950℃で熱間圧延を行い、板厚10mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の板厚(2.0mm)とした。次いで、中間の冷間圧延では最終板厚が0.10mmとなるように中間の板厚を調整して冷間圧延した。その後、急速加熱が可能な焼鈍炉に挿入して最終溶体化処理を行い、銅合金素材が所定の材料温度に達した時点で直ぐに焼鈍炉から取り出し水冷した。 Addition of Ti at the concentration shown in Table 1 and optionally further addition of a third element and heating at 900 to 970 ° C. for 3 hours against the ingot having the composition of the remaining copper and inevitable impurities Thereafter, hot rolling was performed at 900 to 950 ° C. to obtain a hot rolled sheet having a thickness of 10 mm. After descaling by chamfering, it was cold-rolled to obtain a strip thickness (2.0 mm). Next, in the intermediate cold rolling, the intermediate plate thickness was adjusted so that the final plate thickness was 0.10 mm, and cold rolling was performed. Thereafter, it was inserted into an annealing furnace capable of rapid heating and subjected to a final solution treatment. When the copper alloy material reached a predetermined material temperature, it was immediately taken out of the annealing furnace and cooled with water.
最終溶体化処理は、試験片の材料最高温度がTiの固溶限温度(Ti濃度1.0質量%で約600℃、Ti濃度1.5質量%で約680℃、Ti濃度2.0質量%で約730℃、Ti濃度3.0質量%で約800℃、Ti濃度4.0質量%で約840℃、Ti濃度5.0質量%で約885℃)となるように、表1に記載の昇温速度及び冷却速度で加熱及び冷却した。表1中「保持時間」とは、試験片が材料最高温度に達した時から水冷を開始するまでの時間を示す。「昇温速度」は、試験片が200℃に達してから材料最高温度に達するまでの平均昇温速度を表す。具体的には(昇温速度(℃/s))=((材料最高温度(℃)−200(℃))/(試験片が200℃に達してから材料最高温度に達するまでに要した時間(s))で算出した。「冷却速度」は、試験片が材料最高温度から200℃まで冷却されるまでの平均冷却速度を表す。具体的には(冷却速度(℃/s))=((材料最高温度(℃)−200(℃))/(水冷を開始してから試験片の温度が200℃になるまでに要した時間(s))で算出した。なお、昇温速度、及び冷却速度の基準を、試験片が200℃に達した後又は200℃に冷却されるまでの時間と規定したのは、200℃以下の温度域では析出物の消滅、生成、成長の駆動力となる原子の拡散距離が無視できるくらい小さいからである。その後、最終溶体化処理後の試験片に対してそれぞれピーク強度が得られる時効処理温度(例えば、400℃)3〜10時間で時効処理を行った後、表1に示す条件で仕上げ圧延を行い、実施例及び比較例の試験片を作製した。なお、表1中「幅あたりの圧延荷重」は、試験片の幅方向の単位長さあたりの圧延荷重を示す。(幅方向の単位長さあたりの圧延荷重(kg/mm))=(圧延荷重(kg))/(サンプル幅(mm)) In the final solution treatment, the maximum material temperature of the test piece is a solid solution limit temperature of Ti (about 600 ° C. at a Ti concentration of 1.0% by mass, about 680 ° C. at a Ti concentration of 1.5% by mass, and 2.0% by mass of Ti concentration). Table 1 shows that about 730 ° C., about 800 ° C. at a Ti concentration of 3.0% by mass, about 840 ° C. at a Ti concentration of 4.0% by mass, and about 885 ° C. at a Ti concentration of 5.0% by mass). Heating and cooling were performed at the stated heating rate and cooling rate. In Table 1, “holding time” indicates the time from when the test piece reaches the maximum material temperature to when water cooling starts. “Temperature increase rate” represents an average temperature increase rate from when the test piece reaches 200 ° C. until the maximum temperature of the material is reached. Specifically, (temperature increase rate (° C./s))=((material maximum temperature (° C.) − 200 (° C.)) / (Time required for the specimen to reach the