JP2012069929A - Solar cell panel frame - Google Patents

Solar cell panel frame Download PDF

Info

Publication number
JP2012069929A
JP2012069929A JP2011180828A JP2011180828A JP2012069929A JP 2012069929 A JP2012069929 A JP 2012069929A JP 2011180828 A JP2011180828 A JP 2011180828A JP 2011180828 A JP2011180828 A JP 2011180828A JP 2012069929 A JP2012069929 A JP 2012069929A
Authority
JP
Japan
Prior art keywords
beam member
hole
long
column
support mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011180828A
Other languages
Japanese (ja)
Other versions
JP5901912B2 (en
Inventor
Yoshihito Sakamoto
義仁 坂本
Hirokazu Yasuda
博和 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Civil Engineering and Construction Corp
Original Assignee
JFE Steel Corp
JFE Civil Engineering and Construction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Civil Engineering and Construction Corp filed Critical JFE Steel Corp
Priority to JP2011180828A priority Critical patent/JP5901912B2/en
Publication of JP2012069929A publication Critical patent/JP2012069929A/en
Application granted granted Critical
Publication of JP5901912B2 publication Critical patent/JP5901912B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/70Arrangement of stationary mountings or supports for solar heat collector modules with means for adjusting the final position or orientation of supporting elements in relation to each other or to a mounting surface; with means for compensating mounting tolerances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/12Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface using posts in combination with upper profiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell panel frame which suppresses unexpected stress exerted on the frame due to uneven subsidence after the installation and prevents damage to the frame and a solar cell panel.SOLUTION: A solar cell panel frame 1 has at least two pairs of column pillar poles, each of which is composed of a short pole 3 and a long pole 5. The short poles 3 and the long poles 5 of the two pairs of column pillar poles are arranged in a linear fashion so that the overall shape of the frame forms a rectangle in a plan view. An inclined framework 9, which inclines from the long pole side to the short pole side, is formed in the solar cell panel frame 1 by connecting upper end parts of each pole with a beam member 7. The solar cell panel frame 1 further has support mechanisms 11, each of which is provided at a joined part between the upper end part of each pole and the beam member 7 and supports the beam member 7. The support mechanism 11 has a rotation shaft provided at the pole side and extending in a direction that intersects with the inclination direction of the inclined framework 9 and a long through hole which is provided at the beam 7 side, allows the rotation shaft to be inserted and moved therein, and extends in the inclination direction. In the initial state of the installation, the rotation shaft is in contact with an upper wall of the long through hole in the inclination direction.

Description

本発明は、太陽電池パネル用架台に関し、特に、産業廃棄物処理場跡地や港湾地区埋立地など、超軟弱地盤で、不等沈降が想定される地盤に設定される大型の太陽電池パネル用架台に関する。   The present invention relates to a solar panel gantry, and in particular, a large solar panel gantry that is set to an extremely soft ground such as an industrial waste disposal site or a landfill in a port area, and a ground where unequal sedimentation is assumed. About.

地球温暖化問題にかかる、温室効果ガス排出抑制の観点から、電力供給分野では、大規模太陽光発電所計画が立てられている。その候補地の多くは、産業廃棄物処理場跡地や、埋立地など、これまで有効利用を図ることができなかった未利用地が当てられている。
これらの建設地の多くは、地盤がまだ安定していない超軟弱地盤である場合が多く、防水層保護の観点から杭基礎の採用を禁止される場合が多い。また、杭基礎を採用したとしても設置後の不等沈降による太陽電池架台の変形に伴う架台の損傷、太陽電池パネルの損傷の可能性がある。
From the viewpoint of reducing greenhouse gas emissions related to the global warming issue, large-scale solar power plant plans have been established in the power supply field. Most of the proposed sites are used for unused land that could not be used effectively so far, such as industrial waste disposal sites and landfills.
Many of these construction sites are often very soft ground where the ground is not yet stable, and the use of pile foundations is often prohibited from the viewpoint of waterproof layer protection. Moreover, even if the pile foundation is adopted, there is a possibility that the pedestal is damaged due to the deformation of the solar cell pedestal due to uneven sedimentation after installation, and the solar cell panel is damaged.

これまで、実施された大規模な太陽光発電所計画における架台設計の基本的考え方は、風による吹き上げ防止のために、鉄筋コンクリートによる重量基礎を採用するのが一般的である。太陽電池アレイ自体の重量は大きくないため、本来、基礎構造は軽微でよいが、吹き上げ荷重のカウンターウエイトとするため重量化されている。
超軟弱地盤では、不等沈降による変形防止のために、支持間隔を小さくして架台剛性をあげ、さらに基礎部分を連続にして剛体化している例がある。
Up to now, the basic concept of pedestal design in large-scale solar power plant plans that have been implemented is generally to use heavy foundations made of reinforced concrete in order to prevent wind blowing. Since the weight of the solar cell array itself is not large, the basic structure may be light in nature, but the weight is increased in order to obtain a counterweight for the blowing load.
In ultra-soft ground, there is an example in which the support interval is reduced to increase the rigidity of the gantry to prevent deformation due to unequal settling, and the foundation portion is made continuous and rigid.

不整地地盤への設置に関して、特開2009-302123太陽電池架台装置(特許文献1)がある。特許文献1で開示された太陽電池架台装置は、多脚構造の架台を不整地上に設置する場合のレベル調整を適切ならしめることを目的として、脚部長さを調整可能として、不整地面にあわせて各脚長を伸縮して固定し、上部構造を所定のレベルで保持するものである。より具体的には、「複数の脚部を有し、太陽電池パネルを設置場所から支持する太陽電池架台装置において、脚部は、相互に締結具で締結される2つの下部支持部材と上部支持部材とに分割されて設けられ、下部支持部材と上部支持部材の一方には、相互の角度を可変として締結されるように、回転中心となる第一の締結具が貫通する第一の締結穴と、該第一の締結穴を中心とする円弧方向に伸びて第2の締結具が貫通する第2の締結穴とが形成され、他方には、第1の締結具及び第2の締結具が貫通する第3の締結穴及び第4の締結穴が形成され、第3の締結穴及び第4の締結穴は、高さ方向に延びる長穴とされていることを特徴とする太陽電池架台装置。」(特許文献1の請求項1参照)   Regarding installation on uneven ground, there is a Japanese Patent Application Laid-Open No. 2009-302123 solar cell mount device (Patent Document 1). The solar cell pedestal device disclosed in Patent Document 1 can adjust the leg length for the purpose of appropriately adjusting the level when a pedestal having a multi-leg structure is installed on the irregular terrain. Each leg length is extended and fixed to hold the upper structure at a predetermined level. More specifically, “in the solar cell mount device having a plurality of legs and supporting the solar cell panel from the installation location, the legs are two lower support members and upper supports that are fastened to each other by fasteners. A first fastening hole that is divided into members and through which a first fastener serving as a rotation center passes through one of the lower support member and the upper support member so as to be fastened with a variable angle. And a second fastening hole extending in the arc direction around the first fastening hole and penetrating through the second fastening tool, the other being the first fastening tool and the second fastening tool A third fastening hole and a fourth fastening hole are formed, and the third fastening hole and the fourth fastening hole are elongated holes extending in the height direction. Device "(see claim 1 of Patent Document 1)

また、架台支点部の構造が類似のものとして特開2005-64147(特許文献2)に開示されたソーラーパネルの架台(特許文献2)がある。
特許文献2に開示されたソーラーパネル架台は、スライド柱における支持部側端部に、支持部を支持する支持用突起を設けて、支持部に、支持用突起が支持面に沿ってスライド可能に嵌め合わされる長穴を設けて、角度調整駆動部が、上下方向に延びるねじ軸と、このねじ軸が螺合され、ねじ軸に沿って昇降する昇降用ナットと、ねじ軸を回転させる回転駆動部と、一端部が支持部に揺動可能に支持され、他端部が昇降用ナットに揺動可能に支持される昇降用アームとを具えたものである。
Moreover, there is a solar panel mount (Patent Document 2) disclosed in Japanese Patent Application Laid-Open No. 2005-64147 (Patent Document 2) as a similar structure of the mount fulcrum.
The solar panel mount disclosed in Patent Document 2 is provided with a support protrusion for supporting the support section at the support section side end of the slide column, and the support protrusion can slide along the support surface on the support section. Provided with a long hole to be fitted, the angle adjustment drive unit is a screw shaft extending in the vertical direction, the screw shaft is screwed together, a lifting nut that moves up and down along the screw shaft, and a rotational drive that rotates the screw shaft And an elevating arm whose one end is swingably supported by the support and whose other end is swingably supported by the elevating nut.

特許文献2のソーラーパネル架台においては、ねじ軸の回転によりねじ軸に螺合する昇降用ナットが、ねじ軸に沿って上下方向に昇降する。そして、昇降用ナットには、昇降用アームの一端部が接続されているので、昇降用ナットの昇降動作に伴って、昇降用アームも上下方向に動く。このとき、昇降用アームの他端部が支持部に接続されているため、昇降用アームの昇降動作によって、支持部が揺動し、所定の角度に傾斜させるのに際し、スライド柱の支持用突起が、支持部の長穴に嵌合されているので、支持部の揺動に伴って支持用突起に対して長孔がスライドすると同時に、スライド柱は伸縮して、支持部を所定の角度に傾斜させるものである。
所定の傾斜角とした後は、長孔部分がスライドしないように固定する点は、特許文献1と同じである。
In the solar panel mount of Patent Document 2, a lifting nut that is screwed to the screw shaft by the rotation of the screw shaft moves up and down along the screw shaft. And since the one end part of the raising / lowering arm is connected to the raising / lowering nut, the raising / lowering arm also moves to the up-down direction with the raising / lowering operation | movement of the raising / lowering nut. At this time, since the other end portion of the lifting arm is connected to the support portion, when the lifting arm is moved up and down, the support portion swings and tilts to a predetermined angle. However, since the elongated hole slides with respect to the supporting projection as the supporting portion swings, the slide column expands and contracts to bring the supporting portion to a predetermined angle. Inclined.
The point that the long hole portion is fixed so as not to slide after the predetermined inclination angle is the same as in Patent Document 1.

特開2009-302123号公報JP 2009-302123 A 特開2005-64147号公報JP 2005-64147 A

特許文献1に開示された太陽電池架台装置の構造は、伸縮、角度調整が可能な脚部構造を設置時に地盤状況に応じて長さ、角度をあわせて固定し、所定のレベルを確保できる。
しかし、全体を固定してしまうため、その後の脚部の不等沈降に対しての自動調整機能を持っていない。すなわち、不等沈降が発生すると、脚部のレベルが変わるため、架台上部構造も不等沈降に追従しようとする応力が発生し、曲げ、ねじれなど、架台にゆがみ変形が発生する。変形が過大になると、太陽電池に損傷を与える可能性がある。
もっとも、この構造においては、脚部の固定ボルトを緩めて再調整することは可能だが、すでに変形した後の再調整であるため、不等沈降によって太陽電池に作用する応力を常時緩和する機構は期待できない。仮に、長孔部分をスライド可能な状態、すなわち、固定ボルトを緩めた場合には、形状保持が困難となる。
The structure of the solar cell pedestal device disclosed in Patent Document 1 can secure a predetermined level by fixing a leg structure that can be expanded and contracted and angle-adjusted according to the ground condition at the time of installation.
However, since the whole is fixed, it does not have an automatic adjustment function for the subsequent uneven settlement of the legs. That is, when unequal settling occurs, the level of the leg portion changes, so that stress is generated in the gantry superstructure to follow unequal settling, and distortion and deformation such as bending and twisting occur. Excessive deformation can damage the solar cell.
However, in this structure, it is possible to re-adjust by loosening the fixing bolts of the legs, but since it is re-adjustment after already deforming, the mechanism that constantly relieves the stress acting on the solar cell due to unequal sedimentation is I can't expect it. If the long hole portion is slidable, that is, if the fixing bolt is loosened, it is difficult to maintain the shape.

特許文献2に開示されたソーラーパネルの架台の構造は、支持部の揺動に関し、回転軸と長孔によるスライド機構を有しており、傾斜角変更時の材長変化に対応させている。
しかしながら、揺動用支柱、スライド柱ともに、それぞれの柱グループごとに足元および上部を連結し、さらに、所定の傾斜角とした後は各部を固定して長孔のスライド機構が作用しない状態にして架台を剛体化している。すなわち、柱の上下位置不変を前提とした構造であり、柱の沈降を想定していないので、長孔を有していても、本願の目的である不等沈降時の応力緩和作用はなく、特許文献1と同じく、各接合部等に想定外の応力が作用してしまう。
The structure of the solar panel pedestal disclosed in Patent Document 2 has a slide mechanism with a rotating shaft and a long hole for swinging the support portion, and corresponds to the change in the material length when the inclination angle is changed.
However, both the swinging strut and the slide column are connected to the foot and the upper portion for each column group, and after the predetermined inclination angle, each part is fixed so that the long hole slide mechanism does not act. Is made rigid. That is, it is a structure that presupposes that the vertical position of the column does not change, and since it does not assume sedimentation of the column, even if it has a long hole, there is no stress relaxation action during unequal sedimentation, which is the purpose of this application, Similar to Patent Document 1, an unexpected stress acts on each joint and the like.

以上のように、特許文献1、2に開示の従来技術は、不等沈降による架台の変形や作用応力を常時緩和する機能を持たないため、不等沈降により、架台に作用する応力が不均一となり、基礎梁、架台の横架材、接合部に、想定外の曲げ、せん断応力が作用する場合があり、また、全体が傾く可能性も高い。この場合、大型化された太陽電池アレイの修正作業は極めて困難を伴う。   As described above, since the conventional techniques disclosed in Patent Documents 1 and 2 do not have a function of constantly relieving deformation and acting stress of the gantry due to unequal sedimentation, the stress acting on the gantry is uneven due to unequal sedimentation Therefore, unexpected bending and shearing stress may act on the foundation beam, the horizontal frame of the gantry, and the joint, and the whole is likely to tilt. In this case, it is extremely difficult to correct the enlarged solar cell array.

本発明は、これらの課題を解決するためになされたもので、設置後の不等沈降に対応して一定の沈降時応力緩和によって、架台への想定外の応力発生を抑制し、架台や太陽電池パネルの損傷を防止できる太陽電池パネル用架台を提供することを目的とする。   The present invention has been made to solve these problems, and suppresses the generation of unexpected stress on the gantry by suppressing stress at the time of settling in response to unequal settling after installation. It aims at providing the stand for solar cell panels which can prevent damage to a battery panel.

(1)本発明に係る太陽電池パネル用架台は、短柱、長柱で一対となる支柱を少なくとも2組有し、該2組の支柱における短柱同士、長柱同士を直線状に配置すると共に平面視で全体が矩形になるように配置し、前記同種または異種の各柱の上端部を梁部材で連結し、前記梁部材に直交して根太を配置して前記各柱の上端部を梁部材で連結して前記長柱側から前記短柱側に向って傾斜する傾斜架構を構成してなる太陽電池パネル用架台であって、
前記各支柱の上端部と前記梁部材との接合部に設けられて前記梁部材を支持する支持機構を有し、該支持機構は、前記支柱側に設けられると共に前記傾斜架構の傾斜方向に直交する方向に延出する回転軸と、前記梁部材側に設けられて前記回転軸が挿入かつ移動可能で前記傾斜方向に延びる長孔貫通孔とを有し、太陽電池パネル用架台の設置初期状態では、前記回転軸が前記長孔貫通孔における傾斜方向上側の壁に当接していることを特徴とするものである。
(1) The solar cell panel pedestal according to the present invention has at least two pairs of short pillars and long pillars, and the short pillars and the long pillars of the two pairs of pillars are linearly arranged. In addition, it is arranged so that the whole is rectangular in a plan view, the upper ends of the same or different types of columns are connected by beam members, and joists are arranged perpendicular to the beam members so that the upper ends of the columns are A solar cell panel gantry comprising an inclined frame that is connected by a beam member and is inclined from the long column side toward the short column side,
A support mechanism is provided at a joint portion between the upper end portion of each support column and the beam member to support the beam member. The support mechanism is provided on the support column side and orthogonal to the inclination direction of the inclined frame. A rotating shaft that extends in a direction to extend, and a long hole through-hole that is provided on the beam member side and that can be inserted and moved so that the rotating shaft can be inserted and moved. Then, the said rotating shaft is contact | abutting to the wall of the inclination direction upper side in the said long hole through-hole.

(2)また、短柱、長柱で一対となる支柱を少なくとも2組有し、該2組の支柱における短柱同士、長柱同士を直線状に配置すると共に平面視で全体が矩形になるように配置し、前記同種または異種の各柱の上端部を梁部材で連結し、前記梁部材に直交して根太を配置して前記各柱の上端部を梁部材で連結して前記長柱側から前記短柱側に向って傾斜する傾斜架構を構成してなる太陽電池パネル用架台であって、
前記各支柱の上端部と前記梁部材との接合部に設けられて前記梁部材を支持する支持機構を有し、該支持機構は、前記梁部材側に設けられると共に前記傾斜架構の傾斜方向に直交する方向に延出する回転軸と、前記各支柱側に設けられて前記回転軸が挿入かつ移動可能で前記傾斜方向に延びる長孔貫通孔とを有し、太陽電池パネル用架台の設置初期状態では、前記回転軸が前記長孔貫通孔における傾斜方向下側の壁に当接していることを特徴とするものである。
(2) In addition, at least two pairs of struts that are a pair of short pillars and long pillars are provided, the short pillars and the long pillars in the two pairs of struts are linearly arranged, and the whole is rectangular in plan view. Arranged such that the upper ends of the same or different types of columns are connected by a beam member, a joist is arranged orthogonal to the beam members, and the upper ends of the columns are connected by a beam member to form the long column A solar panel gantry comprising an inclined frame that is inclined from the side toward the short column side,
A support mechanism that is provided at a joint between the upper end of each column and the beam member and supports the beam member; the support mechanism is provided on the beam member side and in the inclination direction of the inclined frame; A rotating shaft extending in a direction orthogonal to each other, and a long-hole through-hole provided on each of the support columns, into which the rotating shaft can be inserted and moved, and extending in the inclined direction. In the state, the rotating shaft is in contact with the wall on the lower side in the inclined direction of the long hole through hole.

(3)また、短柱、長柱で一対となる支柱を少なくとも2組有し、該2組の支柱における短柱同士、長柱同士を直線状に配置すると共に平面視で全体が矩形になるように配置し、前記同種または異種の各柱の上端部を梁部材で連結し、前記梁部材に直交して根太を配置して前記各柱の上端部を梁部材で連結して前記長柱側から前記短柱側に向って傾斜する傾斜架構を構成してなる太陽電池パネル用架台であって、
前記各支柱の上端部と前記梁部材との接合部に設けられて前記梁部材を支持する支持機構を有し、該支持機構は、前記短柱の上端部で前記梁部材を支持する第1支持機構と、前記長柱の上端部で前記梁部材を支持する第2支持機構とを備え、前記第1支持機構は前記短柱側又は前記梁部材側に設けられると共に前記傾斜架構の傾斜方向と直交する方向に延出する回転軸と、前記梁部材側又は前記短柱側に設けられて前記回転軸が挿入かつ移動可能で前記傾斜方向に延びる長孔貫通孔とを有し、太陽電池パネル用架台の設置初期状態では、前記回転軸が前記長孔貫通孔における傾斜方向中間部に配置されてなり、
前記第2支持機構は前記長柱の上端と前記梁部材とを回転可能に支持することを特徴とするものである。
(3) In addition, there are at least two pairs of struts that are a pair of short pillars and long pillars, and the short pillars and the long pillars in the two pairs of struts are linearly arranged and the whole is rectangular in plan view. Arranged such that the upper ends of the same or different types of columns are connected by a beam member, a joist is arranged orthogonal to the beam members, and the upper ends of the columns are connected by a beam member to form the long column A solar panel gantry comprising an inclined frame that is inclined from the side toward the short column side,
A support mechanism that supports the beam member provided at a joint portion between the upper end portion of each column and the beam member; and the support mechanism supports a first support member that supports the beam member at an upper end portion of the short column. A support mechanism; and a second support mechanism that supports the beam member at an upper end portion of the long column. The first support mechanism is provided on the short column side or the beam member side, and the inclination direction of the inclined frame A rotating shaft that extends in a direction perpendicular to the long axis, and a long-hole through-hole that is provided on the beam member side or the short column side and that allows the rotating shaft to be inserted and moved and extends in the inclined direction. In the initial installation state of the panel gantry, the rotation shaft is arranged in the middle portion of the long hole through hole in the inclined direction,
The second support mechanism is configured to rotatably support an upper end of the long column and the beam member.

(4)また、短柱、長柱で一対となる支柱を少なくとも2組有し、該2組の支柱における短柱同士、長柱同士を直線状に配置すると共に平面視で全体が矩形になるように配置し、前記同種または異種の各柱の上端部を梁部材で連結し、前記梁部材に直交して根太を配置して前記各柱の上端部を梁部材で連結して前記長柱側から前記短柱側に向って傾斜する傾斜架構を構成してなる太陽電池パネル用架台であって、
前記各支柱の上端部と前記梁部材との接合部に設けられて前記梁部材を支持する支持機構を有し、該支持機構は、前記短柱の上端部で前記梁部材を支持する第1支持機構と、前記長柱の上端部で前記梁部材を支持する第2支持機構とを備え、前記第2支持機構は前記長柱側又は前記梁部材側に設けられると共に前記傾斜架構の傾斜方向と直交する方向に延出する回転軸と、前記梁部材側又は前記長柱側に設けられて前記回転軸が挿入かつ移動可能で前記傾斜方向に延びる長孔貫通孔とを有し、太陽電池パネル用架台の設置初期状態では、前記回転軸が前記長孔貫通孔における傾斜方向中間部に配置されてなり、
前記第1支持機構は前記短柱の上端と前記梁部材とを回転可能に支持することを特徴とするものである。
(4) In addition, at least two pairs of struts that are a pair of short pillars and long pillars are provided, the short pillars and the long pillars in the two pairs of struts are linearly arranged, and the whole is rectangular in plan view. Arranged such that the upper ends of the same or different types of columns are connected by a beam member, a joist is arranged orthogonal to the beam members, and the upper ends of the columns are connected by a beam member to form the long column A solar panel gantry comprising an inclined frame that is inclined from the side toward the short column side,
A support mechanism that supports the beam member provided at a joint portion between the upper end portion of each column and the beam member; and the support mechanism supports a first support member that supports the beam member at an upper end portion of the short column. A support mechanism and a second support mechanism that supports the beam member at an upper end portion of the long column, and the second support mechanism is provided on the long column side or the beam member side, and the inclination direction of the inclined frame A rotating shaft that extends in a direction orthogonal to the beam member, and a long-hole through-hole that is provided on the beam member side or the long column side and that allows the rotating shaft to be inserted and moved and extends in the inclined direction. In the initial installation state of the panel gantry, the rotation shaft is arranged in the middle portion of the long hole through hole in the inclined direction,
The first support mechanism rotatably supports an upper end of the short column and the beam member.

(5)また、上記(1)、(3)または(4)に記載のものにおいて、前記支持機構が設けられる梁部材を2本以上の棒状部材を用いて構成すると共に前記長孔貫通孔を板状部材に形成して前記梁部材に取り付けてなるものであって、
前記板状部材を、前記梁部材の上下方向に突出させて前記梁部材で挟持して接着すると共に、前記突出部の上下それぞれ2箇所ずつ以上の貫通孔を設け、該貫通孔に棒状体を略梁部材の全幅に亘って、梁部材と当接して配置したことを特徴とするものである。
(5) Further, in the above (1), (3) or (4), the beam member provided with the support mechanism is configured by using two or more rod-shaped members and the long hole through hole is formed. It is formed on a plate-like member and attached to the beam member,
The plate-like member protrudes in the vertical direction of the beam member and is sandwiched and bonded by the beam member, and two or more through holes are provided on the upper and lower sides of the protruding portion, and a rod-like body is provided in the through-hole. It is characterized by being arranged in contact with the beam member over the entire width of the beam member.

(6)また、上記(5)に記載のものにおいて、前記棒状体と前記梁部材の間に板状体を介在させたことを特徴とするものである。 (6) Further, in the above (5), a plate-like body is interposed between the rod-like body and the beam member.

(7)上記(1)に記載のものにおいて、前記支持機構が設けられる梁部材を2本以上の棒状部材を用いて構成すると共に、前記支持機構は、前記梁部材に取り付けられる支持機構部材を備えてなり、該支持機構部材は長孔貫通孔を形成した板状部材と、該板状部材に直交すると共に前記梁部材に挟持される挟持部と、前記梁部材の底面を支持する底面支持部とを有し、
前記支持機構部材は、前記挟持部を前記梁部材で挟持して前記梁部材に接着すると共に、梁底面支持部の下面側と前記梁部材の上面側に配設された一対の板状又は形鋼状の固定部材を用いてこれら一対の固定部材を前記梁部材側面に当接する棒状体で連結固定することによって前記梁部材に固定されていることを特徴とするものである。
(7) In the above described (1), the beam member provided with the support mechanism is configured by using two or more rod-shaped members, and the support mechanism includes a support mechanism member attached to the beam member. The support mechanism member includes a plate-like member in which a long hole through hole is formed, a sandwiching portion that is orthogonal to the plate-like member and is clamped by the beam member, and a bottom support that supports the bottom surface of the beam member And
The support mechanism member includes a pair of plates or shapes disposed between the lower surface side of the beam bottom surface support portion and the upper surface side of the beam member while sandwiching the sandwiching portion with the beam member and bonding to the beam member. The pair of fixing members are fixed to the beam member by connecting and fixing the pair of fixing members with a rod-like body that abuts against the side surface of the beam member using a steel-like fixing member.

(8)また、上記(3)又は(4)に記載のものにおいて、梁部材を2本以上の棒状部材を用いて構成すると共に、前記梁部材の一端側に取り付けられる第1支持機構部材を備えてなり、該第1支持機構部材は長孔貫通孔を形成した板状部材と、該板状部材に直交すると共に前記梁部材に挟持される挟持部と、前記梁部材の底面を支持する底面支持部とを有し、
前記梁部材の他端側に取り付けられる第2支持機構部材を備えてなり、該第2支持機構部材は回転軸が挿通される貫通孔を形成した板状部材と、該板状部材に直交すると共に前記梁部材に挟持される挟持部と、前記梁部材の底面を支持する底面支持部とを有し、
前記第1支持機構部材及び第2支持機構部材は、前記挟持部を前記梁部材で挟持して前記梁部材に接着すると共に、梁底面支持部の下面側と前記梁部材の上面側に配設された一対の板状又は形鋼状の固定部材を用いてこれら一対の固定部材を前記梁部材側面に当接する棒状体で連結固定することによって前記梁部材に固定されていることを特徴とするものである。
(8) Further, in the above-described (3) or (4), the beam member is configured using two or more rod-shaped members, and the first support mechanism member attached to one end side of the beam member is provided. The first support mechanism member supports a plate-like member in which a long hole through-hole is formed, a clamping part that is orthogonal to the plate-like member and is clamped by the beam member, and a bottom surface of the beam member. Having a bottom support,
A second support mechanism member attached to the other end of the beam member is provided, the second support mechanism member being a plate-like member having a through-hole through which the rotation shaft is inserted, and orthogonal to the plate-like member. And a sandwiching part that is sandwiched between the beam members, and a bottom support part that supports the bottom surface of the beam member,
The first support mechanism member and the second support mechanism member are disposed on the lower surface side of the beam bottom surface support portion and on the upper surface side of the beam member while the sandwiching portion is sandwiched between the beam members and bonded to the beam member. The pair of fixing members are fixed to the beam member by connecting and fixing the pair of fixing members with a rod-like body that abuts against the side surface of the beam member using a pair of plate-like or shaped steel-like fixing members. Is.

(9)また、上記(1)又は(7)に記載のものにおいて、前記回転軸は前記支柱に設けられた板状体に固定手段によって固定され、かつ前記長孔貫通孔は前記梁部材側に設けられた板状部材に設けられ、
前記回転軸は前記板状部材の前記長孔貫通孔を貫通して延伸し、前記板状部材を軸方向に摺動可能かつ傾斜可能に保持していることを特徴とするものである。
(9) Further, in the above (1) or (7), the rotation shaft is fixed to a plate-like body provided on the support column by a fixing means, and the long hole through hole is on the beam member side. Provided in the plate-like member provided in
The rotating shaft extends through the long hole through-hole of the plate-like member, and holds the plate-like member so as to be slidable and tiltable in the axial direction.

(10)また、上記(3)、(4)又は(8)に記載のものにおいて、梁部材を回転可能に支持する側の支柱には板状体が設けられ該板状体に回転軸が固定されると共に該回転軸が挿通される貫通孔を有する板状部材が前記梁部材側に設けられてなり、
前記長孔貫通孔は前記梁部材側に設けられた板状部材に設けられ、該長孔貫通孔に挿通される回転軸は支柱に設けられた板状体に固定手段によって固定され、
前記回転軸は前記板状部材の前記長孔貫通孔及び前記板状体の貫通孔を貫通して延伸し、前記板状部材及び前記板状体を軸方向に摺動可能かつ傾斜可能に保持していることを特徴とするものである。
(10) Further, in the above (3), (4) or (8), a plate-like body is provided on the support column on the side which rotatably supports the beam member, and the rotation shaft is provided on the plate-like body. A plate-like member that is fixed and has a through-hole through which the rotating shaft is inserted is provided on the beam member side,
The long hole through hole is provided in a plate-like member provided on the beam member side, and a rotation shaft inserted through the long hole through hole is fixed to a plate-like body provided in a support column by a fixing means,
The rotating shaft extends through the long hole through hole of the plate member and the through hole of the plate member, and holds the plate member and the plate member so as to be slidable and tiltable in the axial direction. It is characterized by that.

(11)また、上記(1)乃至(8)のいずれかに記載のものにおいて前記短柱および/または前記長柱は、下柱に上柱を連結した連結柱構造であり、かつ、下柱または上柱の一方を他方に挿入すると共に、前記傾斜架構の傾斜方向と直交する方向に傾動可能な傾動軸で両者を連結してなることを特徴とするものである。 (11) Further, in any of the above (1) to (8), the short column and / or the long column has a connecting column structure in which an upper column is connected to a lower column, and the lower column Alternatively, one of the upper pillars is inserted into the other, and both are connected by a tilt shaft that can tilt in a direction perpendicular to the tilt direction of the tilt frame.

本発明は上記の構成を備えたことにより、太陽電池パネルを安定的に保持できると共に、地盤の緩みにより長柱及び/又は短柱が沈降した場合であっても、傾斜架構に内部応力が発生しないので、太陽電池パネルの破損等を防止できる。   Since the present invention has the above-described configuration, the solar cell panel can be stably held, and internal stress is generated in the inclined frame even when the long column and / or the short column sinks due to loose ground. Therefore, damage to the solar cell panel can be prevented.

本発明の一実施の形態に係る太陽電池パネル用架台の説明図である。It is explanatory drawing of the mount frame for solar cell panels which concerns on one embodiment of this invention. 図1に示した太陽電池パネル用架台の一部を拡大して示す拡大図である。FIG. 2 is an enlarged view showing a part of the solar cell panel mount shown in FIG. 1. 図1に示した太陽電池パネル用架台の一部を拡大して示す拡大図である。FIG. 2 is an enlarged view showing a part of the solar cell panel mount shown in FIG. 1. 図1に示した太陽電池パネル用架台の動作を説明する動作説明図である。It is operation | movement explanatory drawing explaining operation | movement of the mount for solar cell panels shown in FIG. 図4に示した動作説明図の一部を拡大して示す拡大図である。FIG. 5 is an enlarged view showing a part of the operation explanatory diagram shown in FIG. 4 in an enlarged manner. 図4に示した動作説明図の一部を拡大して示す拡大図である。FIG. 5 is an enlarged view showing a part of the operation explanatory diagram shown in FIG. 4 in an enlarged manner. 図1に示した太陽電池パネル用架台の他の動作を説明する動作説明図である。It is operation | movement explanatory drawing explaining the other operation | movement of the solar cell panel mount shown in FIG. 図7に示した動作説明図の一部を拡大して示す拡大図である。FIG. 8 is an enlarged view showing a part of the operation explanatory diagram shown in FIG. 7 in an enlarged manner. 図7に示した動作説明図の一部を拡大して示す拡大図である。FIG. 8 is an enlarged view showing a part of the operation explanatory diagram shown in FIG. 7 in an enlarged manner. 図1に示した太陽電池パネル用架台の他の態様の説明図である。It is explanatory drawing of the other aspect of the mount for solar cell panels shown in FIG. 図10に示した太陽電池パネル用架台の動作を説明する動作説明図である。It is operation | movement explanatory drawing explaining operation | movement of the mount for solar cell panels shown in FIG. 図1に示した太陽電池パネル用架台の他の態様の説明図である。It is explanatory drawing of the other aspect of the mount for solar cell panels shown in FIG. 図12に示した太陽電池パネル用架台の一部を拡大して示す拡大図である。FIG. 13 is an enlarged view showing a part of the solar cell panel mount shown in FIG. 12 in an enlarged manner. 図12に示した太陽電池パネル用架台の一部を拡大して示す拡大図である。FIG. 13 is an enlarged view showing a part of the solar cell panel mount shown in FIG. 12 in an enlarged manner. 本発明の他の実施の形態に係る太陽電池パネル用架台の説明図である。It is explanatory drawing of the stand for solar cell panels which concerns on other embodiment of this invention. 図15に示した太陽電池パネル用架台の一部を拡大して示す拡大図である。FIG. 16 is an enlarged view showing a part of the solar cell panel mount shown in FIG. 15. 図15に示した太陽電池パネル用架台の一部を拡大して示す拡大図である。FIG. 16 is an enlarged view showing a part of the solar cell panel mount shown in FIG. 15. 図15に示した太陽電池パネル用架台の動作を説明する動作説明図である。FIG. 16 is an operation explanatory diagram illustrating the operation of the solar cell panel mount shown in FIG. 15. 図18に示した動作説明図の一部を拡大して示す拡大図である。It is an enlarged view which expands and shows a part of operation | movement explanatory drawing shown in FIG. 図18に示した動作説明図の一部を拡大して示す拡大図である。It is an enlarged view which expands and shows a part of operation | movement explanatory drawing shown in FIG. 図15に示した太陽電池パネル用架台の他の動作を説明する動作説明図である。FIG. 16 is an operation explanatory diagram illustrating another operation of the solar cell panel mount shown in FIG. 15. 図21に示した動作説明図の一部を拡大して示す拡大図である。It is an enlarged view which expands and shows a part of operation | movement explanatory drawing shown in FIG. 図21に示した動作説明図の一部を拡大して示す拡大図である。It is an enlarged view which expands and shows a part of operation | movement explanatory drawing shown in FIG. 本発明の実施の形態における矩形板状体の設置方法の説明図である。It is explanatory drawing of the installation method of the rectangular plate-shaped object in embodiment of this invention. 図24における矢視A−A線に沿う断面図である。It is sectional drawing which follows the arrow AA line in FIG. 本発明の実施の形態における矩形板状体の他の設置方法の説明図である。It is explanatory drawing of the other installation method of the rectangular plate-shaped object in embodiment of this invention. 図26における矢視B−B線に沿う図である。It is a figure which follows the arrow BB line in FIG. 本発明の他の実施の形態における支持機構部材の説明図である。It is explanatory drawing of the support mechanism member in other embodiment of this invention. 本発明の他の実施の形態における支持機構部材の設置状態を示す側面図である。It is a side view which shows the installation state of the support mechanism member in other embodiment of this invention. 図29における矢視E−E図である。It is an arrow EE figure in FIG. 本発明の他の実施の形態における支持機構部材を回動軸で支持した状態を示す図である。It is a figure which shows the state which supported the support mechanism member in other embodiment of this invention with the rotating shaft. 本発明の他の実施の形態における支持機構部材の他の態様の説明図である。It is explanatory drawing of the other aspect of the support mechanism member in other embodiment of this invention. 本発明の実施の形態における梁部材と根太の接合部の根太端面側正面図である。It is a joist end face side front view of a joined part of a beam member and joists in an embodiment of the invention. 図33の矢視F−F図である。It is arrow FF figure of FIG. 図33の矢視G−G図である。It is an arrow GG figure of FIG. 図33の矢視H−H図である。It is an arrow HH figure of FIG. 図33〜図36に示した接合部を構成する部品(大型座金)の説明図である。It is explanatory drawing of the components (large washer) which comprise the junction part shown in FIGS. 図33〜図36に示した接合部を構成する部品(位置決め部材)の説明図である。It is explanatory drawing of the components (positioning member) which comprise the junction part shown in FIGS. 図33〜図36に示した接合部を構成する部品(板材)の説明図である。It is explanatory drawing of the components (plate material) which comprise the junction part shown in FIGS. 本発明の実施例5の下柱の説明図である。It is explanatory drawing of the lower column of Example 5 of this invention. 本発明の実施例5の上柱の説明図である。It is explanatory drawing of the upper pillar of Example 5 of this invention. 本発明の実施例5の太陽電池パネル用架台の一部の説明図である。It is explanatory drawing of a part of solar cell panel mount of Example 5 of this invention. 本発明の実施例5における沈降模擬試験の実施状況を正面から撮影した全景写真である。It is a panoramic photograph which image | photographed the implementation condition of the sedimentation simulation test in Example 5 of this invention from the front. 写真1の状態での支持機構の回転軸の延伸方向への傾斜状態を示す拡大写真である。3 is an enlarged photograph showing a state in which the rotation axis of the support mechanism in the state of photograph 1 is inclined in the extending direction. 本発明の実施の形態における一つの態様として板状体23を2枚設置した場合の板状体23の間隔の設定方法の説明図である。It is explanatory drawing of the setting method of the space | interval of the plate-shaped body 23 when the two plate-shaped bodies 23 are installed as one aspect in embodiment of this invention.

[実施の形態1]
本実施の形態に係る太陽電池パネル用架台1は、短柱3、長柱5で一対となる支柱を少なくとも2組有し、該2組の支柱における短柱3同士、長柱5同士を直線状に配置すると共に平面視で全体が矩形になるように配置し、前記各柱の上端部を梁部材7で連結して前記長柱5側から前記短柱3側に向って傾斜する傾斜架構9を構成してなる太陽電池パネル用架台1であって、前記各支柱の上端部と前記梁部材7との接合部に設けられて前記梁部材7を支持する支持機構11を有してなるものである。
以下、詳細に説明する。
[Embodiment 1]
The solar cell panel gantry 1 according to the present embodiment has at least two pairs of pillars that are a pair of short pillars 3 and long pillars 5, and the short pillars 3 and the long pillars 5 of the two pairs of pillars are straight. And an inclined frame that is arranged so as to be rectangular in plan view and is connected to the upper end of each column by a beam member 7 and is inclined from the long column 5 side toward the short column 3 side. 9 includes a support mechanism 11 that is provided at a joint portion between the upper end portion of each column and the beam member 7 and supports the beam member 7. Is.
Details will be described below.

<短柱>
短柱3は、例えば角型鋼管によって構成される。短柱3の下端部にはベースプレート12が設置されている。
<Short pillar>
The short column 3 is constituted by, for example, a square steel pipe. A base plate 12 is installed at the lower end of the short column 3.

<長柱>
長柱5は、例えば角型鋼管によって構成される。長柱5の下端部にはベースプレート12が設置されている。
<Long pillar>
The long column 5 is constituted by, for example, a square steel pipe. A base plate 12 is installed at the lower end of the long column 5.

<梁部材>
梁部材7は各柱の上端部を連結する部材であり、本実施の形態の梁部材7は、長柱5の上端部と短柱3の上端部を連結している。
なお、梁部材7は長柱5の上端同士を連結し、かつ短柱3の上端同士を連結するようにしてもよい。
<Beam members>
The beam member 7 is a member that connects the upper ends of the columns, and the beam member 7 of the present embodiment connects the upper ends of the long columns 5 and the upper ends of the short columns 3.
The beam member 7 may connect the upper ends of the long columns 5 and connect the upper ends of the short columns 3 to each other.

<傾斜架構>
傾斜架構9は、長柱5と短柱3の上端部を連結するように設置された2本の梁部材7及びこの梁部材7に架設するようにした複数本の根太13によって構成される。傾斜架構9に太陽電池パネル15が太陽電池パネル取付ピース17を介して取り付けられている。
<Inclined frame>
The inclined frame 9 is composed of two beam members 7 installed so as to connect the upper ends of the long columns 5 and the short columns 3 and a plurality of joists 13 installed on the beam members 7. A solar cell panel 15 is attached to the inclined frame 9 via a solar cell panel mounting piece 17.

<支持機構>
支持機構11は、長柱5及び短柱3の上端部と梁部材7との接合部に設けられて梁部材7を支持するものである。長柱5側と短柱3側に設けられる支持機構11は同一の機構であるので、以下においては、長柱5側に設けられる支持機構11について説明する。
支持機構11は、図2に示すように、長柱5の上端部に設置された支持部材19と、梁部材7の傾斜上部側に取り付けられた接合部材21によって構成される。
支持部材19は、上端が円弧に形成された板状体23と、該板状体23に設けられると共に傾斜架構9の傾斜方向に直交する方向(梁部材7に直交する方向)に延出する回転軸25を備えている。
回転軸25はそれ自体が回転自在に取り付けてもよいし、あるいは固定であってもよく、いずれにしても回転軸25は接合部材21を構成する後述の矩形板状体27を回転可能及びスライド可能に支持すればよい。
回転軸25は、ボルト、ピン、棒鋼などによって形成される。
<Support mechanism>
The support mechanism 11 is provided at a joint portion between the upper ends of the long columns 5 and the short columns 3 and the beam member 7 to support the beam member 7. Since the support mechanism 11 provided on the long column 5 side and the short column 3 side are the same mechanism, the support mechanism 11 provided on the long column 5 side will be described below.
As shown in FIG. 2, the support mechanism 11 includes a support member 19 installed at the upper end of the long column 5 and a joining member 21 attached to the inclined upper side of the beam member 7.
The support member 19 is provided with a plate-like body 23 having an upper end formed in an arc, and extends in a direction orthogonal to the inclination direction of the inclined frame 9 (a direction orthogonal to the beam member 7). A rotating shaft 25 is provided.
The rotary shaft 25 may be rotatably attached to the rotary shaft 25 or may be fixed. In any case, the rotary shaft 25 can rotate and slide a rectangular plate-like body 27 described later constituting the joining member 21. It only needs to be supported.
The rotating shaft 25 is formed of a bolt, a pin, a steel bar, or the like.

本実施の形態では、支持部材19を1枚の板状体23によって構成しており、この場合の回転軸25の取付部の詳細を図3における一部拡大図に基づいて説明する。
板状体23には、回転軸25を設置するための固定手段を設ける。固定手段の態様は種々のものが適用可能であるが、例えば図3に示すように、板状体23にめねじ部材としてナット70を溶接し、先端部にねじ山を設けたボルトによって構成される回転軸25をねじ込み固定するようにしてもよい。
In the present embodiment, the support member 19 is constituted by a single plate-like body 23, and details of the mounting portion of the rotating shaft 25 in this case will be described based on a partially enlarged view in FIG.
The plate-like body 23 is provided with a fixing means for installing the rotating shaft 25. Various types of fixing means can be applied. For example, as shown in FIG. 3, the fixing means is constituted by a bolt in which a nut 70 is welded to the plate-like body 23 as a female screw member and a screw thread is provided at the tip. The rotating shaft 25 may be fixed by screwing.

ナット70は、板状体23における矩形板状体27に面しない側の面に溶接されている。板状体23と矩形板状体27の隙間部分には、2つの絶縁材を配設している。板状体23側に配設した絶縁材は、リング緩衝材71であり、これによって防振効果を持たせている。リング緩衝材71は、EPDMなどの弾性ゴム、ばね座金など、沈降傾斜による矩形板状体27の傾斜と回転軸25軸方向の移動により圧密容易な材料から選択可能である。図3にはEPDMリングを用いた例が示されている。
もう一つの絶縁材として矩形板状体27側には、長孔貫通孔29内を回転軸25が移動するときにリング緩衝材71の破損防止と摺動性向上のために、金属性の座金72を配設した。
The nut 70 is welded to the surface of the plate-like body 23 that does not face the rectangular plate-like body 27. Two insulating materials are disposed in the gap between the plate-like body 23 and the rectangular plate-like body 27. The insulating material disposed on the plate-like body 23 side is a ring cushioning material 71, thereby providing a vibration isolating effect. The ring cushioning material 71 can be selected from materials that can be easily consolidated by the inclination of the rectangular plate-like body 27 due to the settling inclination and the movement of the rotary shaft 25 in the axial direction, such as an elastic rubber such as EPDM and a spring washer. FIG. 3 shows an example using an EPDM ring.
On the side of the rectangular plate-like body 27 as another insulating material, a metal washer is provided to prevent the ring cushioning material 71 from being damaged and to improve the slidability when the rotary shaft 25 moves in the long hole through hole 29. 72 was disposed.

回転軸25のボルト頭と矩形板状体27との間にも、リング緩衝材71と金属性の座金72を配設している。矩形板状体27側に配設した座金72は上記と同様のものであるが、リング緩衝材71は、比較的強度の大きいばね座金を用い、所定の位置に安定させる効果を持たせている。
なお、各リング緩衝材71、座金72の厚さは、非圧密時に、回転軸25の余長と略等しくなるように設定する。
A ring cushioning material 71 and a metal washer 72 are also disposed between the bolt head of the rotary shaft 25 and the rectangular plate-like body 27. The washer 72 disposed on the rectangular plate-like body 27 side is the same as described above. However, the ring cushioning material 71 uses a spring washer having a relatively high strength and has an effect of stabilizing in a predetermined position. .
In addition, the thickness of each ring cushioning material 71 and the washer 72 is set so as to be substantially equal to the extra length of the rotating shaft 25 when not compacted.

なお、板状体23に設ける回転軸25を設置するための固定手段の他の態様としては、回転軸25の先端側にねじを形成し、板状体23を貫通させ、ナット等により両側から締め付ける方法や、板状体23にめねじを形成しておき、回転軸25をねじ込み固定する方法がある。   In addition, as another aspect of the fixing means for installing the rotating shaft 25 provided on the plate-like body 23, a screw is formed on the tip side of the rotating shaft 25, the plate-like body 23 is penetrated, and a nut or the like is used from both sides. There are a method of tightening and a method of forming a female screw on the plate-like body 23 and screwing and fixing the rotary shaft 25.

また、接合部材21は、矩形状に形成された矩形板状体27によって構成され、梁部材7の下面側に突出するように梁部材7に設置されている。矩形板状体27は、傾斜架構9の傾斜方向(梁部材7の材軸方向)に延びる長孔貫通孔29を有している。
長孔貫通孔29は、沈降許容量となった場合の短柱3と長柱5で支持される梁部材7の支点間距離の変化に相当する長さ以上の長さを有している。
回転軸25が長孔貫通孔29に挿入され、回転軸25は回転自在かつスライド可能に矩形板状体27を支持する。
Further, the joining member 21 is constituted by a rectangular plate-like body 27 formed in a rectangular shape, and is installed on the beam member 7 so as to protrude to the lower surface side of the beam member 7. The rectangular plate-like body 27 has a long hole through-hole 29 extending in the inclination direction of the inclined frame 9 (the material axis direction of the beam member 7).
The long hole through-hole 29 has a length equal to or longer than a length corresponding to a change in the distance between the fulcrums of the beam member 7 supported by the short column 3 and the long column 5 when the allowable sedimentation amount is reached.
The rotary shaft 25 is inserted into the long hole through-hole 29, and the rotary shaft 25 supports the rectangular plate-like body 27 so as to be rotatable and slidable.

太陽電池パネル用架台1の設置初期状態では、図1に示すように、回転軸25が長孔貫通孔29における傾斜方向上側の壁に当接している。   In the initial installation state of the solar cell panel mount 1, as shown in FIG.

上記のように構成された本実施の形態の動作を説明する。
<設置初期状態>
設置初期状態、すなわち地盤の沈降がない状態では、前述したように、回転軸25が長孔貫通孔29における傾斜方向上側の壁に当接しており、構造的に安定した状態が保持されている。この状態で、長柱5側から風力が作用しても、風力に起因して発生する揚力は長孔貫通孔29と直交方向に作用するので、通常のボルト接合部と応力状態は変わらない。
また、短柱3側から作用する風力に関しては、特に長柱5側で架台を地面側に押し付ける方向に荷重が大きく作用するので、傾斜架構9がずり上がることはない。
The operation of the present embodiment configured as described above will be described.
<Installation initial state>
In the initial installation state, that is, in a state where there is no ground subsidence, as described above, the rotary shaft 25 is in contact with the wall on the upper side in the inclined direction of the long hole through hole 29, and a structurally stable state is maintained. . In this state, even if wind force acts from the long pillar 5 side, the lift generated due to the wind force acts in a direction orthogonal to the long hole through-hole 29, so that the normal bolt joint and stress state do not change.
Further, with regard to the wind force acting from the short column 3 side, the inclined frame 9 does not slide up because the load acts particularly in the direction of pressing the gantry against the ground side on the long column 5 side.

<短柱側が先行沈降した場合>
短柱3側の沈降が先行して発生した場合、図4に示すように、梁部材7が長柱5側の支持機構11における回転軸25を支点として図中時計回り方向(傾斜架構9の傾斜角度が大きくなる方向)に回動する。このとき、長柱5側の支持機構11においては、図5に示すように、回転軸25と長孔貫通孔29との相対位置は変わらない。
他方、短柱3側の支持機構11においては、図6に示すように、回転軸25が長孔貫通孔29の傾斜方向上側の壁から離れて下方に移動する。このように、回転軸25が長孔貫通孔29を移動することで、梁部材7の傾斜角度が大きくなることに伴う支点間距離の増加に追従することができる。その結果、傾斜架構9に内部応力を発生させない。
<When the short column has settled ahead>
When sedimentation on the short column 3 side precedes, as shown in FIG. 4, the beam member 7 rotates in the clockwise direction in the drawing (the tilted frame 9 of the inclined frame 9) with the rotation shaft 25 in the support mechanism 11 on the long column 5 side as a fulcrum. It rotates in the direction in which the inclination angle increases. At this time, in the support mechanism 11 on the long pillar 5 side, as shown in FIG. 5, the relative position between the rotating shaft 25 and the long hole through hole 29 does not change.
On the other hand, in the support mechanism 11 on the short column 3 side, as shown in FIG. 6, the rotation shaft 25 moves downward away from the wall on the upper side in the inclination direction of the long hole through hole 29. As described above, the rotation shaft 25 moves through the long hole through-hole 29, so that it is possible to follow the increase in the distance between the fulcrums as the inclination angle of the beam member 7 increases. As a result, no internal stress is generated in the inclined frame 9.

<長柱側が先行沈降した場合>
長柱5側の沈降が先行して発生した場合、図7に示すように、梁部材7が短柱3側の支持機構11における回転軸25を支点として図中反時計回り方向(傾斜架構9の傾斜角度が小さくなる方向)に回動する。このとき、短柱3側の支持機構11においては、図8に示すように、回転軸25と長孔貫通孔29との相対位置は変わらない。
他方、長柱5側の支持機構11においては、図9に示すように、回転軸25が長孔貫通孔29の傾斜方向上側の壁から離れて下方に移動する。このように、回転軸25が長孔貫通孔29を移動することで、梁部材7の傾斜角度が小さくなることに伴う支点間距離の減少に追従することができる。その結果、傾斜架構9に内部応力を発生させない。
<When the long column side settles ahead>
When sedimentation on the long pillar 5 side precedes, as shown in FIG. 7, the beam member 7 is counterclockwise (inclined frame 9 in the figure) with the rotating shaft 25 in the support mechanism 11 on the short pillar 3 side as a fulcrum. In a direction in which the inclination angle of the lens becomes smaller. At this time, in the support mechanism 11 on the short column 3 side, as shown in FIG. 8, the relative position between the rotating shaft 25 and the long hole through hole 29 does not change.
On the other hand, in the support mechanism 11 on the long pillar 5 side, as shown in FIG. 9, the rotation shaft 25 moves downward away from the wall on the upper side in the inclination direction of the long hole through hole 29. As described above, the rotation shaft 25 moves through the long hole through-hole 29, so that it is possible to follow the decrease in the distance between the fulcrums as the inclination angle of the beam member 7 decreases. As a result, no internal stress is generated in the inclined frame 9.

<短柱側が沈降した後、長柱側が沈降した場合>
短柱3側が先行沈降した状態では、図4の二点鎖線で示す状態になっている。この状態で、長柱5側が沈降した場合、長柱5側の支持機構11においては、回転軸25と長孔貫通孔29との相対位置は変わらない。他方、短柱3側の支持機構11においては、回転軸25が長孔貫通孔29の傾斜方向上側に向かって移動し、最終的には図1に示す元の状態に戻る。
<When the long column side sinks after the short column side sinks>
In a state in which the short column 3 side has settled in advance, it is in a state indicated by a two-dot chain line in FIG. In this state, when the long column 5 side sinks, in the support mechanism 11 on the long column 5 side, the relative position between the rotation shaft 25 and the long hole through hole 29 does not change. On the other hand, in the support mechanism 11 on the short column 3 side, the rotating shaft 25 moves toward the upper side in the inclination direction of the long hole through hole 29 and finally returns to the original state shown in FIG.

<長柱側が沈降した後、短柱側が沈降した場合>
長柱5側が先行沈降した状態では、図7の二点鎖線で示す状態になっている。この状態で、短柱3側が沈降した場合、短柱3側の支持機構11においては、回転軸25と長孔貫通孔29との相対位置は変わらない。他方、長柱5側の支持機構11においては、回転軸25が長孔貫通孔29の傾斜方向上側に向かって移動し、最終的には図1に示す元の状態に戻る。
<When the long column side sinks, then the short column side sinks>
In the state in which the long column 5 side has settled in advance, the state shown by the two-dot chain line in FIG. In this state, when the short column 3 side sinks, in the support mechanism 11 on the short column 3 side, the relative position between the rotating shaft 25 and the long hole through hole 29 does not change. On the other hand, in the support mechanism 11 on the long pillar 5 side, the rotary shaft 25 moves toward the upper side in the inclination direction of the long hole through hole 29 and finally returns to the original state shown in FIG.

以上のように、本実施の形態の太陽電池パネル用架台1は、太陽電池パネル15を安定的に保持できると共に、地盤の緩みにより長柱5及び/又は短柱3が沈降した場合であっても、傾斜架構9に内部応力が発生しないので、太陽電池パネル15の破損等を防止できる。   As described above, the solar cell panel mount 1 according to the present embodiment can stably hold the solar cell panel 15 and the long pillars 5 and / or the short pillars 3 sink due to the looseness of the ground. However, since no internal stress is generated in the inclined frame 9, damage to the solar cell panel 15 can be prevented.

なお、上記の実施の形態では、梁部材7を長柱5と短柱3の間に架設して、各柱と梁部材7との接合部に支持機構11を設けた例を示したが、梁部材7を長柱5同士の間及び短柱3同士の間に架設した場合であっても同様に各柱と梁部材7との接合部に同様の支持機構11を設けることで同様の効果を得ることができる。もっとも、この場合であっても長孔貫通孔29の向きは傾斜架構9の傾斜方向に延びる方向にしなければならないので、矩形板状体27の向きが梁部材7の材軸方向に直交する向きに取り付けなければならない点が上記の実施の形態とは異なる。   In the above embodiment, the beam member 7 is installed between the long column 5 and the short column 3 and the support mechanism 11 is provided at the joint between each column and the beam member 7. Even when the beam member 7 is installed between the long columns 5 and between the short columns 3, the same effect can be obtained by providing the same support mechanism 11 at the joint between each column and the beam member 7. Can be obtained. However, even in this case, since the direction of the long hole through-hole 29 must be a direction extending in the inclination direction of the inclined frame 9, the direction of the rectangular plate 27 is orthogonal to the material axis direction of the beam member 7. The point which must be attached to differs from said embodiment.

上記の実施の形態においては、傾斜架構9の傾斜方向での地盤の不等沈降の場合に太陽電池パネル15に応力が作用するのを抑制する構造について説明した。これは、傾斜架構9の傾斜方向での不等沈降が内部応力を発生の要因になることが大きいからである。
しかし、傾斜架構9の傾斜方向に直交する方向(図1の根太軸方向)での不等沈降が発生した場合も合わせて内部応力発生を抑制するために、図1〜図9に示したのと同様の支持機構11を傾斜架構9の傾斜方向に直交する側に設けることで対応することができる。
In the above-described embodiment, the structure that suppresses the stress from acting on the solar cell panel 15 in the case of uneven sedimentation of the ground in the inclination direction of the inclined frame 9 has been described. This is because uneven sedimentation in the tilt direction of the tilted frame 9 is likely to cause internal stress.
However, in order to suppress the generation of internal stress in the case where unequal sedimentation occurs in the direction orthogonal to the inclination direction of the inclined frame 9 (the joist axis direction in FIG. 1), it is shown in FIGS. This can be dealt with by providing the same support mechanism 11 on the side perpendicular to the inclination direction of the inclined frame 9.

なお、コストを低減するためには、例えば接合部材21を構成する矩形板状体27を板ばねで形成して、板ばねの撓みによって根太支点間距離の変化を吸収するようにしてもよい。
また、支持部材19を構成する板状体23の高さを高くして曲げ剛性を低くするという手段を採用してもよい。
In order to reduce the cost, for example, the rectangular plate-like body 27 constituting the joining member 21 may be formed by a leaf spring, and the change in the distance between the joist fulcrums may be absorbed by the bending of the leaf spring.
Further, a means of increasing the height of the plate-like body 23 constituting the support member 19 and reducing the bending rigidity may be employed.

また、支持機構11における矩形板状体27に設ける長孔貫通孔29に関し、回転軸25となるピン又はボルト部材径よりも長孔貫通孔29の幅を大きく設定し、かつ、支持部材19を対向する2枚の板状体23によって構成すると共に、梁部材7に取り付けた矩形板状体27の板厚よりも間隔をあけて設置するようにすればよい。これにより、隣接する短柱3同士または長柱5同士に高さの差が生じても、その支点部の間隔を適切に設定することによって、設定した範囲で当該方向への傾斜余裕度が大きくなる。この場合、隙間部分には弾性ゴム状の絶縁体を配置してもよい。   In addition, regarding the long hole through hole 29 provided in the rectangular plate-like body 27 in the support mechanism 11, the width of the long hole through hole 29 is set larger than the pin or bolt member diameter serving as the rotation shaft 25, and the support member 19 is What is necessary is just to make it install with the space | interval rather than the plate | board thickness of the rectangular plate-shaped body 27 attached to the beam member 7, while comprising by the two plate-shaped bodies 23 which oppose. Thereby, even if a difference in height occurs between the adjacent short columns 3 or the long columns 5, the inclination margin in the direction is large within the set range by appropriately setting the distance between the fulcrum portions. Become. In this case, an elastic rubber-like insulator may be disposed in the gap portion.

上記板状体23の間隔、すなわち、回転軸25の有効長さをより具体的に図45を用いて説明する。図中矩形板状体27上の矢印は、回転方向を、図中回転軸25上の矢印は後述する支点間移動距離を示す。なお、図中には矩形板状体27が2枚示されているが、これは矩形板状体27が回転軸25上をスライドする前と後を示したものであり、矩形板状体27は一枚のみが配設されている。
板状体23の間隔、すなわち回転軸25の有効長さは、以下のように設定する。
予め設定する不等沈下量と短柱3同士および長柱4同士の間隔から想定される支点間移動距離L1と、回転軸25の上面と、長孔貫通孔29上面の縁を回転中心として、沈下による矩形板状体27の傾斜角における正接と前記回転軸から板状体23の上端までの距離L2を乗じた寸法d2と、回転軸25の下面と、長孔貫通孔29の下面の縁を回転中心として、沈下による矩形板状体27の傾斜角の正弦と矩形板状体27の長孔貫通孔29よりも下方の部分の長さL3を乗じた寸法d3と、矩形板状体27の板厚tを加えた以上の間隔とする。このとき、長孔貫通孔29の幅は、回転軸25の部材径よりも、矩形板状体27の板厚tと前記沈下傾斜角の正接を乗じた寸法d4以上拡大する。
また、回転軸25の長孔貫通孔29と当接する範囲には、回転軸25の軸方向の移動を容易にするために、ねじ山を設けないことが望ましい。
The interval between the plate-like bodies 23, that is, the effective length of the rotary shaft 25 will be described more specifically with reference to FIG. The arrow on the rectangular plate 27 in the figure indicates the rotation direction, and the arrow on the rotation shaft 25 in the figure indicates the movement distance between fulcrums described later. In the figure, two rectangular plate-like bodies 27 are shown. This shows before and after the rectangular plate-like body 27 slides on the rotating shaft 25. Only one sheet is provided.
The interval between the plate-like bodies 23, that is, the effective length of the rotary shaft 25 is set as follows.
With the unequal settlement amount set in advance and the distance L1 between fulcrums assumed from the distance between the short columns 3 and the long columns 4, the upper surface of the rotary shaft 25 and the edge of the upper surface of the long hole through hole 29 as the rotation center, The dimension d2 obtained by multiplying the tangent at the inclination angle of the rectangular plate-like body 27 due to sinking and the distance L2 from the rotary shaft to the upper end of the plate-like body 23, the lower surface of the rotary shaft 25, and the edge of the lower surface of the long hole through hole 29 Is a dimension d3 obtained by multiplying the rotation plate by the sine of the inclination angle of the rectangular plate-like body 27 due to sinking and the length L3 of the portion below the long hole through hole 29 of the rectangular plate-like body 27, and the rectangular plate-like body 27 More than the plate thickness t is added. At this time, the width of the long hole through hole 29 is larger than the member diameter of the rotating shaft 25 by a dimension d4 or more obtained by multiplying the plate thickness t of the rectangular plate 27 and the tangent of the sinking inclination angle.
Further, in order to facilitate the movement of the rotating shaft 25 in the axial direction, it is desirable not to provide a thread in the range where the rotating shaft 25 contacts the long hole through-hole 29.

また、根太軸方向の不等沈降が大きいと予測されるような場合には、図10に示すような構造を採用してもよい。以下、図10に基づいて説明する。
図10においては、実施の形態1を示した図1〜図9と同一部分には同一の符号を付してある。なお、図10では短柱3を示しているが、長柱5についても同様である。
根太軸方向の不等沈降による内部応力発生をも合わせて防止する構造としては、図10に示すように、短柱3を根太軸方向に傾動可能な構造にすると共に、支持機構11を構成する矩形板状体27を板ばねで形成することで、根太軸方向の支点間距離の変化を、短柱3の傾動と矩形板状体27の撓みによって吸収するようにしている。
短柱3を根太軸方向に傾動可能な構造にするために、図10に示す例では、短柱3を、下柱3aに上柱3bを連結した連結柱構造とし、下柱3aを構成する鋼管内に上柱3bを構成する鋼管の一部を挿入してボルトを傾動軸として上柱3bを傾動可能に設置している。なお、下柱3aは荷重分散を行うために鉄筋コンクリート基礎30上に設置されている。
また、図10に示す例では、上柱3bにボルト33を挿入可能な沈降補正用ボルト孔31を複数設けて、上柱3bの高さを調整できるようにしている。これは、許容沈下量の範囲においては、不等沈下の相対差だけ伸長させることで傾斜角や架台の撓みを補正し、許容沈下量を超えて不等沈降が大きくなって上柱3bの傾動や板ばねの撓みでは支点間距離の変化を吸収できない場合に、上柱3bの高さを変更することで、許容沈下量以下にするように対応可能にしたものである。
矩形板状体27がより撓みやすくするには、矩形板状体27のせいを高く設定すればよい。
また、矩形板状体27のせいを高く設定することに加えて長孔貫通孔29の幅(長孔貫通孔の軸方向に直交する方向の長さ)を大きく設定することで、短柱3と短柱3の方向、長柱5と長柱5の方向での傾斜が可能になるので、よりフレキシブルな構造となる。
Moreover, when it is predicted that the unequal sedimentation in the joist axis direction is large, a structure as shown in FIG. 10 may be adopted. Hereinafter, a description will be given with reference to FIG.
10, the same parts as those in FIGS. 1 to 9 showing the first embodiment are denoted by the same reference numerals. In FIG. 10, the short column 3 is shown, but the same applies to the long column 5.
As a structure for preventing generation of internal stress due to uneven sedimentation in the joist axis direction, as shown in FIG. 10, the short column 3 can be tilted in the joist axis direction and a support mechanism 11 is configured. By forming the rectangular plate 27 with a leaf spring, the change in the distance between the fulcrums in the joist axis direction is absorbed by the tilting of the short column 3 and the bending of the rectangular plate 27.
In order to make the short column 3 tiltable in the joist axis direction, in the example shown in FIG. 10, the short column 3 has a connecting column structure in which the upper column 3b is connected to the lower column 3a to form the lower column 3a. A part of the steel pipe constituting the upper column 3b is inserted into the steel pipe, and the upper column 3b is tiltably installed with a bolt as a tilting axis. In addition, the lower pillar 3a is installed on the reinforced concrete foundation 30 in order to perform load distribution.
Further, in the example shown in FIG. 10, a plurality of settling correction bolt holes 31 into which the bolts 33 can be inserted are provided in the upper column 3 b so that the height of the upper column 3 b can be adjusted. This is because, within the range of allowable settlement, the inclination angle and the deflection of the gantry are corrected by extending by the relative difference of uneven settlement, and the uneven sedimentation increases beyond the allowable settlement and tilting of the upper column 3b. When the change in the distance between the fulcrums cannot be absorbed by the bending of the leaf spring or the leaf spring, the height of the upper pillar 3b can be changed so as to be able to cope with the allowable subsidence amount or less.
In order to make the rectangular plate-like body 27 easier to bend, the reason for the rectangular plate-like body 27 may be set high.
Further, in addition to setting the height of the rectangular plate-like body 27 high, the width of the long hole through hole 29 (the length in the direction orthogonal to the axial direction of the long hole through hole) is set large, so that the short column 3 In addition, since it is possible to incline in the direction of the short column 3 and the direction of the long column 5 and the long column 5, a more flexible structure is obtained.

図10に示す構造において、例えば図11に示すように図中右側の短柱3側が沈降した場合には、左側の短柱3が傾動すると共に、図中右側の支持機構11における矩形板状体27が撓むことで支点間距離の変化を吸収する。   In the structure shown in FIG. 10, for example, as shown in FIG. 11, when the right short pillar 3 side in the figure sinks, the left short pillar 3 tilts and the rectangular plate-like body in the right support mechanism 11 in the figure. The change of the distance between fulcrums is absorbed because 27 bends.

なお、根太軸方向の不等沈降を防止するための手段として図10に示した例では、短柱3を傾動可能にすると共に矩形板状体27を板ばねで形成したが、沈降が小さいと予測されるような場合には、いずれか一方の手段を用いるようにしてもよい。
また、回転軸25となるピン又はボルト部材径よりも長孔貫通孔29の幅を大きく設定して、かつ、回転軸25の軸線上で摺動かつ回転させる方法を用いてもよい。
In the example shown in FIG. 10 as means for preventing uneven sedimentation in the joist axis direction, the short column 3 can be tilted and the rectangular plate-like body 27 is formed by a leaf spring. In such a case, one of the means may be used.
Alternatively, a method may be used in which the width of the long hole through-hole 29 is set to be larger than the diameter of the pin or bolt member serving as the rotation shaft 25 and sliding and rotating on the axis of the rotation shaft 25.

上記の実施の形態1で示した支持機構11は、長柱5及び短柱3に設置する支持部材19側に回転軸25を設け、梁部材7側に設置する接合部材21側に長孔貫通孔29を設けた例を示したが、図12〜図14に示すように、長柱5又は短柱3に設置する支持部材19側に長孔貫通孔29を設け、梁部材7に設置する接合部材21側に回転軸25を設けるようにしてもよい。
この場合、設置初期状態では、図12〜図14に示すように、回転軸25が長孔貫通孔29の傾斜方向下側の壁に当接する配置にすればよい。長柱5が沈降する場合には、回転軸25が長孔貫通孔29を傾斜上方向に移動する。短柱3が沈降する場合にも、回転軸25が長孔貫通孔29を傾斜上方向に移動する。
In the support mechanism 11 shown in the first embodiment, the rotation shaft 25 is provided on the support member 19 side installed on the long column 5 and the short column 3, and the long hole penetrates on the joining member 21 side installed on the beam member 7 side. Although the example which provided the hole 29 was shown, as shown in FIGS. 12-14, the long hole through-hole 29 is provided in the support member 19 side installed in the long pillar 5 or the short pillar 3, and it installs in the beam member 7. FIG. You may make it provide the rotating shaft 25 in the joining member 21 side.
In this case, in the initial installation state, as shown in FIGS. 12 to 14, the rotation shaft 25 may be disposed so as to contact the lower wall of the long hole through hole 29 in the inclination direction. When the long column 5 sinks, the rotary shaft 25 moves in the inclined upward direction through the long hole through hole 29. Even when the short column 3 sinks, the rotary shaft 25 moves through the long hole through hole 29 in an upwardly inclined direction.

なお、以上の説明で例示した傾斜架構9における傾斜角や断面形状および断面寸法は、実際の荷重条件等によって適宜選択できるのは言うまでもなく、長孔貫通孔29の寸法も、許容沈降量の設定によって適宜変更可能である。   Needless to say, the inclination angle, the cross-sectional shape and the cross-sectional dimensions of the inclined frame 9 exemplified in the above description can be appropriately selected depending on the actual load conditions and the like. Can be changed as appropriate.

[実施の形態2]
本発明の実施の形態2を図15〜図23に基づいて説明する。なお、図15〜図23において、実施の形態1を示した図1〜図14と同一部分には同一の符号を付してある。
本実施の形態に係る太陽電池パネル用架台41は、各支柱の上端部と梁部材7との接合部に設けられて梁部材7を支持する支持機構を、短柱3の上端部で梁部材7を支持する第1支持機構43と、長柱5の上端部で梁部材7を支持する第2支持機構45とによって構成したものである。
[Embodiment 2]
A second embodiment of the present invention will be described with reference to FIGS. 15 to 23, the same parts as those in FIGS. 1 to 14 showing the first embodiment are denoted by the same reference numerals.
The solar cell panel gantry 41 according to the present embodiment is provided with a support mechanism for supporting the beam member 7 provided at a joint portion between the upper end portion of each column and the beam member 7, and the beam member at the upper end portion of the short column 3. 7, and a second support mechanism 45 that supports the beam member 7 at the upper end of the long column 5.

第1支持機構43は、実施の形態1で示した支持機構11と基本点に同一の構造であって、図16に示すように、短柱3の上端部に設置された支持部材19と、梁部材7に取り付けられた接合部材21によって構成される。そして、支持部材19は、上端が円弧に形成された板状体23と、該板状体23に設けられると共に傾斜架構9の傾斜方向に直交する方向(梁部材7に直交する方向)に延出する回転軸25を備えている。回転軸25は、ボルト、ピン、棒鋼などによって形成される。
また、接合部材21は、矩形状に形成された矩形板状体27によって構成され、梁部材7の下面側に突出するように梁部材7に設置されている。矩形板状体27は、傾斜架構9の傾斜方向(梁部材7の材軸方向)に延びる長孔貫通孔29を有している。
The first support mechanism 43 has the same structure as the basic mechanism of the support mechanism 11 shown in the first embodiment, and as shown in FIG. 16, the support member 19 installed at the upper end of the short column 3; It is constituted by a joining member 21 attached to the beam member 7. The support member 19 has a plate-like body 23 whose upper end is formed in an arc shape, and extends in a direction (a direction perpendicular to the beam member 7) provided in the plate-like body 23 and perpendicular to the inclination direction of the inclined frame 9. A rotating shaft 25 is provided. The rotating shaft 25 is formed of a bolt, a pin, a steel bar, or the like.
Further, the joining member 21 is constituted by a rectangular plate-like body 27 formed in a rectangular shape, and is installed on the beam member 7 so as to protrude to the lower surface side of the beam member 7. The rectangular plate-like body 27 has a long hole through-hole 29 extending in the inclination direction of the inclined frame 9 (the material axis direction of the beam member 7).

長孔貫通孔29には回転軸25が挿入されて、ここを支点に梁部材7が回転しながら、当該回転軸25が長孔貫通孔29内を移動することによって、短柱3及び/又は長柱5の沈降による支点間距離の変化を吸収する。
したがって、長孔貫通孔29の長さは、短柱3及び長柱5の沈降によって支点間距離の変化量を吸収できる長さに設定されている。より具体的には、短柱3が沈降許容量となった場合と沈降以前の梁部材7の支点間距離の変化量と、長柱5が沈降許容量となった場合と沈降以前の梁部材7の支点間距離の変化量との合計に相当する長さに設定されている。
回転軸25は、初期設置時には、図16に示すように、長孔貫通孔29の中間部に配置されている。中間部の位置をより正確に言うと、短柱3の沈降時の梁部材7の支点間距離の変化分の長さを回転軸25から梁部材端部方向に有し、長柱5の沈降時の梁部材7の支点間距離の変化分の長さを回転軸25から梁部材中央方向に有する位置である。
A rotating shaft 25 is inserted into the long hole through-hole 29, and the beam member 7 rotates around the rotating shaft 25, and the rotating shaft 25 moves in the long hole through-hole 29. Absorbs the change in the distance between the fulcrums due to the sinking of the long column 5.
Therefore, the length of the long hole through hole 29 is set to a length that can absorb the amount of change in the distance between the fulcrums due to the sedimentation of the short columns 3 and the long columns 5. More specifically, the amount of change in the distance between the fulcrums of the beam member 7 before the subsidence when the short column 3 becomes the settling allowance, and the beam member before the settling when the long column 5 becomes the settling allowance 7 is set to a length corresponding to the total amount of change in the distance between the fulcrums.
The rotating shaft 25 is disposed at an intermediate portion of the long hole through-hole 29 as shown in FIG. More precisely, the position of the intermediate portion has a length corresponding to the change in the distance between the fulcrums of the beam member 7 when the short column 3 sinks in the direction from the rotating shaft 25 to the end of the beam member. This is a position having the length of the change in the distance between the fulcrums of the beam member 7 from the rotation axis 25 toward the center of the beam member.

第2支持機構45は、図17に示すように、長柱5の上端側と梁部材7側とを回転可能に連結するものであり、長柱5の上端に設置された支持部材19と梁部材7側に設置された接合板46によって構成される。支持部材19は、実施の形態1の支持部材19と同一のものであり、上端が円弧に形成された板状体23と、板状体23に設けられると共に傾斜架構9の傾斜方向に直交する方向(梁部材7に直交する方向)に延出する回転軸25を備えている。
接合板46は、略矩形の板体からなり、その中央部に回転軸25が挿入可能な挿通孔を有している。
第2支持機構45はピン支持構造になっているので、第1支持機構43において回転軸25と長孔貫通孔29との間に隙間があっても、傾斜架構9がずれることはない。
As shown in FIG. 17, the second support mechanism 45 rotatably connects the upper end side of the long column 5 and the beam member 7 side, and the support member 19 installed at the upper end of the long column 5 and the beam. It is comprised by the joining board 46 installed in the member 7 side. The support member 19 is the same as the support member 19 according to the first embodiment, and is provided with a plate-like body 23 having an upper end formed in an arc, and provided on the plate-like body 23 and orthogonal to the inclination direction of the inclined frame 9. A rotating shaft 25 extending in a direction (a direction orthogonal to the beam member 7) is provided.
The joining plate 46 is formed of a substantially rectangular plate and has an insertion hole into which the rotating shaft 25 can be inserted at the center.
Since the second support mechanism 45 has a pin support structure, even if there is a gap between the rotating shaft 25 and the long hole through hole 29 in the first support mechanism 43, the inclined frame 9 will not be displaced.

上記のように構成された本実施の形態の動作を説明する。
<設置初期状態>
設置初期状態、すなわち地盤の沈降がない状態では、前述したように、第2支持機構45がピン支持構造になっているので、第1支持機構43において回転軸25と長孔貫通孔29との間に隙間があっても、傾斜架構9がずれることはなく安定した状態が保持される。
The operation of the present embodiment configured as described above will be described.
<Installation initial state>
Since the second support mechanism 45 has a pin support structure in the initial installation state, that is, in a state where there is no ground subsidence, the first support mechanism 43 has the rotation shaft 25 and the long hole through-hole 29. Even if there is a gap between them, the inclined frame 9 is not displaced and a stable state is maintained.

<短柱側が先行沈降した場合>
短柱3側の沈降が先行して発生した場合、図18に示すように、梁部材7が長柱5側の第2支持機構45における回転軸25を支点として図中時計回り方向(傾斜架構9の傾斜角度が大きくなる方向)に回動する。このとき、長柱5側の第2支持機構45においては、図19に示すように、回転軸25を中心とした回動が行われる
他方、短柱3側の第1支持機構43においては、図20に示すように、回転軸25が長孔貫通孔29の傾斜方向中間位置から下方に移動する。このように、回転軸25が長孔貫通孔29を移動することで、梁部材7の傾斜角度が大きくなることに伴う支点間距離の増加に追従することができる。その結果、傾斜架構9に内部応力を発生させない。
<When the short column has settled ahead>
When sedimentation on the short column 3 side occurs in advance, as shown in FIG. 18, the beam member 7 is rotated clockwise (inclined frame in the figure) with the rotation shaft 25 in the second support mechanism 45 on the long column 5 side as a fulcrum. 9 in the direction in which the inclination angle becomes larger. At this time, in the second support mechanism 45 on the long pillar 5 side, as shown in FIG. 19, the rotation around the rotation shaft 25 is performed. On the other hand, in the first support mechanism 43 on the short pillar 3 side, As shown in FIG. 20, the rotary shaft 25 moves downward from the middle position in the inclination direction of the long hole through hole 29. As described above, the rotation shaft 25 moves through the long hole through-hole 29, so that it is possible to follow the increase in the distance between the fulcrums as the inclination angle of the beam member 7 increases. As a result, no internal stress is generated in the inclined frame 9.

<長柱側が先行沈降した場合>
長柱5側の沈降が先行して発生した場合、図21に示すように、梁部材7が短柱3側の第1支持機構43における回転軸25を支点として図中反時計回り方向(傾斜架構9の傾斜角度が小さくなる方向)に回動する。このとき、長柱5側の第2支持機構45においては、図22に示すように、回転軸25を中心として回動する。
他方、短柱3側の第1支持機構43においては、図23に示すように、回転軸25が長孔貫通孔29の傾斜方向中間位置から上方に移動する。換言すれば、梁部材7が傾斜方向下方に向って移動することで、相対的に回転軸25が長孔貫通孔29の上方に移動する。
このように、回転軸25が長孔貫通孔29を移動することで、梁部材7の傾斜角度が小さくなることに伴う支点間距離の減少に追従することができる。その結果、傾斜架構9に内部応力を発生させない。
<When the long column side settles ahead>
When sedimentation on the long column 5 side precedes, as shown in FIG. 21, the beam member 7 is counterclockwise (inclined) in the drawing with the rotation shaft 25 of the first support mechanism 43 on the short column 3 side as a fulcrum. It rotates in a direction in which the inclination angle of the frame 9 becomes smaller. At this time, the second support mechanism 45 on the long pillar 5 side rotates about the rotation shaft 25 as shown in FIG.
On the other hand, in the first support mechanism 43 on the short column 3 side, the rotating shaft 25 moves upward from the middle position in the inclination direction of the long hole through hole 29 as shown in FIG. In other words, when the beam member 7 moves downward in the inclination direction, the rotation shaft 25 relatively moves above the long hole through hole 29.
As described above, the rotation shaft 25 moves through the long hole through-hole 29, so that it is possible to follow the decrease in the distance between the fulcrums as the inclination angle of the beam member 7 decreases. As a result, no internal stress is generated in the inclined frame 9.

<短柱側が沈降した後、長柱側が沈降した場合>
短柱3側が先行沈降した状態では、図18の二点鎖線で示す状態になっている。この状態で、長柱5側が沈降した場合、長柱5側の第2支持機構45においては、回転軸25を中心とした回動が行われ、他方、短柱3側の第1支持機構43においては、回転軸25が長孔貫通孔29の傾斜方向上側に向かって移動し、図15に示す元の状態に戻る。
<When the long column side sinks after the short column side sinks>
In a state where the short column 3 side has settled in advance, it is in a state indicated by a two-dot chain line in FIG. In this state, when the long column 5 side sinks, the second support mechanism 45 on the long column 5 side rotates around the rotation shaft 25, while the first support mechanism 43 on the short column 3 side. In FIG. 15, the rotating shaft 25 moves toward the upper side in the inclination direction of the long hole through-hole 29 and returns to the original state shown in FIG.

<長柱側が沈降した後、短柱側が沈降した場合>
長柱5側が先行沈降した状態では、図21の二点鎖線で示す状態になっている。この状態で、短柱3側が沈降した場合、短柱3側の第1支持機構43においては、回転軸25が長孔貫通孔29の傾斜方向下側に向って移動し、図15に示す元の状態に戻る。他方、長柱5側の第2支持機構45においては、回転軸25と貫通孔の相対位置は変わらない。
<When the long column side sinks, then the short column side sinks>
In the state in which the long column 5 side has settled in advance, the state shown by the two-dot chain line in FIG. In this state, when the short column 3 side sinks, in the first support mechanism 43 on the short column 3 side, the rotation shaft 25 moves toward the lower side in the inclination direction of the long hole through hole 29, and the original shown in FIG. Return to the state. On the other hand, in the second support mechanism 45 on the long column 5 side, the relative positions of the rotating shaft 25 and the through hole do not change.

以上のように、本実施の形態の太陽電池パネル用架台41は、実施の形態1と同様に、太陽電池パネル15を安定的に保持できると共に、地盤の緩みにより長柱5及び/又は短柱3が沈降した場合であっても、傾斜架構9に内部応力が発生しないので、太陽電池パネル15の破損等を防止できる。   As described above, the solar cell panel mount 41 of the present embodiment can stably hold the solar cell panel 15 as in the first embodiment, and the long columns 5 and / or the short columns due to the looseness of the ground. Even when 3 is settled, no internal stress is generated in the inclined frame 9, so that the solar cell panel 15 can be prevented from being damaged.

なお、実施の形態2においても、実施の形態1で説明したのと同様に、梁部材7を長柱5同士の間及び短柱3同士の間に架設した場合であっても同様に各柱と梁部材7との接合部に同様の第1支持機構43、第2支持機構45を設けることで同様の効果を得ることができ、この場合には実施の形態1で説明したのと同様の変更を行えばよい。
また、傾斜架構9の傾斜方向に直交する方向(図15の根太軸方向)での不等沈降が発生した場合も合わせて内部応力発生を抑制するための構造についても、実施の形態1で説明した構造を採用することができる。
In the second embodiment, as described in the first embodiment, each column is similarly applied even when the beam member 7 is installed between the long columns 5 and between the short columns 3. A similar effect can be obtained by providing the same first support mechanism 43 and second support mechanism 45 at the joint between the beam member 7 and the beam member 7. In this case, the same effect as described in the first embodiment can be obtained. Change it.
Further, the structure for suppressing the generation of internal stress in the case where unequal sedimentation occurs in the direction orthogonal to the inclination direction of the inclined frame 9 (the joist axis direction in FIG. 15) is also described in the first embodiment. This structure can be adopted.

上記の実施の形態2においては、短柱3側の第1支持機構43を、長孔貫通孔29を用いたスライド機構とし、長柱5側の第2支持機構45をピン接合にした例を示したが、長柱5の曲げ応力を緩和するために、短柱3側の第1支持機構43をピン接合にして、長柱5側の第2支持機構45を長孔貫通孔29を用いたスライド機構にしてもよい。この場合、上記動作説明は、短柱3と長柱4を読み替えればよい。
もっとも、短柱3側の第1支持機構43を、長孔貫通孔29を用いたスライド機構にした方が、メンテナンスが容易であり、足場等も省略できる。さらに、特許文献2に記載されている傾斜角可変構造を簡易に実現できる。
In the second embodiment, the first support mechanism 43 on the short column 3 side is a slide mechanism using the long hole through hole 29, and the second support mechanism 45 on the long column 5 side is pin-joined. As shown, in order to relieve the bending stress of the long column 5, the first support mechanism 43 on the short column 3 side is pin-bonded, and the second support mechanism 45 on the long column 5 side is used for the long hole through hole 29. A slide mechanism may be used. In this case, the above description of the operation only needs to read the short column 3 and the long column 4.
However, if the first support mechanism 43 on the short column 3 side is a slide mechanism using the long hole through-hole 29, maintenance is easier and a scaffold or the like can be omitted. Furthermore, the tilt angle variable structure described in Patent Document 2 can be easily realized.

特許文献2に開示された方式は、本発明における短柱3側を上下移動固定の回転軸25とし、長柱5側を上方向に延伸して傾斜角を大きくする方法である。長柱5側を上方向に延伸させると梁部材7の長柱5側支点が短柱3側へ水平変位を生ずる。そのため、特許文献2では、支柱に複雑な延伸機構を設けている。
しかし、実施の形態2において示したように、短柱3側の第1支持機構43を、長孔貫通孔29を用いたスライド機構とし、長柱5側の第2支持機構45をピン接合にすることで、長柱5側をジャッキアップしたとしても支点の水平変位は生じないから、長柱5をフリーにして架台の長柱5間位置でジャッキアップを行うことで、簡易に傾斜架構9の傾斜角度を変更できる。
この場合、各梁部材7の長柱5側支点から端部にかけてジャッキアップポイントを設けるか、前記位置において、長柱5側支点間を補強梁で補強して、補強梁の中央部一点あるいは所定の複数ポイントで行う。
梁部材7を短柱3同士、長柱5同士に掛け渡した場合も、同様であるが、この場合、ジャッキアップに長柱5側梁部材7を使用すれば、前記補強梁を用いる必要はない。
The method disclosed in Patent Document 2 is a method in which the short column 3 side in the present invention is used as a rotary shaft 25 that is fixed vertically and the long column 5 side is extended upward to increase the tilt angle. When the long column 5 side is extended upward, the long column 5 side fulcrum of the beam member 7 is horizontally displaced toward the short column 3 side. Therefore, in patent document 2, the complicated extending | stretching mechanism is provided in the support | pillar.
However, as shown in the second embodiment, the first support mechanism 43 on the short column 3 side is a slide mechanism using the long hole through hole 29, and the second support mechanism 45 on the long column 5 side is used for pin joining. As a result, even if the long pillar 5 side is jacked up, horizontal displacement of the fulcrum does not occur. Therefore, by tilting the long pillar 5 free and jacking up at the position between the long pillars 5, the tilted frame 9 can be easily obtained. The inclination angle can be changed.
In this case, a jack-up point is provided from the long column 5 side fulcrum to the end of each beam member 7 or, at the above-mentioned position, the long column 5 side fulcrum is reinforced with a reinforcing beam so that one point in the center of the reinforcing beam or a predetermined point At multiple points.
The same applies to the case where the beam member 7 is spanned between the short columns 3 and the long columns 5, but in this case, if the long column 5 side beam member 7 is used for jacking up, it is necessary to use the reinforcing beam. Absent.

上記の実施の形態1,2においては、梁部材7と長孔貫通孔29を形成する矩形板状体27との接合方法については特に限定しておらず、種々の方法、例えば溶接接合によって接合することができる。
しかし、例えば太陽電池パネル用架台1、41の設置場所が海の近くのように腐食されやすい環境にある場合には、梁部材7等に腐食防止用のメッキ等の腐食防止手段を施すことになるため、溶接による接合であると腐食防止手段が剥がれる等するために好ましくない。
そこでこのような場合の矩形板状体27の接合構造について説明する。
In the first and second embodiments, the method for joining the beam member 7 and the rectangular plate-like body 27 that forms the long hole through-hole 29 is not particularly limited. can do.
However, for example, when the installation place of the solar cell panel mounts 1 and 41 is in an environment that is easily corroded such as near the sea, the beam member 7 or the like is subjected to corrosion prevention means such as plating for preventing corrosion. For this reason, it is not preferable to join by welding because the corrosion preventing means is peeled off.
Therefore, the joining structure of the rectangular plate-like body 27 in such a case will be described.

矩形板状体27の接合構造の一例を示す。図24、図25に示すように、矩形板状体27が接合される梁部材7を2本の断面矩形の矩形棒状部材47を用いて構成すると共に、矩形板状体27の上下部を、矩形棒状部材47の上下方向に突出させて矩形棒状部材47で挟持すると共に接着材(2液性のエポキシ系接着剤が好ましい)で接着する。そして、矩形板状体27の上下突出部のそれぞれに2箇所ずつの貫通孔49を設け、該貫通孔49に棒部材51を挿通して矩形棒状部材47の上下に棒部材51を当接させることで矩形板状部材が棒部材51でも保持されるようにしたものである。   An example of the joining structure of the rectangular plate-shaped body 27 is shown. As shown in FIGS. 24 and 25, the beam member 7 to which the rectangular plate-shaped body 27 is joined is configured using two rectangular rod-shaped members 47 having a rectangular cross section, and the upper and lower portions of the rectangular plate-shaped body 27 are The rectangular rod-shaped member 47 protrudes in the vertical direction and is sandwiched between the rectangular rod-shaped members 47 and bonded with an adhesive (preferably a two-component epoxy adhesive). Then, two through holes 49 are provided in each of the upper and lower projecting portions of the rectangular plate-like body 27, and the bar members 51 are inserted into the through holes 49 so that the bar members 51 are brought into contact with the upper and lower sides of the rectangular bar member 47. Thus, the rectangular plate-like member is also held by the rod member 51.

上記のように、梁部材7を2本の矩形棒状部材47で形成することで、梁部材単材の小断面化を図ることができ、また根太13との共通断面化すればコストダウンを図ることもできる。
また、矩形板状体27を2本の矩形棒状部材47で挟持する構造にすることで、部材重心の適正化をはかるとともに、梁部材7と矩形板状体27の接合の信頼性確保にもなる。すなわち、矩形棒状部材47のほぼ全幅に亘って、矩形棒状部材47と当接するように配置した棒部材51は、矩形板状体27の接合面内の接着部または部材縁部(矩形棒状部材47の上下フランジと板状体の接点近傍)の溶接部への応力緩和のための、補助的な機械的応力伝達手段となり、また組み立て時の上下のずれ止めにも寄与することができる。
As described above, by forming the beam member 7 with the two rectangular rod-shaped members 47, it is possible to reduce the cross section of the single member of the beam member, and to reduce the cost by making it a common cross section with the joist 13. You can also
Further, by adopting a structure in which the rectangular plate 27 is sandwiched between the two rectangular rod-shaped members 47, the center of gravity of the member is optimized and the reliability of the joining of the beam member 7 and the rectangular plate 27 is also ensured. Become. That is, the rod member 51 arranged so as to contact the rectangular rod-shaped member 47 over almost the entire width of the rectangular rod-shaped member 47 is bonded to the bonding portion or the member edge (rectangular rod-shaped member 47 in the joint surface of the rectangular plate-shaped body 27. This is an auxiliary mechanical stress transmission means for relaxing stress on the welded portion in the vicinity of the contact between the upper and lower flanges and the plate-like body), and can also contribute to preventing vertical displacement during assembly.

棒部材51は、端部にL型に屈曲させたフックを設けることで、組み立て管理を容易にすることができるメリットもある。
組み立て方法としては、一本目の矩形棒状部材47を横倒しに配置し、次いで矩形板状体27を配置し、さらに二本目の矩形棒状部材47を横倒しにして配置した後、上方から矩形板状体27の貫通孔49に棒部材51を差込み、フック部分を二本目の矩形棒状部材47の面に当接させて配置するようにする。
The bar member 51 also has an advantage that assembly management can be facilitated by providing an L-shaped hook at the end.
As an assembling method, the first rectangular bar-shaped member 47 is disposed sideways, then the rectangular plate-shaped body 27 is disposed, and the second rectangular bar-shaped member 47 is disposed sideways. The rod member 51 is inserted into the through hole 49 of the 27 and the hook portion is arranged in contact with the surface of the second rectangular rod-shaped member 47.

上記のような矩形板状体27の接合構造によれば、梁部材の穴あけや溶接など部材加工が不要となるため、工数削減効果が得られる。
また、耐食性が高く廉価なプレめっき材を用いた場合にも、加工部がないため、加工部耐食性確保のための補修を考慮せずに使用可能となり、火気使用禁止の場所でも組み立てが可能になる。
なお、上記の例では、溶接を用いない例であるが、腐食を問題にしないのであれば、接着剤に代えて、溶接でもよく、あるいはその他の機械的締結手段でもよい。
According to the joint structure of the rectangular plate-like body 27 as described above, since member processing such as drilling or welding of the beam member is not necessary, the man-hour reduction effect can be obtained.
In addition, even when using pre-plated materials with high corrosion resistance and low price, there is no processed part, so it can be used without considering repairs to ensure corrosion resistance of the processed part, and can be assembled even in places where use of fire is prohibited. Become.
In the above example, welding is not used. However, if corrosion is not a problem, welding may be used instead of the adhesive, or other mechanical fastening means may be used.

なお、図26、図27に示すように、棒部材51と矩形棒状部材47の当接部には、板材53を配置固定するのが好ましい。板材53を配置固定することで、矩形棒状部材47の部材板厚全体を増やすことなく、簡易に矩形棒状部材47の上下部における棒部材51の接触部の局部変形防止が可能となる。
板材53は、応力分布によって板厚を変えることにより、コストミニマム化が可能となる。板材53は、平板でも良いが、図26、図27に示すように、長辺部を上方に折り曲げる、山形に折り曲げるなどして、棒部材51が嵌まり込む形状とするとなおよい。
なお、板材53は、矩形棒状部材47によって梁部材7を組み立てる前に接着等の固定手段で所定の位置に固定しておくと、組み立て時の位置あわせが簡略化できる。
As shown in FIGS. 26 and 27, it is preferable to place and fix a plate material 53 at the contact portion between the bar member 51 and the rectangular bar-shaped member 47. By arranging and fixing the plate member 53, it is possible to easily prevent local deformation of the contact portion of the bar member 51 at the upper and lower portions of the rectangular bar member 47 without increasing the entire member plate thickness of the rectangular bar member 47.
The plate material 53 can be reduced in cost by changing the plate thickness according to the stress distribution. The plate member 53 may be a flat plate, but as shown in FIGS. 26 and 27, it is more preferable that the rod member 51 is fitted by bending the long side portion upward or by bending it into a mountain shape.
If the plate member 53 is fixed at a predetermined position by a fixing means such as adhesion before assembling the beam member 7 with the rectangular rod-shaped member 47, the alignment at the time of assembly can be simplified.

棒部材51としては、丸棒のほか、ねじを使用することができる。ねじを使用した場合、その両端部に上下の棒部材51に亘るように添え板を配置し、梁部材7の両側面に添え板を当ててねじを締め込んで挟持し、一体化するようにするのが好ましい。この場合、添え板は鋼板のほか、より望ましくは剛性の高い形鋼部材を用いるとよい。さらに望ましくは、棒部材51と矩形板状体27をねじ加工、あるいは接着、または溶接により固着し、棒部材51と梁部材7とを固定させるとよい。これらは、梁部材7と矩形板状体27を接着によって接合する場合に、がたつきを抑えることによって、接合面内の健全性を保つのに有効である。   As the bar member 51, a screw can be used in addition to a round bar. When a screw is used, a splicing plate is arranged so as to extend over the upper and lower bar members 51 at both ends, and the splicing plate is applied to both side surfaces of the beam member 7 so that the screw is clamped and integrated. It is preferable to do this. In this case, the splicing plate may be a steel plate, or more preferably a shape steel member having high rigidity. More preferably, the rod member 51 and the rectangular plate-shaped body 27 are fixed by screwing, bonding, or welding, and the rod member 51 and the beam member 7 are fixed. These are effective in maintaining soundness in the joint surface by suppressing rattling when the beam member 7 and the rectangular plate-like body 27 are joined by bonding.

[実施の形態3]
上記の実施の形態1、2においては、梁部材7を長柱5と短柱3の間に架設して、各柱と梁部材7との接合部に支持機構11を設けた例を示したが、梁部材7を長柱5同士の間及び短柱3同士の間に架設した場合であっても同様に各柱と梁部材7との接合部に同様の支持機構11を設けることで同様の効果を得ることができる。この点は、上記の実施の形態1,2においても言及したとことである。
ただ、このような配置であっても長孔貫通孔29の向きは傾斜架構9の傾斜方向に延びる方向にしなければならないので、矩形板状体27の向きが梁部材7の材軸方向に直交する向きに取り付けなければならない。
そこで、本実施の形態においては、矩形板状体27の向きが梁部材7の材軸方向に直交する向きに取り付ける場合の接合構造を、図28〜図32に基づいて説明する。
[Embodiment 3]
In the first and second embodiments, the beam member 7 is installed between the long column 5 and the short column 3, and the support mechanism 11 is provided at the joint between each column and the beam member 7. However, even when the beam member 7 is installed between the long columns 5 and between the short columns 3, the same support mechanism 11 is provided at the joint between each column and the beam member 7. The effect of can be obtained. This point is also mentioned in the first and second embodiments.
However, even in such an arrangement, the direction of the long hole through hole 29 must be a direction extending in the inclination direction of the inclined frame 9, so the direction of the rectangular plate-like body 27 is orthogonal to the material axis direction of the beam member 7. It must be installed in the direction you want.
Therefore, in the present embodiment, a joining structure in the case where the rectangular plate 27 is attached in a direction orthogonal to the material axis direction of the beam member 7 will be described with reference to FIGS.

なお、図28〜図31に示す例は、実施の形態2において説明した長柱5の上端側と梁部材7とを回転可能に連結する第2支持機構45に適用した例である。
本例では、第2支持機構45が設けられる梁部材7を2本の断面矩形の矩形棒状部材47を用いて構成すると共に、矩形板状体27を梁部材7に取り付けるための取付片部を矩形板状体27に一体的に形成してなる支持機構部材62を備えている。
The example shown in FIGS. 28 to 31 is an example applied to the second support mechanism 45 that rotatably connects the upper end side of the long column 5 and the beam member 7 described in the second embodiment.
In this example, the beam member 7 provided with the second support mechanism 45 is configured by using two rectangular rod-shaped members 47 having a rectangular cross section, and an attachment piece for attaching the rectangular plate 27 to the beam member 7 is provided. A support mechanism member 62 formed integrally with the rectangular plate-like body 27 is provided.

図28は、支持機構部材62の説明図であり、図28(a)が正面図、図28(b)が図28(a)における矢視C−C図、図28(c)が図28(a)における矢視D−D図である。
支持機構部材62は、図28に示すように、貫通孔28を形成した矩形板状体27と、梁部材7を構成する矩形棒状部材47に挟持される挟持部60と、梁部材7を構成する矩形棒状部材47の底面を支持する底面支持部61を備えている。
挟持部60は、矩形板体からなり、梁部材7のせい以下の長さに設定されている。挟持部60は、は矩形棒状部材47に挟持されるためその軸線は梁部材7の材軸方向となり、矩形板状体27とは面の向きが90°回転した向きになっている。
また、梁底面支持部61は、矩形板状体27と挟持部60との間にこれら矩形板状体27と挟持部60に直交するように配置された矩形板体から形成され、その幅寸法が梁部材7の幅以下に設定されている。
28 is an explanatory view of the support mechanism member 62, in which FIG. 28 (a) is a front view, FIG. 28 (b) is a CC view in FIG. 28 (a), and FIG. 28 (c) is FIG. It is arrow DD figure in (a).
As shown in FIG. 28, the support mechanism member 62 includes a rectangular plate-like body 27 in which the through holes 28 are formed, a sandwiching portion 60 that is sandwiched between the rectangular rod-like members 47 constituting the beam member 7, and the beam member 7. A bottom surface support portion 61 that supports the bottom surface of the rectangular bar-shaped member 47 is provided.
The clamping part 60 consists of a rectangular plate, and is set to a length equal to or shorter than that of the beam member 7. Since the clamping part 60 is clamped by the rectangular rod-shaped member 47, its axis is in the direction of the material axis of the beam member 7, and the orientation of the surface of the clamping plate 60 is 90 ° rotated.
The beam bottom support 61 is formed from a rectangular plate disposed between the rectangular plate 27 and the sandwiching portion 60 so as to be orthogonal to the rectangular plate 27 and the sandwiching portion 60, and its width dimension. Is set to be equal to or smaller than the width of the beam member 7.

次に上記のように構成された支持機構部材62の矩形棒状部材47からなる梁部材7への取付方法を図29、図30に基づいて説明する。なお、図30は図29の矢視E−E図に相当する。
支持機構部材62の挟持部60を2本の矩形棒状部材47で挟持すると共に接着材(2液性のエポキシ系接着剤が好ましい)で接着する。
そして、梁底面支持部61の下面側と梁部材7の上面側とで一対となるアングル形状の固定部材65を2組用いてこれら固定部材65を固定ボルト67及びナットによって連結することによって支持機構部材62を梁部材7に固定する。
固定部材65の両端に設けられた固定ボルト貫通孔66は、その内法間隔が梁部材7の幅以下に設定されており、固定ボルト67は梁部材7の側面に当接する構造になっている。
Next, a method of attaching the support mechanism member 62 configured as described above to the beam member 7 including the rectangular bar-shaped member 47 will be described with reference to FIGS. Note that FIG. 30 corresponds to the EE diagram in FIG.
The sandwiching portion 60 of the support mechanism member 62 is sandwiched between the two rectangular rod-shaped members 47 and bonded with an adhesive (preferably a two-component epoxy adhesive).
Then, by using two sets of angle-shaped fixing members 65 that form a pair on the lower surface side of the beam bottom surface support portion 61 and the upper surface side of the beam member 7, these fixing members 65 are connected by a fixing bolt 67 and a nut, thereby supporting the mechanism. The member 62 is fixed to the beam member 7.
The fixing bolt through-holes 66 provided at both ends of the fixing member 65 are set so that the internal spacing is equal to or less than the width of the beam member 7, and the fixing bolt 67 is in contact with the side surface of the beam member 7. .

上記のように、梁部材7を2本の矩形棒状部材47で形成することで、梁部材単材の小断面化を図ることができ、また根太13との共通断面化すればコストダウンを図ることもできる。
また、支持機構部材62を2本の矩形棒状部材47で挟持し、アングル形状の固定部材65の両端部に備える固定ボルト貫通孔66の内法間隔を、梁部材7の幅以下することによって、固定ボルト67は梁部材7の側面に当接する構造にでき、梁部材7と支持機構部材62の接合の信頼性が向上する。すなわち、固定部材65と固定ボルト67によって、矩形棒状部材47と支持機構部材62を一体として上下左右から拘束し、接着部への応力緩和のための、補助的な機械的応力伝達手段となり、組み立て時のずれ止めにもなる。
また固定部材65を固定ボルト67によって、施工時応力には十分耐えられる強度を確保できるので、接着剤硬化以前に移動することが可能であり、養生期間が不要となり、工期短縮にも寄与する。
As described above, by forming the beam member 7 with the two rectangular rod-shaped members 47, it is possible to reduce the cross section of the single member of the beam member, and to reduce the cost by making it a common cross section with the joist 13. You can also
Further, the support mechanism member 62 is sandwiched between the two rectangular rod-shaped members 47, and the internal spacing of the fixing bolt through holes 66 provided at both ends of the angle-shaped fixing member 65 is set to be equal to or smaller than the width of the beam member 7. The fixing bolt 67 can be in contact with the side surface of the beam member 7, and the reliability of the connection between the beam member 7 and the support mechanism member 62 is improved. That is, the fixing member 65 and the fixing bolt 67 integrally restrain the rectangular rod-shaped member 47 and the support mechanism member 62 from the upper, lower, left, and right sides to provide auxiliary mechanical stress transmission means for relaxing the stress on the bonded portion. It will also prevent time drift.
Further, since the fixing member 65 can secure the strength sufficient to withstand the stress during construction by the fixing bolt 67, the fixing member 65 can be moved before the adhesive is cured, and a curing period is not required, which contributes to shortening the construction period.

固定部材65は、接着を併用するのがより望ましく、断面は、アングル形状のほか、板状、コ字形状、パイプ形状など、任意の断面形状を選択できる。また、固定部材65は、固定ボルト67の替わりに、線材で拘束してもよいし、あるいは全体をバンド、線材で拘束するようにしてもよい。また、固定ボルト67の先端側に位置する貫通孔66に直接ねじを形成して、ナットを省略してもよい。   The fixing member 65 is more desirably used in combination, and the cross section can be selected from any cross-sectional shape such as a plate shape, a U-shape, and a pipe shape in addition to the angle shape. Moreover, the fixing member 65 may be restrained by a wire instead of the fixing bolt 67, or may be restrained by a band or a wire. Further, a screw may be directly formed in the through hole 66 located on the tip side of the fixing bolt 67, and the nut may be omitted.

上記のような支持構造部材62の接合構造によれば、梁部材の穴あけや溶接など部材加工が不要となるため、工数削減効果が得られる。
また、耐食性が高く廉価なプレめっき材を用いた場合にも、加工部がないため、加工部耐食性確保のための補修を考慮せずに使用可能となり、火気使用禁止の場所でも組み立てが可能になる。
なお、上記の例では、溶接を用いない例であるが、腐食を問題にしないのであれば、接着剤に代えて、溶接でもよく、あるいはその他の機械的締結手段でもよい。
According to the joint structure of the support structure member 62 as described above, since member processing such as drilling or welding of the beam member is not necessary, the man-hour reduction effect is obtained.
In addition, even when using pre-plated materials with high corrosion resistance and low price, there is no processed part, so it can be used without considering repairs to ensure corrosion resistance of the processed part, and can be assembled even in places where use of fire is prohibited. Become.
In the above example, welding is not used. However, if corrosion is not a problem, welding may be used instead of the adhesive, or other mechanical fastening means may be used.

なお、図31に支持構造部材62を用いた場合の支持部材19の板状体23との接合した状態を示す。
また、上記の説明は、実施の形態2にける第2支持機構45に適用した場合であるが、実施の形態2における第1支持機構43に適用した場合を図32に示す。
FIG. 31 shows a state where the support member 19 is joined to the plate-like body 23 when the support structure member 62 is used.
Moreover, although the above description is a case where it is applied to the second support mechanism 45 in the second embodiment, FIG. 32 shows a case where it is applied to the first support mechanism 43 in the second embodiment.

以上の各実施の形態においては、梁部材7と根太13の接合方法について特に規定を設けていないが、上記柱と梁のフレキシブルな支点構造では、前記梁部材7と根太13の接合部も一定の柔軟性を保持することが望ましい。
以下において柔軟性を保持した梁部材7と根太13の接合部の構造を図33〜図39に基づいて説明する。なお、図33は接合部の正面図、図34は図33の矢視F−F図、図35は図33の矢視G−G図、図36は図33の矢視H−H図であり、図37〜図39は接合部に用いる部品の説明図である。なお、図37〜図39においては、図中に示した矢視A−A´、矢視B−B´に沿う断面図をそれぞれの図中に図示している。
In each of the embodiments described above, there is no particular provision for the method of joining the beam member 7 and the joist 13, but in the flexible fulcrum structure of the column and the beam, the joint of the beam member 7 and the joist 13 is also constant. It is desirable to maintain flexibility.
The structure of the joint between the beam member 7 and the joist 13 that retains flexibility will be described below with reference to FIGS. 33 is a front view of the joint, FIG. 34 is an FF view of FIG. 33, FIG. 35 is an GG view of FIG. 33, and FIG. 36 is an hh view of FIG. FIG. 37 to FIG. 39 are explanatory diagrams of components used for the joint portion. In addition, in FIGS. 37-39, sectional drawing in alignment with arrow AA 'shown in the figure and arrow BB' is shown in each figure.

図33、図34に示すように、梁部材7の上面の所定の位置に根太13の下面を当接して設置し、根太13の上方から、図33〜39に示すように、該梁部材7を構成する2本の矩形棒状部材47の間隙部を通して、その内法幅を前記根太13に合わせた角Uボルト80を配置する。
梁部材7の下面には、図38に例示する中心部に角Uボルト80を挿通する挿通孔81を有する矩形状の位置決め部材82が、図34および図35に示すように、梁部材7を構成する2本の矩形棒状部材47に掛け渡して貼り付けられている。
位置決め部材82の長さを梁部材7の長さとし、その両端部を立ち上げて該梁部材7の側面に当接させると、より位置決め効果が高まる。
角Uボルト80は、位置決め部材82の挿通孔81を貫通し、図37に例示する、その厚さを位置決め部材82の厚さ以上とし、かつ、位置決め部材82と嵌合可能な大型座金83を介し、更に丸座金、ばね座金などを介してナット84を締め付けて固定する。
位置決め部材82と大型座金83の嵌合形態は、どちらか一方を平板形状としてもう一方を形鋼形状としても、両方を形鋼形状として嵌合させてもよい。これにより、ナット84の締め付け時において、大型座金83の供回りを防止できる。
As shown in FIGS. 33 and 34, the bottom surface of the joist 13 is placed in contact with a predetermined position on the upper surface of the beam member 7, and from above the joist 13, as shown in FIGS. A square U-bolt 80 whose inner width is adjusted to the joist 13 is arranged through the gap between the two rectangular rod-shaped members 47 constituting the.
On the lower surface of the beam member 7, a rectangular positioning member 82 having an insertion hole 81 through which the corner U-bolt 80 is inserted in the central portion illustrated in FIG. 38 is attached to the beam member 7 as shown in FIGS. The two rectangular rod-shaped members 47 that are configured are stretched and pasted.
If the length of the positioning member 82 is the length of the beam member 7 and both ends thereof are raised and brought into contact with the side surface of the beam member 7, the positioning effect is further enhanced.
The square U-bolt 80 passes through the insertion hole 81 of the positioning member 82, and has a large washer 83 that is illustrated in FIG. 37 and whose thickness is equal to or greater than that of the positioning member 82 and can be fitted to the positioning member 82. Further, the nut 84 is fastened and fixed via a round washer, a spring washer, or the like.
As for the fitting form of the positioning member 82 and the large washer 83, either one may be a flat plate shape and the other may be a shape steel shape, or both may be fitted as a shape steel shape. Thereby, the rotation of the large washer 83 can be prevented when the nut 84 is tightened.

角Uボルト80と根太13上面の接触部は、該角Uボルト80の位置決めや、該根太13の板厚が薄い場合には局部座屈防止のために、板材53を貼り付けるのが望ましい。位置決めに供する場合には、板材53を山型、あるいは図39に例示するコ形状などにして、図34に示すように、角Uボルト80と略嵌合するようにする。   The contact portion between the corner U bolt 80 and the upper surface of the joist 13 is desirably pasted with a plate material 53 in order to position the corner U bolt 80 and to prevent local buckling when the joist 13 is thin. In the case of providing the positioning, the plate member 53 is formed in a mountain shape or a U shape illustrated in FIG. 39, and is substantially fitted to the square U bolt 80 as shown in FIG.

前記位置決め部材82および板材53の貼り付けは、2液性エポキシ系接着剤を用いる。より望ましくは、ゴム系接着剤など耐水性と耐衝撃性を有するものがよく、最も望ましくは、ブチルゴム系両面粘着テープによる粘着により貼り付ける。これら望ましい貼り付け方法によれば、ナット84を締め付け固定する工程で、ゴム系接着剤またはブチルゴム系両面粘着テープが圧密されて位置決め部材82および板材53の外周部にはみ出し、該接合面内の隙間腐食を有効に防止することができる。   The positioning member 82 and the plate material 53 are attached using a two-component epoxy adhesive. More preferably, a rubber adhesive or the like having water resistance and impact resistance is preferable, and most preferably, the adhesive is applied by adhesion with a butyl rubber double-sided adhesive tape. According to these desirable attaching methods, in the step of tightening and fixing the nut 84, the rubber-based adhesive or the butyl rubber-based double-sided adhesive tape is consolidated and protrudes to the outer peripheral portions of the positioning member 82 and the plate material 53, and the gap in the joint surface Corrosion can be effectively prevented.

傾斜架構9の傾斜角を約20度、不等沈降による相対差300mmを許容沈降量とした場合における図1に示した実施の形態1に係る太陽電池パネル用架台1の実施例を示す。
傾斜前方の支柱(短柱)に外形150mm、板厚3.2mm、長さ1200mmの角型鋼管を用い、傾斜後方の支柱(長柱)に外形150mm、板厚3.2mm、長さ3000mmの角型鋼管を用いた短柱2本、長柱2本の4脚構造とし、各柱は5メートルの間隔で地盤上に正方形に配置する。
支持機構11を構成する支持部材19は厚さ15mmの鋼板を、支柱上部に溶接によって固定されている。支持部材19には、回転軸25として径20mmのボルトを配置するための挿通孔を設ける。支柱上面から、挿通孔までの距離は、梁部材7側に取り付ける接合部材21と干渉しない高さにすればよい。ここでは、支持部材19は、幅100mm、挿通孔高さを100mm、上部を半円形にして最高高さを150mmとして製作した。
An example of the solar cell panel mount 1 according to Embodiment 1 shown in FIG. 1 when the tilt angle of the tilted frame 9 is about 20 degrees and the relative difference of 300 mm due to unequal settling is an allowable settling amount will be described.
A square steel pipe with an outer diameter of 150mm, a plate thickness of 3.2mm, and a length of 1200mm is used for the column (short column) at the front of the tilt, and a square shape with an outer shape of 150mm, a plate thickness of 3.2mm and a length of 3000mm is used for the column (long column) at the rear of the ramp It has a four-leg structure with two short columns and two long columns using steel pipes, and each column is arranged in a square on the ground at intervals of 5 meters.
The support member 19 constituting the support mechanism 11 is a steel plate having a thickness of 15 mm fixed to the upper portion of the support by welding. The support member 19 is provided with an insertion hole for arranging a bolt having a diameter of 20 mm as the rotating shaft 25. The distance from the upper surface of the column to the insertion hole may be a height that does not interfere with the joining member 21 attached to the beam member 7 side. Here, the support member 19 was manufactured with a width of 100 mm, an insertion hole height of 100 mm, a semicircular upper portion, and a maximum height of 150 mm.

各支柱下部にはベースプレート12を設け、各支柱ごとに独立した鉄筋コンクリート基礎30に緊結する。この部分は、根巻構造としても良い。鉄筋コンクリート基礎30は、望ましくは応力分散を行うため、底面積を広くする。
梁部材7には、長辺150mm、短辺75mm、板厚4.5mm、長さ6130mmの角型鋼管からなり、短柱3および長柱5のそれぞれの支持部材19と対向する位置で、当該梁部材7の材軸方向に平行にその表面を配した、長さ230mm、高さ200mm、厚さ22mmの鋼板製の接合部材21を取り付けた。
A base plate 12 is provided at the bottom of each column, and the column is tied to an independent reinforced concrete foundation 30 for each column. This portion may have a root winding structure. The reinforced concrete foundation 30 preferably has a wide bottom area for stress distribution.
The beam member 7 is formed of a square steel pipe having a long side of 150 mm, a short side of 75 mm, a plate thickness of 4.5 mm, and a length of 6130 mm. The beam member 7 is positioned at a position facing the support members 19 of the short column 3 and the long column 5. A joining member 21 made of a steel plate having a length of 230 mm, a height of 200 mm, and a thickness of 22 mm and having a surface parallel to the material axis direction of the member 7 was attached.

その接合部材21には、沈降許容量である300mmの沈降が生じた場合の短柱3と長柱5で支持される梁部材7の材長変化に相当する長さ以上である、梁部材7と平行な長孔貫通孔29がそれぞれ形成している。ここで、長孔貫通孔29の寸法(長孔貫通孔29両端円中心距離)は、短柱3側で110mm、長柱5側で95mmあればよいが、部材製作の都合上、両方を110mmとして製作した。なお、接合部材21下端からの位置は60mmとした。
支持部材19と接合部材21は、図2、図3に示すように、短柱3と長柱5により傾斜支持される梁部材7に取り付けた矩形板状体27の長孔貫通孔29の傾斜最上部壁に回転軸25が当接するように設置する。これにより、接合部材21の取り付け位置は、梁部材7の端部からそれぞれ290mmの位置に接合部材21の端部が位置するようにして取り付けた。
The joining member 21 has a beam member 7 that is equal to or longer than the length corresponding to a change in the length of the beam member 7 supported by the short column 3 and the long column 5 when the settling allowable amount of 300 mm is generated. And long hole through holes 29 parallel to each other are formed. Here, the dimension of the long hole through hole 29 (the center distance between both ends of the long hole through hole 29) may be 110 mm on the short column 3 side and 95 mm on the long column 5 side. As produced. The position from the lower end of the joining member 21 was 60 mm.
As shown in FIGS. 2 and 3, the support member 19 and the joining member 21 are inclined by the long hole through hole 29 of the rectangular plate-like body 27 attached to the beam member 7 that is supported by the short column 3 and the long column 5. The rotating shaft 25 is installed in contact with the uppermost wall. Thereby, the attachment position of the joining member 21 was attached so that the end portion of the joining member 21 was located at a position of 290 mm from the end portion of the beam member 7.

梁部材7に直交して、太陽電池パネル15の支持間隔を例えば1009mmで長辺125mm、短辺75mm、板厚3.2mmの角型鋼管からなる根太13を配置して傾斜架構9を構成成する。根太13端部は、梁部材7位置で揃えても、跳ね出してもよい。
根太13上部には太陽電池パネル取り付けピース17が所定の間隔で固定され、そこに太陽電池パネル15を固定し、大型の太陽電池アレイを構成する。
An inclined frame 9 is formed by arranging a joist 13 made of a square steel pipe having a support interval of 1009 mm, a long side of 125 mm, a short side of 75 mm, and a plate thickness of 3.2 mm perpendicular to the beam member 7. . The joist 13 end portion may be aligned at the position of the beam member 7 or may jump out.
A solar cell panel mounting piece 17 is fixed to the upper part of the joist 13 at a predetermined interval, and the solar cell panel 15 is fixed thereto to constitute a large-sized solar cell array.

上記のように形成された本実施例において、短柱3及び/又は長柱5の沈降が発生した場合には、上記の実施の形態で説明したように、支持機構11の動作によって傾斜架構9における内部応力の発生が抑制されることを確認した。また、支柱の沈降によって自動的に支点が移動し、ジャッキアップによって自動的に元の位置に復帰することも確認している。   In the present example formed as described above, when the short column 3 and / or the long column 5 is settled, the inclined frame 9 is moved by the operation of the support mechanism 11 as described in the above embodiment. It was confirmed that the generation of internal stress in was suppressed. It has also been confirmed that the fulcrum automatically moves due to the settling of the column and automatically returns to the original position when jacked up.

長柱5同士、短柱3同士を梁部材7で連結するものについて、実施例1と同様の部材を用いて製作して動作確認を行った。
実施例1と同様に円滑な動作が行われた。
About what connects the long pillars 5 and the short pillars 3 with the beam member 7, it manufactured using the member similar to Example 1, and confirmed operation | movement.
A smooth operation was performed as in Example 1.

実施の形態2で示したように短柱3側に長孔貫通孔29を有する接合部材21と支持部材19からなる第1支持機構43を設け、長柱5側にピン結合からなる第2支持機構45を設けた太陽電池パネル用架台41を製作した。   As shown in the second embodiment, the first support mechanism 43 including the joining member 21 having the long hole through-hole 29 on the short column 3 side and the support member 19 is provided, and the second support including the pin connection on the long column 5 side The solar cell panel mount 41 provided with the mechanism 45 was manufactured.

基本構成は実施例1と同じであるが、長孔貫通孔29については以下のように設定した。
長孔貫通孔29の両端部の円中心距離は、短柱3が沈降許容量300mmとなった場合と沈降以前との梁部材7の支点間距離変化である110mmと、長柱5が許容沈降量300mmとなった場合と沈降以前との梁部材7の支点間距離変化である95mmの合計である205mmが必要である。このような長孔貫通孔29を形成するため、矩形板状体27の幅は325mmとした。
なお、初期状態においては、短柱3沈降時の梁部材7の支点間距離変化分の長さである梁端側から110mmの位置に回転軸25がくるように矩形板状体27を取り付けた。
The basic configuration is the same as in Example 1, but the long hole through hole 29 was set as follows.
The circle center distance between both ends of the long hole through hole 29 is 110 mm, which is a change in the distance between the fulcrums of the beam member 7 between the case where the short column 3 has a settling allowance of 300 mm and that before the settling, and the long column 5 has the settling allowed. 205 mm which is the total of 95 mm, which is the distance change between the fulcrums of the beam member 7 before the settling and when the amount becomes 300 mm, is necessary. In order to form such a long hole through-hole 29, the width of the rectangular plate-like body 27 was set to 325 mm.
In the initial state, the rectangular plate-like body 27 is attached so that the rotation shaft 25 comes to a position 110 mm from the beam end side, which is the length corresponding to the distance change between the fulcrums of the beam member 7 when the short column 3 is settled. .

上記の構造で試作したところ、実施例1と同様に円滑な動作が行われた。   As a result of trial manufacture with the above structure, smooth operation was performed as in Example 1.

長柱5同士、短柱3同士を梁部材7で連結するものについて、実施例3と同様の部材を用いて製作して動作確認を行った。
なお、長柱5同士、短柱3同士を梁部材7で連結する場合、長柱5と短柱3とは根太13で連結されることになるが、実施例4では、長柱5と短柱3を連結する根太13を実施例3の梁部材7と同一の長さに設定したので、長孔貫通孔29の長さや長孔貫通孔29と回転軸25との配置関係は実施例3と同一とした。
実施例3と同様に円滑な動作が行われた。
About what connected the long pillars 5 and the short pillars 3 with the beam member 7, it manufactured using the member similar to Example 3, and confirmed operation | movement.
When the long pillars 5 and the short pillars 3 are connected to each other by the beam member 7, the long pillars 5 and the short pillars 3 are connected to the joists 13. Since the joists 13 connecting the pillars 3 are set to the same length as the beam member 7 of the third embodiment, the length of the long hole through holes 29 and the arrangement relationship between the long hole through holes 29 and the rotary shaft 25 are the same as those of the third embodiment. It was the same.
A smooth operation was performed as in Example 3.

短柱3側にピン結合からなる第1支持機構43を設け、長柱5側に長孔貫通孔29を有する接合部材21と支持部材19からなる第2支持機構45を設けた太陽電池パネル用架台を試作した。
基本構成は、実施例4と同じであるが、短柱3、長柱5ともに、下柱3aと上柱3bとボルト33により、梁部材7の軸方向に傾動可能な構造にし(図10、図11参照)、梁部材7は実施の形態3による構造とした。
A first support mechanism 43 comprising a pin connection is provided on the short pillar 3 side, and a second support mechanism 45 comprising a joining member 21 having a long hole through hole 29 and a support member 19 is provided on the long pillar 5 side. A prototype was built.
The basic configuration is the same as that of the fourth embodiment. However, both the short column 3 and the long column 5 can be tilted in the axial direction of the beam member 7 by the lower column 3a, the upper column 3b, and the bolt 33 (FIG. 10, The beam member 7 has a structure according to the third embodiment.

短柱3と長柱5は基本構造が同じであるため、柱に関しては、短柱3を例に説明する。図40は下柱3aの説明図、図41は上柱3bの説明図である。図40、図41において図10、図11と同一部分には同一の符号が付してある。また、図41においては、図41(a)における矢視I−I図が図41(b)に示されている。   Since the short pillar 3 and the long pillar 5 have the same basic structure, the short pillar 3 will be described as an example. FIG. 40 is an explanatory diagram of the lower column 3a, and FIG. 41 is an explanatory diagram of the upper column 3b. 40 and 41, the same parts as those in FIGS. 10 and 11 are denoted by the same reference numerals. Further, in FIG. 41, an arrow II view in FIG. 41A is shown in FIG.

短柱3は、図40に示す下柱3aに図41に示す上柱3bを連結した連結柱構造になっており、下柱3aに上柱3bを挿入してボルト33を傾動軸として上柱3bを傾動可能に構成されている。
下柱3aは、外径125mm、板厚4.5mmの角型鋼管を用いており、高さ1.2メートルである。上部から50mmの位置で、正面および裏面側にボルト33を挿入する径22mmの貫通孔からなる沈降補正用ボルト31を設けている。下部には板厚12mmのベースプレート12を設けている。
上柱3bは、外径100mm、板厚3.2mmの角型鋼管を用いており、その上面には、支持部材19を備える。上柱3bには上面から100mm間隔でボルト33を挿入可能な沈降補正用ボルト孔31を正面側に設けて、上柱3bの高さを調整できるようにしている。沈降補正用ボルト孔31は、等間隔に設置してもよいが、上面から下方に向かって50mm、150mm、300mmの位置に配置すると、左右の各柱を表1に示すように上下方向に調整することによって、許容沈降差を300mmとした場合には、相対差を50mm以内に補正することが可能である。
The short pillar 3 has a connecting pillar structure in which the lower pillar 3a shown in FIG. 40 is connected to the upper pillar 3b shown in FIG. 41. The upper pillar 3b is inserted into the lower pillar 3a and the bolt 33 is used as the tilting axis. 3b can be tilted.
The lower pillar 3a uses a square steel pipe having an outer diameter of 125 mm and a plate thickness of 4.5 mm, and has a height of 1.2 meters. At a position 50 mm from the top, a settling correction bolt 31 comprising a through hole with a diameter of 22 mm is provided on the front and back sides of the bolt 33. A base plate 12 having a thickness of 12 mm is provided at the bottom.
The upper column 3b uses a square steel pipe having an outer diameter of 100 mm and a plate thickness of 3.2 mm, and a support member 19 is provided on the upper surface thereof. The upper column 3b is provided with a settling correction bolt hole 31 into which bolts 33 can be inserted at an interval of 100 mm from the upper surface so that the height of the upper column 3b can be adjusted. The settling correction bolt holes 31 may be installed at equal intervals, but if they are placed at positions of 50 mm, 150 mm, and 300 mm from the top to the bottom, the left and right columns are adjusted vertically as shown in Table 1. Thus, when the allowable sedimentation difference is 300 mm, the relative difference can be corrected within 50 mm.

表1に示した調整方法の一例を説明する。例えば、右側が不等沈降したことによって左右の相対差が50mmの場合(表1の再上欄参照)には、右側を50mmの位置にある沈降補正用ボルト孔31にボルト33を挿通することで、左右の差を0にすることができる。   An example of the adjustment method shown in Table 1 will be described. For example, if the right and left relative difference is 50 mm due to uneven sedimentation on the right side (see the upper column in Table 1), the bolt 33 is inserted into the sedimentation correction bolt hole 31 located 50 mm on the right side. The difference between the left and right can be reduced to zero.

また、正面方向へのがたつきを防止するために、前記沈降補正用ボルト孔31には、縦横50mm、板厚6mmのスペーサー4を併設している。
本例では、下柱3aと上柱3bの隙間を、必要な傾斜量から、左右10mm程度に想定して設定したが、設定する許容沈下量によって、この隙間を調整して各寸法を設定してよい。また、予め長方形断面の鋼管をその一方または両方に用いて、スペーサーを省略してもよい。
Further, in order to prevent rattling in the front direction, the settling correction bolt hole 31 is provided with a spacer 4 having a length and width of 50 mm and a plate thickness of 6 mm.
In this example, the gap between the lower column 3a and the upper column 3b is set assuming that the left and right sides are about 10 mm from the required amount of inclination. However, the dimensions are set by adjusting this gap according to the allowable settling amount. It's okay. Moreover, you may abbreviate | omit a spacer by previously using the steel pipe of a rectangular cross section for the one or both.

上記下柱3aと上柱3bからなる短柱3および長柱5の高さは、夫々1.2メートル、2.4メートルで、短柱3同士、長柱5同士の柱間隔は5.3メートル、短柱3と長柱5の間隔は約6メートルである。
各柱頭の支持部材19は厚さ19mmの鋼板を、支柱上部に溶接によって固定している。支持部材19には、後述する回転軸25を配置するための径20mmの挿通孔を設け、梁端部側の面にはナットを溶接している。支柱上面から、挿通孔までの距離は、梁部材7側に取り付ける接合部材21と干渉しない高さにすればよい。ここでは、支持部材19は、幅100mm、挿通孔高さを100mm、上部を半円形にして最高高さを150mmとして製作した。
The height of the short column 3 and the long column 5 composed of the lower column 3a and the upper column 3b is 1.2 meters and 2.4 meters, respectively. The column interval between the short columns 3 and the long columns 5 is 5.3 meters. The interval between the long pillars 5 is about 6 meters.
The supporting member 19 of each stigma is a steel plate having a thickness of 19 mm fixed to the upper part of the column by welding. The support member 19 is provided with an insertion hole having a diameter of 20 mm for disposing a rotating shaft 25 described later, and a nut is welded to the surface on the beam end side. The distance from the upper surface of the column to the insertion hole may be a height that does not interfere with the joining member 21 attached to the beam member 7 side. Here, the support member 19 was manufactured with a width of 100 mm, an insertion hole height of 100 mm, a semicircular upper portion, and a maximum height of 150 mm.

短柱3側の第1支持機構43側の支持機構部材62は、挟持部60および梁底面支持部61を厚さ19mm、一辺150mmの正方形の鋼板とし、矩形板状体27は、厚さ19mm、高さ191mm、幅150mmで、柱頭と干渉しないように、面取りをした。そして、下から60mmの位置に径22mmの貫通孔28を設けた。
挟持部60と、梁底面支持部61とをT型に形成し、前記梁底面支持部61の下方向に前記挟持部60と直交して上記矩形板状体27を配して第1支持機構43側の支持機構部材62を構成する。
The support mechanism member 62 on the first support mechanism 43 side on the short pillar 3 side is a square steel plate having a sandwiching portion 60 and a beam bottom support portion 61 having a thickness of 19 mm and a side of 150 mm, and the rectangular plate body 27 has a thickness of 19 mm. The chamfer was 191 mm in height and 150 mm in width so as not to interfere with the stigma. And the through-hole 28 with a diameter of 22 mm was provided in the position of 60 mm from the bottom.
A sandwiching portion 60 and a beam bottom surface support portion 61 are formed in a T shape, and the rectangular plate-like body 27 is disposed in a downward direction of the beam bottom surface support portion 61 so as to be orthogonal to the sandwiching portion 60. The support mechanism member 62 on the 43 side is configured.

長柱側の第2支持機構45は、前記第1支持機構43側の支持機構部材62と同様であるが、矩形板状体27には、貫通孔28に替えて、長孔貫通孔29を設けた点が異なる。
長孔貫通孔29は、幅を22mmとし、両端部の円中心距離は、短柱3が沈降許容量300mmとなった場合と沈降以前との梁部材7の支点間距離変化である65mmと、長柱5が許容沈降量300mmとなった場合と沈降以前との梁部材7の支点間距離変化である50mmの合計である115mmが必要である。このような長孔貫通孔29を形成するため、矩形板状体27の幅は235mmとした。また、初期状態において、回転軸25が梁部材7の中心になるように、長孔貫通孔29の中心を、梁部材7の中心から、短柱3側に向けて7.5mmずらして形成した。高さ方向の位置は、短柱3側と同じである。
The second support mechanism 45 on the long pillar side is the same as the support mechanism member 62 on the first support mechanism 43 side, but the rectangular plate 27 has a long hole through hole 29 instead of the through hole 28. Different points are provided.
The long hole through hole 29 has a width of 22 mm, and the circle center distance between both ends is 65 mm, which is the distance change between the fulcrums of the beam member 7 when the short column 3 reaches a settling allowance of 300 mm and before settling. 115 mm, which is the sum of 50 mm, which is a change in the distance between the fulcrums of the beam member 7 when the long column 5 has an allowable settling amount of 300 mm and before the settling, is necessary. In order to form such a long hole through hole 29, the width of the rectangular plate-like body 27 was set to 235 mm. Further, in the initial state, the center of the long hole through hole 29 is formed by shifting 7.5 mm from the center of the beam member 7 toward the short column 3 side so that the rotation shaft 25 becomes the center of the beam member 7. The position in the height direction is the same as the short column 3 side.

そして、各支持機構部材62の挟持部60を、許容沈降量の300mmとなった場合の梁部材7の傾斜にともなう矩形板状体27の傾斜時に、支持部材19と矩形板状体27の干渉を防止するために、相互に15mmの隙間が生じるように、矩形板状体27の中心間距離を5368mmとして対称となる位置で矩形棒状部材47で挟持すると共に2液性のエポキシ接着剤で接着した。
更に、辺長40mm、板厚5mm、長さ230mmで、両端から24mmの位置を中心とした(中心間距離182mm)、径14mmの固定ボルト貫通孔66を設けた固定部材65を、図29、図32に示すように、当該梁部材7の上面および前記梁底面支持部61の下面に、接着剤を塗布して配置し、前記固定ボルト貫通孔66に、首下長さ210mmで、先端30mmにねじ山を形成した径12mmの固定ボルト67を、梁部材7の側面に当接して配置し、座金を介してナットを締めて固定し、梁部材7に接合部材21を配置した。
Then, when the rectangular plate-like body 27 is inclined with the inclination of the beam member 7 when the holding portion 60 of each support mechanism member 62 reaches the allowable settling amount of 300 mm, the interference between the support member 19 and the rectangular plate-like body 27 is caused. In order to prevent this, the rectangular plate-like body 27 is sandwiched by the rectangular rod-shaped member 47 at a symmetrical position with a distance between the centers of the rectangular plate-like bodies 5368 mm so that a gap of 15 mm is generated, and bonded with a two-component epoxy adhesive did.
Further, a fixing member 65 having a side bolt length of 40 mm, a plate thickness of 5 mm, a length of 230 mm and a fixing bolt through hole 66 having a diameter of 14 mm centered at a position 24 mm from both ends (center distance 182 mm) is shown in FIG. As shown in FIG. 32, an adhesive is applied and arranged on the upper surface of the beam member 7 and the lower surface of the beam bottom surface support 61, and the fixing bolt through hole 66 has a neck length of 210 mm and a tip of 30 mm. A fixing bolt 67 having a diameter of 12 mm and having a thread formed thereon was placed in contact with the side surface of the beam member 7, and the nut was tightened and fixed via a washer, and the joining member 21 was placed on the beam member 7.

回転軸25は、有効スライド量を約10mmに想定し、首下95mmで先端30mmにねじ山を形成した径20mmのボルトを用い、矩形板状体の梁端部側の面から支持部材19にねじ込んで固定した。支持部材19と矩形板状体27間の隙間は15mmであり、その寸法に等しい緩衝材を入れることを原則とするが、上柱3bを傾動可能に支持しているので、支持部材19側に圧密可能な厚さ12mmのEPDMリング、矩形板状体27側にはM20用の標厚さ4mmの座金72を介した。
回転軸25のボルト頭と矩形板状体27の間隔は、12mmであり、この部分のボルトの軸にも緩衝材71と金属性の座金72を配しており、矩形板状体27側に座金72を配する。ここで用いる緩衝材は、比較的強度の大きい、M20用のばね座金を用い、所定の位置に安定させる効果を持たせている。
The rotating shaft 25 assumes an effective slide amount of about 10 mm, uses a bolt with a diameter of 95 mm below the neck and a thread of 30 mm at the tip, and is attached to the support member 19 from the beam end side surface of the rectangular plate-like body. Screwed in and fixed. The gap between the support member 19 and the rectangular plate-shaped body 27 is 15 mm, and in principle, a cushioning material equal to the dimension is inserted, but the upper column 3b is supported to be tiltable, so that the support member 19 side An EPDM ring with a thickness of 12 mm that can be consolidated, and a washer 72 with a standard thickness of 4 mm for M20 was provided on the rectangular plate 27 side.
The distance between the bolt head of the rotary shaft 25 and the rectangular plate-like body 27 is 12 mm, and the buffer material 71 and the metal washer 72 are also arranged on the bolt shaft in this portion, and the rectangular plate-like body 27 side is arranged. A washer 72 is provided. The cushioning material used here uses a spring washer for M20, which has a relatively high strength, and has an effect of stabilizing it in a predetermined position.

以上の仕様によって構成した架台を図42に示す。この架台について、動作確認を行った。このような薄鋼管による大スパン構造では、大きな不等沈下によって生じる支点間隔の伸縮に伴う応力によって、部材の一部塑性化や損傷が生じるが、本実施例の構造は、図43の写真に示すように、対角で200mmの相対沈下(単独沈下では400mm相当)においても、支点部が図44の写真のように柔軟に撓むことによって、沈降応力を緩和して変形を分散させ、部材に損傷がないことを確認した。   A gantry constructed according to the above specifications is shown in FIG. The operation of this gantry was confirmed. In such a large-span structure with thin steel pipes, part of the member is plasticized or damaged due to the stress accompanying expansion and contraction of the fulcrum interval caused by large unequal settlement, but the structure of this example is shown in the photograph of FIG. As shown in the figure, even in a relative subsidence of 200 mm diagonally (equivalent to 400 mm in a single subsidence), the fulcrum portion flexes flexibly as shown in the photograph of FIG. It was confirmed that there was no damage.

1 太陽電池パネル用架台
3 短柱
3a 下柱
3b 上柱
4 スペーサー
5 長柱
7 梁部材
9 傾斜架構
11 支持機構
12 ベースプレート
13 根太
15 太陽電池パネル
17 太陽電池パネル取付ピース
19 支持部材
21 接合部材
23 板状体
25 回転軸
26 挿通孔
27 矩形板状体
28 貫通孔
29 長孔貫通孔
30 鉄筋コンクリート基礎
31 沈降補正用ボルト孔
33 ボルト
41 太陽電池パネル用架台
43 第1支持機構
45 第2支持機構
46 接合板
47 矩形棒状部材
49 貫通孔
51 棒部材
53 板材
60 挟持部
61 梁底面支持部
62 支持機構部材
65 固定部材
66 固定ボルト貫通孔
67 固定ボルト
70 ナット
71 緩衝材
72 座金
80 角Uボルト
81 挿通孔
82 位置決め部材
83 大型座金
84 ナット
DESCRIPTION OF SYMBOLS 1 Solar cell panel mount 3 Short column 3a Lower column 3b Upper column 4 Spacer 5 Long column 7 Beam member 9 Inclined frame 11 Support mechanism 12 Base plate 13 joist 15 Solar cell panel 17 Solar cell panel attachment piece 19 Support member 21 Joining member 23 Plate-like body 25 Rotating shaft 26 Insertion hole 27 Rectangular plate-like body 28 Through-hole 29 Long-hole through-hole 30 Reinforced concrete foundation 31 Settling correction bolt hole 33 Bolt 41 Solar panel mount 43 First support mechanism 45 Second support mechanism 46 Joint plate 47 Rectangular rod-shaped member 49 Through hole 51 Bar member 53 Plate member 60 Nipping portion 61 Beam bottom support portion 62 Support mechanism member 65 Fixing member 66 Fixing bolt through hole 67 Fixing bolt 70 Nut 71 Buffer material 72 Washer 80 Square U bolt 81 Insertion Hole 82 Positioning member 83 Large washer 84 Nut

Claims (11)

短柱、長柱で一対となる支柱を少なくとも2組有し、該2組の支柱における短柱同士、長柱同士を直線状に配置すると共に平面視で全体が矩形になるように配置し、前記同種または異種の各柱の上端部を梁部材で連結し、前記梁部材に直交して根太を配置して前記長柱側から前記短柱側に向って傾斜する傾斜架構を構成してなる太陽電池パネル用架台であって、
前記各支柱の上端部と前記梁部材との接合部に設けられて前記梁部材を支持する支持機構を有し、
該支持機構は、前記支柱側に設けられると共に前記傾斜架構の傾斜方向に直交する方向に延出する回転軸と、前記梁部材側に設けられて前記回転軸が挿入かつ移動可能で前記傾斜方向に延びる長孔貫通孔とを有し、
太陽電池パネル用架台の設置初期状態では、前記回転軸が前記長孔貫通孔における傾斜方向上側の壁に当接していることを特徴とする太陽電池パネル用架台。
There are at least two pairs of struts that form a pair of short pillars and long pillars, and the short pillars and the long pillars in the two pairs of struts are arranged linearly and arranged so that the whole is rectangular in plan view, The upper and lower ends of each of the same or different columns are connected by a beam member, and a joist is arranged perpendicular to the beam member to form an inclined frame that is inclined from the long column side toward the short column side. A solar panel mount,
A support mechanism for supporting the beam member provided at a joint portion between the upper end of each column and the beam member;
The support mechanism is provided on the support column side and extends in a direction orthogonal to the inclination direction of the inclined frame; and the support mechanism is provided on the beam member side so that the rotation axis can be inserted and moved in the inclination direction. An elongated through hole extending to
In the initial installation state of the solar cell panel mount, the rotating shaft is in contact with the wall on the upper side in the inclined direction of the long hole through hole.
短柱、長柱で一対となる支柱を少なくとも2組有し、該2組の支柱における短柱同士、長柱同士を直線状に配置すると共に平面視で全体が矩形になるように配置し、前記同種または異種の各柱の上端部を梁部材で連結し、前記梁部材に直交して根太を配置して前記長柱側から前記短柱側に向って傾斜する傾斜架構を構成してなる太陽電池パネル用架台であって、前記各支柱の上端部と前記梁部材との接合部に設けられて前記梁部材を支持する支持機構を有し、
該支持機構は、前記梁部材側に設けられると共に前記傾斜架構の傾斜方向に直交する方向に延出する回転軸と、前記各支柱側に設けられて前記回転軸が挿入かつ移動可能で前記傾斜方向に延びる長孔貫通孔とを有し、
太陽電池パネル用架台の設置初期状態では、前記回転軸が前記長孔貫通孔における傾斜方向下側の壁に当接していることを特徴とする太陽電池パネル用架台。
There are at least two pairs of struts that form a pair of short pillars and long pillars, and the short pillars and the long pillars in the two pairs of struts are arranged linearly and arranged so that the whole is rectangular in plan view, The upper and lower ends of each of the same or different columns are connected by a beam member, and a joist is arranged perpendicular to the beam member to form an inclined frame that is inclined from the long column side toward the short column side. A solar cell panel pedestal, comprising a support mechanism for supporting the beam member provided at a joint between the upper end of each column and the beam member,
The support mechanism is provided on the beam member side and extends in a direction orthogonal to the inclination direction of the inclined frame; and the support mechanism is provided on each support column side so that the rotation shaft can be inserted and moved. A long through hole extending in the direction,
In the initial installation state of the solar cell panel gantry, the solar cell panel gantry is characterized in that the rotating shaft is in contact with the wall on the lower side in the inclined direction of the long hole through hole.
短柱、長柱で一対となる支柱を少なくとも2組有し、該2組の支柱における短柱同士、長柱同士を直線状に配置すると共に平面視で全体が矩形になるように配置し、前記同種または異種の各柱の上端部を梁部材で連結し、前記梁部材に直交して根太を配置して前記長柱側から前記短柱側に向って傾斜する傾斜架構を構成してなる太陽電池パネル用架台であって、
前記各支柱の上端部と前記梁部材との接合部に設けられて前記梁部材を支持する支持機構を有し、
該支持機構は、前記短柱の上端部で前記梁部材を支持する第1支持機構と、前記長柱の上端部で前記梁部材を支持する第2支持機構とを備え、
前記第1支持機構は前記短柱側又は前記梁部材側に設けられると共に前記傾斜架構の傾斜方向と直交する方向に延出する回転軸と、前記梁部材側又は前記短柱側に設けられて前記回転軸が挿入かつ移動可能で前記傾斜方向に延びる長孔貫通孔とを有し、太陽電池パネル用架台の設置初期状態では、前記回転軸が前記長孔貫通孔における傾斜方向中間部に配置されてなり、
前記第2支持機構は前記長柱の上端と前記梁部材とを回転可能に支持することを特徴とする太陽電池パネル用架台。
There are at least two pairs of struts that form a pair of short pillars and long pillars, and the short pillars and the long pillars in the two pairs of struts are arranged linearly and arranged so that the whole is rectangular in plan view, The upper and lower ends of each of the same or different columns are connected by a beam member, and a joist is arranged perpendicular to the beam member to form an inclined frame that is inclined from the long column side toward the short column side. A solar panel mount,
A support mechanism for supporting the beam member provided at a joint portion between the upper end of each column and the beam member;
The support mechanism includes a first support mechanism that supports the beam member at an upper end portion of the short column, and a second support mechanism that supports the beam member at an upper end portion of the long column,
The first support mechanism is provided on the short column side or the beam member side and provided on the beam member side or the short column side with a rotating shaft extending in a direction orthogonal to the inclination direction of the inclined frame. The rotary shaft is inserted and movable, and has a long hole through hole extending in the tilt direction. In the initial installation state of the solar cell panel mount, the rotary shaft is disposed in the middle portion of the long hole through hole in the tilt direction. Being
The said 2nd support mechanism supports the upper end of the said long column, and the said beam member rotatably, The stand for solar cell panels characterized by the above-mentioned.
短柱、長柱で一対となる支柱を少なくとも2組有し、該2組の支柱における短柱同士、長柱同士を直線状に配置すると共に平面視で全体が矩形になるように配置し、前記同種または異種の各柱の上端部を梁部材で連結し、前記梁部材に直交して根太を配置して前記長柱側から前記短柱側に向って傾斜する傾斜架構を構成してなる太陽電池パネル用架台であって、
前記各支柱の上端部と前記梁部材との接合部に設けられて前記梁部材を支持する支持機構を有し、
該支持機構は、前記短柱の上端部で前記梁部材を支持する第1支持機構と、前記長柱の上端部で前記梁部材を支持する第2支持機構とを備え、
前記第2支持機構は前記長柱側又は前記梁部材側に設けられると共に前記傾斜架構の傾斜方向と直交する方向に延出する回転軸と、前記梁部材側又は前記長柱側に設けられて前記回転軸が挿入かつ移動可能で前記傾斜方向に延びる長孔貫通孔とを有し、太陽電池パネル用架台の設置初期状態では、前記回転軸が前記長孔貫通孔における傾斜方向中間部に配置されてなり、
前記第1支持機構は前記短柱の上端と前記梁部材とを回転可能に支持することを特徴とする太陽電池パネル用架台。
There are at least two pairs of struts that form a pair of short pillars and long pillars, and the short pillars and the long pillars in the two pairs of struts are arranged linearly and arranged so that the whole is rectangular in plan view, The upper and lower ends of each of the same or different columns are connected by a beam member, and a joist is arranged perpendicular to the beam member to form an inclined frame that is inclined from the long column side toward the short column side. A solar panel mount,
A support mechanism for supporting the beam member provided at a joint portion between the upper end of each column and the beam member;
The support mechanism includes a first support mechanism that supports the beam member at an upper end portion of the short column, and a second support mechanism that supports the beam member at an upper end portion of the long column,
The second support mechanism is provided on the long column side or the beam member side, and is provided on a rotation axis extending in a direction perpendicular to the inclination direction of the inclined frame, and on the beam member side or the long column side. The rotary shaft is inserted and movable, and has a long hole through hole extending in the tilt direction. In the initial installation state of the solar cell panel mount, the rotary shaft is disposed in the middle portion of the long hole through hole in the tilt direction. Being
The first support mechanism rotatably supports an upper end of the short column and the beam member.
前記支持機構が設けられる梁部材を2本以上の棒状部材を用いて構成すると共に前記長孔貫通孔を板状部材に形成して前記梁部材に取り付けてなるものであって、
前記板状部材を、前記梁部材の上下方向に突出させて前記梁部材で挟持して接着すると共に、前記突出部の上下それぞれ2箇所ずつ以上の貫通孔を設け、該貫通孔に棒状体を略梁部材の全幅に亘って、梁部材と当接して配置したことを特徴とする請求項1、3または4のいずれか一項に記載の太陽電池パネル用架台。
The beam member provided with the support mechanism is configured by using two or more rod-shaped members, and the long hole through hole is formed in a plate-shaped member and attached to the beam member,
The plate-like member protrudes in the vertical direction of the beam member and is sandwiched and bonded by the beam member, and two or more through holes are provided on the upper and lower sides of the protruding portion, and a rod-like body is provided in the through-hole. 5. The solar cell panel mount according to claim 1, wherein the solar cell panel mount is disposed in contact with the beam member over the entire width of the beam member.
前記棒状体と前記梁部材の間に板状体を介在させたことを特徴とする請求項5記載の太陽電池パネル用架台。   6. The solar cell panel mount according to claim 5, wherein a plate-like body is interposed between the rod-like body and the beam member. 前記支持機構が設けられる梁部材を2本以上の棒状部材を用いて構成すると共に、前記支持機構は、前記梁部材に取り付けられる支持機構部材を備えてなり、該支持機構部材は長孔貫通孔を形成した板状部材と、該板状部材に直交すると共に前記梁部材に挟持される挟持部と、前記梁部材の底面を支持する底面支持部とを有し、
前記支持機構部材は、前記挟持部を前記梁部材で挟持して前記梁部材に接着すると共に、梁底面支持部の下面側と前記梁部材の上面側に配設された一対の板状又は形鋼状の固定部材を用いてこれら一対の固定部材を前記梁部材側面に当接する棒状体で連結固定することによって前記梁部材に固定されていることを特徴とする請求項1記載の太陽電池パネル用架台。
The beam member provided with the support mechanism is configured by using two or more rod-shaped members, and the support mechanism includes a support mechanism member attached to the beam member, and the support mechanism member is a long hole through hole. A plate-like member formed, a sandwiching portion that is orthogonal to the plate-like member and is sandwiched by the beam member, and a bottom surface support portion that supports the bottom surface of the beam member,
The support mechanism member includes a pair of plates or shapes disposed between the lower surface side of the beam bottom surface support portion and the upper surface side of the beam member while sandwiching the sandwiching portion with the beam member and bonding to the beam member. 2. The solar cell panel according to claim 1, wherein the pair of fixing members are fixed to the beam member by connecting and fixing the pair of fixing members with a rod-like body that is in contact with a side surface of the beam member using a steel-like fixing member. Mounting stand.
梁部材を2本以上の棒状部材を用いて構成すると共に、前記梁部材の一端側に取り付けられる第1支持機構部材を備えてなり、該第1支持機構部材は長孔貫通孔を形成した板状部材と、該板状部材に直交すると共に前記梁部材に挟持される挟持部と、前記梁部材の底面を支持する底面支持部とを有し、
前記梁部材の他端側に取り付けられる第2支持機構部材を備えてなり、該第2支持機構部材は回転軸が挿通される貫通孔を形成した板状部材と、該板状部材に直交すると共に前記梁部材に挟持される挟持部と、前記梁部材の底面を支持する底面支持部とを有し、
前記第1支持機構部材及び第2支持機構部材は、前記挟持部を前記梁部材で挟持して前記梁部材に接着すると共に、梁底面支持部の下面側と前記梁部材の上面側に配設された一対の板状又は形鋼状の固定部材を用いてこれら一対の固定部材を前記梁部材側面に当接する棒状体で連結固定することによって前記梁部材に固定されていることを特徴とする請求項3又は4に記載の太陽電池パネル用架台。
A plate in which the beam member is configured by using two or more rod-shaped members, and includes a first support mechanism member attached to one end side of the beam member, the first support mechanism member having a long hole through hole An orthogonal member, a sandwiching portion that is orthogonal to the plate member and sandwiched between the beam members, and a bottom surface support portion that supports the bottom surface of the beam member,
A second support mechanism member attached to the other end of the beam member is provided, the second support mechanism member being a plate-like member having a through-hole through which the rotation shaft is inserted, and orthogonal to the plate-like member. And a sandwiching part that is sandwiched between the beam members, and a bottom support part that supports the bottom surface of the beam member,
The first support mechanism member and the second support mechanism member are disposed on the lower surface side of the beam bottom surface support portion and on the upper surface side of the beam member while the sandwiching portion is sandwiched between the beam members and bonded to the beam member. The pair of fixing members are fixed to the beam member by connecting and fixing the pair of fixing members with a rod-like body that abuts against the side surface of the beam member using a pair of plate-like or shaped steel-like fixing members. The solar cell panel mount according to claim 3 or 4.
前記回転軸は前記支柱に設けられた板状体に固定手段によって固定され、かつ前記長孔貫通孔は前記梁部材側に設けられた板状部材に設けられ、
前記回転軸は前記板状部材の前記長孔貫通孔を貫通して延伸し、前記板状部材を軸方向に摺動可能かつ傾斜可能に保持していることを特徴とする請求項1又は7記載の太陽電池パネル用架台。
The rotating shaft is fixed to a plate-like body provided on the support by fixing means, and the long hole through hole is provided on a plate-like member provided on the beam member side,
8. The rotary shaft extends through the long hole through hole of the plate-like member, and holds the plate-like member so as to be slidable and tiltable in the axial direction. The solar cell panel mount described.
梁部材を回転可能に支持する側の支柱には板状体が設けられ該板状体に回転軸が固定されると共に該回転軸が挿通される貫通孔を有する板状部材が前記梁部材側に設けられてなり、
前記長孔貫通孔は前記梁部材側に設けられた板状部材に設けられ、該長孔貫通孔に挿通される回転軸は支柱に設けられた板状体に固定手段によって固定され、
前記回転軸は前記板状部材の前記長孔貫通孔及び前記板状体の貫通孔を貫通して延伸し、前記板状部材及び前記板状体を軸方向に摺動可能かつ傾斜可能に保持していることを特徴とする請求項3、4又は8記載の太陽電池パネル用架台。
A plate-like member is provided on the column that supports the beam member in a rotatable manner, and a plate-like member having a through-hole through which the rotation shaft is inserted is fixed to the plate-like member. Provided
The long hole through hole is provided in a plate-like member provided on the beam member side, and a rotation shaft inserted through the long hole through hole is fixed to a plate-like body provided in a support column by a fixing means,
The rotating shaft extends through the long hole through hole of the plate member and the through hole of the plate member, and holds the plate member and the plate member so as to be slidable and tiltable in the axial direction. The pedestal for solar cell panel according to claim 3, wherein the gantry is for solar cell panels.
前記短柱および/または前記長柱は、下柱に上柱を連結した連結柱構造であり、かつ、下柱または上柱の一方を他方に挿入すると共に、前記傾斜架構の傾斜方向と直交する方向に傾動可能な傾動軸で両者を連結してなることを特徴とする請求項1乃至8のいずれか一項に記載の太陽電池パネル用架台。   The short column and / or the long column have a connecting column structure in which an upper column is connected to a lower column, and one of the lower column and the upper column is inserted into the other and is orthogonal to the inclination direction of the inclined frame. The pedestal for a solar cell panel according to any one of claims 1 to 8, wherein both are connected by a tilting shaft capable of tilting in a direction.
JP2011180828A 2010-08-24 2011-08-22 Solar panel mount Expired - Fee Related JP5901912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011180828A JP5901912B2 (en) 2010-08-24 2011-08-22 Solar panel mount

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010187157 2010-08-24
JP2010187157 2010-08-24
JP2011180828A JP5901912B2 (en) 2010-08-24 2011-08-22 Solar panel mount

Publications (2)

Publication Number Publication Date
JP2012069929A true JP2012069929A (en) 2012-04-05
JP5901912B2 JP5901912B2 (en) 2016-04-13

Family

ID=46166761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180828A Expired - Fee Related JP5901912B2 (en) 2010-08-24 2011-08-22 Solar panel mount

Country Status (1)

Country Link
JP (1) JP5901912B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103123A1 (en) * 2012-01-06 2013-07-11 新日鐵住金株式会社 Panel support mounting
JP2013221239A (en) * 2012-04-12 2013-10-28 Nippon Chiko Co Ltd Installation structure of solar cell panel
JP2013238010A (en) * 2012-05-14 2013-11-28 Kyoyo Co Ltd Solar panel mounting and method of constructing solar panel mounting
JP2014034830A (en) * 2012-08-09 2014-02-24 Ohbayashi Corp Installation frame for solar battery panel and installation method for solar battery panel
JP2014086441A (en) * 2012-10-19 2014-05-12 Mitsubishi Electric Corp Solar battery module
JP2014101730A (en) * 2012-11-22 2014-06-05 Hory Corp Frame for solar panel
JP2014105467A (en) * 2012-11-27 2014-06-09 Ohbayashi Corp Trestle for installing solar cell panel
JP2014148856A (en) * 2013-02-01 2014-08-21 Sawakigumi Kk Installation method of solar panel installing stand
JP2014197610A (en) * 2013-03-29 2014-10-16 ホリー株式会社 Frame for solar panel
JPWO2013162009A1 (en) * 2012-04-26 2015-12-24 京セラ株式会社 Solar cell device
CN106655986A (en) * 2017-01-16 2017-05-10 中机国能电力工程有限公司 Large-span steel grid beam photovoltaic support system
CN109412511A (en) * 2018-10-17 2019-03-01 合肥凌山新能源科技有限公司 A kind of power generator of the shrinkable lift based on solar energy
CN111969934A (en) * 2020-08-28 2020-11-20 安徽联维新能源科技有限公司 High-efficiency solar cell panel and mounting structure thereof
WO2022247376A1 (en) * 2021-05-26 2022-12-01 中国华能集团清洁能源技术研究院有限公司 Easy-to-fold assembled photovoltaic support and use method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682865U (en) * 1993-04-30 1994-11-25 日新電機株式会社 Solar panel angle adjustment device
JP2000101123A (en) * 1998-09-25 2000-04-07 Aichi Electric Co Ltd Solar battery fitting rack device
JP2004140256A (en) * 2002-10-18 2004-05-13 Mitsubishi Heavy Ind Ltd Solar cell panel installing structure
US20060086382A1 (en) * 2004-02-13 2006-04-27 Plaisted Joshua R Mechanism for mounting solar modules
EP1947402A1 (en) * 2007-01-18 2008-07-23 Aplisun Develop, S.L. Support frame for solar panels
JP2009041286A (en) * 2007-08-09 2009-02-26 Sharp Corp Structure installation frame, method of assembling the same, solar battery module, and construction structure using the structure installation frame
JP2010098241A (en) * 2008-10-20 2010-04-30 Sharp Corp Solar cell array and installing structure of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682865U (en) * 1993-04-30 1994-11-25 日新電機株式会社 Solar panel angle adjustment device
JP2000101123A (en) * 1998-09-25 2000-04-07 Aichi Electric Co Ltd Solar battery fitting rack device
JP2004140256A (en) * 2002-10-18 2004-05-13 Mitsubishi Heavy Ind Ltd Solar cell panel installing structure
US20060086382A1 (en) * 2004-02-13 2006-04-27 Plaisted Joshua R Mechanism for mounting solar modules
EP1947402A1 (en) * 2007-01-18 2008-07-23 Aplisun Develop, S.L. Support frame for solar panels
JP2009041286A (en) * 2007-08-09 2009-02-26 Sharp Corp Structure installation frame, method of assembling the same, solar battery module, and construction structure using the structure installation frame
JP2010098241A (en) * 2008-10-20 2010-04-30 Sharp Corp Solar cell array and installing structure of the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101423450B1 (en) * 2012-01-06 2014-07-25 신닛테츠스미킨 카부시키카이샤 Panel support mounting
WO2013103123A1 (en) * 2012-01-06 2013-07-11 新日鐵住金株式会社 Panel support mounting
JP5403189B1 (en) * 2012-01-06 2014-01-29 新日鐵住金株式会社 Panel support base
JP2013221239A (en) * 2012-04-12 2013-10-28 Nippon Chiko Co Ltd Installation structure of solar cell panel
US9553543B2 (en) 2012-04-26 2017-01-24 Kyocera Corporation Photovoltaic system
JPWO2013162009A1 (en) * 2012-04-26 2015-12-24 京セラ株式会社 Solar cell device
JP2013238010A (en) * 2012-05-14 2013-11-28 Kyoyo Co Ltd Solar panel mounting and method of constructing solar panel mounting
JP2014034830A (en) * 2012-08-09 2014-02-24 Ohbayashi Corp Installation frame for solar battery panel and installation method for solar battery panel
JP2014086441A (en) * 2012-10-19 2014-05-12 Mitsubishi Electric Corp Solar battery module
JP2014101730A (en) * 2012-11-22 2014-06-05 Hory Corp Frame for solar panel
JP2014105467A (en) * 2012-11-27 2014-06-09 Ohbayashi Corp Trestle for installing solar cell panel
JP2014148856A (en) * 2013-02-01 2014-08-21 Sawakigumi Kk Installation method of solar panel installing stand
JP2014197610A (en) * 2013-03-29 2014-10-16 ホリー株式会社 Frame for solar panel
CN106655986A (en) * 2017-01-16 2017-05-10 中机国能电力工程有限公司 Large-span steel grid beam photovoltaic support system
CN109412511A (en) * 2018-10-17 2019-03-01 合肥凌山新能源科技有限公司 A kind of power generator of the shrinkable lift based on solar energy
CN111969934A (en) * 2020-08-28 2020-11-20 安徽联维新能源科技有限公司 High-efficiency solar cell panel and mounting structure thereof
CN111969934B (en) * 2020-08-28 2023-09-08 安徽联维新能源科技有限公司 High-efficiency solar cell panel and mounting structure thereof
WO2022247376A1 (en) * 2021-05-26 2022-12-01 中国华能集团清洁能源技术研究院有限公司 Easy-to-fold assembled photovoltaic support and use method

Also Published As

Publication number Publication date
JP5901912B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5901912B2 (en) Solar panel mount
JP5529677B2 (en) Solar panel mount
JP2016220326A (en) Cradle for solar battery module and photovoltaic power generation device
JP5991512B2 (en) Solar panel mount
JP3164142U (en) Solar panel support structure
JP4657028B2 (en) Joining structure and joining method of pile and superstructure
CN211774554U (en) Reinforced steel structure bearing beam structure for building
JP2015104245A (en) Photovoltaic power generation panel frame
JP6175243B2 (en) Base support structure
JP2012104756A (en) Solar cell panel installation frame
JP2013204301A (en) Foundation structure of frame for supporting solar cell module
JP2013199791A (en) Frame for solar panel and construction method
JP2012017577A (en) Fixing structure of steel frame member
JP4614164B2 (en) Reinforcement structure of spherical tank legs
KR102246583B1 (en) Support structure of photovoltaic module
JP3213752U (en) Solar panel mount
JP2011077194A (en) Pedestal structure of solar cell panel and photovoltaic power generation system
CN103248272B (en) Component bracket structure
JP3181778U (en) Photovoltaic panel support stand
US20140224751A1 (en) Solar panel mounting stand
JP6072444B2 (en) Solar cell module mounting structure
JP2016127716A (en) Solar panel frame support rack and photovoltaic power generation system
JP2010236289A (en) Foundation structure
JP4614160B2 (en) Reinforcement structure and reinforcement method for spherical tank legs
KR101423450B1 (en) Panel support mounting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160309

R150 Certificate of patent or registration of utility model

Ref document number: 5901912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees