JP2012071356A - Laser welding member and laser welding method - Google Patents

Laser welding member and laser welding method Download PDF

Info

Publication number
JP2012071356A
JP2012071356A JP2012006732A JP2012006732A JP2012071356A JP 2012071356 A JP2012071356 A JP 2012071356A JP 2012006732 A JP2012006732 A JP 2012006732A JP 2012006732 A JP2012006732 A JP 2012006732A JP 2012071356 A JP2012071356 A JP 2012071356A
Authority
JP
Japan
Prior art keywords
metal plate
laser welding
plating film
film
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012006732A
Other languages
Japanese (ja)
Other versions
JP5403079B2 (en
Inventor
Katsuhiko Yoshihara
克彦 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012006732A priority Critical patent/JP5403079B2/en
Publication of JP2012071356A publication Critical patent/JP2012071356A/en
Application granted granted Critical
Publication of JP5403079B2 publication Critical patent/JP5403079B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a laser welding member and a laser welding method capable of preventing generation of spatters, and increasing the welding area.SOLUTION: An upper metal plate 3 of copper covered with an electroless nickel-phosphorus plating film 9 is superimposed on an upper surface of a lower metal plate 1 of copper covered with an electrolytic nickel film 8. A laser beam (not shown) is applied to the assembly from the upper surface of the upper metal plate 3 covered with the electroless nickel-phosphorus plating film 9 in such a state that the predetermined pressure is applied to the assembly. Prevention of spatter generation and increase of the welding area can be realized by applying the laser beam to the electroless nickel-phosphorus plating film 9 having the melting point lower than that of copper.

Description

この発明は、重ね合わされた二枚の金属板をレーザ溶接により接合するレーザ溶接部材およびレーザ溶接方法に関する。     The present invention relates to a laser welding member and a laser welding method for joining two superposed metal plates by laser welding.

図9は従来のレーザ溶接部材の構成図であり、同図(a)は要部断面図、同図(b)は同図(a)のA−A線で切断した溶接部の平面図、同図(c)は同図(a)のC部拡大図である。
図9(a)において、下側金属板1の上面に上側金属板3を重ね、所定荷重を負荷した状態で図示しないレーザ光を上側金属板3の上面より所定時間照射することにより、下側金属板1と上側金属板3とが溶接部5によって接合される。
FIG. 9 is a configuration diagram of a conventional laser welding member, in which FIG. 9 (a) is a cross-sectional view of an essential part, FIG. 9 (b) is a plan view of a welded portion cut along line AA in FIG. FIG. 4C is an enlarged view of a C portion of FIG.
9A, the upper metal plate 3 is overlapped on the upper surface of the lower metal plate 1, and laser light (not shown) is irradiated from the upper surface of the upper metal plate 3 for a predetermined time with a predetermined load applied. The metal plate 1 and the upper metal plate 3 are joined by the welded portion 5.

ここで、下側金属板1及び上側金属板3の材質としては、銅または銅合金が用いられる。図9(a)には、下側金属板1の全表面に金属層2を設けた例を示した。金属膜2の材質としては、下側金属板1の酸化防止のために電解ニッケルめっき膜が用いられている。また、上側金属板3の全表面には、やはり上側金属板3の酸化防止及びレーザ吸収率の向上目的で電解ニッケルめっき膜が用いられている。     Here, as a material of the lower metal plate 1 and the upper metal plate 3, copper or a copper alloy is used. FIG. 9A shows an example in which the metal layer 2 is provided on the entire surface of the lower metal plate 1. As a material of the metal film 2, an electrolytic nickel plating film is used to prevent oxidation of the lower metal plate 1. Further, an electrolytic nickel plating film is used on the entire surface of the upper metal plate 3 for the purpose of preventing oxidation of the upper metal plate 3 and improving the laser absorption rate.

図示しないレーザ光が上側金属板3表面を被覆した金属膜4(電解ニッケルめっき膜)に吸収され、熱エネルギーに変換されることにより、金属膜4および母材の上側金属板3(銅または銅合金)が溶融し、レーザ照射を継続することによって時間とともに溶融部5が深さ方向に進行していき、図9(a)に示したような溶接部5が得られる。
レーザパワーが低くレーザ照射時間が短い場合、溶接部5の深さが下側金属板1まで到達できず、未接合状態となる。レーザパワーが高くレーザ照射時間が長い場合には、溶接部5が下側金属板1を貫通し、穴あき状態となるため接合強度の不足を招いてしまう。
Laser light (not shown) is absorbed by the metal film 4 (electrolytic nickel plating film) covering the surface of the upper metal plate 3 and converted into thermal energy, whereby the metal film 4 and the upper metal plate 3 (copper or copper) When the alloy is melted and laser irradiation is continued, the melted portion 5 proceeds in the depth direction with time, and a welded portion 5 as shown in FIG. 9A is obtained.
When the laser power is low and the laser irradiation time is short, the depth of the welded part 5 cannot reach the lower metal plate 1 and is in an unjoined state. When the laser power is high and the laser irradiation time is long, the welded portion 5 penetrates the lower metal plate 1 and is in a perforated state, resulting in insufficient bonding strength.

このため、レーザ溶接時におけるレーザパワーとレーザ照射時間は適切な範囲で管理する必要がある。レーザ溶接のスポット点数は、必要とする強度や電気抵抗から算出し、決めることができるが、工数の面から、なるべく1点あたりの溶接面積は大きくしてスポット点数を削減することが工程上望ましい。
しかしながら、溶接点数削減のために、1点あたりの溶接面積S1(図9(b)参照)を大きくしようとした場合、レーザパワーを高く、レーザ照射時間を長くする必要があり、図9(a)に示したように、入熱過多の状態となって溶接部5の一部がスパッタ6(溶融金属が飛散したもの)が生じてしまう。本構成を電子機器類の接合方法として用いた場合、飛散したスパッタ6により、回路の焼損や絶縁不良を引き起こしてしまうという課題がある。
For this reason, it is necessary to manage the laser power and laser irradiation time during laser welding within an appropriate range. The number of spot points for laser welding can be calculated and determined from the required strength and electrical resistance. From the viewpoint of man-hours, it is desirable in the process to reduce the number of spot points by increasing the welding area per point as much as possible. .
However, in order to reduce the number of welding points, when trying to increase the welding area S1 per point (see FIG. 9B), it is necessary to increase the laser power and lengthen the laser irradiation time. As shown in (), the heat input is excessive and a part of the welded portion 5 is sputtered 6 (the molten metal is scattered). When this configuration is used as a method for joining electronic devices, there is a problem that the spatter 6 that is scattered causes circuit burnout or insulation failure.

尚、図9(c)に示すように、溶接部5の外側では金属膜2、4を前記のように電解ニッケルめっき膜で形成した場合は溶接部5の銅より融点が高いために隙間20(未溶接部)ができる。
また、レーザ溶接における入熱過多による穴あき防止方法としては、特許文献1において、重ね合わされた2枚の金属板の少なくともいずれか一方の接合面に低融点金属皮膜を形成する方法が開示されている。この方法によると、銅よりも融点が低いSn系のはんだや、スズめっき膜を被覆することで穴あきを防止することができると述べられている。
As shown in FIG. 9 (c), when the metal films 2 and 4 are formed of the electrolytic nickel plating film as described above on the outside of the welded portion 5, the melting point is higher than the copper of the welded portion 5, and therefore the gap 20 (Unwelded part) is made.
Further, as a method for preventing perforation due to excessive heat input in laser welding, Patent Document 1 discloses a method of forming a low-melting point metal film on at least one of the joint surfaces of two superimposed metal plates. Yes. According to this method, it is stated that perforation can be prevented by covering an Sn-based solder having a melting point lower than that of copper or a tin plating film.

しかしながら、パワーモジュールなどの端子全体に、はんだやスズめっき膜を被覆した場合、端子と外部装置との配線の際にボルト締めが行われるため、柔らかいはんだやスズめっき膜ではボルト締め部分のはんだやスズめっき膜が剥がれてしまい、素地の銅または銅合金が露出し、酸化が進んでしまう。酸化が進むことにより、外観の悪化や接点不良を引き起こすことがある。     However, if the entire terminal of a power module or the like is covered with solder or tin plating film, bolting is performed during wiring between the terminal and an external device. The tin plating film is peeled off, the base copper or copper alloy is exposed, and oxidation proceeds. The progress of oxidation may cause deterioration in appearance and contact failure.

これを回避するために、ボルト締め部分だけに硬いニッケルめっき膜を被覆し、レーザ溶接部分を含むその他の部分には開示特許に示されているSn系はんだやスズめっき膜を被覆する方法もあるが、製造コストが高くなるため適用が困難である。
特開2001−87877号公報
In order to avoid this, there is a method in which only a bolted portion is coated with a hard nickel plating film, and other portions including a laser welding portion are coated with Sn-based solder or tin plating film shown in the disclosed patent. However, it is difficult to apply because of high manufacturing cost.
JP 2001-87877 A

前記したように、レーザ溶接部材の母材の表面を電解ニッケルめっき膜8で被覆し、十分な溶接強度を得るためにレーザパワーを大きくすると、入熱過多の状態となってスパッタ6が生じ、また母材に穴が開いてしまう。また、溶接強度を増大する観点から溶接面積の拡大が必要となるが、前記の電解ニッケルめっき膜8の場合では電解ニッケルめっき膜8同士の接合部がなく銅同士の接合部7のみとなるため銅同士の溶接面積以上に溶接面積を大きくすることはできない。     As described above, when the surface of the base material of the laser welding member is covered with the electrolytic nickel plating film 8 and the laser power is increased to obtain sufficient welding strength, the heat input becomes excessive and spatter 6 is generated. In addition, a hole is made in the base material. Further, from the viewpoint of increasing the welding strength, it is necessary to expand the welding area. However, in the case of the electrolytic nickel plating film 8, there is no joint between the electrolytic nickel plating films 8, and only the joint 7 between copper is present. The weld area cannot be made larger than the weld area between copper.

また、前記の母材の穴あきを防止するために、特許文献1で示すように母材である銅よりも融点が低いSn系のはんだや、スズめっき膜を被覆すると、パワーモジュールの端子などに適用した場合に前記したように製造コストの増大を招くなどの不都合が生じる。また穴あきが防止できたとしてもスパッタを防止することは困難である。
この発明の目的は、前記の課題を解決して、スパッタ発生の防止や溶接面積の拡大ができるレーザ溶接部材およびレーザ溶接方法を提供することにある。
Moreover, in order to prevent the base material from being perforated, as shown in Patent Document 1, when a Sn-based solder having a melting point lower than that of the base material copper or a tin plating film is coated, a terminal of a power module, etc. As described above, inconveniences such as an increase in manufacturing cost occur. Even if perforation can be prevented, it is difficult to prevent sputtering.
An object of the present invention is to provide a laser welding member and a laser welding method capable of solving the above-mentioned problems and preventing spatter generation and expanding a welding area.

前記の目的を達成するために、二枚の金属板を重ね合わせてなるレーザ溶接部材において、上側金属板の少なくともレーザ照射面に上側金属板の融点よりも低い融点を有する金属膜を被覆した構成とする。
また、二枚の金属板を重ね合わせてなるレーザ溶接部材において、二枚の金属板が対向する少なくとも一方の面に前記二枚の金属板の融点よりも低い融点を有する金属膜を被覆した構成とする。
In order to achieve the above object, in a laser welding member formed by superposing two metal plates, at least the laser irradiation surface of the upper metal plate is coated with a metal film having a melting point lower than the melting point of the upper metal plate And
Further, in a laser welding member formed by superposing two metal plates, a configuration in which a metal film having a melting point lower than the melting point of the two metal plates is coated on at least one surface of the two metal plates facing each other And

また、前記上側金属板のレーザ照射面と対向する裏面に前記金属膜を被覆するよい。
また、前記二枚の金属板の材質が銅もしくは銅合金であるとよい。
また、前記金属膜が無電解ニッケル−リンめっき膜、アルミニウム膜もしくは亜鉛膜のいずれかであるとよい。
また、前記金属膜の厚さが1μm〜20μmであるとよい。
The metal film may be coated on the back surface of the upper metal plate facing the laser irradiation surface.
The material of the two metal plates may be copper or a copper alloy.
The metal film may be an electroless nickel-phosphorous plating film, an aluminum film, or a zinc film.
The thickness of the metal film is preferably 1 μm to 20 μm.

