JP2012069974A - Cleaning liquid supply system and cleaning system - Google Patents

Cleaning liquid supply system and cleaning system Download PDF

Info

Publication number
JP2012069974A
JP2012069974A JP2011243186A JP2011243186A JP2012069974A JP 2012069974 A JP2012069974 A JP 2012069974A JP 2011243186 A JP2011243186 A JP 2011243186A JP 2011243186 A JP2011243186 A JP 2011243186A JP 2012069974 A JP2012069974 A JP 2012069974A
Authority
JP
Japan
Prior art keywords
sulfuric acid
acid solution
cleaning
cleaning liquid
liquid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011243186A
Other languages
Japanese (ja)
Inventor
Norito Ikemiya
範人 池宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011243186A priority Critical patent/JP2012069974A/en
Publication of JP2012069974A publication Critical patent/JP2012069974A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To control a persulfuric acid concentration of a solution supplied to a cleaning side by quickly measuring a persulfuric acid concentration produced in a cleaning liquid supply system.SOLUTION: The cleaning liquid supply system includes: an electrolytic reaction apparatus for generating a persulfate ion through an electrolytic reaction of a sulfuric acid solution; a circulation line for supplying the sulfuric acid solution containing the persulfate ion generated in the electrolytic reaction apparatus as part or whole of a cleaning liquid to a cleaning side, where a material is cleaned, and receiving the sulfuric acid solution used as the cleaning liquid which is returned from the cleaning side to supply part or whole of the sulfuric acid solution to the electrolytic reaction apparatus; a storage tank for storing the sulfuric acid solution to circulate the sulfuric acid solution to the electrolytic reaction apparatus, while admitting the sulfuric acid solution regulated to 10-90°C from the return side of the circulation line and feeding the sulfuric acid solution in the storage tank to the deliver side of the circulation line, where it is heated to 100-170°C to be supplied to the cleaning side; and a persulfuric acid concentration measuring apparatus for measuring a persulfuric acid concentration in the sulfuric acid solution in the storage tank.

Description

本発明は、シリコンウエハなどに付着した汚染物などを剥離効果が高い過硫酸および硫酸を含む溶液で洗浄剥離する際に、硫酸溶液を繰り返し利用しつつ過硫酸を再生して洗浄に供することが可能な洗浄液供給システムおよび洗浄システムに関するものである。   The present invention can recycle persulfuric acid and use it for cleaning while repeatedly using a sulfuric acid solution when cleaning and separating contaminants attached to a silicon wafer or the like with a solution containing persulfuric acid and sulfuric acid having a high peeling effect. The present invention relates to a possible cleaning liquid supply system and a cleaning system.

超LSI製造工程におけるウエハ洗浄技術は、レジスト残渣、微粒子、金属および自然酸化膜などを剥離洗浄するプロセスでは、濃硫酸と過酸化水素の混合溶液(SPM)あるいは、濃硫酸にオゾンガスを吹き込んだ溶液(SOM)が多用されている。過酸化水素もしくはオゾンによって硫酸が酸化されてできる過酸化物が洗浄に役立つことが分かっている。SPMには、過酸化水素が分解して減少する分を補うための過酸化水素水の補給が必要である。過酸化水素水中の水で希釈されるため、液組成を一定に維持することが難しく、所定時間もしくは規定の処理バッチ数毎に液が廃棄され、更新されている。このため多量の薬品を保管しなければならないという問題がある。   Wafer cleaning technology in the VLSI manufacturing process is a process of stripping and cleaning resist residues, fine particles, metals and natural oxide films, etc., in a mixed solution of concentrated sulfuric acid and hydrogen peroxide (SPM) or a solution in which ozone gas is blown into concentrated sulfuric acid. (SOM) is frequently used. It has been found that peroxides formed by oxidizing sulfuric acid with hydrogen peroxide or ozone are useful for cleaning. In SPM, it is necessary to replenish hydrogen peroxide water to make up for the amount of hydrogen peroxide that decomposes and decreases. Since it is diluted with water in hydrogen peroxide water, it is difficult to maintain the liquid composition constant, and the liquid is discarded and renewed every predetermined time or every specified number of treatment batches. For this reason, there is a problem that a large amount of chemicals must be stored.

一方のSOMでは液が希釈されることがなく、一般的にSPMより液更新サイクルを長くできるものの、オゾンによる過酸化物の生成効率が低く、洗浄効果においてはSPMよりやや劣る。また、これらの方法では、生成する過酸化物の濃度には限界があり、これが洗浄効果の限界につながっている。
本発明者らは、洗浄効果の高い過硫酸を連続して、しかも多量に供給し続ける技術を発明し提案している(特許文献1参照)。すなわち硫酸溶液を電解処理することで過硫酸を連続的に生成して硫酸をリサイクルする洗浄液供給システムを開発し、提案している。
One SOM does not dilute the liquid and can generally make the liquid renewal cycle longer than SPM. However, the generation efficiency of peroxide by ozone is low, and the cleaning effect is slightly inferior to SPM. In these methods, there is a limit to the concentration of peroxide to be generated, which leads to the limit of the cleaning effect.
The present inventors have invented and proposed a technique for continuously supplying persulfuric acid having a high cleaning effect in a continuous and large amount (see Patent Document 1). That is, we have developed and proposed a cleaning liquid supply system that continuously generates persulfuric acid by electrolytic treatment of sulfuric acid solution and recycles sulfuric acid.

特開2006−114880号公報JP 2006-114880 A

上記で提案した洗浄液供給システムでは、工業的には過硫酸を効率よく生成して、無駄なく電解を行うことが必要である。そのためには、過硫酸濃度について適宜サンプリングして、イオンクロマトグラフィーなどの分析装置などで測定する必要がある。しかし、このような測定方法では、電解反応で製造した過硫酸濃度を知る迄にはかなりの時間を要することになり、稼働状態において適時、好適な条件で操業することは困難であるという問題がある。   In the cleaning liquid supply system proposed above, industrially, it is necessary to efficiently generate persulfuric acid and perform electrolysis without waste. For this purpose, it is necessary to sample the persulfuric acid concentration as appropriate and measure it with an analyzer such as ion chromatography. However, with such a measurement method, it takes a considerable amount of time to know the concentration of persulfuric acid produced by the electrolytic reaction, and it is difficult to operate under appropriate conditions in an operating state in a timely manner. is there.

本発明は、上記事情を背景としてなされたものであり、システム内の硫酸溶液中の過硫酸濃度を適時に迅速に測定することを可能にし、よって好適な条件で操業することが可能な洗浄液供給システムおよび洗浄システムを提供することを目的とする。   The present invention has been made against the background of the above circumstances, and it is possible to quickly and quickly measure the concentration of persulfuric acid in a sulfuric acid solution in the system, and thus to supply a cleaning liquid that can be operated under suitable conditions. An object is to provide a system and cleaning system.

すなわち、本発明の洗浄液供給システムのうち、請求項1記載の発明は、硫酸溶液の電解反応により、該硫酸溶液に含まれる硫酸イオンから過硫酸イオンを生成する電解反応装置と、該電解反応装置で生成した過硫酸イオンを含む硫酸溶液を洗浄液の一部または全部として電子材料基板である被洗浄材を洗浄する洗浄側に供給可能にする洗浄液供給システムにおいて、
前記洗浄側から返流される前記洗浄液として使用した前記硫酸溶液を受け、該硫酸溶液の一部または全部を前記電解反応装置に供給するとともに、前記電解反応装置で電解した硫酸溶液を前記洗浄側に送出する循環ラインと、前記硫酸溶液を貯留して前記電解反応装置との間で前記硫酸溶液を循環する貯留槽と、を備え、
前記貯留槽は、10〜90℃に調整された硫酸溶液が返流側の前記循環ラインから導入されるとともに、該貯留槽内の硫酸溶液が送出側の前記循環ラインに送られて100〜170℃に加熱されて前記洗浄側に供給されるものであり、
前記貯留槽内の硫酸溶液中の過硫酸濃度を測定する過硫酸濃度測定装置を備えることを特徴とする。
That is, in the cleaning liquid supply system of the present invention, the invention according to claim 1 is an electrolytic reaction device that generates persulfate ions from sulfate ions contained in the sulfuric acid solution by an electrolytic reaction of the sulfuric acid solution, and the electrolytic reaction device. In the cleaning liquid supply system that enables the sulfuric acid solution containing persulfate ions generated in step 1 to be supplied to the cleaning side that cleans the material to be cleaned that is the electronic material substrate as part or all of the cleaning liquid,
The sulfuric acid solution used as the cleaning liquid returned from the cleaning side is received, a part or all of the sulfuric acid solution is supplied to the electrolytic reaction device, and the sulfuric acid solution electrolyzed in the electrolytic reaction device is supplied to the cleaning side. A circulation line for sending to the tank, and a storage tank for storing the sulfuric acid solution and circulating the sulfuric acid solution between the electrolytic reaction device,
In the storage tank, a sulfuric acid solution adjusted to 10 to 90 ° C. is introduced from the circulation line on the return side, and the sulfuric acid solution in the storage tank is sent to the circulation line on the delivery side to be 100 to 170. Heated to ℃ and supplied to the washing side,
A persulfuric acid concentration measuring device for measuring a persulfuric acid concentration in the sulfuric acid solution in the storage tank is provided.

請求項2記載の洗浄液供給システムの発明は、請求項1記載の発明において、前記洗浄側は、電子材料基板に付着したレジスト残渣などの有機化合物の剥離と該有機化合物の酸化分解を行うものであることを特徴とする。   According to a second aspect of the present invention, there is provided a cleaning liquid supply system according to the first aspect, wherein the cleaning side performs peeling of an organic compound such as a resist residue attached to an electronic material substrate and oxidative decomposition of the organic compound. It is characterized by being.

請求項3記載の洗浄液供給システムの発明は、請求項1または2に記載の発明において、前記過硫酸濃度測定装置は、導電性ダイヤモンド電極を備え、該導電性ダイヤモンド電極が洗浄液供給システム内の前記硫酸溶液と接触するように配置されて該硫酸溶液中の前記過硫酸濃度を測定することができるものであることを特徴とする。   According to a third aspect of the present invention, there is provided the cleaning liquid supply system according to the first or second aspect, wherein the persulfuric acid concentration measuring device includes a conductive diamond electrode, and the conductive diamond electrode is provided in the cleaning liquid supply system. It arrange | positions so that it may contact with a sulfuric acid solution, It can measure the said persulfuric acid concentration in this sulfuric acid solution, It is characterized by the above-mentioned.

請求項4記載の洗浄液供給システムの発明は、請求項3記載の発明において、前記過硫酸濃度測定装置は、前記導電性ダイヤモンド電極を作用極として、電位走査を行った際の電流値の変化を測定するものであることを特徴とする。   According to a fourth aspect of the present invention, there is provided the cleaning liquid supply system according to the third aspect, wherein the persulfuric acid concentration measuring device is configured to measure a change in a current value when a potential scan is performed using the conductive diamond electrode as a working electrode. It is what is measured.

請求項5記載の洗浄液供給システムの発明は、請求項3記載の発明において、前記過硫酸濃度測定装置は、前記導電性ダイヤモンド電極を作用極として、ある一定の電位に対する電流値の変化を測定するものであることを特徴とする。   According to a fifth aspect of the present invention, there is provided the cleaning liquid supply system according to the third aspect, wherein the persulfuric acid concentration measuring device measures a change in a current value with respect to a certain potential using the conductive diamond electrode as a working electrode. It is characterized by being.

請求項6記載の洗浄液供給システムの発明は、請求項3記載の発明において、前記過硫酸濃度測定装置は、前記導電性ダイヤモンド電極を作用極および対極として備えることを特徴とする。   According to a sixth aspect of the present invention, there is provided a cleaning liquid supply system according to the third aspect, wherein the persulfuric acid concentration measuring device includes the conductive diamond electrode as a working electrode and a counter electrode.

請求項7記載の洗浄液供給システムの発明は、請求項1〜6のいずれかに記載の発明において、前記電解反応装置に使用する電極の少なくとも陽極が、導電性ダイヤモンド電極であることを特徴とする。   The invention of the cleaning liquid supply system according to claim 7 is the invention according to any one of claims 1 to 6, wherein at least the anode of the electrode used in the electrolytic reaction apparatus is a conductive diamond electrode. .

請求項8記載の洗浄システムの発明は、請求項1〜7のいずれかに記載の洗浄液供給システムと、該洗浄液供給システムから供給される硫酸および過硫酸を含む溶液を使用して被洗浄材の洗浄を行い、該洗浄に使用した洗浄液を前記洗浄液供給システムに返流する洗浄装置とを備えることを特徴とする。   The invention of the cleaning system according to claim 8 is the use of the cleaning liquid supply system according to any of claims 1 to 7 and a solution containing sulfuric acid and persulfuric acid supplied from the cleaning liquid supply system. And a cleaning device that performs cleaning and returns the cleaning liquid used for the cleaning to the cleaning liquid supply system.

すなわち、本発明の洗浄液供給システムによれば、洗浄効果のある過硫酸を含んだ硫酸溶液は、洗浄側に供給され、電子材料基板などの被洗浄材を洗浄する。この洗浄に際しては、電子材料基板上などに付着した汚染物の剥離、除去、酸化分解などがなされる。なお、洗浄側における洗浄液の硫酸濃度は、レジストなどの剥離効果が高い濃度として10M以上が好適である。硫酸濃度が10M未満であると、レジスト等の有機化合物の溶解度が低くなり剥離し難くなって十分な洗浄能力が得られにくい。
また、硫酸溶液に含まれる過硫酸濃度も洗浄効果を大きく左右する。本発明では、過硫酸濃度測定装置でシステムの過硫酸濃度を測定することができ、この結果に基づいて洗浄側に供給する硫酸溶液中の過硫酸濃度を適切に調整、維持することができる。
That is, according to the cleaning liquid supply system of the present invention, the sulfuric acid solution containing persulfuric acid having a cleaning effect is supplied to the cleaning side to clean the material to be cleaned such as the electronic material substrate. In this cleaning, the contaminants attached to the electronic material substrate and the like are peeled off, removed, and oxidatively decomposed. Note that the sulfuric acid concentration of the cleaning liquid on the cleaning side is preferably 10 M or more as a concentration having a high peeling effect such as a resist. When the sulfuric acid concentration is less than 10M, the solubility of an organic compound such as a resist becomes low and it is difficult to peel off, and it is difficult to obtain a sufficient cleaning ability.
Further, the concentration of persulfuric acid contained in the sulfuric acid solution greatly affects the cleaning effect. In the present invention, the persulfuric acid concentration of the system can be measured by the persulfuric acid concentration measuring device, and the persulfuric acid concentration in the sulfuric acid solution supplied to the washing side can be appropriately adjusted and maintained based on this result.

さらに、洗浄側における洗浄液の温度は、例えば100℃〜170℃が好適である。硫酸溶液は、高温にすることで洗浄効果が高まり、過硫酸は、温度が高い程、自己分解速度が速くなり高い剥離洗浄作用が得られる。130℃といった高温では過硫酸イオンの半減期が5分程度と自己分解速度が非常に速くなり、優れた洗浄作用を示す。洗浄液の温度が低すぎると、過硫酸の自己分解が十分に進行せず、優れた洗浄性能が発揮されない。一方、洗浄液の温度が過度に高くなると、過硫酸の分解速度が速くなりすぎて、洗浄性能が低下する。したがって、洗浄側における洗浄液の温度は、上記範囲が望ましい。洗浄液は、洗浄液供給システムにおいて加熱して洗浄に適当な温度にして供給可能にするものであってもよく、また、洗浄側において加熱することで適温に調整するものであってもよく、洗浄側と洗浄液供給システム側の両方において洗浄液を加熱するものであってもよい。   Furthermore, the temperature of the cleaning liquid on the cleaning side is preferably 100 ° C. to 170 ° C., for example. The sulfuric acid solution has a higher cleaning effect by raising the temperature, and persulfuric acid has a higher self-decomposition rate and a higher peeling cleaning action as the temperature is higher. At a high temperature such as 130 ° C., the half-life of persulfate ions is about 5 minutes, and the self-decomposition rate becomes very fast, and an excellent cleaning action is exhibited. If the temperature of the cleaning solution is too low, the self-decomposition of persulfuric acid does not proceed sufficiently, and excellent cleaning performance is not exhibited. On the other hand, when the temperature of the cleaning liquid becomes excessively high, the decomposition rate of persulfuric acid becomes too fast, and the cleaning performance is deteriorated. Therefore, the temperature of the cleaning liquid on the cleaning side is preferably within the above range. The cleaning liquid may be heated at the cleaning liquid supply system so as to be supplied at an appropriate temperature for cleaning, or may be adjusted to an appropriate temperature by heating at the cleaning side. The cleaning liquid may be heated on both the cleaning liquid supply system side and the cleaning liquid supply system side.

電解反応装置では、洗浄側で過硫酸が自己分解することによって過硫酸濃度が低下した硫酸溶液を用いて電解をする。電解反応に供する溶液の硫酸濃度は、電解工程での過硫酸生成効率(通過電流に対する過硫酸の生成割合)を高くするために、1〜6Mが望ましい。硫酸濃度が1M未満であると、洗浄側で使用される平均硫酸濃度が低くなるため、硫酸濃度を調整するための水分低減処理などの負担が大きくなる。一方、硫酸濃度が6Mを超えると、電解工程での電流効率が低下する。なお、洗浄側で好適な硫酸濃度は上記のように10M以上であるので、高濃度の硫酸溶液が電解反応装置に供給される場合には、水の添加などによって希釈して上記濃度とするのが望ましい。この希釈によって増加する水分は、洗浄側から返流される硫酸溶液の水分を低減することによって相殺することができる。   In the electrolytic reaction apparatus, electrolysis is performed using a sulfuric acid solution in which the concentration of persulfuric acid is reduced by the self-decomposition of persulfuric acid on the washing side. The sulfuric acid concentration of the solution to be subjected to the electrolytic reaction is preferably 1 to 6 M in order to increase the persulfuric acid production efficiency in the electrolysis process (persulfuric acid production ratio with respect to the passing current). If the sulfuric acid concentration is less than 1M, the average sulfuric acid concentration used on the washing side becomes low, so that a burden such as moisture reduction processing for adjusting the sulfuric acid concentration becomes large. On the other hand, when the sulfuric acid concentration exceeds 6M, the current efficiency in the electrolysis process decreases. In addition, since a suitable sulfuric acid concentration on the washing side is 10 M or more as described above, when a high-concentration sulfuric acid solution is supplied to the electrolysis reactor, it is diluted by adding water or the like to the above concentration. Is desirable. The water increased by this dilution can be offset by reducing the water in the sulfuric acid solution returned from the washing side.

電解反応装置では、上記のように硫酸溶液を電解して洗浄効果を高める過硫酸を生成する。この電解においては、溶液温度が低いほど過硫酸の生成効率が良く、また電極の損耗も小さくなる。したがって、過硫酸を生成するときの電解温度は10〜90℃が望ましく、さらには20〜50℃の範囲が一層望ましい。上記温度範囲を超えると、電解効率が低下し、電極の損耗も大きくなる。一方、上記温度を下回ると、洗浄側に供給する溶液を洗浄に適当な温度に加熱するための熱エネルギが莫大になる。   In the electrolytic reaction apparatus, persulfuric acid is generated by electrolyzing the sulfuric acid solution as described above to enhance the cleaning effect. In this electrolysis, the lower the solution temperature, the better the production efficiency of persulfuric acid and the smaller the electrode wear. Therefore, the electrolysis temperature when producing persulfuric acid is desirably 10 to 90 ° C, and more desirably 20 to 50 ° C. When the temperature range is exceeded, the electrolysis efficiency decreases and the wear of the electrode also increases. On the other hand, below the above temperature, the heat energy for heating the solution supplied to the cleaning side to a temperature suitable for cleaning becomes enormous.

なお、電解反応装置に供給される硫酸溶液には、洗浄側で使用された硫酸溶液が用いられる。洗浄側の溶液は上記のように相対的に高温にして洗浄に供されるため、洗浄側から返流される硫酸溶液も通常は高温になっている。この高温の硫酸溶液は、適宜の冷却手段で冷却して上記電解に好適な温度にすることが望ましい。該冷却手段としては空冷、水冷などの冷却器を例示することができる。また、上記のように硫酸溶液の濃度を希釈して調整する際に、常温などの相対的に低温の希釈水を混合することで溶液の濃度を低下させるとともに温度を低下させることができる。   In addition, the sulfuric acid solution used by the washing | cleaning side is used for the sulfuric acid solution supplied to an electrolytic reaction apparatus. Since the solution on the washing side is subjected to washing at a relatively high temperature as described above, the sulfuric acid solution returned from the washing side is also usually at a high temperature. The high-temperature sulfuric acid solution is desirably cooled by an appropriate cooling means to a temperature suitable for the electrolysis. Examples of the cooling means include air coolers and water coolers. Moreover, when diluting and adjusting the density | concentration of a sulfuric acid solution as mentioned above, the density | concentration of a solution can be reduced and temperature can be lowered | hung by mixing relatively low temperature dilution water, such as normal temperature.

上記電解反応装置では、陽極と陰極とを対にして電解がなされる。これら電極の材質は、本発明としては特定のものに限定されない。しかし、電極として一般に広く利用されている白金を本発明の電解反応装置の陽極として使用した場合、過硫酸イオンを効率的に製造することができず、白金が溶出するという問題がある。
これに対し、導電性ダイヤモンド電極は、過硫酸イオンの生成を効率よく行えるとともに、電極の損耗が小さい。したがって、電解反応装置の電極のうち、少なくとも、硫酸イオンの生成がなされる陽極を導電性ダイヤモンド電極で構成するのが望ましく、陽極、陰極ともに導電性ダイヤモンド電極で構成するのが一層望ましい。
In the electrolytic reaction apparatus, electrolysis is performed with the anode and the cathode paired. The material of these electrodes is not limited to a specific material in the present invention. However, when platinum, which is widely used as an electrode, is used as the anode of the electrolytic reaction apparatus of the present invention, there is a problem that persulfate ions cannot be produced efficiently and platinum is eluted.
On the other hand, the conductive diamond electrode can efficiently generate persulfate ions and has little electrode wear. Therefore, among the electrodes of the electrolytic reaction apparatus, at least the anode that generates sulfate ions is preferably composed of a conductive diamond electrode, and it is more desirable that both the anode and the cathode are composed of a conductive diamond electrode.

導電性ダイヤモンド電極は、シリコンウエハ等の半導体材料を基板とし、このウエハ表面に導電性ダイヤモンド薄膜を合成させたものや、板状に析出合成したセルフスタンド型導電性多結晶ダイヤモンドを挙げることができる。また、Nb,W,Tiなどの金属基板上に積層したものも利用できる
導電性ダイヤモンド電極によって、硫酸から過硫酸を製造することは、電流密度を0.2 A/cm程度にした場合については報告されているが(Ch. Comninellis et al., Electrochemical and Solid−State Letters, Vol. 3(2)77−79(2000)、特表2003−511555)、金属基板にダイヤモンド薄膜を担持した電極ではダイヤモンド膜の剥離が生じて、作用効果が短期間で消失するという問題があった。よって、導電性シリコン基板上に析出させた導電性ダイヤモンド電極が望ましい。なお、導電性ダイヤモンド薄膜は、ダイヤモンド薄膜の合成の際にボロンまたは窒素の所定量をドープして導電性を付与したものであり、通常はボロンドープしたものが一般的である。これらのドープ量は、少なすぎると技術的意義が発生せず、多すぎてもドープ効果が飽和するため、ダイヤモンド薄膜の炭素量に対して、50〜20,000ppmの範囲のものが適している。
Examples of the conductive diamond electrode include a semiconductor material such as a silicon wafer as a substrate, a conductive diamond thin film synthesized on the wafer surface, and a self-standing type conductive polycrystalline diamond deposited and synthesized in a plate shape. . In addition, it is possible to use a laminate on a metal substrate such as Nb, W, Ti, etc. Production of persulfuric acid from sulfuric acid using a conductive diamond electrode is performed when the current density is about 0.2 A / cm 2. Have been reported (Ch. Comnnellis et al., Electrochemical and Solid-State Letters, Vol. 3 (2) 77-79 (2000), Special Table 2003-511555), an electrode having a diamond thin film supported on a metal substrate However, there was a problem that the diamond film was peeled off and the effect disappeared in a short period of time. Therefore, a conductive diamond electrode deposited on a conductive silicon substrate is desirable. The conductive diamond thin film is a conductive thin film that is doped with a predetermined amount of boron or nitrogen during the synthesis of the diamond thin film, and is generally boron-doped. If the doping amount is too small, technical significance does not occur. If the doping amount is too large, the doping effect is saturated. Therefore, a doping amount in the range of 50 to 20,000 ppm with respect to the carbon amount of the diamond thin film is suitable. .

本発明では、洗浄液供給システム内の硫酸溶液中の過硫酸濃度を測定する過硫酸濃度測定装置を備えており、該装置における過硫酸濃度の測定は、過硫酸が電気化学的に硫酸へと還元される反応を利用するのが望ましい。これにより、極めて短い時間で迅速に過硫酸濃度を測定することが可能になる。
上記測定では、作用極と参照極とを利用して上記還元に伴う電流の変化を測定することができる。また、これに加えて対極を使用して3極式とすることもできる。作用極には、導電性ダイヤモンド電極を用いるのが望ましく、該導電性ダイヤモンド電極は、上述した電解反応装置内に利用する電極と同様のものであっても良いし、基板を取り去った自立型の電極であっても良い。電極の大きさには特に制限がないが、0.1〜2cm程度の接液面積を有することが望ましい。
The present invention is provided with a persulfuric acid concentration measuring device for measuring the concentration of persulfuric acid in the sulfuric acid solution in the cleaning liquid supply system. It is desirable to utilize the reaction that is performed. This makes it possible to quickly measure the persulfuric acid concentration in an extremely short time.
In the measurement, a change in current due to the reduction can be measured using a working electrode and a reference electrode. In addition to this, a counter electrode can be used to form a three-pole type. It is desirable to use a conductive diamond electrode as the working electrode. The conductive diamond electrode may be the same as the electrode used in the above-described electrolytic reaction apparatus, or may be a self-supporting type with the substrate removed. It may be an electrode. Although there is no restriction | limiting in particular in the magnitude | size of an electrode, It is desirable to have a liquid contact area of about 0.1-2 cm < 2 >.

接液の対象は、高濃度硫酸溶液中であるので、参照電極、対極についても導電性ダイヤモンド電極を利用することが望ましい。作用極の電圧を走査する場合、走査速度については、特に制限はないが、1〜500 mV/s程度が望ましい。また、作用極の走査幅については、導電性ダイヤモンド電極を参照極として0V程度から−3V程度に走査することが望ましい。−3Vを超える負の電位を与えると水素発生が激しくなり、過硫酸の還元電流と重なってしまい、測定が困難になる。過硫酸が還元される際に生じる電流はポテンショスタットによって観測することができるが、100nA程度の微弱な電流であっても精度良く検出される。   Since the liquid contact target is in a high-concentration sulfuric acid solution, it is desirable to use a conductive diamond electrode for the reference electrode and the counter electrode. When scanning the working electrode voltage, the scanning speed is not particularly limited, but is preferably about 1 to 500 mV / s. As for the scanning width of the working electrode, it is desirable to scan from about 0 V to about −3 V using the conductive diamond electrode as a reference electrode. When a negative potential exceeding −3 V is applied, hydrogen generation becomes intense and overlaps with the reduction current of persulfuric acid, making measurement difficult. The current generated when persulfuric acid is reduced can be observed with a potentiostat, but even a weak current of about 100 nA can be detected with high accuracy.

過硫酸濃度の測定については、上記のように電位を走査しても良いが、一定電位に固定しながら還元電流の推移を観測しても良い。固定する電位については、導電性ダイヤモンド電極を参照極として、0〜−3Vの範囲内で、−1.5〜−2.5V程度に選定するのが望ましい。操作としては、電位を0Vにしておいて、−2Vまで電位をステップさせてその際の還元電流を観測する。   Regarding the measurement of the persulfuric acid concentration, the potential may be scanned as described above, but the transition of the reduction current may be observed while being fixed at a constant potential. The potential to be fixed is preferably selected to be about -1.5 to -2.5 V within a range of 0 to -3 V using a conductive diamond electrode as a reference electrode. As an operation, the potential is set to 0V, the potential is stepped to -2V, and the reduction current at that time is observed.

なお、本発明では、種々の被洗浄材を対象にして洗浄液を供給することができるが、シリコンウエハ、液晶用ガラス基板、フォトマスク基板などの電子材料基板を対象にして洗浄処理をする用途に好適である。さらに具体的には、半導体基板上に付着したレジスト残渣などの有機化合物の剥離プロセスに利用することができる。また、半導体基板上に付着した微粒子、金属などの異物除去プロセスに利用することができる。
また、本発明は、シリコンウエハなどの基板上に付着した汚染物を高濃度硫酸溶液で洗浄剥離するプロセスに利用することができ、アッシングプロセスなどの前処理工程を省略してレジスト剥離・酸化効果を高めるために過硫酸溶液を電解反応装置によってオンサイト製造して、硫酸溶液を繰り返し利用して外部からの過酸化水素やオゾンなどの薬液添加を必要としないシステムに関する。
In the present invention, cleaning liquid can be supplied for various materials to be cleaned. However, the cleaning liquid can be supplied to electronic material substrates such as silicon wafers, glass substrates for liquid crystals, and photomask substrates. Is preferred. More specifically, it can be used for a peeling process of an organic compound such as a resist residue attached on a semiconductor substrate. Further, it can be used for a foreign matter removing process such as fine particles and metal adhering to the semiconductor substrate.
In addition, the present invention can be used in a process of cleaning and removing contaminants attached to a substrate such as a silicon wafer with a high-concentration sulfuric acid solution. The present invention relates to a system in which a persulfuric acid solution is produced on-site by an electrolytic reaction apparatus in order to increase the efficiency and a chemical solution such as hydrogen peroxide or ozone from the outside is not required by repeatedly using the sulfuric acid solution.

以上、説明したように、本発明の洗浄液供給システムによれば、硫酸溶液の電解反応により、該硫酸溶液に含まれる硫酸イオンから過硫酸イオンを生成する電解反応装置と、該電解反応装置で生成した過硫酸イオンを含む硫酸溶液を洗浄液の一部または全部として電子材料基板である被洗浄材を洗浄する洗浄側に供給可能にする洗浄液供給システムにおいて、
前記洗浄側から返流される前記洗浄液として使用した前記硫酸溶液を受け、該硫酸溶液の一部または全部を前記電解反応装置に供給するとともに、前記電解反応装置で電解した硫酸溶液を前記洗浄側に送出する循環ラインと、前記硫酸溶液を貯留して前記電解反応装置との間で前記硫酸溶液を循環する貯留槽と、を備え、
前記貯留槽は、10〜90℃に調整された硫酸溶液が返流側の前記循環ラインから導入されるとともに、該貯留槽内の硫酸溶液が送出側の前記循環ラインに送られて100〜170℃に加熱されて前記洗浄側に供給されるものであり、
前記貯留槽内の硫酸溶液中の過硫酸濃度を測定する過硫酸濃度測定装置を備えるので、硫酸溶液中の過硫酸濃度を稼働中に迅速に測定して電解反応装置の制御などに利用することを可能にし、確実な洗浄効果を得るとともに稼働効率を一層高めることができる。
硫酸を繰り返し使用しつつ過硫酸を電解によって再生することで、洗浄効果の高い洗浄液を継続して供給することができる。
As described above, according to the cleaning liquid supply system of the present invention, the electrolytic reaction device that generates persulfate ions from the sulfate ions contained in the sulfuric acid solution by the electrolytic reaction of the sulfuric acid solution, and the electrolytic reaction device In a cleaning liquid supply system that enables supplying a sulfuric acid solution containing persulfate ions as a part or all of the cleaning liquid to a cleaning side that cleans a material to be cleaned that is an electronic material substrate,
The sulfuric acid solution used as the cleaning liquid returned from the cleaning side is received, a part or all of the sulfuric acid solution is supplied to the electrolytic reaction device, and the sulfuric acid solution electrolyzed in the electrolytic reaction device is supplied to the cleaning side. A circulation line for sending to the tank, and a storage tank for storing the sulfuric acid solution and circulating the sulfuric acid solution between the electrolytic reaction device,
In the storage tank, a sulfuric acid solution adjusted to 10 to 90 ° C. is introduced from the circulation line on the return side, and the sulfuric acid solution in the storage tank is sent to the circulation line on the delivery side to be 100 to 170. Heated to ℃ and supplied to the washing side,
Since it is equipped with a persulfuric acid concentration measuring device that measures the persulfuric acid concentration in the sulfuric acid solution in the storage tank, the persulfuric acid concentration in the sulfuric acid solution can be quickly measured during operation and used for control of the electrolysis reactor, etc. This makes it possible to obtain a reliable cleaning effect and further increase the operating efficiency.
By regenerating persulfuric acid by electrolysis while repeatedly using sulfuric acid, a cleaning solution having a high cleaning effect can be continuously supplied.

本発明の一実施形態の洗浄液供給システムおよび洗浄システムを示す概略構成図である。1 is a schematic configuration diagram illustrating a cleaning liquid supply system and a cleaning system according to an embodiment of the present invention. 同じく、過硫酸濃度測定装置を示す図である。Similarly, it is a figure which shows a persulfuric acid concentration measuring apparatus. 実施例における走査電位と測定された還元電流との関係を示すグラフである。It is a graph which shows the relationship between the scanning electric potential in an Example, and the measured reduction current. 同じく、還元電流と過硫酸濃度との相関関係を示すグラフである。Similarly, it is a graph showing the correlation between the reduction current and the persulfuric acid concentration.

以下に、本発明の一実施形態を図1、2に基づいて説明する。
半導体ウエハ5の洗浄が行われる洗浄槽1は、洗浄液導入路2と洗浄液返流路3とが接続されており、洗浄液導入路2は、洗浄液供給システム10の洗浄液供給路16に接続可能とされ、洗浄液返流路3は、ポンプ4を介して洗浄液供給システム10の硫酸溶液返流路11に接続可能とされている。上記洗浄槽1と洗浄液供給システム10とを接続することによって本発明の洗浄システムが構成される。
Below, one Embodiment of this invention is described based on FIG.
The cleaning tank 1 for cleaning the semiconductor wafer 5 is connected to the cleaning liquid introduction path 2 and the cleaning liquid return path 3, and the cleaning liquid introduction path 2 can be connected to the cleaning liquid supply path 16 of the cleaning liquid supply system 10. The cleaning liquid return flow path 3 can be connected to the sulfuric acid solution return flow path 11 of the cleaning liquid supply system 10 via the pump 4. The cleaning system of the present invention is configured by connecting the cleaning tank 1 and the cleaning liquid supply system 10.

洗浄液供給システム10では、硫酸溶液返流路11の下流側は、循環用分岐路11bと減水用分岐路11aとに分岐しており、循環用分岐路11bには、洗浄液を加熱するヒータ14とフィルタ15とが介設されており、その下流側で後述する過硫酸溶液送液路38と合流して前記洗浄液供給路16に接続されている。   In the cleaning liquid supply system 10, the downstream side of the sulfuric acid solution return flow path 11 is branched into a circulation branch path 11 b and a water reduction branch path 11 a, and the circulation branch path 11 b includes a heater 14 for heating the cleaning liquid and A filter 15 is interposed, and is connected to the cleaning liquid supply path 16 by joining a persulfuric acid solution feeding path 38 described later on the downstream side thereof.

一方、減水用分岐路11aは、下流側で溶液水分低減手段である放散塔20(ガスストリッピング装置)の塔頂部に接続されている。放散塔20には、ガラスラシヒリングなどの充填材(図示しない)が充填されており、下方側から放散用空気が導入されて塔頂部から充填材を通って流下する溶液と下方側から充填材を通って上昇する空気とを向流させて溶液の水分の一部を蒸散させて上昇空気に取り込んで出口ガスとともに放出する。水分が低減された溶液は放散塔20の塔底部から排水路21へと取り出される。排水路21には、ポンプ22が介設され、下流側は、電解用分岐路21aと、循環用分岐路21bとに分岐しており、循環用分岐路21bは、前記した循環用分岐路11bに合流している。   On the other hand, the water reducing branch 11a is connected to the tower top of a diffusion tower 20 (gas stripping device) which is a solution moisture reducing means on the downstream side. The diffusion tower 20 is filled with a filler (not shown) such as a glass Raschig ring, and a solution that flows through the filler from the top of the tower by introducing diffusion air from the lower side and a filler from the lower side. The air rising through it is counterflowed to evaporate some of the water in the solution and taken up into the rising air and discharged with the outlet gas. The solution with reduced water content is taken out from the bottom of the stripping tower 20 to the drain 21. The drainage channel 21 is provided with a pump 22, and the downstream side is branched into an electrolysis branch channel 21 a and a circulation branch channel 21 b, and the circulation branch channel 21 b is connected to the circulation branch channel 11 b described above. Have joined.

前記電解用分岐路21aは、第一貯留槽25に接続されており、該第一貯留槽25には、希釈水送液路26が接続されている。また、第一貯留槽25には、送出路27が接続されており、該送出路27は、ポンプ28を介して電解用分岐路27aと循環用分岐路27bとに分岐している。循環用分岐路27bは、熱交換器29を介して第一貯留槽25に循環接続されている。
上記電解用分岐路27aは、第二貯留槽30に接続されており、該第二貯留槽30には、図2に示す過硫酸濃度測定装置40の電極部41が組み込まれている。該電極部41は、ポリテトラフルオロエチレン製のロッド41dと、それぞれ導電性ダイヤモンド電極からなる作用極41a、参照極41b、対極41cが先端面に取り付けられて構成されており、これら電極は、前記第二貯留槽30内の硫酸溶液に接液されて過硫酸濃度の測定に用いられる。上記各電極は、ポテンショスタット42に接続されて過硫酸濃度測定装置40を構成している。
なお、各作用極41a、参照極41b、対極41cは、図2(b)に示すように、ロッド41dの先端面に、平板上に配置しても良く、また、図2(c)に示すように、反応効率を高めるために、例えば、作用極41a、対極41cを下方に突出させて対面させ、参照極41bは、平板上に配置することができる。なお、下方に突出させた電極は、対向面以外(背面側および底面側)を過硫酸に耐性のあるポリテトラフルオロエチレン41eなどで覆うのが望ましい。
The electrolysis branch path 21 a is connected to a first storage tank 25, and a diluted water feed path 26 is connected to the first storage tank 25. Further, a delivery path 27 is connected to the first storage tank 25, and the delivery path 27 is branched into an electrolysis branch path 27 a and a circulation branch path 27 b via a pump 28. The circulation branch 27 b is circulated and connected to the first storage tank 25 through the heat exchanger 29.
The electrolysis branch path 27a is connected to the second storage tank 30, and the electrode section 41 of the persulfuric acid concentration measuring device 40 shown in FIG. The electrode portion 41 is composed of a rod 41d made of polytetrafluoroethylene and a working electrode 41a, a reference electrode 41b, and a counter electrode 41c each made of a conductive diamond electrode. The liquid is brought into contact with the sulfuric acid solution in the second storage tank 30 and used for measuring the concentration of persulfuric acid. Each of the electrodes is connected to a potentiostat 42 to constitute a persulfuric acid concentration measuring device 40.
Each working electrode 41a, reference electrode 41b, and counter electrode 41c may be arranged on a flat plate on the tip surface of the rod 41d, as shown in FIG. 2 (b), or as shown in FIG. 2 (c). Thus, in order to increase the reaction efficiency, for example, the working electrode 41a and the counter electrode 41c are protruded downward to face each other, and the reference electrode 41b can be disposed on a flat plate. In addition, it is desirable that the electrode protruded downward is covered with polytetrafluoroethylene 41e or the like that is resistant to persulfuric acid except for the opposing surface (back side and bottom side).

また、上記第二貯留槽30には、送出路32が接続されており、該送出路32には、ポンプ33を介して切替弁34が接続されている。該切替弁34の一つのポートには、電解用送り路35が接続され、切替弁34の他のポートには過硫酸溶液供給路38が接続されている。該過硫酸溶液供給路38は、前記循環路11bと合流して洗浄液供給路16に接続されている。
一方、電解用送り路35の下流端は、電解反応装置に含まれる電解反応槽36の入液側に接続されており、電解反応槽36の出液側には電解用戻り路37が接続され、該電解用戻り路37は、前記第二貯留槽30に接続されている。
In addition, a delivery path 32 is connected to the second storage tank 30, and a switching valve 34 is connected to the delivery path 32 via a pump 33. An electrolysis feed path 35 is connected to one port of the switching valve 34, and a persulfuric acid solution supply path 38 is connected to the other port of the switching valve 34. The persulfuric acid solution supply path 38 joins with the circulation path 11 b and is connected to the cleaning liquid supply path 16.
On the other hand, the downstream end of the electrolytic feed path 35 is connected to the liquid inlet side of the electrolytic reaction tank 36 included in the electrolytic reaction apparatus, and the electrolytic return path 37 is connected to the liquid discharge side of the electrolytic reaction tank 36. The electrolytic return path 37 is connected to the second storage tank 30.

上記電解反応槽36には、陽極36aおよび陰極36bが配置されており、さらに所望により陽極36aと陰極36bとの間に所定の間隔をおいてバイポーラ電極36cが配置されている。なお、バイポーラ電極を有しない形で電解反応槽を構成することも可能である。上記陽極36aおよび陰極36bには、直流電源(図示しない)が接続され、電極間に溶液を通液しつつ直流電源により通電することで電解反応槽36での溶液の直流電解が可能になっている。この実施形態では、上記電極は導電性ダイヤモンド電極によって構成されている。該導電性ダイヤモンド電極は、基板状にダイヤモンド薄膜を形成するとともに、該ダイヤモンド薄膜の炭素量に対して、好適には50〜20,000ppmの範囲でボロンをドープすることにより製造したものである。また、薄膜形成後に基板を取り去って自立型としたものであってもよい。
上記した電極を含む電解反応槽36および図示しない直流電源によって電解反応装置が構成される。
また、洗浄液供給システムにおける各路によって本発明の循環ラインが構成されている。
In the electrolytic reaction tank 36, an anode 36a and a cathode 36b are disposed, and a bipolar electrode 36c is disposed between the anode 36a and the cathode 36b, if desired, with a predetermined interval. It is also possible to configure the electrolytic reaction tank without a bipolar electrode. A direct current power source (not shown) is connected to the anode 36a and the negative electrode 36b, and direct current electrolysis of the solution in the electrolytic reaction tank 36 is enabled by energizing the direct current power while passing the solution between the electrodes. Yes. In this embodiment, the electrode is composed of a conductive diamond electrode. The conductive diamond electrode is manufactured by forming a diamond thin film on a substrate and doping boron in a range of preferably 50 to 20,000 ppm with respect to the carbon content of the diamond thin film. Further, it may be a self-supporting type by removing the substrate after forming the thin film.
An electrolytic reaction apparatus is constituted by the electrolytic reaction tank 36 including the electrodes described above and a DC power source (not shown).
Further, the circulation line of the present invention is constituted by each path in the cleaning liquid supply system.

次に、上記構成よりなる洗浄液供給システムおよび洗浄システムの作用について説明する。
上記洗浄槽1内に、硫酸濃度が10M以上(例えば75質量%程度)の硫酸溶液が収容される。該硫酸溶液は100〜170℃に加熱して、半導体ウエハ5の洗浄に使用される。洗浄液は、ポンプ4によって、順次、洗浄液返流路3を通して洗浄液供給システム10に返流される。返流された硫酸溶液は、硫酸溶液返流路11に導入され、必要に応じて一部が減水用分岐路11aに分配され、残りは循環用分岐路11bに分配される。
Next, the operation of the cleaning liquid supply system and the cleaning system configured as described above will be described.
A sulfuric acid solution having a sulfuric acid concentration of 10 M or more (for example, about 75% by mass) is accommodated in the cleaning tank 1. The sulfuric acid solution is heated to 100 to 170 ° C. and used for cleaning the semiconductor wafer 5. The cleaning liquid is sequentially returned to the cleaning liquid supply system 10 through the cleaning liquid return channel 3 by the pump 4. The returned sulfuric acid solution is introduced into the sulfuric acid solution return flow path 11, and a part thereof is distributed to the water reduction branch path 11 a as needed, and the rest is distributed to the circulation branch path 11 b.

減水用分岐路11aに分配された硫酸溶液は、放散塔20の塔頂部に導入され、充填材中を流下する。一方、放散塔20には、下方側からクリーンルームなどから供給される放散用空気が導入されて充填材中を上昇し、硫酸溶液の一部の水分が蒸散により低減され、排水路21へと移動する。この排水路21に移動した硫酸溶液は、水分の低減によって硫酸濃度が高まっており、また、放散用空気との接触および水分の蒸散によって温度が低下している。一方、放散塔20で水分をストリッピングした空気は、出口ガスとして排気される。排水路21の濃縮された硫酸溶液は、ポンプ22で送液され、一部は必要に応じて電解用分岐路21aを通して第一貯留槽25に分配され、残部は循環用分岐路21bを通して循環用分岐路11bに合流し、該循環用分岐路11bを流れる硫酸溶液と混合される。循環用分岐路11bにおける混合された溶液は、洗浄槽1から返流された後、温度が低下しており、これをヒータ14によって加熱して洗浄に好適な100℃〜170℃に加熱する。また、洗浄槽1での洗浄によって固体浮遊物(SS)などが溶液中に混入しているおそれがあるため、フィルタ15によって固形分を取り除いて洗浄液供給路16に供給する。   The sulfuric acid solution distributed to the water reducing branch 11a is introduced to the top of the stripping tower 20 and flows down in the filler. On the other hand, diffusion air supplied from a clean room or the like from the lower side is introduced into the diffusion tower 20 to rise in the filler, and a part of the water of the sulfuric acid solution is reduced by transpiration, and moves to the drainage channel 21. To do. The sulfuric acid solution that has moved to the drainage channel 21 has an increased sulfuric acid concentration due to the reduction of moisture, and the temperature has decreased due to contact with the air for diffusion and evaporation of moisture. On the other hand, the air stripped of moisture in the diffusion tower 20 is exhausted as an outlet gas. The concentrated sulfuric acid solution in the drainage channel 21 is fed by the pump 22, and a part thereof is distributed to the first storage tank 25 through the electrolysis branch channel 21 a as necessary, and the remainder is used for circulation through the circulation branch channel 21 b. It merges with the branch path 11b and is mixed with the sulfuric acid solution flowing through the branch path 11b for circulation. After the mixed solution in the circulation branch 11b is returned from the washing tank 1, the temperature is lowered, and this is heated by the heater 14 to 100 ° C. to 170 ° C. suitable for washing. Further, since solid suspended matter (SS) or the like may be mixed in the solution by the cleaning in the cleaning tank 1, the solid content is removed by the filter 15 and supplied to the cleaning liquid supply path 16.

一方、第一貯留槽25では、電解用分岐路21aによって比較的高温の高濃度硫酸溶液が供給されており、希釈水送液路26を通して希釈水が供給される。第一貯留槽25では、高濃度硫酸溶液と希釈水との混合比率を適切に維持することで、電解反応槽36における電解に適した1〜6Mの硫酸濃度に調整する。また、この際に、比較的低温の希釈水を混合することで、溶液の温度を低下させることができる。
第一貯留槽25内の硫酸溶液は、電解を行う時機でない場合には、ポンプ28によって送出路27に送出され、全量が循環用分岐路27bに送られて熱交換器29で冷却された後、第一貯留槽25に戻される。これを繰り返して硫酸溶液を循環させることで硫酸溶液の温度を電解反応に適した10〜90℃に調整する。該硫酸溶液を電解する時機には、上記循環を止め、送出路27、電解用分岐路27aを通してポンプ28によって硫酸溶液を第二貯留槽30に移送する。第二貯留槽30に収容された硫酸溶液は、電解に際し、送出路32を通してポンプ33で送液される。送出路32は切替弁34によって電解用送り路35に連通させる。これにより硫酸溶液は電解用送り路35へと送液され、電解反応槽36へと供給される。電解反応槽36では、電解に際し、陽極36aおよび陰極36bに直流電源によって通電されており、バイポーラ電極36cが分極する。電解反応槽36に送液される上記硫酸溶液は電極間に通水されながら電解される。この際に通液線速度が1〜10,000m/hrとなるように設定するのが望ましい。なお、上記通電では、導電性ダイヤモンド電極表面での電流密度が10〜100,000A/mとなるように通電制御するのが望ましい。
On the other hand, in the first storage tank 25, a relatively high-temperature high-concentration sulfuric acid solution is supplied through the branching path 21 a for electrolysis, and dilution water is supplied through the dilution water supply path 26. In the 1st storage tank 25, it adjusts to the sulfuric acid concentration of 1-6M suitable for the electrolysis in the electrolytic reaction tank 36 by maintaining the mixing ratio of a high concentration sulfuric acid solution and dilution water appropriately. At this time, the temperature of the solution can be lowered by mixing relatively low-temperature dilution water.
The sulfuric acid solution in the first storage tank 25 is sent to the delivery path 27 by the pump 28 when the time is not required for electrolysis, and the whole amount is sent to the circulation branch path 27b and cooled by the heat exchanger 29. The first storage tank 25 is returned. By repeating this and circulating the sulfuric acid solution, the temperature of the sulfuric acid solution is adjusted to 10 to 90 ° C. suitable for the electrolytic reaction. When the sulfuric acid solution is electrolyzed, the circulation is stopped, and the sulfuric acid solution is transferred to the second storage tank 30 by the pump 28 through the delivery path 27 and the electrolysis branch path 27a. The sulfuric acid solution accommodated in the second storage tank 30 is fed by the pump 33 through the delivery path 32 during electrolysis. The delivery path 32 is communicated with the electrolysis delivery path 35 by a switching valve 34. As a result, the sulfuric acid solution is sent to the electrolytic feed path 35 and supplied to the electrolytic reaction tank 36. In the electrolytic reaction tank 36, during the electrolysis, the anode 36a and the cathode 36b are energized by a DC power source, and the bipolar electrode 36c is polarized. The sulfuric acid solution fed to the electrolytic reaction tank 36 is electrolyzed while passing water between the electrodes. At this time, it is desirable to set the linear velocity of liquid to be 1 to 10,000 m / hr. In the energization, it is desirable to control the energization so that the current density on the surface of the conductive diamond electrode is 10 to 100,000 A / m 2 .

電解反応槽36で硫酸溶液に対し通電されると、硫酸溶液中の硫酸イオンが酸化反応して過硫酸イオンが生成され過硫酸溶液が効率よく得られる。電解反応槽36で得られた過硫酸溶液は、電解用戻り路37を通して第二貯留槽30に戻され、さらに、電解用送り路36を通して送液することで、硫酸溶液を第二貯留槽30と電解反応槽36との間で循環させつつ電解をすることで高濃度の過硫酸を生成することができる。なお、上記電解によって過硫酸溶液は昇温するため、電解用送り路36や電解用戻り路37などにおいて必要に応じて過硫酸溶液を冷却するようにしてもよい。   When the sulfuric acid solution is energized in the electrolytic reaction tank 36, the sulfuric acid ions in the sulfuric acid solution undergo an oxidation reaction to generate persulfate ions, and the persulfuric acid solution can be obtained efficiently. The persulfuric acid solution obtained in the electrolytic reaction tank 36 is returned to the second storage tank 30 through the return path 37 for electrolysis, and further sent through the feed path 36 for electrolysis, so that the sulfuric acid solution is supplied to the second storage tank 30. The persulfuric acid having a high concentration can be generated by electrolysis while circulating between the electrolytic reaction tank 36 and the electrolytic reaction tank 36. In addition, since the temperature of the persulfuric acid solution is increased by the electrolysis, the persulfuric acid solution may be cooled as necessary in the electrolysis feed path 36, the electrolysis return path 37, or the like.

なお、第二貯留槽30では、過硫酸濃度測定装置40によって硫酸溶液中の過硫酸濃度が適時、例えば所定時間間隔で間欠的に測定されている。該測定では、参照電極41bに対する電位として作用極41aに付加する電圧を0〜−3V(好適には−1.5〜−2.5V)の範囲で走査し、還元電流をポテンショスタット42で測定する。得られた電流値と過硫酸濃度とを予め関連付けておくことで、硫酸溶液中の過硫酸濃度を知ることができる。この過硫酸濃度が、予め定めた所定値に達すると、洗浄側への供給が可能であると判定をし、電解を停止するとともに、切替弁34を切り替えて送出路32と過硫酸溶液供給路38とを連通させる。ポンプ33の動作によって過硫酸濃度を十分に高めた硫酸溶液は、第二貯留槽30から送出路32、過硫酸溶液供給路38を通して洗浄液供給路16へと送液される。これにより、洗浄側へは常に所定値を超える過硫酸濃度の洗浄液が供給され、安定した洗浄効果をもたらすことができる。また、電解反応槽36では、必要以上に電解を行うことがなく、効率のよい操業が可能になる。   In the second storage tank 30, the persulfuric acid concentration in the sulfuric acid solution is measured by the persulfuric acid concentration measuring device 40 at appropriate times, for example, intermittently at predetermined time intervals. In this measurement, the voltage applied to the working electrode 41a as a potential with respect to the reference electrode 41b is scanned in the range of 0 to -3V (preferably -1.5 to -2.5V), and the reduction current is measured with the potentiostat 42. To do. By associating the obtained current value and the persulfuric acid concentration in advance, the persulfuric acid concentration in the sulfuric acid solution can be known. When the persulfuric acid concentration reaches a predetermined value, it is determined that the supply to the cleaning side is possible, the electrolysis is stopped, the switching valve 34 is switched, and the delivery path 32 and the persulfuric acid solution supply path. 38 is communicated. The sulfuric acid solution whose persulfuric acid concentration is sufficiently increased by the operation of the pump 33 is sent from the second storage tank 30 to the cleaning liquid supply path 16 through the delivery path 32 and the persulfuric acid solution supply path 38. Thereby, a cleaning solution having a persulfuric acid concentration exceeding a predetermined value is always supplied to the cleaning side, and a stable cleaning effect can be brought about. Further, in the electrolytic reaction tank 36, electrolysis is not performed more than necessary, and an efficient operation is possible.

洗浄槽1では、高濃度の過硫酸を含む状態で高濃度硫酸溶液が供給される。洗浄槽1内の洗浄液は、高濃度と硫酸と、過硫酸イオンの自己分解による高い酸化力によって半導体ウエハに付着したレジストを効果的に、剥離除去し、さらに酸化分解する。なお、洗浄液では、自己分解によって過硫酸イオン濃度が低下する。ただし、この洗浄液は、前記のように洗浄液返流路3を通して洗浄液供給システム10に返流され、一部が電解反応槽36で効率的に電解されて所定の濃度の過硫酸が再生されて再度洗浄液に供給される。このため、洗浄槽1内での過硫酸イオン濃度を適度に維持することができる。また、洗浄液は、電解用のものを除いて、洗浄槽に循環供給されるとともに、一部では水分が低減され過硫酸濃度が高められて洗浄液に再度供給されるため、電解に供する硫酸溶液に加えられる希釈水の増加分が相殺されて洗浄槽1での洗浄液の硫酸濃度が洗浄に好適な高濃度に維持される。
すなわち、本形態によれば、高濃度硫酸溶液を電解して、過硫酸を生成させて、生成量を連続的かつ迅速にモニタすることで、過硫酸溶液を洗浄液として半導体ウエハなどの基板上に付着した汚染物、主には有機物を剥離・酸化を長期間安定に完全剥離することができる。
In the washing tank 1, a high concentration sulfuric acid solution is supplied in a state containing a high concentration of persulfuric acid. The cleaning liquid in the cleaning tank 1 effectively strips and removes the resist adhering to the semiconductor wafer by high concentration, sulfuric acid, and high oxidizing power due to self-decomposition of persulfate ions, and further oxidatively decomposes. In the cleaning liquid, the persulfate ion concentration decreases due to autolysis. However, the cleaning liquid is returned to the cleaning liquid supply system 10 through the cleaning liquid return channel 3 as described above, and a part of the cleaning liquid is efficiently electrolyzed in the electrolytic reaction tank 36 to regenerate persulfuric acid having a predetermined concentration. Supplied to the cleaning solution. For this reason, the persulfate ion concentration in the washing tank 1 can be maintained moderately. In addition, the cleaning liquid is circulated and supplied to the cleaning tank, except for electrolysis, and in part, the moisture is reduced and the persulfuric acid concentration is increased and supplied again to the cleaning liquid. The added amount of dilution water is offset, and the sulfuric acid concentration of the cleaning liquid in the cleaning tank 1 is maintained at a high concentration suitable for cleaning.
That is, according to the present embodiment, a high-concentration sulfuric acid solution is electrolyzed to produce persulfuric acid, and the production amount is continuously and rapidly monitored. The attached contaminants, mainly organic substances, can be peeled off and oxidized for a long time.

以上、本発明について上記実施形態に基づいて説明をしたが、上記実施形態は本発明の一形態であり、該内容が本発明を限定するものではない。例えば、電解工程において硫酸溶液の濃縮や水による希釈なしに高濃度硫酸溶液をそのまま電解する場合にも本発明の過硫酸濃度測定装置により、硫酸溶液中の過硫酸濃度を迅速に把握できる。また、電解溶液を循環せずに電解する場合にも本発明を実施することができる。   As mentioned above, although this invention was demonstrated based on the said embodiment, the said embodiment is one form of this invention, This content does not limit this invention. For example, even when electrolyzing a high-concentration sulfuric acid solution as it is without concentrating the sulfuric acid solution or diluting with water in the electrolysis step, the persulfuric acid concentration in the sulfuric acid solution can be quickly grasped by the persulfuric acid concentration measuring device of the present invention. Also, the present invention can be carried out when electrolysis is performed without circulating the electrolytic solution.

上記実施形態の洗浄システムを用いて、洗浄槽に、97%濃硫酸34 リットル、超純水21リットルの割合で調整した高濃度硫酸溶液を調製して150℃に加熱保持した。洗浄槽には、レジスト付きの12インチのシリコンウエハを10分の浸漬サイクルで50枚/サイクル浸漬させて、レジスト溶解を行った。この溶解液の一部を引き抜いて、放散塔へ送り、第一貯留槽で超純水を加えて、4M硫酸溶液とした。この溶液を熱交換器で40℃まで冷却した後に、第二貯留槽へと送り、電解反応装置との間を循環させて、過硫酸濃度を高めた。電解反応装置内には、12×12cm、厚さ3mmの導電性Si基板にボロンドープした導電性ダイヤモンド電極を10枚組み込んだ槽を2槽直列に配列させた。電解のための有効陽極面積は18dmであり、電流密度を100A/dmに設定して、40 ℃で電解した。第二貯留槽と電解反応装置との間で送液ポンプにより2l/minの流量で循環させた。第二貯留槽において、過硫酸濃度測定装置で、導電性ダイヤモンド電極を参照電極として、間欠的に5回電位電流曲線を測定した。また同時に、ヨウ化カリウムを用いた酸化還元滴定により過硫酸濃度を測定した。そのうち、電解する前の4M硫酸溶液(過硫酸濃度0g/L)と、4Mの硫酸溶液を電解して過硫酸濃が最大値(180g/L)となった硫酸溶液の電位電流曲線を図3に示した。 Using the cleaning system of the above embodiment, a high-concentration sulfuric acid solution prepared at a ratio of 34 liters of 97% concentrated sulfuric acid and 21 liters of ultrapure water was prepared in a cleaning tank and heated to 150 ° C. In the cleaning tank, a 12-inch silicon wafer with a resist was immersed in 50 sheets / cycle in a 10-minute immersion cycle to dissolve the resist. A part of this solution was extracted and sent to the stripping tower, and ultrapure water was added in the first storage tank to obtain a 4M sulfuric acid solution. After cooling this solution to 40 degreeC with a heat exchanger, it sent to the 2nd storage tank, was circulated between electrolytic reaction apparatuses, and raised the persulfuric acid density | concentration. In the electrolytic reaction apparatus, two tanks in which ten conductive diamond electrodes doped with boron on a conductive Si substrate of 12 × 12 cm and a thickness of 3 mm were incorporated were arranged in series in two tanks. Effective anode area for electrolysis is 18dm 2, by setting the current density to 100A / dm 2, and electrolysis at 40 ° C.. It was made to circulate with the flow volume of 2 l / min with the liquid feeding pump between the 2nd storage tank and the electrolytic reaction apparatus. In the second storage tank, a potential current curve was measured intermittently five times with a persulfuric acid concentration measuring device using the conductive diamond electrode as a reference electrode. At the same time, the persulfuric acid concentration was measured by oxidation-reduction titration using potassium iodide. Among them, a 4M sulfuric acid solution (persulfuric acid concentration 0 g / L) before electrolysis and a sulfuric acid solution having a maximum persulfuric acid concentration (180 g / L) obtained by electrolysis of a 4M sulfuric acid solution are shown in FIG. It was shown to.

図3のように過硫酸濃度が最大値を示した硫酸溶液(実線)は過硫酸が存在しない4M硫酸(破線)に比べて還元方向に電流が流れることがわかる。
そして全5データの電位電流曲線上で、−1.7V付近の還元電流の絶対値を読み取った。過硫酸濃度と還元電流の絶対値は図4に示すように良い相関性が認められた。過硫酸濃度が高くなると、還元電流は略一次関数的に大きくなることがわかる。
−1.7V付近で75mA(電流密度は15mA/cm)の還元電流を観測した。この電流値から、過硫酸濃度が150 g/Lに達したことがわかったので、バルブの切り替えを行って、洗浄槽へ高濃度過硫酸溶液を送り、レジスト付きシリコンウエハを洗浄した。このようなウエハ洗浄を8時間(洗浄ウエハ枚数は2,400枚)継続した。適宜、ウエハを抜き出して質量分析計でウエハ上の有機物残渣を分析したところ、有機物量は200pg/cm程度であった。このように高濃度硫酸溶液のレジスト剥離効果は良好であった。そこで、さらに32時間(洗浄ウエハ枚数は9,600枚、総処理枚数は12,000枚)継続したが、高濃度硫酸溶液のレジスト剥離効果は良好であった。
As shown in FIG. 3, it can be seen that the sulfuric acid solution (solid line) having the maximum persulfuric acid concentration flows in the reduction direction as compared with 4M sulfuric acid (dashed line) in which no persulfuric acid exists.
Then, the absolute value of the reduction current in the vicinity of -1.7 V was read on the potential-current curve of all five data. A good correlation was recognized between the persulfuric acid concentration and the absolute value of the reduction current as shown in FIG. It can be seen that as the concentration of persulfuric acid increases, the reduction current increases approximately linearly.
A reduction current of 75 mA (current density was 15 mA / cm 2 ) was observed near −1.7 V. From this current value, it was found that the persulfuric acid concentration reached 150 g / L. Therefore, the valve was switched, and the high-concentration persulfuric acid solution was sent to the washing tank to clean the silicon wafer with resist. Such wafer cleaning was continued for 8 hours (the number of cleaning wafers was 2,400). When the wafer was appropriately extracted and the organic residue on the wafer was analyzed with a mass spectrometer, the amount of organic substance was about 200 pg / cm 2 . Thus, the resist stripping effect of the high-concentration sulfuric acid solution was good. Therefore, it continued for another 32 hours (9,600 cleaning wafers, 12,000 total processing wafers), but the resist stripping effect of the high-concentration sulfuric acid solution was good.

(比較例)
過硫酸モニタを設置しない以外は、上記実施例と同様にレジスト付きシリコンウエハの洗浄を行った。電解反応で生成する過硫酸濃度を迅速に分析することができず、バルブ切り替え時期の判断ができず、ウエハ洗浄効果にばらつきが見られた。
(Comparative example)
The silicon wafer with resist was cleaned in the same manner as in the above example except that no persulfuric acid monitor was installed. The concentration of persulfuric acid produced by the electrolytic reaction could not be quickly analyzed, the valve switching timing could not be determined, and the wafer cleaning effect varied.

1 洗浄槽
10 洗浄液供給システム
11 硫酸溶液返流路
16 洗浄液供給路
25 第一貯留槽
26 希釈水送液路
27 送出路
30 第二貯留槽
34 切替弁
35 電解用送り路
36 電解反応槽
36a 陽極
36b 陰極
36c バイポーラ電極
37 電解用戻り路
38 過硫酸溶液供給路
DESCRIPTION OF SYMBOLS 1 Cleaning tank 10 Cleaning liquid supply system 11 Sulfuric acid solution return flow path 16 Cleaning liquid supply path 25 1st storage tank 26 Diluted water liquid supply path 27 Delivery path 30 Second storage tank 34 Switching valve 35 Electrolytic feed path 36 Electrolysis reaction tank 36a Anode 36b Cathode 36c Bipolar electrode 37 Return path for electrolysis 38 Persulfuric acid solution supply path

Claims (8)

硫酸溶液の電解反応により、該硫酸溶液に含まれる硫酸イオンから過硫酸イオンを生成する電解反応装置と、該電解反応装置で生成した過硫酸イオンを含む硫酸溶液を洗浄液の一部または全部として電子材料基板である被洗浄材を洗浄する洗浄側に供給可能にする洗浄液供給システムにおいて、
前記洗浄側から返流される前記洗浄液として使用した前記硫酸溶液を受け、該硫酸溶液の一部または全部を前記電解反応装置に供給するとともに、前記電解反応装置で電解した硫酸溶液を前記洗浄側に送出する循環ラインと、前記硫酸溶液を貯留して前記電解反応装置との間で前記硫酸溶液を循環する貯留槽と、を備え、
前記貯留槽は、10〜90℃に調整された硫酸溶液が返流側の前記循環ラインから導入されるとともに、該貯留槽内の硫酸溶液が送出側の前記循環ラインに送られて100〜170℃に加熱されて前記洗浄側に供給されるものであり、
前記貯留槽内の硫酸溶液中の過硫酸濃度を測定する過硫酸濃度測定装置を備えることを特徴とする洗浄液供給システム。
An electrolytic reaction device that generates persulfate ions from sulfate ions contained in the sulfuric acid solution by electrolytic reaction of the sulfuric acid solution, and a sulfuric acid solution containing persulfate ions generated in the electrolytic reaction device as a part or all of the cleaning liquid In the cleaning liquid supply system that enables supply of the material to be cleaned to the cleaning side for cleaning,
The sulfuric acid solution used as the cleaning liquid returned from the cleaning side is received, a part or all of the sulfuric acid solution is supplied to the electrolytic reaction device, and the sulfuric acid solution electrolyzed in the electrolytic reaction device is supplied to the cleaning side. A circulation line for sending to the tank, and a storage tank for storing the sulfuric acid solution and circulating the sulfuric acid solution between the electrolytic reaction device,
In the storage tank, a sulfuric acid solution adjusted to 10 to 90 ° C. is introduced from the circulation line on the return side, and the sulfuric acid solution in the storage tank is sent to the circulation line on the delivery side to be 100 to 170. Heated to ℃ and supplied to the washing side,
A cleaning liquid supply system comprising a persulfuric acid concentration measuring device for measuring a persulfuric acid concentration in a sulfuric acid solution in the storage tank.
前記洗浄側は、電子材料基板に付着したレジスト残渣などの有機化合物の剥離と該有機化合物の酸化分解を行うものであることを特徴とする請求項1記載の洗浄液供給システム。   The cleaning liquid supply system according to claim 1, wherein the cleaning side performs peeling of an organic compound such as a resist residue attached to the electronic material substrate and oxidative decomposition of the organic compound. 前記過硫酸濃度測定装置は、導電性ダイヤモンド電極を備え、該導電性ダイヤモンド電極が洗浄液供給システム内の前記硫酸溶液と接触するように配置されて該硫酸溶液中の前記過硫酸濃度を測定することができるものであることを特徴とする請求項1または2に記載の洗浄液供給システム。   The persulfuric acid concentration measuring device includes a conductive diamond electrode, the conductive diamond electrode is disposed so as to be in contact with the sulfuric acid solution in a cleaning liquid supply system, and measures the persulfuric acid concentration in the sulfuric acid solution. The cleaning liquid supply system according to claim 1 or 2, wherein 前記過硫酸濃度測定装置は、前記導電性ダイヤモンド電極を作用極として、電位走査を行った際の電流値の変化を測定するものであることを特徴とする請求項3記載の洗浄液供給システム。   4. The cleaning liquid supply system according to claim 3, wherein the persulfuric acid concentration measuring device measures a change in current value when potential scanning is performed using the conductive diamond electrode as a working electrode. 前記過硫酸濃度測定装置は、前記導電性ダイヤモンド電極を作用極として、ある一定の電位に対する電流値の変化を測定するものであることを特徴とする請求項3記載の洗浄液供給システム。   4. The cleaning liquid supply system according to claim 3, wherein the persulfuric acid concentration measuring device measures a change in a current value with respect to a certain potential using the conductive diamond electrode as a working electrode. 前記過硫酸濃度測定装置は、前記導電性ダイヤモンド電極を作用極および対極として備えることを特徴とする請求項3記載の洗浄液供給システム。   The cleaning liquid supply system according to claim 3, wherein the persulfuric acid concentration measuring device includes the conductive diamond electrode as a working electrode and a counter electrode. 前記電解反応装置に使用する電極の少なくとも陽極が、導電性ダイヤモンド電極であることを特徴とする請求項1〜6のいずれかに記載の洗浄液供給システム。   The cleaning liquid supply system according to any one of claims 1 to 6, wherein at least an anode of an electrode used in the electrolytic reaction apparatus is a conductive diamond electrode. 請求項1〜7のいずれかに記載の洗浄液供給システムと、該洗浄液供給システムから供給される硫酸および過硫酸を含む溶液を使用して被洗浄材の洗浄を行い、該洗浄に使用した洗浄液を前記洗浄液供給システムに返流する洗浄装置とを備えることを特徴とする洗浄システム。   The cleaning liquid supply system according to any one of claims 1 to 7 and a solution to be cleaned are cleaned using a solution containing sulfuric acid and persulfuric acid supplied from the cleaning liquid supply system, and the cleaning liquid used for the cleaning is used. A cleaning system comprising: a cleaning device that returns to the cleaning liquid supply system.
JP2011243186A 2011-11-07 2011-11-07 Cleaning liquid supply system and cleaning system Pending JP2012069974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011243186A JP2012069974A (en) 2011-11-07 2011-11-07 Cleaning liquid supply system and cleaning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011243186A JP2012069974A (en) 2011-11-07 2011-11-07 Cleaning liquid supply system and cleaning system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007134945A Division JP2008294020A (en) 2007-05-22 2007-05-22 Cleaning solution supplying system, and cleaning system

Publications (1)

Publication Number Publication Date
JP2012069974A true JP2012069974A (en) 2012-04-05

Family

ID=46166777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011243186A Pending JP2012069974A (en) 2011-11-07 2011-11-07 Cleaning liquid supply system and cleaning system

Country Status (1)

Country Link
JP (1) JP2012069974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160517A (en) * 2017-03-22 2018-10-11 株式会社Screenホールディングス Substrate processing device, substrate processing system, and substrate processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078375A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Diamond electrode and its manufacturing method
JP2006150320A (en) * 2004-12-01 2006-06-15 Kurita Water Ind Ltd System for thermally decomposing drainage
JP2006278915A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Sulfuric acid recycling type cleaning system
JP2007103516A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Sulfuric acid recycling cleaning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078375A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Diamond electrode and its manufacturing method
JP2006150320A (en) * 2004-12-01 2006-06-15 Kurita Water Ind Ltd System for thermally decomposing drainage
JP2006278915A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Sulfuric acid recycling type cleaning system
JP2007103516A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Sulfuric acid recycling cleaning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160517A (en) * 2017-03-22 2018-10-11 株式会社Screenホールディングス Substrate processing device, substrate processing system, and substrate processing method

Similar Documents

Publication Publication Date Title
US9593424B2 (en) Sulfuric acid recycling type cleaning system and a sulfuric acid recycling type persulfuric acid supply apparatus
JP5024528B2 (en) Persulfuric acid supply system and persulfuric acid supply method
US20130068260A1 (en) Method of cleaning electronic material and cleaning system
JP4407529B2 (en) Sulfuric acid recycling cleaning system
JP4412301B2 (en) Cleaning system
JP2007059603A (en) Sulfuric acid recycling type cleaning system
JP5939373B2 (en) Electronic material cleaning method and cleaning apparatus
JP4605393B2 (en) Electrolytic gas treatment device and sulfuric acid recycling type cleaning system
JP2007266497A (en) Semiconductor substrate cleaning system
JP4600666B2 (en) Sulfuric acid recycle type single wafer cleaning system
JP4573043B2 (en) Sulfuric acid recycling cleaning system
JP4600667B2 (en) Sulfuric acid recycling type cleaning system and sulfuric acid recycling type cleaning method
JP2008294020A (en) Cleaning solution supplying system, and cleaning system
JP5751426B2 (en) Cleaning system and cleaning method
JP4407557B2 (en) Sulfuric acid recycling cleaning method and sulfuric acid recycling cleaning system
JP5024521B2 (en) Method and apparatus for producing high-temperature and high-concentration persulfuric acid solution
JP2006278838A (en) Sulfuric acid recycling type cleaning system
JP5376152B2 (en) Sulfuric acid electrolysis method
JP2012069974A (en) Cleaning liquid supply system and cleaning system
JP4539837B2 (en) Wastewater pyrolysis system
JP2012169562A (en) Nitride semiconductor material surface treatment method and surface treatment system
JP4862981B2 (en) Sulfuric acid recycle cleaning system and operation method thereof
JP5126478B2 (en) Cleaning liquid manufacturing method, cleaning liquid supply apparatus and cleaning system
JP2009263689A (en) Apparatus for manufacturing persulfuric acid and cleaning system
JP4816888B2 (en) Sulfuric acid recycling cleaning system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130529