maximum material temperature after reaching 200 ° C.) The “cooling rate” represents the average cooling rate until the specimen is cooled from the maximum material temperature to 200 ° C. Specifically, (cooling rate (° C./s)) = ( (Maximum material temperature (° C.) − 200 (° C.)) / (Time (s) required from the start of water cooling until the temperature of the test piece reaches 200 ° C.) Note that the rate of temperature increase and The standard of the cooling rate was defined as the time until the test piece reached 200 ° C. or until it was cooled to 200 ° C. The driving force of disappearance, generation, and growth of precipitates in the temperature range of 200 ° C. or lower. This is because the diffusion distance of atoms is so small that it can be ignored. After performing an aging treatment at an aging treatment temperature (for example, 400 ° C.) of 3 to 10 hours at which a peak intensity was obtained, finish rolling was performed under the conditions shown in Table 1 to prepare test pieces of Examples and Comparative Examples. In Table 1, “Rolling load per width” indicates the rolling load per unit length in the width direction of the test piece. (Rolling load per unit length in the width direction (kg / mm)) = (Rolling) Load (kg)) / (Sample width (mm))
得られた各試験片について以下の条件で特性評価を行った。結果を表2に示す。
<結晶粒径>
結晶粒径(平均結晶粒径)の測定は、圧延面表面をリン酸67%+硫酸10%+水の溶液に15V60秒の条件で電解研磨により組織を現出させ、水洗乾燥させ観察に供した。これをFE−SEM(電解放射型走査電子顕微鏡、Philips社製、XL30SFEG)を用いて組織を観察し、JIS G0551の交差線分法により平均結晶粒径を求めた。
<第二相粒子の個数密度>
結晶粒径の測定と同様の条件で組織を現出させ、FE−SEMを用い、粒径と析出物の個数を計測した。また、計測対象の析出物の成分としてCu、Tiのどちらかまたは両方が含まれることは、FE−SEMのEDS(エネルギー分散型X線分析)を用いて全ての析出物に対して成分分析することにより確認した。粒径100nm以上1.0μm以下の第二相粒子と、粒径1.0μmを超える第二相粒子に分けて数え、それぞれの個数密度(Y)及び(X)を測定した。本実施例では、粒界反応型の粒子として結晶粒界に沿って析出するTi−Cu系の析出物(粒界反応相)(図1の粒界反応相13参照)については計算しないこととした。
<結晶方位>
試験片の圧延面表面をリン酸67%+硫酸10%+水の溶液中で15V60秒の条件で電解研磨して組織を現出させ、水洗乾燥後させた後、XPSを用いてArイオンを3kV、30秒スパッタし観察に供した。EBSP測定は日本電子株式会製JXA8500Fを用いた。EBSP測定では、図3に示すように、試験片の圧延面側表面を入射電子線に対して70°傾けて設置した。測定プログラムはTSL OIM data collection Ver.3.5、解析プログラムはTSL OIM Analysis Ver.3.0(いずれもテクセムラボラトリーズ社製)を用いて方位マッピング図を作成し、各結晶粒の方位を求めた。隣り合う結晶粒の方位差が15°以上の結晶粒の境目を結晶粒界とした。表2中、「圧延表面を観察したときの{111}面結晶粒の面積率」とは、{111}面から20°以内の範囲の方位の結晶粒({111}面からのずれが20°以内にある結晶粒)の面積を求め、これを測定視野の面積で除することにより求めた(即ち、「圧延表面を観察したときの{111}面結晶粒の面積率」={111}面から20°以内の範囲の方位の結晶粒の面積)/(測定視野の面積)×100)。
<引張強さ>
引張方向が圧延方向と平行になるように、プレス機を用いてJIS13B号試験片を作製した。JIS−Z2241に従ってこの試験片の引張試験を行ない、圧延平行方向の破断強度(引張強さ)を測定した。
<導電率>
JIS H 0505に準拠し、4端子法で導電率(EC:%IACS)を測定した。
<伸び>
引張試験を実施したサンプルに対して、JIS−Z2241に従って、破断伸びを測定した。
<曲げ表面>
JIS Z 2248に従いW曲げ試験をBadway(曲げ軸が圧延方向と同一方向)、R/t=0で実施し、この試験片の曲げ表面を観察した。観察方法はレーザーテック社製コンフォーカル顕微鏡HD100を用いて曲げ表面を撮影し、付属のソフトウェアを用いて平均粗さRaを測定し、比較した。なお、曲げ加工前の試料表面はコンフォーカル顕微鏡を用いて観察したところ凹凸は確認できなかった。曲げ加工後の表面平均粗さRaが1.0μmを超える場合を曲げ加工後の外観に劣ると評価した。
Characteristic evaluation was performed on the obtained test pieces under the following conditions. The results are shown in Table 2.
<Crystal grain size>
The crystal grain size (average crystal grain size) is measured by exposing the rolled surface to a solution of 67% phosphoric acid + 10% sulfuric acid + water by electrolytic polishing under conditions of 15 V 60 seconds, washing with water and drying for observation. did. The structure was observed using FE-SEM (electrolytic emission scanning electron microscope, manufactured by Philips, XL30SFEG), and the average crystal grain size was determined by the cross line segment method of JIS G0551.
<Number density of second phase particles>
The structure was revealed under the same conditions as the measurement of the crystal grain size, and the grain size and the number of precipitates were measured using FE-SEM. In addition, the fact that either or both of Cu and Ti are included as a component of the precipitate to be measured is analyzed for all precipitates using EDS (energy dispersive X-ray analysis) of FE-SEM. Was confirmed. The number density (Y) and (X) of each was measured by dividing into second phase particles having a particle size of 100 nm or more and 1.0 μm or less and second phase particles having a particle size exceeding 1.0 μm. In this example, calculation is not performed for Ti-Cu-based precipitates (grain boundary reaction phase) (see grain boundary reaction phase 13 in FIG. 1) that precipitate along grain boundaries as grain boundary reaction type particles. did.
<Crystal orientation>
The rolled surface of the test piece was electropolished in a solution of phosphoric acid 67% + sulfuric acid 10% + water under conditions of 15 V 60 seconds to reveal the structure, washed and dried, and then subjected to Ar ion using XPS. Sputtering was performed at 3 kV for 30 seconds for observation. JXA8500F manufactured by JEOL Ltd. was used for EBSP measurement. In the EBSP measurement, as shown in FIG. 3, the rolled surface side surface of the test piece was installed with an inclination of 70 ° with respect to the incident electron beam. An orientation mapping diagram was created using TSL OIM data collection Ver.3.5 as the measurement program and TSL OIM Analysis Ver.3.0 (both manufactured by Tecsem Laboratories) as the analysis program, and the orientation of each crystal grain was determined. The boundary between crystal grains in which the orientation difference between adjacent crystal grains is 15 ° or more was defined as a crystal grain boundary. In Table 2, “area ratio of {111} plane crystal grains when the rolled surface is observed” means crystal grains having an orientation within 20 ° from the {111} plane (displacement from the {111} plane is 20 Was obtained by dividing the area by the area of the field of measurement (ie, “area ratio of {111} plane crystal grains when the rolled surface was observed” = {111} (Area of crystal grains having an orientation within 20 ° from the plane) / (area of measurement visual field) × 100).
<Tensile strength>
A JIS No. 13B specimen was prepared using a press so that the tensile direction was parallel to the rolling direction. The test piece was subjected to a tensile test according to JIS-Z2241, and the breaking strength (tensile strength) in the rolling parallel direction was measured.
<Conductivity>
In accordance with JIS H 0505, the conductivity (EC:% IACS) was measured by a four-terminal method.
<Elongation>
The elongation at break was measured according to JIS-Z2241 for the sample subjected to the tensile test.
<Bending surface>
In accordance with JIS Z 2248, a W bending test was performed with Badway (bending axis being in the same direction as the rolling direction) at R / t = 0, and the bending surface of this test piece was observed. As an observation method, the bending surface was photographed using a laser tech confocal microscope HD100, and the average roughness Ra was measured using the attached software, and compared. In addition, the unevenness | corrugation was not confirmed when the sample surface before a bending process was observed using the confocal microscope. The case where the average surface roughness Ra after bending exceeds 1.0 μm was evaluated as inferior in appearance after bending.
<考察>
実施例1〜30のいずれも{111}から20°以内の範囲の結晶粒の割合が好適な範囲に収まっていることがわかる。
実施例1〜5は、Ti濃度とそのTi濃度に好適な材料最高温度で最終の溶体化処理を実施した場合の例を示す。いずれの実施例も引張強さ及び伸びともに良好であった。
実施例6〜8は、仕上げ圧延の加工度を変化させた場合の例を示す。加工度を小さくすることにより、伸びが向上し、加工度を大きくすることにより加工硬化の度合いが大きくなり、強度が増加した。
実施例9は第3元素としてFe、実施例10はCo、実施例11はCr、実施例12はNi、実施例13はZr、実施例14はMn、実施例15はFe、実施例16はMg、実施例22はV、実施例23はNb、実施例24はMo、実施例25はSi、実施例26はB、実施例27はP、実施例28はBe、実施例29はAgを単一の元素で添加した例である。また実施例17〜21、実施例30は複数の第3元素を添加したものである。いずれの実施例9〜30も第二相粒子の個数密度(X)、(Y)が小さく、引張強さ及び伸びともに良好であった。
一方、比較例1は、Tiの固溶限温度まで十分に材料最高温度を上げなかった場合の例である。比較例1では溶体化温度が固溶限温度より低いため、Tiが十分に固溶せず、最終溶体化処理前に存在した析出物が粗大化したため個数密度(X)の値が大きくなり、強度及び伸びが低下し、曲げ表面が粗くなった。
比較例2は、材料最高温度をTiの固溶限温度よりも200℃以上高い温度とした場合の例である。比較例2では最終溶体化処理時に析出物が十分に固溶しすぎたために、Tiを添加することによるピン止め効果が抑制され、母材の結晶粒径が大きくなり、強度が低下し、曲げ表面が粗くなった。
比較例3〜5は、試験片の温度が材料最高温度に達した時から水冷を開始するまでの時間である保持時間を長くした例である。(比較例3は10秒、比較例4は40秒、比較例5は70秒)保持時間を実施例に比べて長くすることにより、結晶粒径が大きくなり、曲げ表面が粗くなった。
比較例6〜9は、材料最高温度をTiの固溶限温度よりも約70〜100℃高い温度とし、試験片の温度が材料最高温度に達した時から水冷を開始するまでの時間である保持時間を長くした例である。(比較例6は15秒、比較例7、9は20秒、比較例8は25秒)材料最高温度を実施例に比べて高くし、保持時間を実施例に比べて長くすることにより結晶粒径が大きくなり、曲げ表面が粗くなった。
比較例10及び11は最終溶体化処理の昇温速度又は冷却速度を実施例よりも遅くした例である。比較例10に示すように、昇温速度を30℃/sと遅くすることにより、結晶粒径が大きくなったため、強度が低下し、曲げ表面が粗くなった。また、冷却速度を70℃/sと遅くした比較例11では、第二相粒子の個数密度(Y)の割合が増加したため強度が低下し、曲げ表面が粗くなった。
比較例12は仕上げ圧延時の加工度が0.5%と低すぎるために、加工硬化の度合いが小さく、強度が低下した。
比較例13では加工度を40%と高くしすぎることにより、加工硬化の度合いが大きすぎるために、強度が高くなりすぎるので、伸びが悪くなり、曲げ表面が粗くなり、{111}から20°以内の範囲の結晶粒の割合が大きくなった。
比較例14、16、18、20は、仕上げ圧延時の圧延荷重を140〜155kg/mmと大きくした例であり、圧延表面から観察したときに{111}から20°以内の範囲の結晶粒の割合が大きくなったため、曲げ表面も粗くなった。
比較例15、17、19、21は、圧延油の粘度を15〜18cSTと高くした例であり、実施例に比べて圧延表面から観察したときに{111}から20°以内の範囲の結晶粒の割合が大きくなったため、曲げ表面が粗くなった。
比較例22は、Tiの量が少なすぎるために、析出物の量が少なくなり、引張強さが低く、比較例23はTi量が多すぎるために,第二相粒子の個数密度(Y)の割合が増加し、強度が低く、曲げ表面が粗くなった。
比較例24〜27は、製造工程を従来の工程、即ち、最終溶体化処理→圧延→時効の順で行った例である。比較例24〜27では、圧延表面から観察したときに{111}から20°以内の範囲の結晶粒の割合が2%以下となった。比較例24は、実施例1の工程順を変えただけであるが、伸びは良好であったが強度が弱くなった。比較例25では加工度を45%まで高くした結果、強度は実施例1と同等になったが、伸びが悪くなり、曲げ表面に亀裂が発生した。比較例26では、最終溶体化処理の加熱から冷却までの保持時間を実施例より40sに長くするとともに加工度を45%と高くした例であり、結晶粒径が大きくなるとともに、伸びが悪くなり、曲げ表面に亀裂が発生した。比較例27では、保持時間を70sと長くした場合であるが、伸びは良好であったが、強度が弱くなり、曲げ表面に亀裂が発生した。
比較例28〜31は比較例6〜9の圧延条件を工業的に一般的に設定される範囲に変えたものであるが、圧延荷重は大きく、圧延油の粘度も高いため、圧延表面から観察したときに{111}から20°以内の範囲の結晶粒の割合が大きくなった(93%以上)。このため、比較例6〜9よりもさらに曲げ表面が粗くなった。
<Discussion>
It can be seen that in all of Examples 1 to 30, the proportion of crystal grains within the range of 20 ° to {111} is within a preferable range.
Examples 1 to 5 show examples in which the final solution treatment is performed at a Ti concentration and a material maximum temperature suitable for the Ti concentration. All examples were good in both tensile strength and elongation.
Examples 6 to 8 show examples when the degree of finish rolling is changed. By reducing the degree of processing, the elongation was improved, and by increasing the degree of processing, the degree of work hardening increased and the strength increased.
Example 9 is Fe as the third element, Example 10 is Co, Example 11 is Cr, Example 12 is Ni, Example 13 is Zr, Example 14 is Mn, Example 15 is Fe, Example 16 is Mg, Example 22 is V, Example 23 is Nb, Example 24 is Mo, Example 25 is Si, Example 26 is B, Example 27 is P, Example 28 is Be, Example 29 is Ag This is an example of adding a single element. Examples 17 to 21 and Example 30 are obtained by adding a plurality of third elements. In any of Examples 9 to 30, the number density (X) and (Y) of the second phase particles were small, and both the tensile strength and the elongation were good.
On the other hand, Comparative Example 1 is an example in the case where the material maximum temperature is not sufficiently increased to the solid solution limit temperature of Ti. In Comparative Example 1, since the solution temperature is lower than the solid solution limit temperature, Ti is not sufficiently dissolved, and the precipitates present before the final solution treatment are coarsened, so the value of number density (X) is increased. The strength and elongation decreased, and the bending surface became rough.
Comparative Example 2 is an example in which the maximum material temperature is set to a temperature that is 200 ° C. higher than the solid solubility limit temperature of Ti. In Comparative Example 2, since the precipitate was sufficiently solid solution at the time of the final solution treatment, the pinning effect by adding Ti was suppressed, the crystal grain size of the base material was increased, the strength was decreased, the bending The surface became rough.
Comparative Examples 3 to 5 are examples in which the holding time, which is the time from when the temperature of the test piece reaches the maximum material temperature to when the water cooling starts, is lengthened. (Comparative example 3 is 10 seconds, comparative example 4 is 40 seconds, comparative example 5 is 70 seconds) By making the holding time longer than that of the example, the crystal grain size was increased and the bending surface was roughened.
In Comparative Examples 6 to 9, the maximum material temperature is about 70 to 100 ° C. higher than the solid solubility temperature of Ti, and the time from when the temperature of the test piece reaches the maximum material temperature until the start of water cooling is the time. This is an example in which the holding time is increased. (Comparative Example 6 is 15 seconds, Comparative Examples 7 and 9 are 20 seconds, and Comparative Example 8 is 25 seconds) By increasing the maximum material temperature compared to the examples and increasing the holding time compared to the examples, the crystal grains The diameter increased and the bending surface became rough.
Comparative Examples 10 and 11 are examples in which the heating rate or cooling rate of the final solution treatment was made slower than that of the example. As shown in Comparative Example 10, since the crystal grain size was increased by slowing the rate of temperature increase to 30 ° C./s, the strength decreased and the bending surface became rough. Further, in Comparative Example 11 in which the cooling rate was slowed down to 70 ° C./s, the ratio of the number density (Y) of the second phase particles increased, so the strength decreased and the bending surface became rough.
In Comparative Example 12, the degree of work hardening during finish rolling was too low at 0.5%, so the degree of work hardening was small and the strength was reduced.
In Comparative Example 13, when the degree of work is too high, 40%, the degree of work hardening is too high, so the strength becomes too high, resulting in poor elongation and a rough bending surface, from {111} to 20 °. The proportion of crystal grains in the range was within.
Comparative Examples 14, 16, 18, and 20 are examples in which the rolling load at the time of finish rolling was increased to 140 to 155 kg / mm, and when observed from the rolling surface, the crystal grains within a range of {111} to 20 ° were observed. Since the ratio increased, the bending surface also became rough.
Comparative Examples 15, 17, 19, and 21 are examples in which the viscosity of the rolling oil was increased to 15 to 18 cST, and crystal grains in the range of {111} to 20 ° when observed from the rolling surface as compared with the examples. Since the ratio of was increased, the bending surface became rough.
In Comparative Example 22, since the amount of Ti is too small, the amount of precipitates is small and the tensile strength is low. In Comparative Example 23, since the amount of Ti is too large, the number density (Y) of second phase particles. The ratio was increased, the strength was low, and the bending surface became rough.
Comparative Examples 24-27 are examples in which the production process was performed in the order of conventional processes, that is, final solution treatment → rolling → aging. In Comparative Examples 24-27, the proportion of crystal grains in the range within 20 ° from {111} was 2% or less when observed from the rolling surface. In Comparative Example 24, the process order of Example 1 was changed, but the elongation was good but the strength was weak. In Comparative Example 25, the degree of work was increased to 45%. As a result, the strength was the same as in Example 1, but the elongation was poor and cracks occurred on the bent surface. Comparative Example 26 is an example in which the holding time from heating to cooling in the final solution treatment is increased to 40 s and the degree of processing is increased to 45% as compared to the example, and the crystal grain size increases and the elongation deteriorates. Cracks occurred on the bending surface. In Comparative Example 27, the holding time was increased to 70 s, but the elongation was good, but the strength was weakened and cracks occurred on the bending surface.
Comparative Examples 28 to 31 were obtained by changing the rolling conditions of Comparative Examples 6 to 9 to a range generally set industrially. However, since the rolling load was large and the viscosity of the rolling oil was high, the rolling conditions were observed from the rolling surface. The ratio of crystal grains within the range of {111} to 20 ° increased (93% or more). For this reason, the bending surface became rougher than Comparative Examples 6-9.
11 第二相粒子
12 せん断帯
13 粒界反応相
20a〜20l {111}から20°以内の方位を有する結晶粒
11 Second phase particle 12 Shear band 13 Grain boundary reaction phase 20a-20l Crystal grain having an orientation within 20 ° from {111}
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010222382A JP5393629B2 (en) | 2010-09-30 | 2010-09-30 | Titanium copper and copper products, electronic parts and connectors using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010222382A JP5393629B2 (en) | 2010-09-30 | 2010-09-30 | Titanium copper and copper products, electronic parts and connectors using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012077338A true JP2012077338A (en) | 2012-04-19 |
JP5393629B2 JP5393629B2 (en) | 2014-01-22 |
Family
ID=46237924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010222382A Active JP5393629B2 (en) | 2010-09-30 | 2010-09-30 | Titanium copper and copper products, electronic parts and connectors using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5393629B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014015679A (en) * | 2012-06-15 | 2014-01-30 | Furukawa Electric Co Ltd:The | Copper alloy sheet material and method for producing the same |
WO2014064969A1 (en) * | 2012-10-25 | 2014-05-01 | Jx日鉱日石金属株式会社 | High-strength titanium-copper alloy |
WO2015098201A1 (en) * | 2013-12-27 | 2015-07-02 | Jx日鉱日石金属株式会社 | Copper-titanium alloy for electronic component |
CN114836649A (en) * | 2022-03-29 | 2022-08-02 | 兰州兰石集团有限公司铸锻分公司 | Large titanium-copper forging and manufacturing method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002356726A (en) * | 2001-02-20 | 2002-12-13 | Nippon Mining & Metals Co Ltd | High-strength titanium-copper alloy, its manufacturing method, and terminal and connector using it |
JP2006241573A (en) * | 2005-03-07 | 2006-09-14 | Yamaha Metanikusu Kk | Plate of copper-titanium alloy and manufacturing method therefor |
JP2006249565A (en) * | 2005-03-14 | 2006-09-21 | Nikko Kinzoku Kk | Titanium copper having excellent press workability |
JP2006274289A (en) * | 2005-03-28 | 2006-10-12 | Nikko Kinzoku Kk | Titanium-copper alloy having excellent strength and bending workability, and method for producing the same |
JP2010126777A (en) * | 2008-11-28 | 2010-06-10 | Dowa Metaltech Kk | Copper alloy sheet, and method for producing the same |
JP2011026635A (en) * | 2009-07-22 | 2011-02-10 | Dowa Metaltech Kk | Copper alloy sheet and method for manufacturing the same, and electric and electronic component |
WO2011065188A1 (en) * | 2009-11-25 | 2011-06-03 | Jx日鉱日石金属株式会社 | Titanium-copper for electronic component |
WO2011065152A1 (en) * | 2009-11-25 | 2011-06-03 | Jx日鉱日石金属株式会社 | Titanium-copper for electronic component |
-
2010
- 2010-09-30 JP JP2010222382A patent/JP5393629B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002356726A (en) * | 2001-02-20 | 2002-12-13 | Nippon Mining & Metals Co Ltd | High-strength titanium-copper alloy, its manufacturing method, and terminal and connector using it |
JP2006241573A (en) * | 2005-03-07 | 2006-09-14 | Yamaha Metanikusu Kk | Plate of copper-titanium alloy and manufacturing method therefor |
JP2006249565A (en) * | 2005-03-14 | 2006-09-21 | Nikko Kinzoku Kk | Titanium copper having excellent press workability |
JP2006274289A (en) * | 2005-03-28 | 2006-10-12 | Nikko Kinzoku Kk | Titanium-copper alloy having excellent strength and bending workability, and method for producing the same |
JP2010126777A (en) * | 2008-11-28 | 2010-06-10 | Dowa Metaltech Kk | Copper alloy sheet, and method for producing the same |
JP2011026635A (en) * | 2009-07-22 | 2011-02-10 | Dowa Metaltech Kk | Copper alloy sheet and method for manufacturing the same, and electric and electronic component |
WO2011065188A1 (en) * | 2009-11-25 | 2011-06-03 | Jx日鉱日石金属株式会社 | Titanium-copper for electronic component |
WO2011065152A1 (en) * | 2009-11-25 | 2011-06-03 | Jx日鉱日石金属株式会社 | Titanium-copper for electronic component |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014015679A (en) * | 2012-06-15 | 2014-01-30 | Furukawa Electric Co Ltd:The | Copper alloy sheet material and method for producing the same |
WO2014064969A1 (en) * | 2012-10-25 | 2014-05-01 | Jx日鉱日石金属株式会社 | High-strength titanium-copper alloy |
JP2014084512A (en) * | 2012-10-25 | 2014-05-12 | Jx Nippon Mining & Metals Corp | High-strength titanium-copper |
WO2015098201A1 (en) * | 2013-12-27 | 2015-07-02 | Jx日鉱日石金属株式会社 | Copper-titanium alloy for electronic component |
US10351932B2 (en) | 2013-12-27 | 2019-07-16 | Jx Nippon Mining & Metals Corporation | Copper-titanium alloy for electronic component |
CN114836649A (en) * | 2022-03-29 | 2022-08-02 | 兰州兰石集团有限公司铸锻分公司 | Large titanium-copper forging and manufacturing method thereof |
CN114836649B (en) * | 2022-03-29 | 2023-10-13 | 兰州兰石集团有限公司铸锻分公司 | Large titanium copper forging and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5393629B2 (en) | 2014-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI460294B (en) | Titanium and copper for electronic parts | |
JP4191159B2 (en) | Titanium copper with excellent press workability | |
TWI513833B (en) | Copper alloy for electronic device, method for manufacturing copper alloy for electronic device, wrought copper alloy material for electronic device, and part for electronic device | |
WO2012026611A1 (en) | Copper alloy sheet and method for producing same | |
TWI426141B (en) | Copper alloy, copper products, electronic parts and connectors | |
WO2013069687A1 (en) | Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices | |
JP7180101B2 (en) | Copper alloys for electronic and electrical equipment, copper alloy sheet materials for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars | |
JP4171735B2 (en) | Chromium-containing copper alloy manufacturing method, chromium-containing copper alloy and copper products | |
JP5368581B2 (en) | Titanium copper for electronic parts | |
JP5226056B2 (en) | Copper alloys, copper products, electronic components and connectors | |
TWI429768B (en) | Cu-Co-Si based copper alloy for electronic materials and method for producing the same | |
JP5611773B2 (en) | Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy | |
TWI429764B (en) | Cu-Co-Si alloy for electronic materials | |
JP4663031B1 (en) | Titanium copper, wrought copper products, electronic components and connectors | |
JP6080823B2 (en) | Titanium copper for electronic parts | |
JP2019178399A (en) | Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar | |
JP2015127438A (en) | Titanium copper for electronic component | |
JP5393629B2 (en) | Titanium copper and copper products, electronic parts and connectors using the same | |
JP5544316B2 (en) | Cu-Co-Si-based alloys, copper products, electronic parts, and connectors | |
JP6246456B2 (en) | Titanium copper | |
JP2013104068A (en) | Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL | |
JP4961049B2 (en) | Titanium copper for electronic parts | |
JP4663030B1 (en) | Titanium copper, wrought copper product, electronic component, connector and method for producing the titanium copper | |
JP2016211077A (en) | Titanium copper | |
JP5319578B2 (en) | Manufacturing method of titanium copper for electronic parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130709 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131015 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5393629 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |