JP2012075988A - Waste water pretreatment method and waste water pretreatment apparatus - Google Patents

Waste water pretreatment method and waste water pretreatment apparatus Download PDF

Info

Publication number
JP2012075988A
JP2012075988A JP2010221076A JP2010221076A JP2012075988A JP 2012075988 A JP2012075988 A JP 2012075988A JP 2010221076 A JP2010221076 A JP 2010221076A JP 2010221076 A JP2010221076 A JP 2010221076A JP 2012075988 A JP2012075988 A JP 2012075988A
Authority
JP
Japan
Prior art keywords
waste water
diameter pipe
pipe
wastewater
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010221076A
Other languages
Japanese (ja)
Inventor
Masaru Inoue
優 井上
Hidenori Inoue
英則 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Shisetsu Kogyo Co Ltd
Original Assignee
Sanyo Shisetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Shisetsu Kogyo Co Ltd filed Critical Sanyo Shisetsu Kogyo Co Ltd
Priority to JP2010221076A priority Critical patent/JP2012075988A/en
Publication of JP2012075988A publication Critical patent/JP2012075988A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a waste water pretreatment method and apparatus remarkably improving dissolved oxygen (DO) by pretreating waste water introduced into an aeration tank, and to make aeration treatment efficient to reduce a running cost required for the aeration treatment.SOLUTION: Waste water treatment includes jetting waste water to cause cavitation and pretreating waste water with the erosion action, and then carrying out decomposition treatment with aerobic microorganisms in an aeration tank 3. In the waste water treatment, the waste water pretreatment method includes allowing waste water in pretreatment to pass through a water activating device 11 formed by winding a conductive wire 112 around a water passing pipe and then jetting activated waste water to cause cavitation and mixing concentrated oxygen at the same time. The waste water pretreatment apparatus is used for the method.

Description

本発明は、好気性微生物による廃水処理を行うに際して、廃水を前処理する廃水前処理方法及びその方法に用いる廃水前処理装置に関する。 The present invention relates to a wastewater pretreatment method for pretreating wastewater when performing wastewater treatment with aerobic microorganisms, and a wastewater pretreatment apparatus used in the method.

工場廃水を排出する際には、好気性微生物を利用した曝気処理が行われる。この処理方法は活性汚泥法と呼ばれる。好気性微生物を十分に繁殖させ有機物を分解するには曝気施設の長時間に亘る稼働が求められ、ランニングコストが嵩んでいた。 When discharging factory wastewater, aeration processing using aerobic microorganisms is performed. This treatment method is called activated sludge method. In order to sufficiently propagate aerobic microorganisms and decompose organic substances, it is necessary to operate the aeration facility for a long time, and the running cost is high.

特許文献1には、工場廃水(原水)を磁界又は電界に通して、工場廃水の溶存酸素量を高めて、曝気槽内の微生物濃度を高めることが記載されている。 Patent Document 1 describes that factory wastewater (raw water) is passed through a magnetic field or an electric field to increase the amount of dissolved oxygen in the factory wastewater and increase the microorganism concentration in the aeration tank.

一方、特許文献2には、超微細化装置なるものを使用して、キャビテーションを生じさせて含有有機物や汚泥の超微細化を図り、その後、微細化された廃水と発酵菌を混合して曝気槽で曝気処理を行う処理法が記載されている。 On the other hand, in Patent Document 2, a device that is an ultrafine device is used to cause cavitation to make the contained organic matter and sludge ultrafine, and then aerated by mixing the refined waste water and fermenting bacteria. A treatment method for performing aeration treatment in a tank is described.

また、特許文献3には、酸素曝気式脱窒処理装置が記載されており、酸素富裕ガスと脱窒液を混合する酸素混合装置4が記載されている。段落0021には、酸素富裕ガスとして、濃縮酸素や純酸素を使用することが記載されている。 Patent Document 3 describes an oxygen-aeration type denitrification apparatus, and describes an oxygen mixing apparatus 4 that mixes an oxygen-rich gas and a denitrification liquid. Paragraph 0021 describes the use of concentrated oxygen or pure oxygen as the oxygen-rich gas.

さらに、特許文献4には、箱体と、箱体の中に向けて液体を噴射するジェットノズルと、流体を引き込むための流体誘引孔を備えた液体変質用泡箱が開示されている。しかし、ここには活水装置に関する記載や、曝気処理にこの箱体を用いることは記載されていない。 Further, Patent Literature 4 discloses a liquid alteration bubble box including a box, a jet nozzle that ejects liquid toward the box, and a fluid induction hole for drawing the fluid. However, there is no description relating to the active water device or the use of this box for the aeration process.

特許文献1ないし4は、それぞれ廃水処理の効率化を図ったものであるが、さらなる効率化の余地があった。 Patent Documents 1 to 4 attempt to improve the efficiency of wastewater treatment, but there is room for further efficiency.

特開2003−10880(3頁カラム3及びカラム4)JP2003-10880 (page 3, column 3 and column 4) 特開2006−212483(図1、段落0015、段落0022等)JP 2006-212483 (FIG. 1, paragraph 0015, paragraph 0022, etc.) 特開平9−85279(図1、図2、段落0021等)JP-A-9-85279 (FIG. 1, FIG. 2, paragraph 0021, etc.) 特許公報第3373444号(図1、図2等)Japanese Patent Publication No. 3373444 (FIG. 1, FIG. 2, etc.)

曝気槽に導入する廃水を前処理して、溶存酸素量(Dissolved Oxygen:DO)を飛躍的に高める廃水前処理方法及びその方法に用いる排水前処理装置を提供することを目的とする。また、曝気処理を効率化し、曝気処理等に要するランニングコストを低減することを目的とする。 An object of the present invention is to provide a wastewater pretreatment method for pretreating wastewater introduced into an aeration tank and dramatically increasing the amount of dissolved oxygen (DO), and a wastewater pretreatment device used in the method. It is another object of the present invention to improve the efficiency of the aeration process and reduce the running cost required for the aeration process.

廃水を噴出させてキャビテーションを起こしてそのエロージョン作用で廃水を前処理し、その後、曝気槽にて好気性微生物により分解処理を行う廃水処理方法において、前記前処理における廃水は、通水可能なパイプに導電線を巻きつけてなる活水装置に通した後、活性化された廃水を噴出させてキャビテーションを起こしながら濃縮酸素を混合することを特徴とする廃水前処理方法により上記の課題を解決する。 In the wastewater treatment method in which wastewater is ejected to cause cavitation and the wastewater is pretreated by its erosion action, and then decomposed by aerobic microorganisms in an aeration tank, the wastewater in the pretreatment is a pipe through which water can pass. The above-mentioned problem is solved by a wastewater pretreatment method characterized by mixing concentrated oxygen while causing cavitation by ejecting activated wastewater after passing through an active water device in which a conductive wire is wound around.

本発明の方法は、内部に廃水を通水するパイプに導電線を巻きつけてなる活水装置と、濃縮酸素を供給する酸素濃縮装置と、前記活水装置から供給される活性化された廃水と前記酸素濃縮装置から供給された濃縮酸素とをキャビテーションを起こしながら混合する混合装置と、前記活水装置に廃水を供給するポンプとからなる廃水前処理装置を使用することで実現できる。 The method of the present invention includes an active water device in which a conductive wire is wound around a pipe through which waste water is passed, an oxygen concentrator for supplying concentrated oxygen, activated waste water supplied from the active water device, This can be realized by using a wastewater pretreatment device comprising a mixing device for mixing concentrated oxygen supplied from an oxygen concentrator while causing cavitation, and a pump for supplying wastewater to the active water device.

キャビテーションとは、スクリュプロペラ等、液体の流れの中で圧力がごく短時間だけ低くなった場合に、気泡が生じて、その気泡がスクリュプロペラ表面に付着して圧壊する現象としてよく知られている。スクリュプロペラの表面はジェット流によるエロージョン(壊食)で穿孔する場合さえある。 Cavitation is well-known as a phenomenon such as a screw propeller that causes bubbles to form on the surface of the screw propeller when the pressure drops for a very short time in the flow of liquid. . The surface of the screw propeller may even be perforated by erosion (erosion) due to jet flow.

このエロージョンにより、廃水中の有機物が微細化されることは、特許文献1に記載されているところである。本発明者らは、廃水を、通電した導電線を巻き付けたパイプ中に通して活性化し、そこにキャビテーションを起こしながら濃縮酸素を混合すると、溶存酸素量が飛躍的に高まることを見いだし、本発明を完成するに至った。 It is described in Patent Document 1 that organic matter in wastewater is refined by this erosion. The present inventors have found that the amount of dissolved oxygen increases dramatically when the wastewater is activated by passing it through a pipe wrapped with an energized conductive wire and mixed with concentrated oxygen while causing cavitation. It came to complete.

本発明の適用対象となる廃水としては、食品工場等の工場廃水、屎尿等の有機物を多量に含む廃水が例示されるが、好気性微生物により処理可能なものである限り特に限定されない。 Examples of wastewater to which the present invention is applied include factory wastewater such as food factories and wastewater containing a large amount of organic matter such as manure, but are not particularly limited as long as they can be treated by aerobic microorganisms.

キャビテーションを発生させるには、公知のキャビテーション発生用のノズルを利用すればよい。例えば、液体を噴出させて周辺に圧力変化を生じせしめてキャビテーションを生じさせるものが挙げられる。ノズル周辺には濃縮酸素の供給口を設けて、噴流により濃縮酸素を誘引させる構造としてもよいし、ポンプ等を利用して注入する構造としてもよい。本発明では、キャビテーション発生用のノズルに濃縮酸素の供給口を設けて混合装置として利用する。キャビテーション発生用のノズルは、混合室へ向けて設置し、混合室内に渦流を形成すると、酸素の溶解効率が高まるのでより好ましい。混合室の形状は、混合室の壁面にコアンダ効果により水が引き寄せられるような扁平形状すると渦流が形成されやすく好ましい。 In order to generate cavitation, a known cavitation generating nozzle may be used. For example, a liquid is ejected to cause a pressure change in the vicinity, thereby causing cavitation. Concentrated oxygen supply ports may be provided around the nozzle so that the concentrated oxygen is attracted by a jet or may be injected using a pump or the like. In the present invention, a supply port for concentrated oxygen is provided in a nozzle for generating cavitation and used as a mixing device. It is more preferable that the cavitation generating nozzle is installed toward the mixing chamber and a vortex is formed in the mixing chamber because the efficiency of dissolving oxygen is increased. The shape of the mixing chamber is preferably a flat shape in which water is attracted to the wall surface of the mixing chamber by the Coanda effect, so that eddy currents are easily formed.

本発明で使用する酸素濃縮装置は公知の物を使用する。PSA(Pressure Swing Adsorption)式、酸素富化膜式等、高濃度の酸素を供給できるものであれば特に限定されない。 A well-known thing is used for the oxygen concentrator used by this invention. It is not particularly limited as long as it can supply a high concentration of oxygen, such as a PSA (Pressure Swing Adsorption) type and an oxygen-enriched film type.

本発明で使用する活水装置は、内部に廃水を通水可能なパイプに導電線を巻き付けて構成する。パイプはポリ塩化ビニル等の合成樹脂製のものを使用すればよい。大径のパイプを使用して大量の水を活性化させる場合は、パイプの中心部を流れる廃水が活性化されにくくなる。また、コイル外側に発生する磁界を有効に利用することができない。したがって、パイプを多重構造にして、導電線を巻き付けた小径パイプを大径パイプで覆うようにしてもよい。すなわち、内部に廃水を通水する小径パイプに導電線を巻き付けてなる活水装置であって、前記パイプより径の大きい大径パイプ内に小径パイプ及び導電線を内装して多重に構成し、小径パイプ内部及び小径パイプと大径パイプの間に廃水を通水するものである。小径パイプ内部及び小径パイプと大径パイプの間に廃水を通水し導電線に通電することにより、小径パイプ内及び小径パイプと大径パイプ間の廃水を同時に活性化することができる。 The active water device used in the present invention is configured by winding a conductive wire around a pipe through which waste water can flow. A pipe made of a synthetic resin such as polyvinyl chloride may be used. When a large amount of water is activated using a large-diameter pipe, the waste water flowing through the center of the pipe is less likely to be activated. In addition, the magnetic field generated outside the coil cannot be used effectively. Therefore, the pipe may have a multiple structure, and the small diameter pipe around which the conductive wire is wound may be covered with the large diameter pipe. That is, an active water device in which a conductive wire is wound around a small-diameter pipe through which wastewater is passed, and a small-diameter pipe and a conductive wire are housed in a large-diameter pipe having a diameter larger than that of the pipe, and are configured in multiple. Waste water is passed inside the pipe and between the small diameter pipe and the large diameter pipe. By passing waste water inside the small diameter pipe and between the small diameter pipe and the large diameter pipe and energizing the conductive wire, waste water in the small diameter pipe and between the small diameter pipe and the large diameter pipe can be activated simultaneously.

上記の多重構造のパイプからなる活水装置は、水質浄化以外の用途にも使用できる。例えば、多重構造のパイプからなる活水装置で処理した水(以下、処理水と呼ぶ)は配管内等のスケール除去剤として作用する。また、処理水を窓ガラス等の洗浄水として使用すれば、窓ガラスの表面から汚れを剥離し、優れた洗浄効果を発揮する。 The active water device comprising the above-mentioned multi-structure pipe can be used for purposes other than water purification. For example, water (hereinafter referred to as treated water) treated with an active water device composed of multiple-structured pipes acts as a scale remover in the piping. Moreover, if treated water is used as cleaning water for window glass or the like, dirt is peeled off from the surface of the window glass, and an excellent cleaning effect is exhibited.

バッファータンクは、曝気槽の前に設ける。バッファータンクは、沈殿槽として機能し、廃水中の固形物を沈殿させて曝気槽に固形物が持ち込まれることを防ぐ。また、廃水の排出量の増減によって、曝気槽の水量が著しく変化することを防ぐ。固形物が少ない場合や、廃水の排出量が一定の場合はバッファータンクを省略しても構わない。 The buffer tank is installed in front of the aeration tank. The buffer tank functions as a sedimentation tank and prevents solids from being brought into the aeration tank by precipitating solids in the wastewater. It also prevents the amount of water in the aeration tank from changing significantly due to increase or decrease in the amount of wastewater discharged. The buffer tank may be omitted when the amount of solid matter is small or when the amount of discharged wastewater is constant.

本発明の廃水前処理方法及び廃水前処理装置によれば、廃水中の溶存酸素量を飛躍的に高めて、好気性微生物よる有機物の分解効率を高めることができる。従来のように曝気処理を長時間行う必要がなくなるので、曝気処理に要する電気代等のランニングコストを低減することが可能となる。また、従来の曝気処理で問題となっていた余剰汚泥の発生を削減することも可能となる。さらに、従来の処理系で問題となっていた悪臭を削減し、速やかに廃水を浄化することが可能になる。 According to the wastewater pretreatment method and the wastewater pretreatment apparatus of the present invention, the amount of dissolved oxygen in wastewater can be dramatically increased, and the decomposition efficiency of organic substances by aerobic microorganisms can be enhanced. Since it is not necessary to perform the aeration process for a long time as in the prior art, it is possible to reduce running costs such as electricity costs required for the aeration process. In addition, it is possible to reduce the generation of excess sludge, which has been a problem in the conventional aeration process. Furthermore, it is possible to reduce bad odor that has been a problem in conventional treatment systems and to quickly purify wastewater.

本発明の廃水前処理装置は、曝気槽の改修工事等を必要としない。したがって、既存の施設を利用して、本発明の廃水前処理装置を適用することができる。また、本発明の廃水前処理装置は曝気槽外に設置されるものである。したがって、装置のメンテナンス性に優れ、消耗部品の交換も極めて容易である。 The wastewater pretreatment device of the present invention does not require repair work for the aeration tank. Therefore, the wastewater pretreatment apparatus of the present invention can be applied using existing facilities. Moreover, the wastewater pretreatment device of the present invention is installed outside the aeration tank. Therefore, it is excellent in maintainability of the apparatus, and replacement of consumable parts is extremely easy.

活水装置を、多重構造とすることで、活水処理される廃水の量を増大させて、本発明の廃水前処理を効率化することができる。例えば、小径パイプと大径パイプの間の容積を、小径パイプ内部と同じ容積となるようにすれば、従来と同じ電力で2倍量の廃水を活性化することが可能になる。 By making the active water device into a multiple structure, the amount of waste water subjected to active water treatment can be increased, and the waste water pretreatment of the present invention can be made more efficient. For example, if the volume between the small-diameter pipe and the large-diameter pipe is the same as that inside the small-diameter pipe, it is possible to activate twice the amount of waste water with the same power as in the conventional case.

本発明の廃水前処理装置及び廃水前処理方法を示すブロック図である。It is a block diagram which shows the wastewater pretreatment apparatus and wastewater pretreatment method of this invention. 本発明における活水装置の斜視図である。矢印で廃水の流れを模式的に示した。It is a perspective view of the active water apparatus in this invention. The flow of wastewater is schematically shown by arrows. 本発明における活水装置の別例を示す部分破断斜視図である。内部構造を示すため、大径パイプを切り欠いて図示した。矢印で廃水の流れを模式的に示した。It is a partially broken perspective view which shows another example of the active water apparatus in this invention. In order to show the internal structure, the large-diameter pipe is cut out and illustrated. The flow of wastewater is schematically shown by arrows. 本発明における活水装置の別例を示す部分破断斜視図である。内部構造を示すため、大径パイプと仕切り用パイプを切り欠いて図示した。矢印で廃水の流れを模式的に示した。It is a partially broken perspective view which shows another example of the active water apparatus in this invention. In order to show the internal structure, the large-diameter pipe and the partition pipe are cut out and illustrated. The flow of wastewater is schematically shown by arrows. 本発明における混合装置の斜視図である。It is a perspective view of the mixing apparatus in this invention. 図5に示した混合装置のA‐A断面図である。It is AA sectional drawing of the mixing apparatus shown in FIG. 本発明の廃水前処理装置及び廃水前処理方法の別例を示すブロック図である。It is a block diagram which shows another example of the wastewater pretreatment apparatus and wastewater pretreatment method of this invention.

以下、図を参照しながら、本発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、曝気槽3の前に、流量調整用のバッファータンク2を設け、バッファータンク2に本発明の廃水前処理装置1を設置して、循環して廃水前処理方法を行う例である。曝気槽3で好気性微生物により分解処理を受けた廃水は、沈殿槽4に移送され、固形分(P)と水分(W)に分離され、水分(W)は系外に放流される。 FIG. 1 is an example in which a buffer tank 2 for flow rate adjustment is provided in front of an aeration tank 3, the wastewater pretreatment device 1 of the present invention is installed in the buffer tank 2, and the wastewater pretreatment method is circulated. . Waste water that has been decomposed by aerobic microorganisms in the aeration tank 3 is transferred to the precipitation tank 4 where it is separated into solids (P) and moisture (W), and the moisture (W) is discharged out of the system.

図1に示したように、本発明の廃水前処理装置1は、内部に廃水を通水するパイプに導電線を巻きつけてなる活水装置11と、濃縮酸素を供給する酸素濃縮装置12と、前記活水装置11から供給された活性化された廃水と前記酸素濃縮装置12から供給された濃縮酸素とをキャビテーションを起こしながら混合する混合装置13と、前記活水装置に廃水を供給するポンプ14とからなる。 As shown in FIG. 1, the wastewater pretreatment device 1 of the present invention includes an active water device 11 in which a conductive wire is wound around a pipe through which wastewater is passed, an oxygen concentration device 12 that supplies concentrated oxygen, From the mixing device 13 for mixing the activated wastewater supplied from the active water device 11 and the concentrated oxygen supplied from the oxygen concentrating device 12 while causing cavitation, and the pump 14 for supplying wastewater to the active water device Become.

本例では、バッファータンク2内に送水用のポンプ14を設置し、入水側パイプ111を介して廃水を活水装置11に送り込む構成としている。活水装置11は、図2に示したように、ポリ塩化ビニルのパイプに樹脂コーティングした導電線112を巻き付けてなるもの(導電コイル)である。導電線112は電源ユニット114に接続し通電される。活水装置11で活性化された廃水は吐水側パイプ113から吐出され混合装置13の噴射ノズル131に導入される。 In this example, a pump 14 for water supply is installed in the buffer tank 2, and waste water is sent to the active water device 11 via the water inlet side pipe 111. As shown in FIG. 2, the active water device 11 is a device in which a conductive wire 112 coated with a resin is wound around a polyvinyl chloride pipe (conductive coil). The conductive wire 112 is connected to the power supply unit 114 and energized. Waste water activated by the active water device 11 is discharged from the water discharge side pipe 113 and introduced into the injection nozzle 131 of the mixing device 13.

活水装置11としては、図3に示した別例の活水装置11を使用してもよい。すなわち、内部に廃水を通水する小径パイプ115(第1パイプ)に導電線112を巻き付けてなるものであって、前記パイプ115より径の大きい大径パイプ117(第2パイプ)内に小径パイプ115及び導電線112を内装して2重に構成し、小径パイプ115内部と、小径パイプ115及び大径パイプ117の間に廃水を通水するものである。 As the water activation apparatus 11, another example of the water activation apparatus 11 shown in FIG. 3 may be used. That is, a conductive wire 112 is wound around a small-diameter pipe 115 (first pipe) through which waste water is passed, and a small-diameter pipe is disposed in a large-diameter pipe 117 (second pipe) having a diameter larger than that of the pipe 115. 115 and the conductive wire 112 are configured to be double, and waste water is passed between the inside of the small diameter pipe 115 and between the small diameter pipe 115 and the large diameter pipe 117.

また、図4に示したように、小径パイプ115(第1パイプ)と大径パイプ117(第2パイプ)の間に仕切り用パイプ116(第3パイプ)を入れて導電線112が濡れないように3重にしてもよい。図4の矢印で模式的に示したように、廃水は小径パイプ115内部と、仕切り用パイプ116と大径パイプ117の間を流れる。導電線112は上記と同様に樹脂コーティングしたものである。導電線112は、仕切り用パイプ116及び大径パイプ117に導電線112が通る径の貫通孔を穿孔し、そこから外部に取り出して図2と同様の電源ユニット114に接続する。貫通孔にはパッキンを取り付けることで液漏れを防止すればよい。また、貫通孔を設けない場合は、パイプの右又は左端において仕切り用パイプ116と大径パイプ117の間に形成される廃水流路をゴム栓や壁面で塞いで防水し、その上でパイプの右又は左端から導電線を取り出す構造としてもよい。この場合、仕切り用パイプ116と大径パイプ117の間に廃水を導入するために、大径パイプ117の左端又は右端付近の外周面に注水口と排水口をそれぞれ設ければよい。 Also, as shown in FIG. 4, a partition pipe 116 (third pipe) is inserted between the small-diameter pipe 115 (first pipe) and the large-diameter pipe 117 (second pipe) so that the conductive wire 112 does not get wet. It may be triple. As schematically shown by the arrows in FIG. 4, the waste water flows inside the small diameter pipe 115 and between the partition pipe 116 and the large diameter pipe 117. The conductive wire 112 is resin-coated as described above. The conductive wire 112 is provided with a through-hole having a diameter through which the conductive wire 112 passes through the partition pipe 116 and the large-diameter pipe 117, and is taken out of the through hole and connected to the power supply unit 114 similar to that in FIG. What is necessary is just to prevent a liquid leak by attaching packing to a through-hole. If no through-hole is provided, the waste water flow path formed between the partition pipe 116 and the large-diameter pipe 117 at the right or left end of the pipe is sealed with a rubber plug or a wall surface, and then the pipe is sealed. It is good also as a structure which takes out a conductive wire from the right or left end. In this case, in order to introduce waste water between the partition pipe 116 and the large-diameter pipe 117, a water inlet and a drain outlet may be provided on the outer peripheral surface near the left end or the right end of the large-diameter pipe 117, respectively.

混合装置13としては、例えば図5及び図6に示したものを使用する。すなわち、内部に流路131aを有し活水装置11から吐出された廃水を噴射する噴射ノズル131と、噴射ノズル131から噴出された廃水で渦流を形成する混合室132と、混合された廃水を吐出する吐出口133とを備えた混合装置13である。噴射ノズル131には濃縮酸素の供給口134を設け、混合室132で発生する渦流とキャビテーションにより、活性化した廃水に濃縮酸素を溶解させる構造となっている。混合室132は、高さの小さい扁平な空間として形成される。噴射ノズル131から噴射された廃水は、コアンダ効果により、混合室132の右又は左の側壁面に引き寄せられて渦流を形成する。噴射ノズル131の噴射方向を右側壁側に向けるか、左側壁側に向けるか調節することで渦流の回転方向を調節することができる。噴射ノズル131の噴射方向を調節可能に混合装置13に取り付けて、右巻きと左巻きの渦流を交互に繰り返すように運転することで、よりいっそう溶存酸素量を高めることができる。混合室132で濃縮酸素を溶解させた廃水は、排出口133より吐出され配管135に流れ込む。配管135の末端はバッファーファンク2内に開口しており(図1)、本発明の廃水前処理装置1で処理された廃水はバッファータンク2に戻される。本例の廃水前処理装置は循環型であり、廃水を循環させながら、溶存酸素量を高めることができる。 For example, the mixing device 13 shown in FIGS. 5 and 6 is used. That is, an injection nozzle 131 that has a flow path 131a inside and injects waste water discharged from the active water device 11, a mixing chamber 132 that forms a vortex with the waste water discharged from the injection nozzle 131, and discharges the mixed waste water. The mixing device 13 includes a discharge port 133 that performs the above operation. The injection nozzle 131 is provided with a supply port 134 for concentrated oxygen, and has a structure in which concentrated oxygen is dissolved in activated wastewater by vortex flow and cavitation generated in the mixing chamber 132. The mixing chamber 132 is formed as a flat space with a small height. Waste water sprayed from the spray nozzle 131 is drawn to the right or left side wall surface of the mixing chamber 132 by the Coanda effect to form a vortex. The rotation direction of the vortex can be adjusted by adjusting whether the injection direction of the injection nozzle 131 is directed to the right side wall or the left side wall. The amount of dissolved oxygen can be further increased by attaching the injection nozzle 131 to the mixing device 13 so that the injection direction can be adjusted and operating to repeat the clockwise and counterclockwise vortex alternately. The waste water in which the concentrated oxygen is dissolved in the mixing chamber 132 is discharged from the discharge port 133 and flows into the pipe 135. The end of the pipe 135 opens into the buffer funk 2 (FIG. 1), and the waste water treated by the waste water pretreatment device 1 of the present invention is returned to the buffer tank 2. The wastewater pretreatment device of this example is a circulation type, and the amount of dissolved oxygen can be increased while circulating the wastewater.

本例の酸素濃縮装置12、活水装置11、混合装置13は全て地上に設けられ、バッファータンク2には、入水側配管111と配管135が入水するのみである。したがって、メンテナンス性に優れ、また、既存の施設に対して本発明の廃水前処理装置1を適用することが容易である。 The oxygen concentrating device 12, the active water device 11, and the mixing device 13 of this example are all provided on the ground, and the water inlet side pipe 111 and the pipe 135 only enter the buffer tank 2. Therefore, it is excellent in maintainability and it is easy to apply the wastewater pretreatment apparatus 1 of the present invention to an existing facility.

本例では、溶存酸素計測器6(DO計測器)と、制御盤5を設置している。すなわち、溶存酸素計測器6のプローブ61で曝気槽内の溶存酸素量を計測し、その計測値に基づいて制御盤5で、酸素濃縮装置12、活水装置11、混合器13、バッファータンク2のポンプ14、曝気槽3のポンプをフィードバック制御するものである。制御盤5と溶存酸素計測器6は必須ではなく省略しても構わない。 In this example, a dissolved oxygen measuring device 6 (DO measuring device) and a control panel 5 are installed. That is, the amount of dissolved oxygen in the aeration tank is measured by the probe 61 of the dissolved oxygen measuring device 6, and the oxygen concentration device 12, the active water device 11, the mixer 13, and the buffer tank 2 are measured by the control panel 5 based on the measured value. The pump 14 and the pump of the aeration tank 3 are feedback-controlled. The control panel 5 and the dissolved oxygen measuring device 6 are not essential and may be omitted.

また、図7に示したように、本例のバッファータンク2を排し、曝気槽3に直接に廃水を導入する構成としてもよい。この別例では、工場廃水の配管136に導電線112を巻き付けて活水装置11としている。活水装置11の装置構成は図2と同様であるため図示は省略する。活水装置11で活性化された廃水は、混合装置13で酸素濃縮装置12から供給される濃縮酸素とキャビテーションを起こしながら渦流で混合される。混合装置は、本例と同じ図5及び図6の混合装置13を使用する。別例では、本例と同様に制御盤5と、溶存酸素計測器6を設けたが、これらは必須ではない。 Further, as shown in FIG. 7, the buffer tank 2 of this example may be removed and the waste water may be directly introduced into the aeration tank 3. In this other example, the active water device 11 is formed by winding the conductive wire 112 around the pipe 136 of the factory waste water. Since the device configuration of the water activation device 11 is the same as that shown in FIG. The waste water activated by the active water device 11 is mixed with the concentrated oxygen supplied from the oxygen concentrating device 12 by the mixing device 13 by vortex while causing cavitation. As the mixing apparatus, the mixing apparatus 13 shown in FIGS. 5 and 6 is used. In another example, the control panel 5 and the dissolved oxygen measuring device 6 are provided as in the present example, but these are not essential.

[実施例1]
上述の本例で示した廃水前処理装置1(図1)を使用して、廃水の浄化処理を行った。すなわち、食品工場から排出された廃水をバッファータンク2に貯留し、活水装置11で活性化し、その後、活性化された廃水と、酸素濃縮装置12から供給される濃縮酸素とを混合装置13で混合し、バッファータンク2に戻す方法である。制御盤5及び溶存酸素計測器6は外して廃水前処理を行った。
[Example 1]
Using the wastewater pretreatment device 1 (FIG. 1) shown in the above example, wastewater purification treatment was performed. That is, the waste water discharged from the food factory is stored in the buffer tank 2 and activated by the active water device 11, and then the activated waste water and the concentrated oxygen supplied from the oxygen concentrating device 12 are mixed by the mixing device 13. Then, the method returns to the buffer tank 2. The control panel 5 and the dissolved oxygen measuring device 6 were removed, and wastewater pretreatment was performed.

活水装置11としては、内径65mmの塩化ビニルパイプに直径2mmの銅線を樹脂コーティングした導電線を12回巻き付けて、多少のスペースを空けてさらに12回巻き付け、計24回導電線を巻き付けたものを使用した。運転条件としては、常時100Vの電圧が印加される状態とし、ポンプ14によって400L/minの流速で廃水を活水装置11に供給した。 As the active water device 11, a conductive wire in which a copper wire with a diameter of 2 mm is coated on a vinyl chloride pipe with an inner diameter of 65 mm is wound 12 times, and a further space is provided, and further 12 times are wound, for a total of 24 times. It was used. As operating conditions, a voltage of 100 V was constantly applied, and wastewater was supplied to the active water device 11 by the pump 14 at a flow rate of 400 L / min.

混合装置13としては、直径16mmの内径の流路131aを備えた噴射ノズル131を使用した(図6)。混合室132は奥行き65mm、幅420mm、高さ670mmの扁平形状で、コアンダ効果により渦流が発生しやすい形状としてある。さらに、噴射ノズル131は、左右に噴射方向を調節可能に設けて、右巻きと左巻きの渦流が交互に形成されるようにした。供給口134からは、10ml/minの流速で90%以上の濃縮酸素を供給した。 As the mixing device 13, an injection nozzle 131 provided with a flow path 131a having an inner diameter of 16 mm was used (FIG. 6). The mixing chamber 132 has a flat shape with a depth of 65 mm, a width of 420 mm, and a height of 670 mm, and has a shape in which a vortex is likely to occur due to the Coanda effect. Further, the injection nozzle 131 is provided so that the injection direction can be adjusted to the left and right, so that right-handed and left-handed vortex flows are alternately formed. From the supply port 134, 90% or more of concentrated oxygen was supplied at a flow rate of 10 ml / min.

上記の装置構成で、5分間に亘ってバッファータンク2内の廃水を、図1の廃水前処理装置1に循環させた。5分経過後、混合装置13から吐出される廃水をバケツに一杯に溜めて、溶存酸素量(DO)を電極法により測定した。測定結果を表1に示す。バケツに溜めた廃水の温度は37.8℃であった。 With the above apparatus configuration, waste water in the buffer tank 2 was circulated to the waste water pretreatment apparatus 1 in FIG. 1 for 5 minutes. After 5 minutes, the waste water discharged from the mixing device 13 was fully stored in a bucket, and the dissolved oxygen amount (DO) was measured by the electrode method. The measurement results are shown in Table 1. The temperature of the waste water stored in the bucket was 37.8 ° C.

その後、前処理を終えた廃水を順次、曝気槽3に移送して、エアフィルター32、ポンプ31を介して6.5m/minの流速で空気を連続的に曝気槽3に供給した。次いで、曝気処理を終えた廃水を、沈殿槽4に移送して固形分(P)と水分(W)に分離した。分離した水分(W)は系外に放流した。 After that, the waste water after the pretreatment was sequentially transferred to the aeration tank 3, and air was continuously supplied to the aeration tank 3 through the air filter 32 and the pump 31 at a flow rate of 6.5 m 3 / min. Next, the wastewater after the aeration treatment was transferred to the precipitation tank 4 and separated into solid content (P) and moisture (W). The separated water (W) was discharged out of the system.

[実施例2]
実施例1の活水装置11に替えて、図3に示した別例の活水装置11を使用して、実施例2とした。すなわち、活水装置11による廃水の活性化は、小径パイプ115の内部と、小径パイプ115と大径パイプ117の間に同時に廃水を通水し、小径パイプ115に巻き付けられる導電線112に通電して、小径パイプ115の内部と、小径パイプ115と大径パイプ117の間の廃水を同時に活性化する構成である。廃水前処理装置1の運転条件は実施例1と同様とした。
[Example 2]
Instead of the live water device 11 of Example 1, the live water device 11 of another example shown in FIG. That is, the activation of the waste water by the active water device 11 is performed by passing the waste water simultaneously inside the small diameter pipe 115 and between the small diameter pipe 115 and the large diameter pipe 117 and energizing the conductive wire 112 wound around the small diameter pipe 115. The waste water between the inside of the small diameter pipe 115 and between the small diameter pipe 115 and the large diameter pipe 117 is activated at the same time. The operating conditions of the wastewater pretreatment device 1 were the same as in Example 1.

実施例2について、溶存酸素量(DO)を実施例1と同じ電極法にて測定した。結果を表1に示す。バケツに溜めた廃水の温度は35.6℃であった。 About Example 2, the amount of dissolved oxygen (DO) was measured by the same electrode method as Example 1. The results are shown in Table 1. The temperature of the waste water stored in the bucket was 35.6 ° C.

[比較例1]
実施例1の活水装置11を排して、比較例1とした。すなわち、酸素濃縮装置12からの濃縮酸素と廃水とを図5及び図6の混合措置13で混合する構成である。その他の構成や装置の運転条件は実施例1と同様とした。
[Comparative Example 1]
The active water apparatus 11 of Example 1 was excluded and it was set as the comparative example 1. That is, it is the structure which mixes the concentrated oxygen and waste water from the oxygen concentration apparatus 12 by the mixing means 13 of FIG.5 and FIG.6. Other configurations and operating conditions of the apparatus were the same as in Example 1.

比較例1について、溶存酸素量(DO)を実施例1と同じ電極法にて測定した。結果を表1に示す。バケツに溜めた廃水の温度は35.3℃であった。 For Comparative Example 1, the dissolved oxygen amount (DO) was measured by the same electrode method as in Example 1. The results are shown in Table 1. The temperature of the wastewater stored in the bucket was 35.3 ° C.

[比較例2]
実施例1の活水装置11、混合装置13及び酸素濃縮装置12を排して、比較例2とした。すなわち、曝気槽3でのみ空気を供給する構成である。その他の構成や装置の運転条件は実施例1と同様とした。
[Comparative Example 2]
The active water device 11, the mixing device 13, and the oxygen concentrating device 12 of Example 1 were excluded and used as Comparative Example 2. That is, the air is supplied only in the aeration tank 3. Other configurations and operating conditions of the apparatus were the same as in Example 1.

比較例1について、溶存酸素量(DO)を実施例1と同じ電極法にて測定した。結果を表1に示す。バケツに溜めた廃水の温度は35.0℃であった。 For Comparative Example 1, the dissolved oxygen amount (DO) was measured by the same electrode method as in Example 1. The results are shown in Table 1. The temperature of the waste water stored in the bucket was 35.0 ° C.

Figure 2012075988
Figure 2012075988

表1から明らかなように、実施例1では循環開始後わずか5分でDOが8.5mg/Lに達した。実施例2では、実施例1を上回り循環開始後わずか5分でDOが11.1mg/Lに達した。それに対して、比較例1では7.2mg/L、比較例2では2.3mg/Lであった。1気圧下、35℃での蒸留水の飽和溶存酸素量が7.04mg/Lであるから、本発明によれば、ごく短時間で廃水中に高濃度の酸素を溶け込ませることが可能となることがわかる。 As is clear from Table 1, in Example 1, DO reached 8.5 mg / L in only 5 minutes after the start of circulation. In Example 2, DO exceeded 11.1 and DO reached 11.1 mg / L in only 5 minutes after the start of circulation. On the other hand, it was 7.2 mg / L in Comparative Example 1 and 2.3 mg / L in Comparative Example 2. Since the saturated dissolved oxygen amount of distilled water at 35 ° C. under 1 atm is 7.04 mg / L, according to the present invention, it becomes possible to dissolve high concentration oxygen into waste water in a very short time. I understand that.

また、実施例1及び2の廃水前処理方法を行った後の曝気処理及び固形分の沈殿処理では、嫌気性菌の繁殖に由来する嫌気臭(硫化水素など)を完全に解消することができた。それに対して、比較例1及び2の方法では、5分の前処理では不十分であり、嫌気臭が問題となった。また、活性汚泥沈降率(SV30)を測定・算出したところ、比較例1が78%程度、比較例2が98%程度であったのが、実施例1及び2の廃水前処理方法を適用したところ、50〜60%程度まで改善することができた。これにより、余剰汚泥の引き抜き量を低減することが可能になり、経費を従来(比較例2)よりも20〜30%程度削減することができた。比較例1の削減量は20%程度であった。さらに、実施例1及び2の廃水前処によれば、ごく短時間の曝気処理で基準値を下回るBODを達成することができた。これにより、従来(比較例2)の曝気処理で要していた電気代を45〜50%程度削減することができた。比較例1の電気代削減は30%程度であった。 In addition, in the aeration treatment and the solid precipitation treatment after the wastewater pretreatment methods of Examples 1 and 2, anaerobic odors (such as hydrogen sulfide) derived from the growth of anaerobic bacteria can be completely eliminated. It was. On the other hand, in the methods of Comparative Examples 1 and 2, the pretreatment for 5 minutes was insufficient and an anaerobic odor became a problem. Moreover, when the activated sludge sedimentation rate (SV30) was measured and calculated, Comparative Example 1 was about 78% and Comparative Example 2 was about 98%, but the wastewater pretreatment methods of Examples 1 and 2 were applied. However, it was able to improve to about 50 to 60%. Thereby, it became possible to reduce the amount of excess sludge withdrawn, and the cost could be reduced by about 20 to 30% compared to the conventional case (Comparative Example 2). The amount of reduction in Comparative Example 1 was about 20%. Furthermore, according to the wastewater pretreatment of Examples 1 and 2, it was possible to achieve a BOD that is lower than the reference value in a very short aeration treatment. As a result, the electricity cost required for the conventional aeration process (Comparative Example 2) could be reduced by about 45 to 50%. The electricity cost reduction of Comparative Example 1 was about 30%.

1 廃水前処理装置
11 活水装置
111 入水側パイプ
112 導電線
113 吐水側パイプ
114 電源ユニット
115 小径パイプ
116 仕切り用パイプ
117 大径パイプ
12 酸素濃縮装置
13 混合装置
131 噴射ノズル
132 混合室
133 吐出口
134 供給口
14 ポンプ
31 ポンプ
32 エアフィルター
4 沈殿槽
5 制御盤
6 溶存酸素計測器
61 プローブ

DESCRIPTION OF SYMBOLS 1 Waste water pretreatment apparatus 11 Active water apparatus 111 Inlet side pipe 112 Conductive wire 113 Water discharge side pipe 114 Power supply unit 115 Small diameter pipe 116 Partition pipe 117 Large diameter pipe 12 Oxygen concentrator 13 Mixing apparatus 131 Injection nozzle 132 Mixing chamber 133 Discharge port 134 Supply port 14 Pump 31 Pump 32 Air filter 4 Sedimentation tank 5 Control panel 6 Dissolved oxygen measuring instrument 61 Probe

Claims (4)

廃水を噴出させてキャビテーションを起こしてそのエロージョン作用で廃水を前処理し、その後、曝気槽にて好気性微生物により分解処理を行う廃水処理方法において、
前記前処理における廃水は、通水可能なパイプに導電線を巻きつけてなる活水装置に通した後、活性化された廃水を噴出させてキャビテーションを起こしながら濃縮酸素を混合することを特徴とする廃水前処理方法。
In a wastewater treatment method in which wastewater is ejected to cause cavitation and pretreat the wastewater by its erosion action, and then decompose by aerobic microorganisms in an aeration tank.
The waste water in the pretreatment is characterized by mixing concentrated oxygen while causing cavitation by ejecting the activated waste water after passing through an active water device in which a conductive wire is wound around a pipe capable of passing water. Wastewater pretreatment method.
活水装置は、内部に廃水を通水する小径パイプに導電線を巻き付けてなるものであって、前記パイプより径の大きい大径パイプ内に小径パイプ及び導電線を内装して多重に構成し、小径パイプ内部及び小径パイプと大径パイプの間に廃水を通水し導電線に通電することにより、小径パイプ内及び小径パイプと大径パイプ間の廃水を同時に活性化する請求項1に記載の廃水前処理方法。 The active water device is formed by winding a conductive wire around a small-diameter pipe that allows waste water to pass through, and is configured in a multiple manner with a small-diameter pipe and a conductive wire inside a large-diameter pipe larger in diameter than the pipe, The waste water in the small-diameter pipe and between the small-diameter pipe and the large-diameter pipe are simultaneously activated by passing waste water through the small-diameter pipe and between the small-diameter pipe and the large-diameter pipe and energizing the conductive wire. Wastewater pretreatment method. 内部に廃水を通水するパイプに導電線を巻きつけてなる活水装置と、濃縮酸素を供給する酸素濃縮装置と、前記活水装置から供給された活性化された廃水と前記酸素濃縮装置から供給された濃縮酸素とをキャビテーションを起こしながら混合する混合装置と、前記活水装置に廃水を移送する移送ポンプとからなる廃水前処理装置。 An active water device in which a conductive wire is wound around a pipe through which waste water is passed, an oxygen concentrator for supplying concentrated oxygen, activated waste water supplied from the active water device, and an oxygen concentrator supplied from the oxygen concentrator A wastewater pretreatment device comprising a mixing device that mixes the concentrated oxygen while causing cavitation, and a transfer pump that transfers the wastewater to the active water device. 活水装置は、内部に廃水を通水する小径パイプに導電線を巻き付けてなるものであって、前記パイプより径の大きい大径パイプ内に小径パイプ及び導電線を内装して多重に構成し、小径パイプ内部及び小径パイプと大径パイプの間に廃水を通水するものである請求項3に記載の廃水前処理装置。

The active water device is formed by winding a conductive wire around a small-diameter pipe that allows waste water to pass through, and is configured in a multiple manner with a small-diameter pipe and a conductive wire inside a large-diameter pipe larger in diameter than the pipe, The waste water pretreatment device according to claim 3, wherein waste water is passed through the inside of the small diameter pipe and between the small diameter pipe and the large diameter pipe.

JP2010221076A 2010-09-30 2010-09-30 Waste water pretreatment method and waste water pretreatment apparatus Pending JP2012075988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010221076A JP2012075988A (en) 2010-09-30 2010-09-30 Waste water pretreatment method and waste water pretreatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221076A JP2012075988A (en) 2010-09-30 2010-09-30 Waste water pretreatment method and waste water pretreatment apparatus

Publications (1)

Publication Number Publication Date
JP2012075988A true JP2012075988A (en) 2012-04-19

Family

ID=46236856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221076A Pending JP2012075988A (en) 2010-09-30 2010-09-30 Waste water pretreatment method and waste water pretreatment apparatus

Country Status (1)

Country Link
JP (1) JP2012075988A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106865770A (en) * 2017-03-30 2017-06-20 中国华电集团科学技术研究总院有限公司 Underload A2The class SBR operation methods of O techniques
CN107352634A (en) * 2017-09-19 2017-11-17 重庆净空居环保科技有限公司 Wastewater Pretreatment equipment and system
CN109663515A (en) * 2017-10-17 2019-04-23 无锡小天鹅股份有限公司 Microbubble generates the circulatory system and device for clothing processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985279A (en) * 1995-09-27 1997-03-31 Mitsubishi Kakoki Kaisha Ltd Oxygen aeration type denitrification treatment apparatus
JP2002239556A (en) * 2001-02-20 2002-08-27 Ibiden Co Ltd Pretreatment method in biological cleaning of sewage
JP2007021427A (en) * 2005-07-20 2007-02-01 Shunji Nishi Wastewater treatment apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985279A (en) * 1995-09-27 1997-03-31 Mitsubishi Kakoki Kaisha Ltd Oxygen aeration type denitrification treatment apparatus
JP2002239556A (en) * 2001-02-20 2002-08-27 Ibiden Co Ltd Pretreatment method in biological cleaning of sewage
JP2007021427A (en) * 2005-07-20 2007-02-01 Shunji Nishi Wastewater treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106865770A (en) * 2017-03-30 2017-06-20 中国华电集团科学技术研究总院有限公司 Underload A2The class SBR operation methods of O techniques
CN107352634A (en) * 2017-09-19 2017-11-17 重庆净空居环保科技有限公司 Wastewater Pretreatment equipment and system
CN109663515A (en) * 2017-10-17 2019-04-23 无锡小天鹅股份有限公司 Microbubble generates the circulatory system and device for clothing processing
CN109663515B (en) * 2017-10-17 2022-06-03 无锡小天鹅电器有限公司 Microbubble generating circulation system and clothes treatment device

Similar Documents

Publication Publication Date Title
CN104787941B (en) A kind of advanced oxidation coupling device processed for organic wastewater with difficult degradation thereby and technique
JP5295485B2 (en) Liquid plasma type treatment liquid purification method and liquid plasma type treatment liquid purification apparatus
WO2017088534A1 (en) Wastewater treatment device and method for treating wastewater by means of device
JP5097024B2 (en) Water treatment apparatus and water treatment method
US11339068B2 (en) Eductor-based membrane bioreactor
US7662288B2 (en) Water treatment method and water treatment system
KR20080105003A (en) Apparatus and method for treating liquid
CN107986379B (en) Treatment method and device for degrading perfluorooctanoic acid in sewage
CN212559817U (en) Antibiotic resistant bacteria and resistant gene removing device in sewage
CN111620493A (en) Method and special equipment for removing antibiotic resistant bacteria and resistant genes in sewage
JP2005058886A (en) Waste water treatment apparatus using high-voltage pulse and method therefor, and power supply circuit for the apparatus
JP4927415B2 (en) Exhaust gas wastewater treatment equipment
JP2012075988A (en) Waste water pretreatment method and waste water pretreatment apparatus
CN109467229B (en) Electrochemical treatment method for organic wastewater
WO2013011761A1 (en) Cleaning apparatus
CN205313292U (en) Middle -size and small -size energy -conserving cooling circulating water treatment system
CN103613168A (en) Method and system for recycling waste water by combining spark generation plasma with multistage membrane technology
JP4842895B2 (en) Fluid processing apparatus and fluid processing method
CN210635861U (en) Laboratory wastewater treatment equipment capable of realizing multi-pass oxidation and multi-stage decomposition
CN212610122U (en) Integrated activated sludge treatment device
CN204058031U (en) A kind of sewage treatment equipment
KR20140033699A (en) Wastewater treatment apparatus using an electron and an ion activated
KR19980042981A (en) Sewage treatment device
KR200179932Y1 (en) High speed sweage redisposal apparatus using the osone
KR101423837B1 (en) Portable type wastewater treatment apparatus using an electron and an ion activated

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422