JP2012071722A5 - - Google Patents

Download PDF

Info

Publication number
JP2012071722A5
JP2012071722A5 JP2010218714A JP2010218714A JP2012071722A5 JP 2012071722 A5 JP2012071722 A5 JP 2012071722A5 JP 2010218714 A JP2010218714 A JP 2010218714A JP 2010218714 A JP2010218714 A JP 2010218714A JP 2012071722 A5 JP2012071722 A5 JP 2012071722A5
Authority
JP
Japan
Prior art keywords
value
weight
parts
tan
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010218714A
Other languages
Japanese (ja)
Other versions
JP5468507B2 (en
JP2012071722A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010218714A priority Critical patent/JP5468507B2/en
Priority claimed from JP2010218714A external-priority patent/JP5468507B2/en
Priority to CN2011102874069A priority patent/CN102443205A/en
Priority to BRPI1107085-4A priority patent/BRPI1107085B1/en
Publication of JP2012071722A publication Critical patent/JP2012071722A/en
Publication of JP2012071722A5 publication Critical patent/JP2012071722A5/ja
Application granted granted Critical
Publication of JP5468507B2 publication Critical patent/JP5468507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

上記式(1)で求められる物性指数は、E*が低く、tanδが高いほど大きくなる。E*が低いことは、接地部Sの路面に対する密着性が高いことを示す。一方、tanδが高いことは、接地部Sと路面との密着後の制動時におけるエネルギー損失が大きいことを示す。測定温度0℃の値は接地部Sが路面に密着しにくい状況の特性に関連する。これらの知見から、発明者らは、tanδ(0℃)の値が0.375以上、E*(0℃)の値が40[MPa]以下であり、かつ、tanδ(0℃)およびE*(0℃)の値から記式(1)で求められる物性指数が9.375[MPa-1]以上である場合に、ウェット路における優れた制動性能が発揮されることを明らかにした。
また、tanδ(20℃)およびE*(20℃)の値から上記式(1)により求められる上記物性指数は、接地部Sが路面に比較的密着しやすい状況における特性に関連する。これらの知見から、発明者らは、tanδ(20℃)の値が0.170以上、E*(20℃)の値が18[MPa]以下であり、かつ、tanδ(20℃)およびE*(20℃)の値から記式(1)で求められる物性指数が9.444[MPa-1]以上である場合に、ドライ路における優れた制動性能が発揮されることを明らかにした。
加えて、RRC指数は、接地面の弾性率の指標である損失正接tanδと相関があり、tanδ(60℃)が小さくなるほどRRC指数が低減することが知られている。この点で、tanδ(60℃)の値が0.14以下となる場合に、低燃費化を実現し得ることを明らかにした。そして、この低燃費化とともに、E*(60℃)の値が8[MPa]以上である場合に、優れた高速旋回性能が得られることを明らかにした。
The physical property index determined by the above formula (1) increases as E * decreases and tan δ increases. A low E * indicates that the adhesion of the ground contact portion S to the road surface is high. On the other hand, a high tan δ indicates a large energy loss during braking after the contact between the ground contact portion S and the road surface. The value of the measurement temperature of 0 ° C. is related to the characteristics of the situation where the ground contact portion S is difficult to adhere to the road surface. From these findings, the inventors have a value of tan δ (0 ° C.) of 0.375 or more, a value of E * (0 ° C.) of 40 [MPa] or less, and tan δ (0 ° C.) and E *. (0 ° C.) properties index determined above following formula (1) from the value of the case where 9.375 [MPa -1] or more, an excellent braking performance on wet road revealed that exerted.
Further, the physical property index obtained from the above equation (1) from the values of tan δ (20 ° C.) and E * (20 ° C.) relates to the characteristics in the situation where the ground contact portion S is relatively close to the road surface. From these findings, the inventors have a value of tan δ (20 ° C.) of 0.170 or more, a value of E * (20 ° C.) of 18 [MPa] or less, and tan δ (20 ° C.) and E *. properties index determined above following formula (1) from the value of (20 ° C.) is when it is 9.444 [MPa -1] above, revealed that excellent braking performance on a dry road are exhibited.
In addition, the RRC index correlates with the loss tangent tan δ, which is an index of the elastic modulus of the contact surface, and it is known that the RRC index decreases as tan δ (60 ° C.) decreases. In this regard, it has been clarified that fuel efficiency can be reduced when the value of tan δ (60 ° C.) is 0.14 or less. And with this fuel efficiency reduction, it was clarified that excellent high-speed turning performance can be obtained when the value of E * (60 ° C.) is 8 [MPa] or more.

*1 SIR(Standard Indonesian Rubber)
*2 日本ゼオン株式会社製「Nipol(登録商標) 1712」
*3 日本ゼオン株式会社製「Nipol(登録商標) NS116」
*4 日本ゼオン株式会社製「Nipol(登録商標) NS616」
*5 日本ゼオン株式会社製「Nipol(登録商標) BR1220」
*6 東海カーボン株式会社製「シーストKH」
*7 Rhodia社製「Zeosil(登録商標) 115GR」
*8 PPG Industries社製「Agilon 400G−D」
*9 Evonic−Degussa社製「Si−75」
*10 酸化亜鉛3種
*11 大内新興化学工業株式会社製「ノクラック6C」
*12 大内新興化学工業株式会社製「ノクラック224」
*13 マイクロクリスタリンワックス
*14 Struktol Company of America製「Struktol(登録商標) EF44」
*15 大内新興化学工業株式会社製「ノクセラーCZ−G」
*16 大内新興化学工業株式会社製「ノクセラーNS−P」
*17 大内新興化学工業株式会社製「ノクセラーD」
* 1 SIR (Standard Indonesian Rubber)
* 2 “Nipol (registered trademark) 1712” manufactured by Nippon Zeon Co., Ltd.
* 3 “Nipol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd.
* 4 "Nipol (registered trademark) NS616" manufactured by Nippon Zeon Co., Ltd.
* 5 “Nipol (registered trademark) BR1220” manufactured by Nippon Zeon Co., Ltd.
* 6 “Seast KH” manufactured by Tokai Carbon Co., Ltd.
* 7 "Zeosil (registered trademark) 115GR" manufactured by Rhodia
* 8 “Agilon 400G-D” manufactured by PPG Industries.
* 9 "Si-75" manufactured by Evonic-Degussa
* 10 Three types of zinc oxide * 11 “NOCRACK 6C” manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 12 “NOCRACK 224” manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 13 microcrystalline wax * 14 Struktol Company of America, Ltd., "S tr uktol (registered trademark) EF44"
* 15 “Noxeller CZ-G” manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 16 “Noxeller NS-P” manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 17 “Noxeller D” manufactured by Ouchi Shinsei Chemical Co., Ltd.

[材料物性とタイヤ性能の相関]
表1に示す材料物性(tanδ、E*、WET物性指数、DRY物性指数)と、タイヤ性能のスコア(WET制動性能、DRY制動性能、高速旋回性能、RRC指数)との相関を、図2〜図5の図表に示す。図2〜図5の各図表に示したプロットしたAは比較例1の値であり、Bは比較例2の値、Cは比較例3の値、Dは実施例1の値、は実施例2の値、は実施例3の値、は実施例4の値である。
[Correlation between material properties and tire performance]
The correlation between the material physical properties (tan δ, E *, WET physical property index, DRY physical property index) and tire performance scores (WET braking performance, DRY braking performance, high-speed turning performance, RRC index) shown in Table 1 is shown in FIG. This is shown in the chart of FIG. 2 to 5 are plotted values A of Comparative Example 1, B is a value of Comparative Example 2, C is a value of Comparative Example 3, D is a value of Example 1, and E is an implementation. The value of Example 2, F is the value of Example 3, and G is the value of Example 4.

図3は、DRY物性指数(1000×tanδ(20℃)/E*(20℃))とDRY制動性能との相関を示す図表である。この図3に示すように、DRY物性指数とDRY制動性能とは非常に強い相関を示している。比較例1〜3及び実施例1〜4のプロットから、R2=0.9158の近似曲線を得た。この近似曲線から、DRY物性指数が9.444[MPa-1]以上の場合に、DRY制動性能の目標値である4.0以上を満たすことが明らかになった。また、DRY制動性能が目標値4.0以上となった比較例2、3(プロットB、C)及び実施例1〜4(プロットD〜G)のDRY物性指数の値に基づき、より好ましい値はE*(20℃)が18[MPa]以下、かつ、tanδ(20℃)が0.170以上である。 FIG. 3 is a chart showing the correlation between the DRY physical property index (1000 × tan δ (20 ° C.) / E * (20 ° C.)) and the DRY braking performance. As shown in FIG. 3, the DRY physical property index and the DRY braking performance show a very strong correlation. From the plots of Comparative Examples 1 to 3 and Examples 1 to 4, an approximate curve of R2 = 0.9158 was obtained. From this approximate curve, it has been clarified that when the DRY physical property index is 9.444 [MPa −1 ] or more, the DRY braking performance target value of 4.0 or more is satisfied. Moreover, based on the value of the DRY physical property index of Comparative Examples 2 and 3 (Plots B and C) and Examples 1 to 4 (Plots D to G) in which the DRY braking performance becomes the target value 4.0 or more, a more preferable value E * (20 ° C.) is 18 [MPa] or less and tan δ (20 ° C.) is 0.170 or more.

[実施例3]
実施例3のタイヤ組成物は、天然ゴム20重量部と、S−SBR65重量部と、BR15重量部とを合わせたポリマー部100重量部に対し、シリカ80重量部を含む組成とした。このS−SBRは非油展スチレン・ブタジエンゴムであり、さらにシリカ配合用の末端変性ポリマーとなっている。
他に、シランカップリング剤(6.4重部)、酸化亜鉛(3重量部)、ステアリン酸(1重量部)、ナフテンオイル(20重量部)、2種類の老化防止剤(それぞれ3.5重量部および2重量部)、マイクロクリスタリンワックス(2重量部)、脂肪酸亜鉛(3重量部)、硫黄(1.7重量部)、2種類の加硫促進剤(それぞれ2.2重量部および0.7重量部)を含む。含有量は、いずれも上記のポリマー部100重量部に対する値である。
この実施例3のタイヤ組成物は、表1に示したように、WET制動試験、DRY制動試験、高速旋回試験、RRC指数のいずれも目標値を満たしている。実施例3のタイヤ組成物は天然ゴムを使用することでS−SBRの使用量を抑えているので、ポリマーのコストを低減できる。また、シランカップリング剤を添加するとともにシリカを増量することで、ポリマーの低コスト化を図った組成であり、しかもタイヤの性能は目標値を満たしている。

[Example 3]
The tire composition of Example 3 had a composition containing 80 parts by weight of silica with respect to 100 parts by weight of a polymer part including 20 parts by weight of natural rubber, 65 parts by weight of S-SBR, and 15 parts by weight of BR. This S-SBR is a non-oil-extended styrene / butadiene rubber, and is also a terminal-modified polymer for blending with silica.
Otherwise, the silane coupling agent (6.4 by weight part), zinc oxide (3 parts), stearic acid (1 part by weight), naphthenic oil (20 parts by weight), 2 types of anti-aging agent (respectively 3. 5 parts by weight and 2 parts by weight), microcrystalline wax (2 parts by weight), zinc fatty acid (3 parts by weight), sulfur (1.7 parts by weight), two types of vulcanization accelerators (2.2 parts by weight and 0.7 parts by weight). The content is a value relative to 100 parts by weight of the polymer part.
As shown in Table 1, in the tire composition of Example 3, all of the WET braking test, the DRY braking test, the high-speed turning test, and the RRC index satisfy the target values. Since the tire composition of Example 3 uses natural rubber to reduce the amount of S-SBR used, the cost of the polymer can be reduced. In addition, the composition is designed to reduce the cost of the polymer by adding the silane coupling agent and increasing the amount of silica, and the tire performance meets the target value.

JP2010218714A 2010-09-29 2010-09-29 Motorcycle tire composition and motorcycle tire Active JP5468507B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010218714A JP5468507B2 (en) 2010-09-29 2010-09-29 Motorcycle tire composition and motorcycle tire
CN2011102874069A CN102443205A (en) 2010-09-29 2011-09-26 Tire composition for two-wheel motor vehicles and tire for two-wheel motor vehicles
BRPI1107085-4A BRPI1107085B1 (en) 2010-09-29 2011-09-27 rubber composition for motorcycle tire and motorcycle tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010218714A JP5468507B2 (en) 2010-09-29 2010-09-29 Motorcycle tire composition and motorcycle tire

Publications (3)

Publication Number Publication Date
JP2012071722A JP2012071722A (en) 2012-04-12
JP2012071722A5 true JP2012071722A5 (en) 2013-07-25
JP5468507B2 JP5468507B2 (en) 2014-04-09

Family

ID=46006165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010218714A Active JP5468507B2 (en) 2010-09-29 2010-09-29 Motorcycle tire composition and motorcycle tire

Country Status (3)

Country Link
JP (1) JP5468507B2 (en)
CN (1) CN102443205A (en)
BR (1) BRPI1107085B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5792151B2 (en) * 2012-03-15 2015-10-07 本田技研工業株式会社 Motorcycle tire composition and motorcycle tire
CN103304853A (en) * 2012-03-15 2013-09-18 本田技研工业株式会社 Tire composition for two-wheel motor vehicles and tire for two-wheel motor vehicles
JP6092534B2 (en) * 2012-06-29 2017-03-08 株式会社ブリヂストン Pneumatic tire
CN104736884B (en) 2012-10-23 2016-08-24 阪东化学株式会社 Transmission band
JP5913387B2 (en) * 2014-01-08 2016-04-27 住友ゴム工業株式会社 studless tire
JP6784066B2 (en) * 2016-06-08 2020-11-11 住友ゴム工業株式会社 Pneumatic tires
JP6825309B2 (en) * 2016-11-04 2021-02-03 住友ゴム工業株式会社 Tires and tricycles equipped with them
JP7241455B2 (en) * 2017-02-21 2023-03-17 住友ゴム工業株式会社 pneumatic tire
US20220105752A1 (en) * 2018-10-16 2022-04-07 Sumitomo Rubber Industries, Ltd. Tire
JP7371482B2 (en) 2019-12-17 2023-10-31 住友ゴム工業株式会社 motorcycle tires

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3315016B2 (en) * 1994-12-20 2002-08-19 住友ゴム工業株式会社 Motorcycle tires
JP3795602B2 (en) * 1996-12-25 2006-07-12 住友ゴム工業株式会社 Motorcycle tires
CA2323888C (en) * 1998-03-16 2005-01-04 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing sealant-containing tires, and sealant-containing tire
JP2003072329A (en) * 2001-09-04 2003-03-12 Yokohama Rubber Co Ltd:The Pneumatic tire and its manufacturing method
AU2002216308A1 (en) * 2001-12-21 2003-07-09 Pirelli Pneumatici S.P.A. Tyre for vehicle wheels, tread band and elastomeric composition used therein
JP2003221472A (en) * 2002-02-01 2003-08-05 Sumitomo Rubber Ind Ltd Rubber composition
WO2004014796A1 (en) * 2002-08-03 2004-02-19 Degussa Ag Highly dispersible precipitated silica having a high surface area
JP2005126604A (en) * 2003-10-24 2005-05-19 Sumitomo Rubber Ind Ltd Rubber composition and tire obtained by using the same
JP4405849B2 (en) * 2004-05-13 2010-01-27 住友ゴム工業株式会社 Rubber composition for tire tread and tire using the same
JP4846250B2 (en) * 2005-03-04 2011-12-28 株式会社ブリヂストン Rubber composition and pneumatic tire using the same
ATE531761T1 (en) * 2006-07-06 2011-11-15 Sumitomo Rubber Ind RUBBER COMPOUND AND TIRES WITH IT
JP4467627B2 (en) * 2007-10-18 2010-05-26 住友ゴム工業株式会社 tire
ATE537014T1 (en) * 2008-06-30 2011-12-15 Pirelli TIRES AND A CROSS-LINKABLE ELASTOMER COMPOSITION COMPRISING AN OXETANE DERIVATIVE AND A CARBOXYLIC ACID
JP2010042739A (en) * 2008-08-11 2010-02-25 Bridgestone Corp Run flat tire
CN101654531A (en) * 2008-08-20 2010-02-24 住友橡胶工业株式会社 Rubber composition for chafer

Similar Documents

Publication Publication Date Title
JP2012071722A5 (en)
RU2703207C1 (en) Winter tire
JP7450325B2 (en) Rubber composition for tread and pneumatic tire
JP6010060B2 (en) Rubber composition for tire and pneumatic tire
JP4187174B2 (en) Rubber composition for winter tire tread and winter tire
JP6026781B2 (en) Method for producing rubber composition
JP7238402B2 (en) Rubber composition for tread and pneumatic tire
JP2018109152A (en) Rubber composition for tread and pneumatic tire
US11124632B2 (en) Rubber composition for tires, and pneumatic tires
WO2020059673A1 (en) Pneumatic tire
US10414909B2 (en) Rubber composition
JP2019034992A (en) Pneumatic tire
JP2019026712A (en) Pneumatic tire
JP2020029555A (en) Rubber composition for tire tread and tire manufactured using the same
JP6926711B2 (en) Rubber composition for tires, treads and tires
JP2009249594A (en) Rubber composition and tire using the same
JP2015218196A (en) Tire rubber composition
US11111338B2 (en) Terminal-functionalized polymer and related methods
JP2008088236A (en) Rubber composition for tire tread and pneumatic tire produced by using the same
JP2021004332A (en) tire
JP2020111674A (en) tire
JP6282915B2 (en) Pneumatic tire
JP2018119025A (en) Tread rubber composition and tire
JP7259744B2 (en) Rubber composition and pneumatic tire
EP3492279B1 (en) Pneumatic tire