また、前記金属膜が蒸着膜であるとよい
また、前記のレーザ溶接部材を用いてレーザ溶接する方法において、前記レーザ溶接部材である二枚の金属板を重ね合わせ、加圧治具で上側金属板と下側金属板を押さえて密着させ、波長が0.19μm〜10.6μmであるレーザ光を上側金属板に照射してレーザ溶接する方法とする。
The metal film may be a vapor deposition film. In the laser welding method using the laser welding member, the two metal plates as the laser welding member are overlapped, and the upper metal is covered with a pressure jig. The plate and the lower metal plate are pressed and brought into close contact, and the upper metal plate is irradiated with a laser beam having a wavelength of 0.19 μm to 10.6 μm for laser welding.

この発明によれば、母材(銅または銅合金)のレーザ照射面に、母材より低融点材料(無電解ニッケルーリンめっき膜など)を被覆したレーザ溶接部材とすることで、スパッタの発生が無いレーザ溶接が可能となる。
また、母材の接合面に低融点材料(無電解ニッケルーリンめっき膜)を被覆した(挟む)レーザ溶接部材とすることで、スポットレーザ溶接1点あたりの溶接面積を大きくできて溶接強度の増大を図ることができるレーザ溶接が可能となる。
According to the present invention, spatter is generated by forming a laser welding member in which a laser irradiation surface of a base material (copper or copper alloy) is coated with a low melting point material (such as an electroless nickel-phosphorous plating film) than the base material. No laser welding is possible.
In addition, by using a laser welding member with a low melting point material (electroless nickel-phosphorus plating film) coated on the joint surface of the base material, the welding area per spot laser welding can be increased and the welding strength increased. Laser welding can be achieved.

実施の形態を以下の実施例で説明する。     Embodiments will be described in the following examples.

図1は、この発明の第1実施例のレーザ溶接部材の構成図であり、同図(a)は要部断面図、同図(b)は同図(a)のA−A線で切断した溶接部の平面図、同図(c)は同図(a)のB部拡大図である。A−A線は無電解ニッケル−リンめっき膜9と電解ニッケルめっき膜8の接触界面に位置する。
図1(a)において、電解ニッケル膜8が被覆された下側金属板1の上面に、無電解ニッケル−リンめっき膜9が被覆された上側金属板3を重ね合わせ、所定圧力を負荷した状態で図示しないレーザ光を無電解ニッケル−リンめっき膜9が被覆された上側金属板3の上面より照射する。
FIG. 1 is a block diagram of a laser welding member according to a first embodiment of the present invention, in which FIG. 1 (a) is a sectional view of an essential part, and FIG. 1 (b) is cut along the line AA in FIG. The top view of the welded part and the figure (c) are the B section enlarged views of the figure (a). The AA line is located at the contact interface between the electroless nickel-phosphorous plating film 9 and the electrolytic nickel plating film 8.
In FIG. 1A, the upper metal plate 3 coated with the electroless nickel-phosphorous plating film 9 is superimposed on the upper surface of the lower metal plate 1 coated with the electrolytic nickel film 8, and a predetermined pressure is applied. The laser beam (not shown) is irradiated from the upper surface of the upper metal plate 3 coated with the electroless nickel-phosphorous plating film 9.

このときの下側金属板1及び上側金属板3は銅または銅合金である。下側金属板1の厚さは1mm、上側金属板3の厚さは0.3mm〜1.0mmである。無電解ニッケル−リンめっき膜9及び電解ニッケルめっき膜8の厚さは1μm〜20μmの範囲とするのが良く、好ましくは3μm〜7μmとするのが良い。
レーザエネルギーがレーザ照射面の無電解ニッケル−リンめっき膜9により熱エネルギーに変換され、溶接部5が形成される。このとき、銅及び銅合金の融点は900℃〜1083℃である。銅合金としては、黄銅やリン青銅などがある。無電解ニッケル−リンめっき膜の融点は890℃であるため、図1(a)に示した2枚の銅または銅合金板の界面付近に位置する、溶接部5の周囲の無電解ニッケル−リンめっき膜9も、融点を超えた領域が溶融し、下側の電解ニッケル−リンめっき膜8と接合される。
At this time, the lower metal plate 1 and the upper metal plate 3 are made of copper or a copper alloy. The lower metal plate 1 has a thickness of 1 mm, and the upper metal plate 3 has a thickness of 0.3 mm to 1.0 mm. The thickness of the electroless nickel-phosphorous plating film 9 and the electrolytic nickel plating film 8 may be in the range of 1 μm to 20 μm, preferably 3 μm to 7 μm.
The laser energy is converted into thermal energy by the electroless nickel-phosphorous plating film 9 on the laser irradiation surface, and the weld 5 is formed. At this time, the melting points of copper and copper alloy are 900 ° C. to 1083 ° C. Copper alloys include brass and phosphor bronze. Since the melting point of the electroless nickel-phosphorous plating film is 890 ° C., the electroless nickel-phosphorus around the weld 5 located near the interface between the two copper or copper alloy plates shown in FIG. The plating film 9 also melts in the region exceeding the melting point and is joined to the lower electrolytic nickel-phosphorous plating film 8.

無電解ニッケル−リンめっき膜9はニッケルにリンを添加した無電解のめっき膜9であるが、無電解ニッケルめっき膜には、無電解ニッケル−ボロンめっき膜もある。しかし、この無電解ニッケル−ボロンめっき膜の融点は1400℃であり、母材の銅または銅合金の融点(900℃〜1083℃)よりも高いために適さない。
このように、2枚の銅または銅合金の界面に、これらの金属板の融点よりも低い融点を有する金属膜を被覆することにより、銅同士の溶接部近傍に無電解ニッケル−リンめっき膜9と電解ニッケルめっき膜8のニッケル同士の接合部12が形成され、図9に示すように銅の融点より高い融点を有する電解ニッケルめっき膜8のような金属膜2、4を被覆した場合に比べ、ニッケル同士の接合部12の分だけ溶接面積を大きくすることが可能となる。
The electroless nickel-phosphorous plating film 9 is an electroless plating film 9 in which phosphorus is added to nickel, but the electroless nickel plating film includes an electroless nickel-boron plating film. However, the melting point of the electroless nickel-boron plating film is 1400 ° C., which is higher than the melting point (900 ° C. to 1083 ° C.) of the base material copper or copper alloy, which is not suitable.
Thus, the electroless nickel-phosphorous plating film 9 is formed in the vicinity of the welded portion between the copper by covering the interface between the two copper or copper alloys with a metal film having a melting point lower than the melting point of these metal plates. Compared to the case where the nickel-to-nickel joint portion 12 of the electrolytic nickel plating film 8 is formed and the metal films 2 and 4 such as the electrolytic nickel plating film 8 having a melting point higher than that of copper are coated as shown in FIG. The welding area can be increased by the amount of the joint portion 12 between nickel.

図1(b)において、銅の母材同士が接合された部分の切断面11の周囲に、ニッケルめっき膜同士の接合部12(無電解ニッケル−リンめっき膜9と電解ニッケルめっき膜8の接合部12)の切断面12aがあり、溶接面積は銅/銅の溶接部5の切断面11の面積S1とニッケル−リン/ニッケルの接合部12の切断面12aの面積S2を合わせた面積となる。一方、図9に示した従来のレーザ溶接部材の構成(金属層2、4が電解ニッケルめっき膜8の場合)の溶接面積はS1のみとなるので、図1の方が図9より溶接面積が大きくなる。     In FIG. 1B, a joint portion 12 (joint of electroless nickel-phosphorus plating film 9 and electrolytic nickel plating film 8) between nickel plating films is formed around a cut surface 11 where copper base materials are joined. Part 12) has a cut surface 12a, and the welding area is the sum of the area S1 of the cut surface 11 of the copper / copper weld 5 and the area S2 of the cut surface 12a of the nickel-phosphorus / nickel joint 12 . On the other hand, since the welding area of the configuration of the conventional laser welding member shown in FIG. 9 (when the metal layers 2 and 4 are the electrolytic nickel plating film 8) is only S1, the welding area of FIG. growing.

図2に、下側金属板1に電解ニッケルめっき膜8を被覆した無酸素銅を用い、上側金属板3に電解ニッケルめっき8と無電解ニッケル−リンめっき膜8を被覆した無酸素銅を用いてYAGレーザ溶接(波長1064nm)を実施した場合のレーザピークパワーと溶接面積の測定結果を示す。
用いたYAGレーザ出射ユニットの焦点距離は70mm、ファイバコア径はφ0.4mm、焦点はずしは無し(上側金属板3表面に焦点を結ぶように焦点位置(出射ユニット高さ)を調節)、レーザピークパワーは3.5kW〜6.0kW、照射エネルギーは100J固定とした。無電解ニッケル−リンめっき膜9の厚さおよび電解ニッケルめっき膜の厚さ8は5μm±1μmとした。また、下側金属板1の母材厚さを1.0mm、上側金属板3の母材厚さを0.5mmとした。
In FIG. 2, oxygen-free copper coated with the electrolytic nickel plating film 8 is used for the lower metal plate 1, and oxygen-free copper coated with the electrolytic nickel plating 8 and the electroless nickel-phosphorous plating film 8 is used for the upper metal plate 3. The measurement results of laser peak power and welding area when YAG laser welding (wavelength 1064 nm) is performed are shown.
The focal length of the YAG laser emission unit used is 70 mm, the fiber core diameter is φ0.4 mm, there is no defocusing (the focal point position (emission unit height is adjusted so as to focus on the surface of the upper metal plate 3)), laser peak The power was 3.5 kW to 6.0 kW, and the irradiation energy was fixed at 100 J. The thickness of the electroless nickel-phosphorous plating film 9 and the thickness 8 of the electrolytic nickel plating film were 5 μm ± 1 μm. The base metal thickness of the lower metal plate 1 was 1.0 mm, and the base metal thickness of the upper metal plate 3 was 0.5 mm.

図3は、レーザ溶接方法の手順を説明する図であり、同図(a)および同図(b)は工程順に示した要部製造工程図である。
まず、図3(a)おいて、XYテーブル41上に下側金属板1を乗せ、この下側金属板1の上面に上側金属板3を乗せる。出射ユニットに内蔵されたCCDカメラ画像により、上側金属板3を被覆している無電解ニッケル−リンめっき膜9の表面に目視で焦点を合わせる。焦点合わせは出射ユニット42が上下動できる図示しないZ軸テーブルによって行う。出射ユニット42はこの図示しないZ軸テーブルに固定されており、Z軸テーブルを上下動させることにより、焦点合わせを行う。
FIG. 3 is a diagram for explaining the procedure of the laser welding method, and FIG. 3A and FIG. 3B are main part manufacturing process diagrams shown in the order of processes.
First, in FIG. 3A, the lower metal plate 1 is placed on the XY table 41, and the upper metal plate 3 is placed on the upper surface of the lower metal plate 1. The surface of the electroless nickel-phosphorous plating film 9 covering the upper metal plate 3 is visually focused by the CCD camera image incorporated in the emission unit. Focusing is performed by a Z-axis table (not shown) in which the emission unit 42 can move up and down. The emission unit 42 is fixed to the Z-axis table (not shown), and focusing is performed by moving the Z-axis table up and down.

次に、図3(b)において、加圧治具43(先端が二股に分かれたピンセットのような形状をしている治具)により、上側金属板3上面から所定圧力を負荷した状態で、上側金属板3を被覆している無電解ニッケル−リンめっき膜9上面にYAGレーザ光30を所定パワー照射してレーザ溶接を行う。
ここで用いた上側金属板3は無酸素銅で、YAGレーザ光30の基本波(1064nm)における吸収率が10%程度と低く溶接性が悪いため、図3で示すようにレーザ照射面に無電解ニッケル−リンめっき膜9を被覆したものを用いた。つまり、無電解ニッケル−リンめっき膜9は上側金属板3の全表面に処理されている。下側金属板1は直接YAGレーザ光30が照射されないため、めっき処理無し状態でも使用できるが、酸化防止目的で全面に電解ニッケルめっき膜8を被覆した。
Next, in FIG. 3B, with a predetermined pressure applied from the upper surface of the upper metal plate 3 by the pressing jig 43 (a jig having a shape like tweezers whose tip is divided into two branches) Laser welding is performed by irradiating the upper surface of the electroless nickel-phosphorous plating film 9 covering the upper metal plate 3 with a YAG laser beam 30 with a predetermined power.
The upper metal plate 3 used here is oxygen-free copper, and has a low absorptivity of about 10% in the fundamental wave (1064 nm) of the YAG laser beam 30 and poor weldability. Therefore, as shown in FIG. The one coated with an electrolytic nickel-phosphorus plating film 9 was used. That is, the electroless nickel-phosphorous plating film 9 is processed on the entire surface of the upper metal plate 3. Since the lower metal plate 1 is not directly irradiated with the YAG laser beam 30, it can be used without plating treatment, but the entire surface is covered with an electrolytic nickel plating film 8 for the purpose of preventing oxidation.

前記の図2に示した通り、上側金属板3に電解ニッケルめっき膜8を被覆した場合よりも、無電解ニッケル−リンめっき膜9を被覆した場合の方が、同じレーザピークパワーであっても溶接面積を大きくすることができた。
また、上側金属板3に電解ニッケルめっき膜8を被覆した場合には、評価した3.5kW〜6.0kWのレーザピークパワー全域で溶接時にスパッタ(溶融状態の金属が飛散したもの)が発生したが、上側金属板3に無電解ニッケル−リンめっき膜9を被覆した場合にはスパッタは全く発生することが無く、目的を達成することができた。
As shown in FIG. 2, the same laser peak power is obtained when the electroless nickel-phosphorous plating film 9 is coated than when the upper metal plate 3 is coated with the electrolytic nickel plating film 8. The welding area could be increased.
Moreover, when the electrolytic nickel plating film 8 was coated on the upper metal plate 3, spatter (melted metal scattered) occurred during welding in the entire laser peak power of 3.5 kW to 6.0 kW evaluated. However, when the upper metal plate 3 was coated with the electroless nickel-phosphorus plating film 9, no spatter was generated and the object could be achieved.

ニッケルめっき膜質を電解ニッケルめっき膜8から無電解ニッケルめっき膜9に変えたことにより、溶接面積の拡大とスパッタ発生の抑制を図ることができる。これは、ニッケルめっき膜の低融点化(電解ニッケルめっき膜8の融点は1450℃であるが、無電解ニッケル−リンめっき膜9の融点は890℃)による効果である。
図1(a)において、YAGレーザ光30が上側金属板3の表面に形成した無電解ニッケル−リンめっき膜9に吸収され、熱エネルギーに変換されることにより無電解ニッケル−リンめっき膜9は融点の890℃を越した時点で溶融する。
By changing the nickel plating film quality from the electrolytic nickel plating film 8 to the electroless nickel plating film 9, it is possible to increase the welding area and suppress the generation of spatter. This is an effect of lowering the melting point of the nickel plating film (the melting point of the electrolytic nickel plating film 8 is 1450 ° C., but the melting point of the electroless nickel-phosphorous plating film 9 is 890 ° C.).
In FIG. 1A, the YAG laser beam 30 is absorbed by the electroless nickel-phosphorous plating film 9 formed on the surface of the upper metal plate 3, and converted into thermal energy, whereby the electroless nickel-phosphorous plating film 9 is It melts when the melting point exceeds 890 ° C.

さらに継続してレーザ光を照射すると母材の無酸素銅にレーザが照射され、溶融部5が形成される。このとき、上側金属板3と下側金属板1との界面に存在する上側金属板3表面の無電解ニッケル−リンめっき膜9は、その融点が890℃と銅の融点の1083℃よりも低いため、溶融部5(温度は最低でも銅の融点の1083℃)に近い部分が一緒に溶接することで、ニッケルめっき膜同士の接合部12が形成される。     When the laser beam is further continuously irradiated, the laser is irradiated to the base material oxygen-free copper, and the melted portion 5 is formed. At this time, the electroless nickel-phosphorous plating film 9 on the surface of the upper metal plate 3 existing at the interface between the upper metal plate 3 and the lower metal plate 1 has a melting point lower than 890 ° C. and the melting point of copper, 1083 ° C. Therefore, the joint portion 12 between the nickel plating films is formed by welding together the portions close to the melting portion 5 (the temperature is at least 1083 ° C., which is the melting point of copper).

図1(b)において、下側金属板1まで貫通しない条件(レーザピークパワー4.0kW〜5.0kW)で、上側金属板3に電解ニッケルめっき膜8を形成した場合の溶接面積S1に比べ、無電解ニッケル−リンめっき膜9を被覆した場合の溶接面積(S1+S)の方が約3倍の溶接面積を得ることができた。
溶接面積が増大したことより、例えば、従来30点のスポットレーザ溶接を行っていた箇所を10点まで減らすことが可能となり、工数を1/3に削減することができる。
In FIG. 1 (b), compared with the welding area S1 when the electrolytic nickel plating film 8 is formed on the upper metal plate 3 under the condition that the lower metal plate 1 does not penetrate (laser peak power 4.0 kW to 5.0 kW). The welding area (S1 + S) when the electroless nickel-phosphorous plating film 9 was coated was able to obtain a welding area approximately three times as large.
Since the welding area has increased, for example, it has become possible to reduce the number of spots where 30 spot laser welding has been conventionally performed to 10 points, and the man-hour can be reduced to 1/3.

また、上側金属板3に電解ニッケルめっき膜8を被覆した場合には、スパッタが発生したが、同金属板に無電解ニッケル−リンめっき膜9を被覆した場合にはスパッタの発生が無くなった。スパッタ発生が防止されるメカニズムについて図3および図4を用いて説明する。
ここでは、母材である銅の表面に電解ニッケルめっき膜8と無電解ニッケル−リンめっき膜9をそれぞれ被覆し、YAGレーザ光30を照射して実験を行った。
Further, when the upper metal plate 3 was coated with the electrolytic nickel plating film 8, spatter was generated, but when the electroless nickel-phosphorous plating film 9 was coated on the same metal plate, the generation of spatter disappeared. A mechanism for preventing the occurrence of spatter will be described with reference to FIGS.
Here, an experiment was performed by coating the surface of copper as a base material with an electrolytic nickel plating film 8 and an electroless nickel-phosphorous plating film 9 and irradiating YAG laser light 30.

図4は、レーザ光のパルス幅と溶接部の深さの関係を示す図である。電解ニッケルめっき膜8の場合と無電解ニッケル−リンめっき膜9の場合を示す。レーザピークパワーは5.5kWでパルス幅は1msから6msの矩形波パルスのYAGレーザ光30である。電解ニッケルめっき膜8は溶接部5の深さが短時間で深くなるのに対して、無電解ニッケル−リンめっき膜9では溶接部5の深さが深くなるのに時間がかる。     FIG. 4 is a diagram showing the relationship between the pulse width of the laser beam and the depth of the weld. The case of the electrolytic nickel plating film 8 and the case of the electroless nickel-phosphorous plating film 9 are shown. The YAG laser beam 30 is a rectangular wave pulse having a laser peak power of 5.5 kW and a pulse width of 1 ms to 6 ms. The electrolytic nickel plating film 8 increases the depth of the welded portion 5 in a short time, whereas the electroless nickel-phosphorous plated film 9 takes time to increase the depth of the welded portion 5.

図5は、溶接深さが進行して行く様子を示した図である。電解ニッケルめっき膜8の場合と無電解ニッケル−リンめっき膜9の場合を示す。電解ニッケルめっき膜8の場合、Aの段階では、めっき面8に照射されたYAGレーザ光30はこの面で吸収されて熱エネルギーに変換されて、Bの段階では、めっき膜8の溶接に至る。めっき膜8の融点は1450℃であり、めっき膜8下部の母材である銅3の融点は1084℃であるため、Cの段階では、YAGレーザ光30が照射されて表面のめっき層8が溶接した途端に下地の金属板3(銅)は溶接状態にあると推測される。また、銅の融点付近におけるレーザ(YAGレーザ)吸収率は28%程度になるので、Dの段階では、YAGレーザ光30を十分に吸収できるためキーホールが形成されるのが早く。パルス幅1msから4msの間で溶け込みが深くなりスパッタ6が発生したと考えられる。     FIG. 5 is a diagram illustrating a state in which the welding depth progresses. The case of the electrolytic nickel plating film 8 and the case of the electroless nickel-phosphorous plating film 9 are shown. In the case of the electrolytic nickel plating film 8, in the stage A, the YAG laser light 30 irradiated on the plating surface 8 is absorbed by this surface and converted into heat energy, and in the stage B, the plating film 8 is welded. . Since the melting point of the plating film 8 is 1450 ° C. and the melting point of the copper 3 which is the base material of the plating film 8 is 1084 ° C., the YAG laser beam 30 is irradiated at the stage C, and the plating layer 8 on the surface is formed. As soon as welding is performed, the underlying metal plate 3 (copper) is presumed to be in a welded state. Further, since the laser (YAG laser) absorptance in the vicinity of the melting point of copper is about 28%, the YAG laser beam 30 can be sufficiently absorbed at the stage D, so that the keyhole is formed quickly. It is considered that the spatter 6 occurred due to the deep penetration during the pulse width of 1 ms to 4 ms.

一方、無電解ニッケル−リンめっき膜9の場合、Aの段階で、めっき面に照射されたYAGレーザ光30はめっき膜9で吸収され、Bの段階で、めっき膜9の融点890℃に達すると溶接する。しかしながら下地の金属板3(銅)の融点が1084℃であるために、表面の無電解ニッケル−リン膜9が溶接しても下地の銅は固体であり、Cの段階では、この固体の銅(吸収率9.1%)にYAGレーザ光30が照射されると溶接の進行速度が低下する。Dの段階では、パルス幅のある閾値を超えるとキーホール型の溶け込みが形成される。このDの段階に至るまでの時間(閾値)は図から4ms程度後であるものと推測できる。     On the other hand, in the case of the electroless nickel-phosphorous plating film 9, the YAG laser light 30 irradiated on the plating surface is absorbed by the plating film 9 at the stage A, and reaches the melting point 890 ° C. of the plating film 9 at the stage B. Then it welds. However, since the melting point of the underlying metal plate 3 (copper) is 1084 ° C., the underlying copper is solid even when the electroless nickel-phosphorus film 9 on the surface is welded. When the YAG laser beam 30 is irradiated to (absorption rate 9.1%), the welding progress speed decreases. At the stage D, when a pulse width exceeds a certain threshold, a keyhole-type penetration is formed. It can be inferred that the time (threshold value) until reaching the stage D is about 4 ms later.

このように、電解ニッケルめっき膜8の場合には溶け込みが初期段階から急激に起きるためスパッタ6が発生し、無電解ニッケル−リンめっき膜9の場合は時間をかけて溶け込みが進行して行くためにスパッタ6の発生が抑えられるものと推測される。     As described above, in the case of the electrolytic nickel plating film 8, the spatter 6 occurs because the abrupt dissolution occurs from the initial stage, and in the case of the electroless nickel-phosphorous plating film 9, the melting proceeds over time. It is presumed that the generation of spatter 6 is suppressed.

図6は、この発明の第2実施例のレーザ溶接部材の溶接部の要部断面図である。上側金属板及び下側金属板の両方ともに無電解ニッケル−リンめっき膜9を被覆した場合である。この場合も図1で示した第1実施例と同様の効果(溶接面積の拡大とスパッタ発生なし)が得られる。尚、図中の符号の13はニッケル−リン/ニッケル−リンの接合部であり、この分が溶接面積を拡大している分である。     FIG. 6 is a cross-sectional view of the main part of the welded portion of the laser welding member according to the second embodiment of the present invention. This is a case where both the upper metal plate and the lower metal plate are coated with the electroless nickel-phosphorous plating film 9. In this case as well, the same effects as in the first embodiment shown in FIG. Incidentally, reference numeral 13 in the figure denotes a nickel-phosphorus / nickel-phosphorus joint, which is an increase in the welding area.

図7は、この発明の第3実施例のレーザ溶接部材の溶接部の要部断面図である。上側金属板3側に無電解ニッケル−リンめっき膜9を被覆し、上側金属板3と対向する下側金属板1の表面には銅の素地が出ている状態である。
この場合においても、溶接した無電解ニッケル−リンめっき膜9が、下側金属板1の表面に濡れ広がることにより接合され、図1で示した第1実施例と同様の効果(溶接面積の拡大とスパッタ発生なし)が得られる。第3実施例においては、上側金属板3に対向する下側金属板1の表面のみが銅の素地が露出した状態を示したが、下側金属板1のその他の面も銅の素地が露出していてもよい。
FIG. 7 is a cross-sectional view of the main part of the welded portion of the laser welding member of the third embodiment of the present invention. The electroless nickel-phosphorous plating film 9 is coated on the upper metal plate 3 side, and a copper base is exposed on the surface of the lower metal plate 1 facing the upper metal plate 3.
Also in this case, the welded electroless nickel-phosphorous plating film 9 is joined by spreading over the surface of the lower metal plate 1, and the same effect as the first embodiment shown in FIG. And no spatter generation). In the third embodiment, only the surface of the lower metal plate 1 facing the upper metal plate 3 is exposed to the copper base. However, the other surfaces of the lower metal plate 1 are exposed to the copper base. You may do it.

尚、図中の符号の14はニッケル−リン/銅の接合部であり、この分が溶接面積を拡大している分である。     Incidentally, reference numeral 14 in the figure denotes a nickel-phosphorus / copper joint, and this is the amount by which the welding area is enlarged.

図8は、この発明の第4実施例のレーザ溶接部材の溶接部の要部断面図である。上側金属板3の表面に電解ニッケルめっき8を形成し,下側金属板1の表面に無電解ニッケル−リンめっき9を形成した場合である.この場合はスパッタ6の発生はあるが、溶接面積の拡大が得られる。
尚、図中の符号の15はニッケル/ニッケル−リンの接合部であり、この分が溶接面積を拡大している分である。
FIG. 8 is a cross-sectional view of the main part of the welded portion of the laser welding member according to the fourth embodiment of the present invention. This is the case where the electrolytic nickel plating 8 is formed on the surface of the upper metal plate 3 and the electroless nickel-phosphorous plating 9 is formed on the surface of the lower metal plate 1. In this case, spatter 6 is generated, but the weld area can be enlarged.
Incidentally, reference numeral 15 in the figure is a nickel / nickel-phosphorus joint, and this is the amount of enlargement of the welding area.

図1、図6、図7、図8で示した本発明の第1〜第8実施例では、上側金属板3または/および下側金属板1表面うを被覆する低融点金属膜として、無電解ニッケル−リンめっき膜9(融点890℃)を用いた例を示したが、母材の銅または銅合金の融点(900℃〜1083℃)以下であれば、他の金属膜を用いても同様の効果が得られる。
例えば、金属膜の材質としてアルミ(融点660℃)、亜鉛(融点420℃)を用いても良い。また、これらの低融点金属膜は、めっき法及び蒸着法によって母材の金属板の表面に処理すると良い。
In the first to eighth embodiments of the present invention shown in FIGS. 1, 6, 7, and 8, the low melting point metal film covering the upper metal plate 3 and / or the lower metal plate 1 surface is not used. Although the example using the electrolytic nickel-phosphorus plating film 9 (melting point 890 ° C.) is shown, other metal films may be used as long as they are below the melting point (900 ° C. to 1083 ° C.) of the base copper or copper alloy. Similar effects can be obtained.
For example, aluminum (melting point: 660 ° C.) or zinc (melting point: 420 ° C.) may be used as the material of the metal film. Further, these low melting point metal films are preferably processed on the surface of the base metal plate by plating and vapor deposition.

また、前記の金属膜の膜厚は、1μm〜10μmの範囲とする。1μm未満では、膜厚が薄すぎて被覆した効果がなくなる。また10μmを超えても効果があまり変わらなく、被覆するためのコストが増大するだけである。金属膜の膜厚としては5μm程度が好適である。
また、前記実施例のレーザ光はYAGレーザ光30であるが、これに限らずレーザ光の波長が0.19μm〜10.6μmの範囲であれば使用できる。0.19μm未満では、エネルギーが高すぎまた、レーザ光の浸透深さが浅すぎるのでスパッタが発生し易くなる。10.6μmを超えるとエネルギーが弱すぎて溶融させることが困難になる。
The film thickness of the metal film is in the range of 1 μm to 10 μm. If the thickness is less than 1 μm, the coating effect is lost because the film thickness is too thin. Moreover, even if it exceeds 10 micrometers, an effect does not change so much and only the cost for coating increases. The thickness of the metal film is preferably about 5 μm.
In addition, the laser beam of the above embodiment is the YAG laser beam 30, but not limited to this, any laser beam having a wavelength in the range of 0.19 μm to 10.6 μm can be used. If it is less than 0.19 μm, the energy is too high and the penetration depth of the laser beam is too shallow, so that sputtering is likely to occur. If it exceeds 10.6 μm, the energy is too weak to be melted.

この発明の第1実施例のレーザ溶接部材の構成図であり、(a)は要部断面図、(b)は(a)のA−A線で切断した溶接部の平面図、(c)は(a)のB部拡大図BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the laser welding member of 1st Example of this invention, (a) is principal part sectional drawing, (b) is a top view of the welding part cut | disconnected by the AA line of (a), (c). Is an enlarged view of part B of (a) レーザピークパワーと溶接面積の関係を示す図Diagram showing the relationship between laser peak power and welding area レーザ溶接方法の手順を説明する図であり、(a)および(b)は工程順に示した要部製造工程図It is a figure explaining the procedure of a laser welding method, (a) And (b) is the principal part manufacturing process figure shown to process order レーザ光のパルス幅と溶接部の深さの関係を示す図The figure which shows the relationship between the pulse width of the laser beam and the depth of the weld 溶接深さが進行して行く様子を示した図Diagram showing how the welding depth progresses この発明の第2実施例のレーザ溶接部材の溶接部の要部断面図Sectional drawing of the principal part of the welding part of the laser welding member of 2nd Example of this invention この発明の第3実施例のレーザ溶接部材の溶接部の要部断面図Sectional drawing of the principal part of the welding part of the laser welding member of 3rd Example of this invention この発明の第4実施例のレーザ溶接部材の溶接部の要部断面図Sectional drawing of the principal part of the welding part of the laser welding member of 4th Example of this invention 従来のレーザ溶接部材の構成図であり、(a)は要部断面図、(b)は(a)のA−A線で切断した溶接部の平面図、(c)は(a)のC部拡大図It is a block diagram of the conventional laser welding member, (a) is principal part sectional drawing, (b) is a top view of the welding part cut | disconnected by the AA line of (a), (c) is C of (a). Enlarged view

1 下側金属板
2、4 金属膜
3 上側金属板
5 溶接部
6 スパッタ
7、11 銅/銅の溶接部の切断面
8 電解ニッケルめっき膜
9 無電解ニッケル−リンめっき膜
12 ニッケル−リン/ニッケルの接合部
12a ニッケル−リン/ニッケルの接合部の切断面
13 ニッケル−リン/ニッケル−リンの接合部
14 ニッケル−リン/銅の接合部
15 ニッケル/ニッケル−リンの接合部
20 隙間
30 YAGレーザ
41 X−Yステージ
42 照射ユニット
43 加圧治具
S1 銅/銅の溶接部の切断面の面積
S2 ニッケル−リン/ニッケルの接合部の切断面の面積
DESCRIPTION OF SYMBOLS 1 Lower metal plate 2, 4 Metal film 3 Upper metal plate 5 Welded part 6 Sputter 7, 11 Cut surface of copper / copper welded part 8 Electrolytic nickel plating film 9 Electroless nickel-phosphorus plating film 12 Nickel-phosphorus / nickel 12a Nickel-phosphorus / nickel joint cut surface 13 Nickel-phosphorus / nickel-phosphorus joint 14 Nickel-phosphorus / copper joint 15 Nickel / nickel-phosphorus joint 20 Clearance 30 YAG laser 41 XY stage 42 Irradiation unit 43 Pressure jig S1 Area of cut surface of copper / copper weld S2 Area of cut surface of nickel-phosphorus / nickel joint

Claims (7)

二枚の金属板を重ね合わせてなるレーザ溶接部材において、二枚の金属板が対向する少なくとも一方の面に前記二枚の金属板の融点よりも低い融点を有する金属膜を被覆したことを特徴としたレーザ溶接部材。 In a laser welding member formed by superposing two metal plates, at least one surface where the two metal plates face each other is coated with a metal film having a melting point lower than the melting point of the two metal plates. Laser welding member. 上側金属板のレーザ照射面と対向する裏面に前記金属膜を被覆することを特徴とする請求項1に記載のレーザ溶接部材。 The laser welding member according to claim 1, wherein the metal film is coated on a back surface of the upper metal plate facing the laser irradiation surface. 前記二枚の金属板の材質が銅もしくは銅合金であることを特徴とする請求項1または2に記載のレーザ溶接部材。 The laser welding member according to claim 1 or 2, wherein a material of the two metal plates is copper or a copper alloy. 前記金属膜が無電解ニッケル−リンめっき膜、アルミニウム膜もしくは亜鉛膜のいずれかであることを特徴とする請求項1〜3のいずれか一項に記載のレーザ溶接部材。 The laser welding member according to any one of claims 1 to 3, wherein the metal film is any one of an electroless nickel-phosphorous plating film, an aluminum film, and a zinc film. 前記金属膜の厚さが1μm〜20μmであることを特徴とする請求項1〜4のいずれか一項に記載のレーザ溶接部材。 The thickness of the said metal film is 1 micrometer-20 micrometers, The laser welding member as described in any one of Claims 1-4 characterized by the above-mentioned. 前記金属膜が蒸着膜であることを特徴とする請求項1〜5のいずれか一項に記載のレーザ溶接部材。 The laser welding member according to any one of claims 1 to 5, wherein the metal film is a vapor deposition film. 前記請求項1〜6のいずれか一項に記載のレーザ溶接部材を用いてレーザ溶接する方法において、前記レーザ溶接部材である二枚の金属板を重ね合わせ、加圧治具で上側金属板と下側金属板を押さえて密着させ、波長が0.19μm〜10.6μmであるレーザ光を上側金属板に照射してレーザ溶接することを特徴とするレーザ溶接方法。 In the method of performing laser welding using the laser welding member according to any one of claims 1 to 6, two metal plates that are the laser welding member are overlapped, and an upper metal plate and A laser welding method, wherein the lower metal plate is pressed and adhered, and laser welding is performed by irradiating the upper metal plate with laser light having a wavelength of 0.19 μm to 10.6 μm.
JP2012006732A 2012-01-17 2012-01-17 Laser welding member and laser welding method Expired - Fee Related JP5403079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012006732A JP5403079B2 (en) 2012-01-17 2012-01-17 Laser welding member and laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012006732A JP5403079B2 (en) 2012-01-17 2012-01-17 Laser welding member and laser welding method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007078923A Division JP5239187B2 (en) 2007-03-26 2007-03-26 Laser welding member and laser welding method

Publications (2)

Publication Number Publication Date
JP2012071356A true JP2012071356A (en) 2012-04-12
JP5403079B2 JP5403079B2 (en) 2014-01-29

Family

ID=46167721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012006732A Expired - Fee Related JP5403079B2 (en) 2012-01-17 2012-01-17 Laser welding member and laser welding method

Country Status (1)

Country Link
JP (1) JP5403079B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218137A (en) * 1995-02-14 1996-08-27 Kobe Steel Ltd Copper or copper alloy member excellent in laser weldability
JPH11191607A (en) * 1997-12-26 1999-07-13 Hitachi Cable Ltd Lead frame for semiconductor
JP2001087877A (en) * 1999-09-20 2001-04-03 Sony Corp Laser beam welding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218137A (en) * 1995-02-14 1996-08-27 Kobe Steel Ltd Copper or copper alloy member excellent in laser weldability
JPH11191607A (en) * 1997-12-26 1999-07-13 Hitachi Cable Ltd Lead frame for semiconductor
JP2001087877A (en) * 1999-09-20 2001-04-03 Sony Corp Laser beam welding method

Also Published As

Publication number Publication date
JP5403079B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
CN107405725B (en) Laser welding method using micro-welding piece pattern
CN211903865U (en) Vapor chamber
EP0491959B1 (en) Method of welding metals of different kind by laser
JPWO2010016182A1 (en) Manufacturing method of sealed secondary battery
CN108463308A (en) The method of laser spot welding coated steel
JP2006224134A (en) Structure, method, and equipment for joining different kind of metals by high energy beam
JP2008028286A (en) Method for manufacturing semiconductor device
JP2010075967A (en) Method for welding different kind of metal
JP2011005499A (en) Method for laser butt-welding aluminum member and copper member
JP5239187B2 (en) Laser welding member and laser welding method
JP2010082673A (en) Laser beam welding member and laser beam welding method
CN108031939B (en) Method for laser welding of magnetic material
JP6376221B2 (en) Laser welded joint and manufacturing method thereof
JP5403079B2 (en) Laser welding member and laser welding method
JPH08218137A (en) Copper or copper alloy member excellent in laser weldability
JP5040269B2 (en) Laser welding method
JP2009226420A (en) Laser welding method
JP2010253493A (en) Method and apparatus for parallel seam welding
JP2010069489A (en) Method of laser-welding copper member
JP2016128185A (en) Manufacturing method of joint structure and joint structure
US10576565B2 (en) Laser welding of copper with reaction materials
JP2020093285A (en) Method of joining dissimilar metals
JP2010051989A (en) Laser joining method
JP2006198678A (en) Different kind of metal joining method
JP5231073B2 (en) Welded joint and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5403079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees