JP2012069621A - Cooling structure in stationary induction apparatus and stationary induction apparatus with the same - Google Patents

Cooling structure in stationary induction apparatus and stationary induction apparatus with the same Download PDF

Info

Publication number
JP2012069621A
JP2012069621A JP2010211660A JP2010211660A JP2012069621A JP 2012069621 A JP2012069621 A JP 2012069621A JP 2010211660 A JP2010211660 A JP 2010211660A JP 2010211660 A JP2010211660 A JP 2010211660A JP 2012069621 A JP2012069621 A JP 2012069621A
Authority
JP
Japan
Prior art keywords
disk
winding
duct piece
shaped
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010211660A
Other languages
Japanese (ja)
Other versions
JP5388975B2 (en
Inventor
Koji Kichise
幸司 吉瀬
Takao Tsurimoto
崇夫 釣本
Takeshi Shinozaki
健 篠▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010211660A priority Critical patent/JP5388975B2/en
Publication of JP2012069621A publication Critical patent/JP2012069621A/en
Application granted granted Critical
Publication of JP5388975B2 publication Critical patent/JP5388975B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cooling structure in a stationary induction apparatus, composed of discoid coils, which permits cooling performance to be increased over a conventionally available one; and a stationary induction apparatus having the cooling structure.SOLUTION: In a cooling structure of a stationary induction apparatus comprised of discoid coils 31 and 32 which have a different coil-to-coil distance between the inner and the outer peripheries and which are laminated via an insulating plate 101, there are provided duct pieces 102-1 and 102-2 forming coolant passages 181 and 182 interposed between the discoid coils and the insulating plate, which have a constant thickness in a single unit and come in plural types having different thicknesses between different types. The duct pieces differing in thickness are disposed in a radial direction in order for the heights of the coolant passages to differ in the radial direction.

Description

本発明は、円板状巻線で構成された変圧器、リアクトル等の静止誘導器における冷却構造、及びこの冷却構造を有する静止誘導器に関する。   The present invention relates to a cooling structure in a static inductor such as a transformer, a reactor or the like constituted by a disk-shaped winding, and a static inductor having this cooling structure.

巻線と鉄心とを含む変圧器を備えた静止誘導器では、外箱内に変圧器を配置するとともに、例えば絶縁油等の冷媒にて変圧器の冷却が行われる。変圧器は、巻線と鉄心との構造の違いにより、外鉄形と内鉄形との2種類が存在し、外鉄形では巻線の外部を磁路が通るように、内鉄形では巻線の内部を磁路が通るように構成される。また、巻線の構造としては、多重筒状巻線と円板状巻線との形態がある。多重筒状巻線は、素線を円筒状に巻回して一つの導体層を形成し、この導体層の外周側に、それよりも大径の円筒状の導体層を配置し、以下順次、より大径の円筒状の導体層を同心円状に配置した構造を有する。一方、円板状巻線は、素線を同心状に巻回して一つの板状の導体層を形成し、この板状導体層と同一形状で形成した次の板状導体層を同軸上に重ねて配置し、以下同様に、同一形状の板状導体層を積層した構造を有する。   In a static inductor provided with a transformer including a winding and an iron core, the transformer is disposed in the outer box, and the transformer is cooled with a refrigerant such as insulating oil. There are two types of transformers, the outer iron type and the inner iron type, depending on the structure of the winding and the iron core. In the outer iron type, the magnetic path passes through the outside of the winding. A magnetic path passes through the inside of the winding. Moreover, as a structure of a coil | winding, there exists a form of a multiple cylindrical coil | winding and a disk shaped coil | winding. The multiple cylindrical winding is formed by winding a wire in a cylindrical shape to form one conductor layer, and arranging a cylindrical conductor layer having a larger diameter on the outer peripheral side of the conductor layer. It has a structure in which larger-diameter cylindrical conductor layers are arranged concentrically. On the other hand, in the disk-shaped winding, the wire is concentrically wound to form one plate-like conductor layer, and the next plate-like conductor layer formed in the same shape as this plate-like conductor layer is coaxially formed. In the same manner, it has a structure in which plate-like conductor layers having the same shape are laminated.

例えば特許文献1には、多重筒状巻線を有する静止誘導器について記載されている。この静止誘導器では、多重筒状巻線を構成する円筒状の導体層と導体層との間に、つまり隣接する2つの円筒状導体層において、内側の導体層の外周と、外側の導体層の内周との間に、冷却用の冷媒を流す冷媒流路が設けられている。このように多重筒状巻線を有する構造では、冷媒流路は、円筒状であるそれぞれの導体層の軸方向に沿って延在し、冷媒は、この軸方向に、つまり巻回される素線が延在する方向に対して直交する方向に流れることになる。   For example, Patent Document 1 describes a static inductor having multiple cylindrical windings. In this static inductor, the outer circumference of the inner conductor layer and the outer conductor layer between the cylindrical conductor layers constituting the multiple cylindrical winding, that is, in two adjacent cylindrical conductor layers, A refrigerant flow path for allowing a cooling refrigerant to flow is provided between the inner circumference and the inner circumference. Thus, in the structure having the multiple cylindrical windings, the refrigerant flow path extends along the axial direction of each of the cylindrical conductor layers, and the refrigerant is wound in this axial direction, that is, the element wound around the axial direction. It will flow in a direction perpendicular to the direction in which the line extends.

さらに、それぞれの円筒状の導体層について、上記軸方向における多重筒状巻線の端部の内、導体層間に生じる電位差が小さい部分では、導体層間の隙間を小さくし、一方、電位差が大きい部分では隙間を大きくして、各導体層が配置されている。即ち、冷媒が流れる方向に沿って冷媒流路の断面積が変化する構造を有して多重筒状巻線は形成されている。このような冷媒流路を構成するため、棒状のダクトピースを、導体層間において上記軸方向に沿って延在させ、かつ上記軸方向に沿ってダクトピースの厚みを段階的に変化させている。   Furthermore, for each cylindrical conductor layer, the gap between the conductor layers is reduced in the portion where the potential difference generated between the conductor layers is small in the end portions of the multiple cylindrical windings in the axial direction, whereas the portion where the potential difference is large Then, each conductor layer is arranged with a large gap. That is, the multiple cylindrical winding is formed so that the cross-sectional area of the refrigerant flow path changes along the direction in which the refrigerant flows. In order to constitute such a refrigerant flow path, a rod-shaped duct piece is extended along the axial direction between conductor layers, and the thickness of the duct piece is changed stepwise along the axial direction.

特許第3933347号公報Japanese Patent No. 3933347

一方、図12に概略形状を示した、円板状巻線を有する外鉄形変圧器は、一例として以下のような構成を備えている。
即ち、上述したように構成される円板状巻線の、円板状巻線3−1、3−2にて巻線3が形成され、巻線3の外側に鉄心6が配置されている。ここで、円板状巻線3−1は1次巻線であり、円板状巻線3−2は2次巻線であり、円板状巻線3−1、3−2は、それぞれ複数枚の円板状巻線を有し、これらが積層方向91に沿って積層されて巻線3を形成している。尚、用途によっては、3次巻線も採用される場合もあり、更に、図12では縦方向に図示されている巻線3を90°回転させて配設した横置き型も存在する。
On the other hand, the outer iron type transformer having a disk-shaped winding, which is schematically shown in FIG. 12, has the following configuration as an example.
That is, the winding 3 is formed by the disc-shaped windings 3-1 and 3-2 of the disc-shaped winding configured as described above, and the iron core 6 is disposed outside the winding 3. . Here, the disk-shaped winding 3-1 is a primary winding, the disk-shaped winding 3-2 is a secondary winding, and the disk-shaped windings 3-1, 3-2 are respectively A plurality of disk-shaped windings are provided, and these are stacked along the stacking direction 91 to form the winding 3. Depending on the application, a tertiary winding may be used, and there is a horizontal type in which the winding 3 illustrated in the vertical direction in FIG. 12 is rotated 90 °.

巻線3について、対向する2枚の円板状巻線31,32を図13に示す。通常、円板状巻線の内周側4もしくは外周側5で、隣接する円板状巻線同士が接続されている。以下では、内周側4で接続されている場合に関して記述する。   FIG. 13 shows two disk-shaped windings 31 and 32 facing each other for the winding 3. Normally, adjacent disk-shaped windings are connected to each other on the inner peripheral side 4 or the outer peripheral side 5 of the disk-shaped windings. Below, it describes about the case where it connects on the inner peripheral side 4. FIG.

図13において点線で示した領域Iにおける円板状巻線31,32間の断面構造を図14に示す。それぞれの円板状巻線31,32は、上述したように、素線15が内周側4から外周側5へ径方向92において同心状に巻回されて形成されている。尚、径方向92とは、素線15が同心状に巻回されていく方向で、内周側4及び外周側5への向きに相当する。
また、円板状巻線間の電気的絶縁性能の観点において、本例では円板状巻線31,32を内周側4で接続しているので、内周側4では円板状巻線31,32間の電位差は小さい。よって、積層方向91における円板状巻線間の隙間(以下、「円板状巻線間距離」と記す)を内周側4では相対的に小さくして良く、一方、外周側5では円板状巻線31,32間の電位差が大きいため、円板状巻線間距離41を相対的に大きくする必要がある。よって、円板状巻線31と円板状巻線32とは、図示するように、内周側4と外周側5とで、円板状巻線間距離41を異ならせて配置されている。
FIG. 14 shows a cross-sectional structure between the disk-shaped windings 31 and 32 in a region I indicated by a dotted line in FIG. As described above, each of the disk-shaped windings 31 and 32 is formed by winding the strand 15 concentrically in the radial direction 92 from the inner peripheral side 4 to the outer peripheral side 5. The radial direction 92 is a direction in which the strand 15 is wound concentrically and corresponds to the direction toward the inner peripheral side 4 and the outer peripheral side 5.
Further, from the viewpoint of the electrical insulation performance between the disk-shaped windings, the disk-shaped windings 31 and 32 are connected on the inner peripheral side 4 in the present example. The potential difference between 31 and 32 is small. Therefore, the gap between the disk-shaped windings in the stacking direction 91 (hereinafter referred to as “distance between the disk-shaped windings”) may be relatively small on the inner peripheral side 4, while Since the potential difference between the plate windings 31 and 32 is large, it is necessary to relatively increase the distance 41 between the disk windings. Therefore, the disk-shaped winding 31 and the disk-shaped winding 32 are arranged with different distances 41 between the disk-shaped windings on the inner peripheral side 4 and the outer peripheral side 5 as shown in the figure. .

また、内周側4及び外周側5の両方における円板状巻線の角部は、放電の起点となりやすいため、巻線端部用絶縁材7にて巻線端部は覆われている。更に、電位が零である鉄心6や当該変圧器の筐体と、巻線端部との間には、絶縁板16を挿入することで、電気的絶縁性を強化している。更に、電位差の小さい内周側4では、円板状巻線31,32における各巻線端部用絶縁材7に、絶縁材にてなる巻線端部スペーサ10がそれぞれ配設されている。この巻線端部スペーサ10は、以下で説明する冷媒流路を確保するための部材となる。   Further, since the corners of the disk-shaped windings on both the inner peripheral side 4 and the outer peripheral side 5 are likely to be discharge starting points, the winding end portions are covered with the winding end insulating material 7. Furthermore, the electrical insulation is reinforced by inserting an insulating plate 16 between the iron core 6 whose potential is zero or the casing of the transformer and the winding end. Further, on the inner peripheral side 4 where the potential difference is small, winding end spacers 10 made of an insulating material are disposed on the respective winding end insulating materials 7 in the disk-shaped windings 31 and 32. This winding edge part spacer 10 becomes a member for ensuring the refrigerant | coolant flow path demonstrated below.

図15は、図14に点線で示した領域IIの拡大図である。円板状巻線31と円板状巻線32との電気的絶縁性を確保するために、円板状巻線31、32における各対向面31a,32aの全面に対向して、絶縁板1、1がそれぞれ挿入される。ここで各絶縁板1、1は、円板状巻線31の対向面31aに対して隙間を設けて、円板状巻線32の対向面32aに対して隙間を設けて、配置される。このような隙間は、冷却用の例えば絶縁油である冷媒を通過させる冷媒流路18になる。このような冷媒流路18を確保するため、絶縁材にてなるダクトピース2が絶縁板1、1と円板状巻線31、32(詳しくは対向面31a,32a)との間に挟まれて、径方向92において、不連続に配設される。ここでダクトピース2は、全て同じ厚みにてなる。   FIG. 15 is an enlarged view of a region II indicated by a dotted line in FIG. In order to ensure electrical insulation between the disk-shaped winding 31 and the disk-shaped winding 32, the insulating plate 1 faces the entire surface of the opposing surfaces 31 a, 32 a of the disk-shaped windings 31, 32. 1 is inserted respectively. Here, each insulating plate 1, 1 is disposed with a gap provided between the opposing surfaces 31 a of the disk-shaped winding 31 and with a clearance provided between the opposing surfaces 32 a of the disk-shaped winding 32. Such a gap becomes a refrigerant flow path 18 through which a refrigerant, for example, insulating oil for cooling, passes. In order to secure such a refrigerant flow path 18, the duct piece 2 made of an insulating material is sandwiched between the insulating plates 1, 1 and the disk-shaped windings 31, 32 (specifically, the opposing surfaces 31 a, 32 a). Thus, they are discontinuously arranged in the radial direction 92. Here, all the duct pieces 2 have the same thickness.

このように、円板状巻線31,32を用いて巻線3を形成する場合、図14及び図15から明らかなように、冷媒流路18は、素線15の延在方向93(図14及び図15では、紙面に垂直な方向)に沿って形成され、冷媒は、素線15の延在方向93に沿って流れることになる。この点、冷媒が、素線の延在方向に対して直交方向に流れる、上述の多重筒状巻線の場合における構造とは相違する。   Thus, when forming the coil | winding 3 using the disk shaped windings 31 and 32, as FIG.14 and FIG.15 shows, the refrigerant | coolant flow path 18 is the extension direction 93 (FIG. 14 and FIG. 15, the refrigerant flows along the extending direction 93 of the strand 15. This is different from the structure in the case of the multiple cylindrical winding described above in which the refrigerant flows in a direction orthogonal to the extending direction of the strands.

また、この例では、内周側4と外周側5とでは、円板状巻線間距離41が異なる。この構造を実現するために、絶縁材にてなる巻線間距離調整用部材17と、テーパーを設けた絶縁材にてなるテーパースペーサ9とが、各絶縁板1、1の間で、ダクトピース2とは反対側に配設されている。ここで、円板状巻線31,32において、内周側4と外周側5とで円板状巻線間距離41を緩やかに変化させて、円板状巻線31,32に大きな段差が発生しないようにするために、各絶縁板1,1、及び巻線間距離調整用部材17の内周側4には、テーパーを設けて徐々にそれらの肉厚を薄くしている。   Further, in this example, the inner circumferential side 4 and the outer circumferential side 5 have different disc-shaped interwinding distances 41. In order to realize this structure, the inter-winding distance adjusting member 17 made of an insulating material and the taper spacer 9 made of an insulating material provided with a taper are arranged between the insulating plates 1 and 1 to form a duct piece. 2 is arranged on the opposite side. Here, in the disk-shaped windings 31, 32, the disk-shaped winding distance 41 is gently changed between the inner peripheral side 4 and the outer peripheral side 5, so that a large step is formed in the disk-shaped windings 31, 32. In order to prevent this from occurring, the insulating plates 1 and 1 and the inner peripheral side 4 of the inter-winding distance adjusting member 17 are tapered to gradually reduce their thickness.

図16は、図14において、二点鎖線で示した部分における、円板状巻線32の対向面32aに配置されているダクトピース2、巻線端部スペーサ10、巻線端部用絶縁材7を、矢印A方向に見た図であり、これらの位置関係を示す概略図である。図示するように、ダクトピース2は、平面形状が平行四辺形であり、径方向92に規定の間隔にて、かつ素線15の延在方向93に規定の間隔にて、配置されている。よって、冷媒は、冷却効率向上のため、点線19で示すように、冷媒流路18においてダクトピース2が配設されていない箇所を素線15の大略、延在方向93にジグザグに流れる。   FIG. 16 shows the duct piece 2, the winding end spacer 10, and the winding end insulating material disposed on the opposing surface 32 a of the disk-like winding 32 in the portion indicated by the two-dot chain line in FIG. 14. 7 is a schematic view showing the positional relationship of FIG. As shown in the figure, the duct piece 2 has a parallelogram shape in plan view, and is arranged at a specified interval in the radial direction 92 and at a specified interval in the extending direction 93 of the strand 15. Therefore, the refrigerant flows in a zigzag manner in the extending direction 93 of the wire 15 in a portion where the duct piece 2 is not disposed in the refrigerant flow path 18 as indicated by a dotted line 19 in order to improve cooling efficiency.

一方、静止誘導器では、落雷等で急に送電が停止した場合等の短絡時に、急激な力が各円板状巻線、即ち巻線3に加わる。このような外力が加わった際に、巻線3は、ダクトピース2、絶縁板1、巻線端部用絶縁材7等の絶縁物や鉄心6を介して、静止誘導器の筐体で支持される。円板状巻線、つまり巻線3は、図14にも示すように、素線15の集合体であり、外力で極度な変形を引き起こさないために、素線15の延在方向に一定間隔で、素線15を支持する必要がある。図16の概略図においては、素線最大支持間隔8がその支持間隔に相当する。   On the other hand, in the static inductor, a sudden force is applied to each disk-shaped winding, that is, the winding 3 at the time of a short circuit such as when power transmission is suddenly stopped due to a lightning strike or the like. When such an external force is applied, the winding 3 is supported by the casing of the static inductor via the duct piece 2, the insulating plate 1, the insulating material 7 for the winding end, and the iron core 6. Is done. As shown in FIG. 14, the disk-shaped winding, that is, the winding 3 is an aggregate of the strands 15 and does not cause extreme deformation by an external force. Therefore, it is necessary to support the strand 15. In the schematic diagram of FIG. 16, the strand maximum support interval 8 corresponds to the support interval.

上述したように、円板状巻線では、多重筒状巻線の場合と異なり、冷媒の流れる方向が素線15の延在方向と同一である。従って、素線最大支持間隔8を維持しつつ、冷媒流路18の形成が可能な構造にするため、ダクトピース2は、図16に示すように径方向92において細かく分割した小さな部材で形成されている。例えば上記特許文献1に開示されるような長尺棒状のダクトピースを用いた場合には、冷媒の流れが遮られてしまうという問題が生じる。   As described above, in the disk-shaped winding, unlike the case of the multiple cylindrical winding, the direction in which the refrigerant flows is the same as the extending direction of the strand 15. Therefore, in order to make the structure capable of forming the refrigerant flow path 18 while maintaining the maximum support distance 8 of the strands, the duct piece 2 is formed by a small member finely divided in the radial direction 92 as shown in FIG. ing. For example, when a long rod-shaped duct piece as disclosed in Patent Document 1 is used, there arises a problem that the flow of the refrigerant is blocked.

また、特許文献1に開示されるように、ダクトピース自体にテーパーを形成して流路高さを変更しようとした場合には、円板状巻線の内周側4と外周側5との位置間で、個々のダクトピース自体がテーパーを有し、かつそれぞれのダクトピースの厚みが異なるようなダクトピースが必要となる。よって、部品の種類が増し、費用対効果が得られないという問題がある。   Further, as disclosed in Patent Document 1, when trying to change the flow path height by forming a taper in the duct piece itself, the inner circumferential side 4 and the outer circumferential side 5 of the disk-shaped winding Between the positions, duct pieces are required in which the individual duct pieces themselves have a taper and the thickness of each duct piece is different. Therefore, there is a problem that the types of parts increase and cost effectiveness cannot be obtained.

また、特許文献1の図1に示すように、素線間に大きな段差が発生することを前提にした場合、特許文献1にも記載されているように、段差部で素線に巻かれている絶縁紙にダメージを与えて、絶縁耐力を低下させる原因となるため、好ましくない。   Moreover, as shown in FIG. 1 of Patent Document 1, when it is assumed that a large step is generated between the strands, the wire is wound around the strand at the step portion as described in Patent Document 1. This is not preferable because it causes damage to the insulating paper and reduces the dielectric strength.

本発明は、上述のような問題点を解決するためになされたものであり、円板状巻線で構成された静止誘導器において、従来に比べて冷却能力を向上可能な静止誘導器における冷却構造、及び該冷却構造を有する静止誘導器を提供することを目的とする。   The present invention has been made to solve the above-described problems, and in a static inductor composed of disk-shaped windings, cooling in a static inductor that can improve the cooling capacity as compared with the prior art. It is an object of the present invention to provide a structure and a static inductor having the cooling structure.

上記目的を達成するため、本発明は以下のように構成する。
即ち、本発明の一態様である、静止誘導器における冷却構造は、巻線を備えた静止誘導器における冷却構造であって、上記巻線は、素線を同心状に径方向に巻回して形成されたそれぞれの円板状巻線に絶縁部材を対向させ挟んで各円板状巻線を積層し、かつ巻線の内周側と外周側とで円板状巻線間の距離を異ならせて形成され、上記円板状巻線と上記絶縁部材との間には上記素線の延在方向へ冷媒を流す冷媒流路を有する、静止誘導器における冷却構造である。この冷却構造は、上記円板状巻線と上記絶縁部材との間に挟まれて配置され上記冷媒流路の高さを規定するダクトピースであって、単体では一定の厚さにてなり、種別間では異なる厚みにてなる複数種類のダクトピースを備え、上記円板状巻線間の内周側と外周側とにおける円板状巻線間距離の大小に対応して厚みの異なるダクトピースを上記径方向において不連続にて配置して、異なる種類の冷媒流路高さを上記径方向に形成したことを特徴とする。
In order to achieve the above object, the present invention is configured as follows.
That is, the cooling structure in a static inductor according to one aspect of the present invention is a cooling structure in a static inductor having a winding, and the winding is formed by concentrically winding strands in a radial direction. Each disk-shaped winding is laminated with the insulating member facing each disk-shaped winding formed, and the distance between the disk-shaped windings is different between the inner and outer circumferences of the winding. And a cooling structure in a stationary inductor having a refrigerant flow path that flows between the disk-shaped winding and the insulating member and flows the refrigerant in the extending direction of the element wire. This cooling structure is a duct piece that is sandwiched between the disk-shaped winding and the insulating member and regulates the height of the refrigerant flow path, and has a constant thickness by itself. A plurality of types of duct pieces having different thicknesses between types are provided, and the duct pieces having different thicknesses corresponding to the distance between the disk-shaped windings on the inner peripheral side and the outer peripheral side between the disk-shaped windings. Are discontinuously arranged in the radial direction, and different types of refrigerant flow path heights are formed in the radial direction.

本発明の一態様における静止誘導器の冷却構造によれば、同種類では同じ厚みを有し異種間では異なる厚みにてなる複数種類のダクトピースを備え、異なる厚みのダクトピースを巻線の径方向に配置した。よって、巻線における冷媒流路の高さを径方向で異ならせることができ、従来に比べて冷媒流路が拡大でき、巻線の冷却性能を向上させることができる。また、ダクトピース自体にテーパーを設ける構成と比較すると、ダクトピースの種類の増加を大幅に抑制することができ、製造コストの上昇を抑制することが可能となる。更に、設計上、巻線に局所的に大きな段差を発生させることがなくなり、絶縁性能の低下を防ぐことができる。   According to the stationary inductor cooling structure in one aspect of the present invention, the same type includes a plurality of types of duct pieces having the same thickness and different thicknesses between different types, and the duct pieces having different thicknesses are arranged with the diameter of the winding. Arranged in the direction. Therefore, the height of the refrigerant flow path in the winding can be varied in the radial direction, the refrigerant flow path can be enlarged compared to the conventional case, and the cooling performance of the winding can be improved. Moreover, compared with the structure which provides a taper in duct piece itself, the increase in the kind of duct piece can be suppressed significantly and it becomes possible to suppress the raise of manufacturing cost. Furthermore, the design does not cause a local large step in the winding, thereby preventing a decrease in insulation performance.

本発明の実施の形態1における冷却構造を形成する円板状巻線間の構造を示す断面図であり、図7に示す領域Iの断面図である。It is sectional drawing which shows the structure between the disk shaped windings which form the cooling structure in Embodiment 1 of this invention, and is sectional drawing of the area | region I shown in FIG. 図1に示す領域IIIの拡大図である。It is an enlarged view of the area | region III shown in FIG. 図1に示すB視における図である。It is a figure in the B view shown in FIG. 図3に対応した図であり、長方形のダクトピース設置用スペーサを用いた場合における不具合を説明するための図である。It is a figure corresponding to FIG. 3, and is a figure for demonstrating the malfunction in the case of using the rectangular duct piece installation spacer. 図1に示す絶縁板及びダクトピース設置用スペーサの平面図であり、両者の位置関係を説明するための図である。It is a top view of the insulating plate shown in FIG. 1, and a duct piece installation spacer, and is a figure for demonstrating the positional relationship of both. 図1に示す円板状巻線の構造を有する巻線を備えた外鉄形変圧器の概略斜視図である。FIG. 2 is a schematic perspective view of a shell-type transformer provided with a winding having the disk-like winding structure shown in FIG. 1. 図6に示す巻線を形成する、対向する2枚の円板状巻線の概略斜視図である。FIG. 7 is a schematic perspective view of two opposing disk-like windings forming the winding shown in FIG. 6. 本発明の実施の形態2における冷却構造を形成する円板状巻線間の構造を示す断面図であり、図7に示す領域Iに相当する領域の断面図である。It is sectional drawing which shows the structure between the disk shaped windings which forms the cooling structure in Embodiment 2 of this invention, and is sectional drawing of the area | region corresponded to the area | region I shown in FIG. 図8に示す領域IVの拡大図である。It is an enlarged view of the area | region IV shown in FIG. 図8に示す第1絶縁板及び第2絶縁板の平面図であり、両者の位置関係を説明するための図である。It is a top view of the 1st insulating board and 2nd insulating board which are shown in FIG. 8, and is a figure for demonstrating the positional relationship of both. 図8に示す第1絶縁板の外周端部の形状を説明するための図である。It is a figure for demonstrating the shape of the outer peripheral edge part of the 1st insulating board shown in FIG. 外鉄形変圧器の概略斜視図である。It is a schematic perspective view of a shell type transformer. 図12に示す巻線を形成する、対向する2枚の円板状巻線の概略斜視図である。FIG. 13 is a schematic perspective view of two opposing disk-like windings forming the winding shown in FIG. 12. 図13に示す領域Iにおける断面図である。It is sectional drawing in the area | region I shown in FIG. 図14に示す涼気IIの拡大図である。It is an enlarged view of cool air II shown in FIG. 図14に示すA視における図である。It is a figure in the A view shown in FIG.

本発明の実施形態である静止誘導器における冷却構造、及びこの冷却構造を有する静止誘導器について、図を参照しながら以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。   A cooling structure in a stationary inductor according to an embodiment of the present invention and a stationary inductor having this cooling structure will be described below with reference to the drawings. In each figure, the same or similar components are denoted by the same reference numerals.

本実施形態における静止誘導器の冷却構造について、図12から図14を参照して既に説明した円板状巻線を有する外鉄形変圧器を例に採り、以下に説明を行う。また、上記冷却構造を有する静止誘導器は、例えば絶縁油等の冷媒が入った外箱内に、上記冷却構造を有する外鉄形変圧器を配置して、冷媒によってこれらの変圧器の冷却が可能な構造を有するものである。
尚、図12及び図13に対応して、図6には、本実施形態における冷却構造を有する外鉄形変圧器100を示し、図7には外鉄形変圧器100に備わる巻線103を示す。また、円板状巻線の基本的構成については、図12から図14を参照して上述した内容を参照するものとし、その内容と同一又は同様の構成部分については以下の説明でも同じ符号を使用して詳しい説明は省略する。
The cooling structure of the stationary inductor according to the present embodiment will be described below by taking the outer iron type transformer having the disk-shaped winding already described with reference to FIGS. 12 to 14 as an example. In addition, the stationary inductor having the above cooling structure is arranged such that an outer iron type transformer having the above cooling structure is arranged in an outer box containing a refrigerant such as insulating oil, and these transformers are cooled by the refrigerant. It has a possible structure.
Corresponding to FIGS. 12 and 13, FIG. 6 shows the outer iron type transformer 100 having the cooling structure in the present embodiment, and FIG. 7 shows the winding 103 provided in the outer iron type transformer 100. Show. In addition, regarding the basic configuration of the disk-shaped winding, the contents described above with reference to FIGS. 12 to 14 are referred to, and the same reference numerals are given to the same or similar components in the following description. Detailed explanation is omitted.

実施の形態1.
本実施形態における冷却構造の特徴の一つは、ダクトピース単体では均一の厚みにてなるが、種別間では異なる厚みを有する複数種類のダクトピースを備えた点である。即ち、図14に示した構造を有する巻線3では、冷媒流路18を形成するダクトピース2の全ては、同じ厚みにてなり、冷媒流路18の高さは、図示するように巻線3の内周側4及び外周側5において同じである。これに対し本実施形態では、異なる厚みの複数種類のダクトピースを備え、相対的に厚いダクトピースを配置した部分は、相対的に大きな流路断面を得ることができ、静止誘導器における冷却性能の向上を図ることができる。
本実施形態におけるこのような冷却構造について、具体的に以下に説明する。
Embodiment 1 FIG.
One of the features of the cooling structure in the present embodiment is that a single duct piece has a uniform thickness, but has a plurality of types of duct pieces having different thicknesses between types. That is, in the winding 3 having the structure shown in FIG. 14, all the duct pieces 2 forming the refrigerant flow path 18 have the same thickness, and the height of the refrigerant flow path 18 is as shown in the figure. 3 is the same on the inner peripheral side 4 and the outer peripheral side 5. On the other hand, in the present embodiment, a portion having a plurality of types of duct pieces having different thicknesses and a relatively thick duct piece arranged can obtain a relatively large flow path cross section, and cooling performance in a stationary inductor. Can be improved.
Such a cooling structure in the present embodiment will be specifically described below.

図14及び図15を参照して説明したように円板状巻線31、32を形成し、これらを積層して、本実施形態の冷却構造を有する巻線103が形成される。図1は、図14に対応した図であり、外鉄形変圧器100における巻線103の図7に示す領域Iにおける円板状巻線31,32間の断面構造を示す。また、図2は、図1に点線で囲んだ領域IIIの拡大図である。本実施形態においても、巻線103の内周側4が接続されて、内周側4で円板状巻線31,32間の電位差が小さくなる場合を例に採る。内周側4では電位差が小さいため、円板状巻線31,32間の電気的絶縁距離を小さくでき、内周側4における円板状巻線間距離41は、外周側5の円板状巻線間距離41に比べて小さい。よって、コスト低減を図ることが可能である。   As described with reference to FIGS. 14 and 15, the disk-shaped windings 31 and 32 are formed, and these are stacked to form the winding 103 having the cooling structure of the present embodiment. FIG. 1 is a diagram corresponding to FIG. 14, and shows a cross-sectional structure between the disk-shaped windings 31 and 32 in the region I shown in FIG. 7 of the winding 103 in the outer iron type transformer 100. FIG. 2 is an enlarged view of a region III surrounded by a dotted line in FIG. Also in this embodiment, the case where the inner peripheral side 4 of the winding 103 is connected and the potential difference between the disk-shaped windings 31 and 32 becomes smaller on the inner peripheral side 4 is taken as an example. Since the potential difference is small on the inner circumferential side 4, the electrical insulation distance between the disk-shaped windings 31, 32 can be reduced, and the distance 41 between the disk-shaped windings on the inner circumferential side 4 is the disk shape on the outer circumferential side 5. Smaller than the interwinding distance 41. Therefore, cost reduction can be achieved.

また、図14に示した巻線3と同様に、本実施形態に関する巻線103においても、巻線端部には巻線端部用絶縁材7及び絶縁板16を設け、内周側4には、巻線端部スペーサ10を配設している。また、内周側4及び外周側5における円板状巻線間距離41の調整は、図14に示す構造と同様に、テーパースペーサ9で調整し、円板状巻線間の距離41を連続的に変えることができる。   Similarly to the winding 3 shown in FIG. 14, also in the winding 103 according to this embodiment, the winding end insulating material 7 and the insulating plate 16 are provided at the winding end, and the inner peripheral side 4 is provided. Is provided with a winding end spacer 10. Further, the adjustment of the distance 41 between the disk-shaped windings on the inner peripheral side 4 and the outer peripheral side 5 is adjusted by the taper spacer 9 in the same manner as the structure shown in FIG. Can be changed.

巻線3の場合と同様に、巻線103においても、円板状巻線31と円板状巻線32との電気的絶縁性を確保するために、円板状巻線31、32における各対向面31a,32aに対向して、絶縁板101がそれぞれ挿入される。絶縁板101は、円板状巻線31、32に対応した形状、つまり円板状巻線31、32と相似形状で、図5に示すような形状の電気的絶縁材からなる板材である。尚、本実施の形態1では、絶縁板101は一種類からなり、巻線103の外周側5からほぼ内周側4までにわたり延在する。   As in the case of the winding 3, in the winding 103, in order to ensure electrical insulation between the disc-like winding 31 and the disc-like winding 32, The insulating plates 101 are inserted so as to face the facing surfaces 31a and 32a. The insulating plate 101 is a plate made of an electrical insulating material having a shape corresponding to the disk-shaped windings 31 and 32, that is, a shape similar to the disk-shaped windings 31 and 32, and a shape as shown in FIG. In the first embodiment, the insulating plate 101 is of a single type and extends from the outer peripheral side 5 to the inner peripheral side 4 of the winding 103.

さらに、図14に示す構造と同様に、絶縁板101、101と、円板状巻線31、32との間には、ダクトピースを挟んで冷媒流路が形成されるが、本実施形態では上述のように複数種類のダクトピースを備えている。このダクトピースは、具体的に以下で説明するが、厚みが相対的に薄い薄厚ダクトピースと、この薄厚ダクトピースよりも大きい厚みにてなる一又は複数種類の厚型ダクトピースとを備える。   Further, similarly to the structure shown in FIG. 14, a refrigerant flow path is formed between the insulating plates 101 and 101 and the disk-shaped windings 31 and 32 with a duct piece interposed therebetween. As described above, a plurality of types of duct pieces are provided. The duct piece will be described in detail below, and includes a thin duct piece having a relatively small thickness and one or more types of thick duct pieces having a thickness larger than that of the thin duct piece.

具体的には、本実施形態では、図1及び図2に示すように、絶縁材にてなり、2種類の異なる厚みのダクトピース102−1、102−2を備える。ここで、ダクトピース102−1、及びダクトピース102−2の各単体における厚みは、一定であり、テーパーは設けていない。本実施形態では、円板状巻線間距離41を内周側4で小さく、外周側5で大きく設定しているため、内周側4には、相対的に厚みを薄くした薄厚ダクトピース102−1を配置し、外周側5には、薄厚ダクトピース102−1よりも大きい厚みを有する厚型ダクトピース102−2を配置する。   Specifically, in this embodiment, as shown in FIG.1 and FIG.2, it is made of an insulating material and includes two kinds of duct pieces 102-1 and 102-2 having different thicknesses. Here, the thickness of each of the single piece of the duct piece 102-1 and the duct piece 102-2 is constant, and no taper is provided. In this embodiment, the disc-shaped interwinding distance 41 is set to be small on the inner peripheral side 4 and large on the outer peripheral side 5, so that the thin duct piece 102 having a relatively thin thickness is provided on the inner peripheral side 4. -1 is disposed, and a thick duct piece 102-2 having a thickness larger than that of the thin duct piece 102-1 is disposed on the outer peripheral side 5.

より詳しく説明する。円板状巻線間距離41が相対的に大きい、本実施形態では外周側5の領域103bでは、各絶縁板101、101は、円板状巻線31の対向面31aに対して冷媒流路182となる隙間を設けて、及び、円板状巻線32の対向面32aに対して冷媒流路182となる隙間を設けて、それぞれ配置される。絶縁板101、101と、円板状巻線31、32との間にそれぞれ冷媒流路182を確保するため、厚型ダクトピース102−2が絶縁板101、101と円板状巻線31、32(詳しくは対向面31a,32a)との間に挟まれて、径方向92において、不連続に配設される。尚、それぞれの厚型ダクトピース102−2は、同一の厚みにてなることから、絶縁板101、101と円板状巻線31、32とは、それぞれ平行に位置し、冷媒流路182の高さは、径方向92において一定である。また、本実施形態では、厚型ダクトピース102−2は、絶縁板101に接着されている。
尚、厚型ダクトピース102−2の厚さ及び冷媒流路182の高さとは、板状の円板状巻線31,32の厚み方向に沿ったそれぞれの寸法に対応する。
This will be described in more detail. In this embodiment, in the region 103 b on the outer peripheral side 5 in which the distance 41 between the disk-shaped windings is relatively large, each insulating plate 101, 101 is a coolant channel with respect to the opposing surface 31 a of the disk-shaped winding 31. The gap 182 is provided, and the gap 182 is provided with respect to the opposing surface 32 a of the disk-like winding 32, and the refrigerant flow path 182 is provided. In order to secure the refrigerant flow path 182 between the insulating plates 101 and 101 and the disk-shaped windings 31 and 32, respectively, the thick duct piece 102-2 includes the insulating plates 101 and 101 and the disk-shaped windings 31, 32 (specifically, facing surfaces 31a and 32a) and are discontinuously disposed in the radial direction 92. In addition, since each thick type duct piece 102-2 becomes the same thickness, the insulating plates 101 and 101 and the disk-shaped windings 31 and 32 are located in parallel, and the refrigerant flow path 182 The height is constant in the radial direction 92. In the present embodiment, the thick duct piece 102-2 is bonded to the insulating plate 101.
The thickness of the thick duct piece 102-2 and the height of the refrigerant flow path 182 correspond to the respective dimensions along the thickness direction of the plate-like disk-shaped windings 31 and 32.

このような構成により、円板状巻線間距離41を大きくした、本実施形態では外周側5において、積層方向91における冷媒流路182の高さを、図14に示す構造に比べて拡大することができ、より冷却効率を向上させることができる。   With this configuration, the distance 41 between the disk-shaped windings is increased. In this embodiment, on the outer peripheral side 5, the height of the refrigerant flow path 182 in the stacking direction 91 is increased compared to the structure shown in FIG. Cooling efficiency can be improved.

一方、円板状巻線間距離41が小さい、本実施形態では内周側4の領域103aに対応した、絶縁板101における内周側には、ダクトピース設置用スペーサ111が配置される。ダクトピース設置用スペーサ111は、図5に示すように、円板状巻線31、32と相似形状の絶縁材からなる板状の部材であり、図1及び図2に示すように、くさび状でテーパーが付された部材である。即ち、上述のように内周側4には薄厚ダクトピース102−1を配置することから、図2に示すように絶縁板101、101と、薄厚ダクトピース102−1との間には隙間が生じる。ダクトピース設置用スペーサ111は、この隙間に対応する部材である。尚、ダクトピース設置用スペーサ111、111と、円板状巻線31,32との間で薄厚ダクトピース102−1にて形成される隙間が冷媒流路181となる。薄厚ダクトピース102−1にて高さが規定されるため、冷媒流路181の高さは、冷媒流路182に比べて小さい。また、それぞれの薄厚ダクトピース102−1は、同一の厚みにてなり、ダクトピース設置用スペーサ111にはテーパーを付けていることから、冷媒流路181の高さは、径方向92において一定である。
尚、薄厚ダクトピース102−1の厚さ及び冷媒流路181の高さとは、厚型ダクトピース102−2の厚さ及び冷媒流路182の高さと同様に、板状の円板状巻線31,32の厚み方向に沿ったそれぞれの寸法に対応する。
On the other hand, a duct piece installation spacer 111 is disposed on the inner peripheral side of the insulating plate 101 corresponding to the region 103a on the inner peripheral side 4 in the present embodiment where the distance 41 between the disk-shaped windings is small. As shown in FIG. 5, the duct piece installation spacer 111 is a plate-like member made of an insulating material similar in shape to the disk-shaped windings 31 and 32. As shown in FIGS. It is a member with a taper. That is, since the thin duct piece 102-1 is disposed on the inner peripheral side 4 as described above, there is a gap between the insulating plates 101 and 101 and the thin duct piece 102-1 as shown in FIG. Arise. The duct piece installation spacer 111 is a member corresponding to this gap. A gap formed by the thin duct piece 102-1 between the duct piece installation spacers 111 and 111 and the disk-shaped windings 31 and 32 serves as the refrigerant flow path 181. Since the height is defined by the thin duct piece 102-1, the height of the refrigerant flow path 181 is smaller than that of the refrigerant flow path 182. Further, each thin duct piece 102-1 has the same thickness, and the duct piece installation spacer 111 is tapered, so that the height of the refrigerant flow path 181 is constant in the radial direction 92. is there.
Note that the thickness of the thin duct piece 102-1 and the height of the refrigerant flow path 181 are the same as the thickness of the thick duct piece 102-2 and the height of the refrigerant flow path 182. It corresponds to each dimension along the thickness direction of 31 and 32.

本実施形態では、薄厚ダクトピース102−1は、ダクトピース設置用スペーサ111に接着しておき、このダクトピース付きのダクトピース設置用スペーサ111を絶縁板101に接着して、円板状巻線31,32間の距離を調整している。また、このようなダクトピース付きのダクトピース設置用スペーサ111は、本実施形態では、テーパーを予め設けたダクトピース設置用スペーサ111の上に、自動貼り機で薄厚ダクトピース102−1を接着、切断することで作製する。   In the present embodiment, the thin duct piece 102-1 is bonded to the duct piece installation spacer 111, and the duct piece installation spacer 111 with the duct piece is bonded to the insulating plate 101 to form a disc-shaped winding. The distance between 31 and 32 is adjusted. In addition, in this embodiment, the duct piece installation spacer 111 with such a duct piece is bonded to the thin duct piece 102-1 on the duct piece installation spacer 111 provided with a taper in advance by an automatic bonding machine. It is made by cutting.

薄厚ダクトピース102−1においても、厚型ダクトピース102−2と同様に、テーパーをつけていないため、ダクトピースの部品点数の増加を抑制することが可能であり、製造コストの抑制が可能となる。   Also in the thin duct piece 102-1, since it is not tapered like the thick duct piece 102-2, the increase in the number of parts of the duct piece can be suppressed, and the manufacturing cost can be suppressed. Become.

図3は、図16に対応する図であり、図1において二点鎖線で示した部分における、円板状巻線32の対向面32aに配置されているダクトピース102−1,102−2、巻線端部スペーサ10、巻線端部用絶縁材7を、矢印B方向に見た図であり、これらの位置関係を示す概略図である。図示するように、ダクトピース102−1,102−2は、平行四辺形であり、径方向92に規定の間隔にて、かつ素線15の延在方向93に規定の間隔にて、配置されている。さらに、ダクトピース設置用スペーサ111についても、径方向92に沿う辺111a、及び径方向92における端辺111bの少なくとも一方は、薄厚ダクトピース102−2における対応の辺と平行になるような形状にしている。これは、図4に示すように、ダクトピース設置用スペーサ111を長方形にした場合には、厚型ダクトピース102−2、巻線端部用絶縁材7、巻線端部スペーサ10と干渉する箇所が発生するためである。   FIG. 3 is a view corresponding to FIG. 16, and duct pieces 102-1 and 102-2 disposed on the facing surface 32 a of the disk-shaped winding 32 in the portion indicated by the two-dot chain line in FIG. 1. It is the figure which looked at the winding edge part spacer 10 and the insulating material 7 for winding edge parts in the arrow B direction, and is the schematic which shows these positional relationship. As shown in the figure, the duct pieces 102-1 and 102-2 are parallelograms, and are arranged at a specified interval in the radial direction 92 and at a specified interval in the extending direction 93 of the strand 15. ing. Further, the duct piece installation spacer 111 also has a shape in which at least one of the side 111a along the radial direction 92 and the end side 111b in the radial direction 92 is parallel to the corresponding side in the thin duct piece 102-2. ing. As shown in FIG. 4, when the duct piece installation spacer 111 is rectangular, it interferes with the thick duct piece 102-2, the winding end insulating material 7, and the winding end spacer 10. This is because a place is generated.

尚、本実施形態では、説明の簡略化のために、冷媒流路180は、冷媒流路181と冷媒流路182との2段階の流路高さ構成で説明しているが、費用対効果の許容する範囲で、多段化が可能である。尚、この多段化に対応して、複数種類のダクトピース設置用スペーサ111が設けられることになる。   In the present embodiment, for the sake of simplicity of explanation, the refrigerant flow path 180 has been described with a two-stage flow path configuration of the refrigerant flow path 181 and the refrigerant flow path 182, but it is cost effective. Can be multistaged within the allowable range. Incidentally, a plurality of types of duct piece installation spacers 111 are provided corresponding to this multi-stage.

また、外周側5の巻線が接続されている場合、外周側5における円板状巻線間距離41が小さくなり、内周側4における円板状巻線間距離41が大きくなる。この場合、薄厚ダクトピース102−1、及びダクトピース設置用スペーサ111は、外周側5において、絶縁材101,101と、円板状巻線31,32との間に設置される。   Further, when the windings on the outer peripheral side 5 are connected, the disc-shaped interwinding distance 41 on the outer peripheral side 5 is decreased, and the disc-shaped interwinding distance 41 on the inner peripheral side 4 is increased. In this case, the thin duct piece 102-1 and the duct piece installation spacer 111 are installed between the insulating materials 101 and 101 and the disk-shaped windings 31 and 32 on the outer peripheral side 5.

上述したように本実施形態の冷却構造によれば、従来に比べて静止誘導器における冷却能力を向上させることができ、これにより、さらにまた以下の効果を得ることが可能となる。即ち、冷却能力の向上により、一枚の円板状巻線当たりの熱流束を増やすことができ、変圧器サイズの縮小を図ることが可能となる。変圧器のサイズが小さくなることで、重量及び材料費の低減ができ、さらに運搬費用の低減も可能となる。また、冷却用のファンやポンプを減らすこともでき、省エネにもつながる。   As described above, according to the cooling structure of the present embodiment, it is possible to improve the cooling capacity of the static induction device as compared with the prior art, and it is possible to further obtain the following effects. That is, by improving the cooling capacity, the heat flux per disk-shaped winding can be increased, and the transformer size can be reduced. By reducing the size of the transformer, the weight and material cost can be reduced, and the transportation cost can also be reduced. In addition, cooling fans and pumps can be reduced, leading to energy savings.

実施の形態2.
上述した実施の形態1では、円板状巻線31,32の対向面31a,32aのほぼ全面にわたり延在する一種類の絶縁板101,101に対して、ダクトピース設置用スペーサ111,111を取り付ける形態を示した。これに対して本実施の形態2に関する巻線103−1では、図10に示すように、主に円板状巻線間距離41が大きい方の領域103bに対応して配置される第1絶縁板121と、主に円板状巻線間距離41が小さい方の領域103aに対応して配置される第2絶縁板122との2種類の絶縁板を用いる。本実施の形態2は、この点で実施の形態1と相違し、変圧器におけるその他の構成は、実施の形態1における構成と同じであり、本実施の形態2においても、実施の形態1の場合と同様に、複数種類の厚みを有するダクトピースを備える。よって、実施の形態2における静止誘導器の冷却構造においても、実施の形態1の冷却構造が奏する上述の効果を奏することができる。また、実施の形態1にて説明した変形例は、本実施の形態2における冷却構造にも適用可能である。
以下では、主に上述の相違点について説明する。
Embodiment 2. FIG.
In the first embodiment described above, the duct piece installation spacers 111 and 111 are provided to one type of insulating plates 101 and 101 extending over almost the entire opposing surfaces 31a and 32a of the disk-shaped windings 31 and 32. The form of attachment was shown. On the other hand, in the winding 103-1 related to the second embodiment, as shown in FIG. 10, the first insulation is mainly arranged corresponding to the region 103 b having the larger disc-like interwinding distance 41. Two types of insulating plates are used: a plate 121 and a second insulating plate 122 that is disposed corresponding to the region 103a that has a smaller distance 41 between the disk-shaped windings. The second embodiment is different from the first embodiment in this point, and the other configuration of the transformer is the same as the configuration in the first embodiment. The second embodiment also has the same configuration as that of the first embodiment. As in the case, a duct piece having a plurality of types of thickness is provided. Therefore, also in the cooling structure of the stationary inductor in the second embodiment, the above-described effect exhibited by the cooling structure of the first embodiment can be achieved. The modification described in the first embodiment can also be applied to the cooling structure in the second embodiment.
Hereinafter, the above-described differences will be mainly described.

図8は、図1に対応する図であり、図7に示す領域Iに相当する領域における、実施の形態2に関する巻線103−1の断面を示している。図9は、図8に示す領域IVの拡大図である。
上述のように本実施形態における巻線103−1では、第1絶縁板121と第2絶縁板122との2種類の絶縁板を有する。第1絶縁板121は、外周側5の電位差の大きい側に対応して配置され、相対的に厚みが小さい電気的絶縁性の板状部材であり、図10に示すように、巻線103−1の形状に相似した形状である。第2絶縁板122は、内周側4の電位差の小さい側に配置され、第1絶縁板121の最大厚み121b(図9)よりも大きい厚み122bの一又は複数種類の厚みを有する電気的絶縁性の板状部材であり、図10に示すように、巻線103−1の形状に相似した形状である。また、図8に示すように、第1絶縁板121及び第2絶縁板122は、円板状巻線31,32の径方向92における長さのほぼ半分ずつに相当する長さをそれぞれ有し、第1絶縁板121の内周部分と、第2絶縁板122の外周部分とを重ね、この重なり領域123にて両者を接着して一体的な絶縁板を形成している。尚、相対的に薄い第1絶縁板121は、重なり領域123付近にテーパーを設けることで、重なり領域123の巻線間距離を調整している。
FIG. 8 is a view corresponding to FIG. 1 and shows a cross section of winding 103-1 related to the second embodiment in a region corresponding to region I shown in FIG. FIG. 9 is an enlarged view of region IV shown in FIG.
As described above, the winding 103-1 in this embodiment has two types of insulating plates, the first insulating plate 121 and the second insulating plate 122. The first insulating plate 121 is an electrically insulating plate-like member that is arranged corresponding to the side of the outer peripheral side 5 where the potential difference is large and has a relatively small thickness. As shown in FIG. The shape is similar to the shape of 1. The second insulating plate 122 is arranged on the inner peripheral side 4 on the side with a small potential difference, and has one or more kinds of thickness 122b larger than the maximum thickness 121b (FIG. 9) of the first insulating plate 121. 10 and has a shape similar to the shape of the winding 103-1. Further, as shown in FIG. 8, the first insulating plate 121 and the second insulating plate 122 have lengths corresponding to approximately half of the length in the radial direction 92 of the disk-shaped windings 31 and 32, respectively. The inner peripheral portion of the first insulating plate 121 and the outer peripheral portion of the second insulating plate 122 are overlapped, and the two are bonded together in this overlapping region 123 to form an integral insulating plate. The relatively thin first insulating plate 121 adjusts the distance between the windings in the overlapping region 123 by providing a taper in the vicinity of the overlapping region 123.

また、第1絶縁板121側に位置する第2絶縁板122の外周端部122aは、図11に示すように、厚型ダクトピース102−2の配置に対応してジグザグ状に、例えばレーザー加工機にて加工される。このように加工することで、外周端部122aが厚型ダクトピース102−2に干渉するのを防止することができる。   Further, as shown in FIG. 11, the outer peripheral end 122a of the second insulating plate 122 positioned on the first insulating plate 121 side is formed in a zigzag shape corresponding to the arrangement of the thick duct piece 102-2, for example, by laser processing. Machined. By processing in this way, it is possible to prevent the outer peripheral end 122a from interfering with the thick duct piece 102-2.

また、第1絶縁板121に対応して、上述の厚型ダクトピース102−2が配置される。つまり、第1絶縁板121、121と、円板状巻線31、32(詳しくは対向面31a,32a)との間に厚型ダクトピース102−2が挟まれ、冷媒流路182が形成される。また、第2絶縁板122に対応して、上述の薄厚ダクトピース102−1が配置される。つまり、第2絶縁板122、122と、円板状巻線31、32(詳しくは対向面31a,32a)との間に薄厚ダクトピース102−1が挟まれ、冷媒流路181が形成される。   Further, the above-described thick duct piece 102-2 is arranged corresponding to the first insulating plate 121. That is, the thick duct piece 102-2 is sandwiched between the first insulating plates 121 and 121 and the disk-shaped windings 31 and 32 (specifically, the opposing surfaces 31a and 32a), and the refrigerant flow path 182 is formed. The Further, the above-described thin duct piece 102-1 is disposed corresponding to the second insulating plate 122. That is, the thin duct piece 102-1 is sandwiched between the second insulating plates 122 and 122 and the disk-shaped windings 31 and 32 (specifically, the opposing surfaces 31a and 32a), and the refrigerant flow path 181 is formed. .

このように、第1絶縁板121及び第2絶縁板122と、厚型ダクトピース102−2及び薄厚ダクトピース102−1とを組み合わせ、第1絶縁板121の厚み+厚型ダクトピース102−2の厚み = 第2絶縁板122の厚み+薄厚ダクトピース102−1の厚み、とすることで、円板状巻線31、32に接触するダクトピース102−1、102−2のあたり面を平坦にしている。   In this way, the first insulating plate 121 and the second insulating plate 122 are combined with the thick duct piece 102-2 and the thin duct piece 102-1, and the thickness of the first insulating plate 121 + the thick duct piece 102-2. The thickness of the second insulating plate 122 + the thickness of the thin duct piece 102-1 makes the contact surface of the duct pieces 102-1 and 102-2 in contact with the disk-shaped windings 31 and 32 flat. I have to.

以上のような構成を有する本実施形態2における静止誘導器の冷却構造では、実施の形態1と同じく、流路拡大による冷却能力増強が可能であり、また、巻線部に急激な段差を発生させずに、巻線間距離の調整が可能になる。
更に、第1絶縁板121及び第2絶縁板122を接着することで、1枚の絶縁板として取り扱うことが可能になり、絶縁耐力の維持が可能になる。更に、このように接着にて1枚として形成された絶縁板に対して、薄厚ダクトピース102−1及び厚型ダクトピース102−2のほとんどを、例えばダクトピース自動貼り機にて、接着することが可能になる。
In the stationary inductor cooling structure according to the second embodiment having the above-described configuration, the cooling capacity can be increased by expanding the flow path as in the first embodiment, and a steep step is generated in the winding portion. Without adjustment, the distance between the windings can be adjusted.
Furthermore, by bonding the first insulating plate 121 and the second insulating plate 122, it can be handled as a single insulating plate, and the dielectric strength can be maintained. Further, most of the thin duct piece 102-1 and the thick duct piece 102-2 are bonded to the insulating plate formed as one piece by bonding, for example, with a duct piece automatic pasting machine. Is possible.

尚、実施の形態1でも説明したように、冷媒流路180は多段化が可能である。この多段化に対応して、複数種類の第2絶縁板122が設けられることになる。   As described in the first embodiment, the refrigerant flow path 180 can be multistaged. Corresponding to this multi-stage, a plurality of types of second insulating plates 122 are provided.

6 鉄心、15 素線、31,32 円板状巻線、
100 静止誘導器、101 絶縁板、102 ダクトピース、
102−1 薄厚ダクトピース、102−2 厚型ダクトピース、103 巻線、
111 ダクトピース設置用スペーサ、121 第1絶縁板、122 第2絶縁板、
180 冷媒流路。
6 iron cores, 15 strands, 31, 32 disc-shaped windings,
100 stationary inductor, 101 insulating plate, 102 duct piece,
102-1 thin duct piece, 102-2 thick duct piece, 103 windings,
111 Spacer for installing duct piece, 121 1st insulating plate, 122 2nd insulating plate,
180 Refrigerant flow path.

Claims (8)

巻線を備えた静止誘導器における冷却構造であって、
上記巻線は、素線を同心状に径方向に巻回して形成されたそれぞれの円板状巻線に絶縁部材を対向させ挟んで各円板状巻線を積層し、かつ巻線の内周側と外周側とで円板状巻線間の距離を異ならせて形成され、上記円板状巻線と上記絶縁部材との間には上記素線の延在方向へ冷媒を流す冷媒流路を有し、
上記冷却構造は、
上記円板状巻線と上記絶縁部材との間に挟まれて配置され上記冷媒流路の高さを規定するダクトピースであって、単体では一定の厚さにてなり、種別間では異なる厚みにてなる複数種類のダクトピースを備え、
上記円板状巻線間の内周側と外周側とにおける円板状巻線間距離の大小に対応して厚みの異なるダクトピースを上記径方向において不連続にて配置して、異なる種類の冷媒流路高さを上記径方向に形成した、
ことを特徴とする静止誘導器の冷却構造。
A cooling structure in a static inductor with windings,
The windings are formed by laminating the respective disk-shaped windings with the insulating member facing each disk-shaped winding formed by concentrically winding the strands in the radial direction, A refrigerant flow that is formed with different distances between the disk-shaped windings on the peripheral side and the outer peripheral side, and that flows the refrigerant in the extending direction of the wire between the disk-shaped winding and the insulating member Have a road,
The cooling structure is
A duct piece that is sandwiched between the disk-shaped winding and the insulating member and regulates the height of the refrigerant flow path. The duct piece has a constant thickness and has different thicknesses between types. With multiple types of duct pieces
Corresponding to the size of the distance between the disk-shaped windings on the inner circumferential side and the outer circumferential side between the disk-shaped windings, duct pieces having different thicknesses are discontinuously arranged in the radial direction, The refrigerant flow path height is formed in the radial direction,
This is a cooling structure for a static inductor.
上記厚みの異なるダクトピースは、薄厚ダクトピースと、上記薄厚ダクトピースよりも大きい厚みの一又は複数種類の厚型ダクトピースとを有し、上記薄厚ダクトピースは、上記円板状巻線間距離が相対的に小さい領域に対応して配置され上記冷媒流路の高さを相対的に小さく設定し、上記厚型ダクトピースは、上記円板状巻線間距離が相対的に大きい領域に対応して配置され上記冷媒流路の高さを相対的に大きく設定する、請求項1記載の静止誘導器の冷却構造。   The duct pieces having different thicknesses include a thin duct piece and one or more types of thick duct pieces having a thickness larger than that of the thin duct piece, and the thin duct piece has a distance between the disk-shaped windings. Is arranged corresponding to a relatively small area, the height of the refrigerant flow path is set relatively small, and the thick duct piece corresponds to an area where the distance between the disk-shaped windings is relatively large The cooling structure for a stationary inductor according to claim 1, wherein the cooling channel is arranged to set the height of the refrigerant flow path relatively large. 上記絶縁部材は、絶縁板及びダクトピース設置用スペーサから形成され、上記絶縁板は、上記円板状巻線と相似形状で電気的絶縁材料にて形成される板材であり、上記円板状巻線間距離が相対的に大きい領域にて上記円板状巻線との間に上記厚型ダクトピースを挟んで配置され、上記ダクトピース設置用スペーサは、電気的絶縁材料にて形成され、上記円板状巻線間距離が相対的に小さい領域にて上記絶縁板と上記薄厚ダクトピースとの間に配置される、請求項2記載の静止誘導器の冷却構造。   The insulating member is formed of an insulating plate and a duct piece installation spacer, and the insulating plate is a plate material formed of an electrically insulating material similar to the disk-shaped winding, and the disk-shaped winding The thick duct piece is disposed between the disk-shaped windings in a relatively large distance between the lines, and the duct piece installation spacer is formed of an electrically insulating material, The cooling structure for a stationary inductor according to claim 2, wherein the cooling structure is disposed between the insulating plate and the thin duct piece in a region where a distance between the disk-shaped windings is relatively small. 上記ダクトピース設置用スペーサにおいて、上記径方向に沿う辺、及び上記径方向における端部の辺の少なくとも一方は、上記薄厚ダクトピースにおける対応の辺と平行に形成される、請求項3記載の静止誘導器における冷却構造。   4. The stationary according to claim 3, wherein in the duct piece installation spacer, at least one of the side along the radial direction and the side of the end in the radial direction is formed in parallel with the corresponding side in the thin duct piece. Cooling structure in the inductor. 上記薄厚ダクトピースは、上記ダクトピース設置用スペーサに予め取り付けられてダクトピース付スペーサとして一体的に形成され、このダクトピース付スペーサが上記絶縁板に取り付けられる、請求項3又は4記載の静止誘導器における冷却構造。   The stationary induction according to claim 3 or 4, wherein the thin duct piece is previously attached to the duct piece installation spacer and integrally formed as a duct piece spacer, and the duct piece spacer is attached to the insulating plate. Cooling structure in the vessel. 上記絶縁部材は、第1絶縁板及び第2絶縁板から形成され、上記第1絶縁板は、上記円板状巻線と相似形状で第1板厚にてなり電気的絶縁材料にて形成される板材であり、上記円板状巻線間距離が相対的に大きい領域に対応して配置され、上記第2絶縁板は、上記円板状巻線と相似形状で上記第1板厚よりも大きい厚みの一又は複数種類の第2板厚にてなり電気的絶縁材料にて形成される板材であり、上記円板状巻線間距離が相対的に小さい領域に対応して配置され、上記第1絶縁板及び上記第2絶縁板は、互いに重なり合う重なり領域を有する、請求項2記載の静止誘導器の冷却構造。   The insulating member is formed of a first insulating plate and a second insulating plate, and the first insulating plate is similar in shape to the disk-shaped winding and has a first plate thickness and is formed of an electrically insulating material. The second insulating plate has a shape similar to the disk-shaped winding and is larger than the first plate thickness. It is a plate material made of an electrically insulating material having one or a plurality of types of second plate thicknesses having a large thickness, and is disposed corresponding to a region where the distance between the disk-shaped windings is relatively small, The cooling structure for a static inductor according to claim 2, wherein the first insulating plate and the second insulating plate have overlapping regions that overlap each other. 上記第1絶縁板は、上記円板状巻線との間に上記厚型ダクトピースを挟み、上記第2絶縁板は、上記円板状巻線との間に上記薄厚ダクトピースを挟む、請求項6記載の静止誘導器の冷却構造。   The first insulating plate sandwiches the thick duct piece with the disk-shaped winding, and the second insulating plate sandwiches the thin duct piece with the disk-shaped winding. Item 7. A cooling structure for a stationary inductor according to Item 6. 素線を同心状に巻回して形成された円板状巻線を複数枚積層して構成される巻線と、
巻線の外周側に配置され巻線の外部に磁路を形成する鉄心と、を備えた静止誘導器において、
上記巻線を冷却する静止誘導器の冷却構造で、請求項1から7のいずれか1項に記載の冷却構造を備えたことを特徴とする静止誘導器。
A winding constituted by laminating a plurality of disk-like windings formed by concentrically winding the strands;
In a static inductor provided with an iron core disposed on the outer peripheral side of the winding and forming a magnetic path outside the winding,
A static inductor having a cooling structure according to any one of claims 1 to 7, wherein the static inductor has a cooling structure for cooling the winding.
JP2010211660A 2010-09-22 2010-09-22 Cooling structure in stationary inductor and stationary inductor having the cooling structure Expired - Fee Related JP5388975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010211660A JP5388975B2 (en) 2010-09-22 2010-09-22 Cooling structure in stationary inductor and stationary inductor having the cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211660A JP5388975B2 (en) 2010-09-22 2010-09-22 Cooling structure in stationary inductor and stationary inductor having the cooling structure

Publications (2)

Publication Number Publication Date
JP2012069621A true JP2012069621A (en) 2012-04-05
JP5388975B2 JP5388975B2 (en) 2014-01-15

Family

ID=46166558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211660A Expired - Fee Related JP5388975B2 (en) 2010-09-22 2010-09-22 Cooling structure in stationary inductor and stationary inductor having the cooling structure

Country Status (1)

Country Link
JP (1) JP5388975B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139398A (en) * 2016-02-05 2017-08-10 三菱電機株式会社 Static inductor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421525A (en) * 1977-07-18 1979-02-17 Mitsubishi Electric Corp Transformer winding
JPS54106822A (en) * 1978-02-10 1979-08-22 Hitachi Ltd Transformer winding
JPS5561010A (en) * 1978-10-30 1980-05-08 Mitsubishi Electric Corp Electromagnetic induction apparatus
JPS63108619U (en) * 1986-12-29 1988-07-13
JPH0327023U (en) * 1989-07-26 1991-03-19
JP2000216029A (en) * 1999-01-21 2000-08-04 Takaoka Electric Mfg Co Ltd Structure of winding wire of transformer
JP2000223326A (en) * 1999-01-29 2000-08-11 Meidensha Corp High serial capacity winding for transformer
JP2000340431A (en) * 1999-05-27 2000-12-08 Toshiba Corp Coil for stationary inductor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421525A (en) * 1977-07-18 1979-02-17 Mitsubishi Electric Corp Transformer winding
JPS54106822A (en) * 1978-02-10 1979-08-22 Hitachi Ltd Transformer winding
JPS5561010A (en) * 1978-10-30 1980-05-08 Mitsubishi Electric Corp Electromagnetic induction apparatus
JPS63108619U (en) * 1986-12-29 1988-07-13
JPH0327023U (en) * 1989-07-26 1991-03-19
JP2000216029A (en) * 1999-01-21 2000-08-04 Takaoka Electric Mfg Co Ltd Structure of winding wire of transformer
JP2000223326A (en) * 1999-01-29 2000-08-11 Meidensha Corp High serial capacity winding for transformer
JP2000340431A (en) * 1999-05-27 2000-12-08 Toshiba Corp Coil for stationary inductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139398A (en) * 2016-02-05 2017-08-10 三菱電機株式会社 Static inductor

Also Published As

Publication number Publication date
JP5388975B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
US9601256B2 (en) Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
US9424979B2 (en) Magnetic element with multiple air gaps
KR101853795B1 (en) Low loss and reduced-weight type transformer and manufacturing method thereof
KR102541759B1 (en) winding core and transformer
JPWO2011158290A1 (en) Static electromagnetic equipment
JP5840330B1 (en) Stationary induction equipment
US8410885B2 (en) Combined transformer
JP2012023090A (en) Reactor
JP5388975B2 (en) Cooling structure in stationary inductor and stationary inductor having the cooling structure
JP5930780B2 (en) Reactor
US5146198A (en) Segmented core inductor
KR101506698B1 (en) iron core winding assembly for transformer
JP5343948B2 (en) Trance
JP2012023079A (en) Reactor
JP2013016691A (en) Reactor
WO2021045169A1 (en) Wound core
KR101853794B1 (en) High efficiency and compact type transformer and manufacturing method thereof
KR20140005166U (en) Power transformaer
JP2006100513A (en) Reactor
JP3933347B2 (en) Winding for static induction equipment
KR20160103438A (en) Transformer reduced of Eddy Current Losses of Winding
JP2021111743A (en) Stationary induction apparatus
CN215183403U (en) Oil type transformer coil
JP2013229529A (en) Transformer iron core
US10840004B2 (en) Reducing reluctance in magnetic devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees