JP2012069255A - Connection structure manufacturing method - Google Patents

Connection structure manufacturing method Download PDF

Info

Publication number
JP2012069255A
JP2012069255A JP2010210560A JP2010210560A JP2012069255A JP 2012069255 A JP2012069255 A JP 2012069255A JP 2010210560 A JP2010210560 A JP 2010210560A JP 2010210560 A JP2010210560 A JP 2010210560A JP 2012069255 A JP2012069255 A JP 2012069255A
Authority
JP
Japan
Prior art keywords
electronic component
anisotropic conductive
conductive film
particles
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010210560A
Other languages
Japanese (ja)
Other versions
JP5505225B2 (en
Inventor
Jun Yamamoto
潤 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2010210560A priority Critical patent/JP5505225B2/en
Publication of JP2012069255A publication Critical patent/JP2012069255A/en
Application granted granted Critical
Publication of JP5505225B2 publication Critical patent/JP5505225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent magnetic conductive particles from becoming localized in an anisotropic conductive adhesive film when a connection structure is manufactured by an anisotropic conductive connection of terminals of a fist and a second electronic component, thereby keeping particle capturing property, insulation quality, and connection reliability from decreasing.SOLUTION: The manufacturing method of a connection structure comprised of an anisotropic conductive connection of a terminal 3 of a fist electronic component 2 and the terminal of a second electronic component includes: an ACF temporary pasting process where an anisotropic conductive film 4 which contains magnetic conductive particles is temporarily pasted to the terminal of the first electronic component; a demagnetization process in which the anisotropic conductive film temporarily pasted to the first electronic component is demagnetized; an electronic component temporary placement process in which the second electronic component is temporarily disposed on the demagnetized anisotropic conductive film on the first electronic component; and an anisotropic conductive connection process in which the temporarily disposed second electronic component, while being heated by a heating-and-pressurizing bonder, is pressed against the first electronic component to make an anisotropic conductive connection of the first and the second electronic components.

Description

本発明は、第1の電子部品の端子と第2の電子部品の端子とが異方性導電接続されてなる接続構造体の製造方法に関する。   The present invention relates to a method for manufacturing a connection structure in which a terminal of a first electronic component and a terminal of a second electronic component are anisotropically conductively connected.

異方性導電フィルム(ACF)は、絶縁性接着剤に導電粒子を分散させ、フィルム状に成形することにより製造されている。この場合、導電粒子として、配線のファインピッチ化に応じて粒径がいっそう小さなものが使用されるようになっており、また、異方性導電接続に適した導電性と変形性とを示し、しかも比較的入手コストが安いニッケルメッキ被膜で被覆された樹脂粒子(以下、ニッケル被覆樹脂粒子と称する)が広く使用されている(特許文献1)。   An anisotropic conductive film (ACF) is manufactured by dispersing conductive particles in an insulating adhesive and forming the film into a film. In this case, as the conductive particles, those having a smaller particle size are used according to the fine pitch of the wiring, and also show conductivity and deformability suitable for anisotropic conductive connection, In addition, resin particles coated with a nickel plating film that is relatively inexpensive to obtain (hereinafter referred to as nickel-coated resin particles) are widely used (Patent Document 1).

特開2009−259787号公報JP 2009-259787 A

しかしながら、ニッケル金属粒子やニッケル被覆樹脂粒子等の磁性粉体を導電粒子として使用する異方性導電フィルムを用いて、例えば、ディスプレイパネルに駆動用半導体チップを異方性導電接続した場合、異方性導電接続の際に絶縁性接着剤成分を溶融流動させるため、導電粒子も移動し易くなり、結果的に導電粒子である磁性粉体の凝集が発生するという問題があった。このような導電粒子の凝集が生ずることにより導電粒子の局在化を招き、隣接配線間でショートが生じ、絶縁性に問題が生じる。また、接続すべき電極間に場合により導電粒子が捕捉されず、粒子捕捉性が低下し、そのため導通抵抗値の上昇や導通不良が生じ、結果的に導通信頼性が低下する危険性が高まる。   However, when an anisotropic conductive film using magnetic powder such as nickel metal particles or nickel-coated resin particles as conductive particles is used, for example, when a driving semiconductor chip is anisotropically conductively connected to a display panel, Since the insulating adhesive component is melted and fluidized at the time of the conductive conductive connection, the conductive particles are also easily moved, and as a result, there is a problem that the magnetic powder as the conductive particles is aggregated. Such agglomeration of the conductive particles causes localization of the conductive particles, causes a short circuit between adjacent wirings, and causes a problem in insulation. In addition, the conductive particles may not be trapped between the electrodes to be connected, and the particle trapping property is lowered. For this reason, the conduction resistance value increases and the conduction failure occurs, and as a result, the risk of lowering the conduction reliability increases.

本発明の目的は、以上の従来の技術の問題点を解決することであり、ニッケル金属粒子やニッケル被覆樹脂粒子等の磁性粉体から構成されている磁性導電粒子を使用する異方性導電フィルムを用いて、ディスプレイパネル等の第1の電子部品の端子と駆動用半導体チップ等の第2の電子部品の端子とを異方性導電接続して接続構造体を製造する際に、異方性導電接着剤中に導電粒子が局在化しないようにし、粒子捕捉性、絶縁性及び接続信頼性を低下させないようにすることである。   An object of the present invention is to solve the above-described problems of the prior art, and an anisotropic conductive film using magnetic conductive particles composed of magnetic powder such as nickel metal particles and nickel-coated resin particles. Is used to manufacture a connection structure by anisotropically conductively connecting terminals of a first electronic component such as a display panel and terminals of a second electronic component such as a driving semiconductor chip. It is to prevent the conductive particles from being localized in the conductive adhesive and to prevent the particle trapping property, the insulating property and the connection reliability from being deteriorated.

本発明者は、異方性導電フィルムを作製する際に、予め脱磁処理した磁性粉体を導電粒子として使用することにより上述の目的を解決できる可能性は高いものの、脱磁処理の際に磁性粉体が動きやすいため、微細な粉体の状態で磁性粉体を効率良く脱磁することが難しいという問題に直面した。このため、別の態様での脱磁処理を鋭意研究した結果、予想外にも、電子部品に仮貼りした状態の異方性導電フィルムをそのまま脱磁処理することにより、上述の問題を解決できることを見出し、本発明を完成させるに至った。   The present inventor has a high possibility of solving the above-mentioned object by using magnetic powder that has been demagnetized in advance as conductive particles when producing an anisotropic conductive film. Because the magnetic powder is easy to move, we faced the problem that it was difficult to efficiently demagnetize the magnetic powder in a fine powder state. For this reason, as a result of earnest research on demagnetization treatment in another aspect, unexpectedly, the above-mentioned problems can be solved by demagnetizing the anisotropic conductive film temporarily attached to the electronic component as it is As a result, the present invention has been completed.

即ち、本発明は、第1の電子部品の端子と第2の電子部品の端子とが異方性導電接続されてなる接続構造体の製造方法において、以下の工程(A2)、(B)、(C)及び(D):
工程(A2)
第1の電子部品の端子に対し、磁性導電粒子を含有する異方性導電フィルムを仮貼りする異方性導電フィルム(ACF)仮貼り工程;
工程(B)
第1の電子部品に仮貼りされた異方性導電フィルムに対して脱磁処理を行う脱磁処理工程;
工程(C)
第1の電子部品上の脱磁処理を受けた異方性導電フィルムに対し、第2の電子部品を仮設置する電子部品仮設置工程;及び
工程(D)
仮設置された第2の電子部品を、加熱加圧ボンダーで加熱しながら第1の電子部品に対して押圧することにより、第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続する異方性導電接続工程
を有することを特徴とする製造方法、並びにその製造方法により製造された接続構造体を提供する。
That is, according to the present invention, in a method for manufacturing a connection structure in which the terminals of the first electronic component and the terminals of the second electronic component are anisotropically conductively connected, the following steps (A2), (B), (C) and (D):
Step (A2)
An anisotropic conductive film (ACF) temporary attachment step of temporarily attaching an anisotropic conductive film containing magnetic conductive particles to the terminals of the first electronic component;
Process (B)
A demagnetizing treatment step of demagnetizing the anisotropic conductive film temporarily attached to the first electronic component;
Process (C)
An electronic component temporary installation step of temporarily installing the second electronic component on the anisotropic conductive film subjected to the demagnetization treatment on the first electronic component; and
Process (D)
The terminal of the first electronic component is different from the terminal of the second electronic component by pressing the temporarily installed second electronic component against the first electronic component while being heated by a heat and pressure bonder. Provided is a manufacturing method characterized by having an anisotropic conductive connection step for conducting a conductive conductive connection, and a connection structure manufactured by the manufacturing method.

本発明の接続構造体の製造方法においては、異方性導電接続に使用する異方性導電フィルムとして磁性導電粒子を含有するものを使用し、しかも本加熱圧着に先立って、電子部品に仮貼りされた異方性導電フィルムに対し脱磁処理を行う。この結果、本熱圧着の条件下で異方性導電フィルムが流動した時に、磁性導電粒子の凝集を防止もしくは大きく抑制することができる。よって、磁性導電粒子を使用した異方性導電フィルムを用いて接続構造体を製造した際には、良好な絶縁性、粒子捕捉性及び導通信頼性を示す接続構造体を与えることができる。   In the manufacturing method of the connection structure of the present invention, an anisotropic conductive film containing magnetic conductive particles is used as an anisotropic conductive connection, and is temporarily attached to an electronic component prior to the thermocompression bonding. Demagnetization treatment is performed on the anisotropic conductive film. As a result, the aggregation of the magnetic conductive particles can be prevented or greatly suppressed when the anisotropic conductive film flows under the conditions of the thermocompression bonding. Therefore, when a connection structure is manufactured using an anisotropic conductive film using magnetic conductive particles, it is possible to provide a connection structure that exhibits good insulating properties, particle trapping properties, and conduction reliability.

図1は、本発明に好ましく適用できる脱磁方法の説明図である。FIG. 1 is an explanatory diagram of a demagnetizing method that can be preferably applied to the present invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、第1の電子部品の端子と第2の電子部品の端子とが異方性導電接続されてなる接続構造体の製造方法であり、以下の工程(A2)、(B)、(C)及び(D)を有する。以下工程毎に詳細に説明する。   The present invention is a method for manufacturing a connection structure in which a terminal of a first electronic component and a terminal of a second electronic component are anisotropically conductively connected. The following steps (A2), (B), ( C) and (D). Details will be described below for each process.

工程(A2)[ACF仮貼り工程]
まず、第1の電子部品の端子に対し、磁性導電粒子を含有する異方性導電フィルムを仮貼りする。仮貼りは、異方性導電フィルム自体の粘着性により、あるいは異方性導電フィルムを加熱し軟化させて発現した粘着性により行う。具体的には、加熱加圧ボンダーを用いて、異方性導電フィルムを第1の電子部品の端子に、異方性導電フィルムが硬化しないように加熱押圧して仮貼りを行うことができる。加熱加圧ボンダーとしては、金属性ヘッドやゴム弾性ヘッドを備えた公知のフリップチップボンダーを使用することができる。また、加熱については、ボンダーに加熱手段を設けて加熱してよく、第1の電子部品又は第2の電子部品が載置されるステージに加熱手段を設けて加熱してもよい。両者を併用してもよい。
Step (A2) [ACF Temporary Bonding Step]
First, an anisotropic conductive film containing magnetic conductive particles is temporarily attached to the terminals of the first electronic component. Temporary sticking is performed by the adhesiveness of the anisotropic conductive film itself or by the adhesiveness expressed by heating and softening the anisotropic conductive film. Specifically, by using a heat and pressure bonder, the anisotropic conductive film can be temporarily stuck to the terminal of the first electronic component by heating and pressing so that the anisotropic conductive film is not cured. As the heat and pressure bonder, a known flip chip bonder equipped with a metallic head or a rubber elastic head can be used. As for the heating, the bonder may be provided with a heating means, and the heating may be provided on a stage on which the first electronic component or the second electronic component is placed. You may use both together.

第1の電子部品としては、異方性導電フィルムによる異方性導電接続を適用可能な電子部品を使用することができる。例えば、ガラス配線基板、シリコン配線基板、ポリイミドフレキシブル配線基板、ガラスエポキシ配線基板、セラミックス配線基板等を挙げることができる。特に、LCP、PDP、有機ELD等のディスプレイパネルを好ましく適用することができる。   As the first electronic component, an electronic component to which an anisotropic conductive connection by an anisotropic conductive film can be applied can be used. For example, a glass wiring board, a silicon wiring board, a polyimide flexible wiring board, a glass epoxy wiring board, a ceramic wiring board, etc. can be mentioned. In particular, display panels such as LCP, PDP, and organic ELD can be preferably applied.

また、第1の電子部品の端子としても公知の配線材料から構成された端子を適用することができる。例えば、銅、金、銀、パラジウム、ITO(インジウム−スズ複合酸化物)等から構成された電極パッド、バンプなどを挙げることができる。また、ニッケルなどの磁性材料から端子を構成することができる。   Moreover, the terminal comprised from the well-known wiring material is applicable also as a terminal of a 1st electronic component. For example, electrode pads and bumps composed of copper, gold, silver, palladium, ITO (indium-tin composite oxide), and the like can be given. Moreover, a terminal can be comprised from magnetic materials, such as nickel.

磁性材料で端子を構成した場合、以下の工程(A1)[着磁処理工程]を実施することが好ましい。   When the terminal is composed of a magnetic material, it is preferable to carry out the following step (A1) [magnetization treatment step].

工程(A1)[着磁処理工程]
本工程(A2)に先だって、第1の電子部品を着磁処理する。これにより、磁性材料からなる端子を積極的に磁化させることができる。この場合、導電粒子が移動できるような条件、好ましくは異方性導電フィルムをその溶融粘度が80℃で150〜5000Pa・sとなるように加熱して仮貼りを行うことが好ましい。それにより、仮貼り時に着磁した端子に磁性導電粒子を集約させることができ、電子部品のファインピッチ化に対応することが可能になる。着磁処理は、公知の着脱磁装置を使用して行うことができる。
Process (A1) [Magnetization process]
Prior to this step (A2), the first electronic component is magnetized. Thereby, a terminal made of a magnetic material can be positively magnetized. In this case, it is preferable to perform temporary sticking by heating the anisotropic conductive film at 80 ° C. so that the melt viscosity is 150 to 5000 Pa · s, preferably under conditions that allow the conductive particles to move. Thereby, the magnetic conductive particles can be concentrated on the terminals magnetized at the time of temporary attachment, and it becomes possible to cope with the fine pitch of electronic components. The magnetization process can be performed using a known detachable magnetic device.

なお、本工程(A2)で使用する異方性導電フィルムは、絶縁性接着剤組成物中に磁性導電粒子が分散されたものであって、フィルム形状に成形されたものである。   The anisotropic conductive film used in this step (A2) is a film in which magnetic conductive particles are dispersed in an insulating adhesive composition and is formed into a film shape.

(磁性導電粒子)
本発明において使用する磁性導電粒子は、その少なくとも一部が磁性材料から構成されている磁化し得る導電粒子である。従って、磁性導電粒子には、磁化している場合も脱磁されている場合も含まれる。このような磁性導電粒子としては、導電粒子全体が単一の磁性材料から形成されている場合のみならず、導電粒子又は絶縁粒子の表面に磁性材料の薄膜が形成されている粒子、そのような磁性薄膜上に更に非磁性金属膜が形成されている粒子、これらの磁性粉体の最表面に更に非磁性の絶縁性樹脂の薄膜が形成されている粒子などを挙げることができる。
(Magnetic conductive particles)
The magnetic conductive particles used in the present invention are magnetizable conductive particles, at least a part of which is made of a magnetic material. Therefore, the magnetic conductive particle includes a case where it is magnetized and a case where it is demagnetized. Such magnetic conductive particles include not only the case where the entire conductive particles are formed of a single magnetic material, but also particles in which a thin film of magnetic material is formed on the surface of the conductive particles or insulating particles, such as Examples thereof include particles in which a nonmagnetic metal film is further formed on a magnetic thin film, and particles in which a thin film of nonmagnetic insulating resin is further formed on the outermost surface of these magnetic powders.

磁性導電粒子として使用できる磁性粉体の具体例としては、ニッケル、鉄、酸化鉄、酸化クロム、フェライト、コバルト、センダストなどの磁性金属あるいは磁性合金の粉体、ハンダ、銅等の非磁性導電粒子や絶縁樹脂コア粒子の表面に磁性材料の薄膜が形成された金属被覆樹脂粒子などの粉体、それらの表面に更に金メッキ薄膜が形成された粉体、あるいは絶縁性樹脂層で被覆された粉体などを挙げることができる。   Specific examples of magnetic powders that can be used as magnetic conductive particles include powders of magnetic metals or magnetic alloys such as nickel, iron, iron oxide, chromium oxide, ferrite, cobalt, sendust, and nonmagnetic conductive particles such as solder and copper. Powders such as metal-coated resin particles with a thin film of magnetic material formed on the surface of insulating resin core particles, powders with a gold-plated thin film formed on those surfaces, or powders coated with an insulating resin layer And so on.

これらの中でも、異方性導電接続用の磁性導電粒子として、製造コスト、接続時の加熱加圧での変形等を考慮すると、ニッケル被覆樹脂粒子を好ましく挙げることができる。コアになる樹脂としては、特に制限はないが、耐熱性、耐薬品性を備えた無機あるいは有機の材料を好ましく使用することができる。   Among these, as the magnetic conductive particles for anisotropic conductive connection, nickel-coated resin particles can be preferably mentioned in consideration of manufacturing cost, deformation due to heating and pressurization at the time of connection, and the like. The resin that becomes the core is not particularly limited, but inorganic or organic materials having heat resistance and chemical resistance can be preferably used.

また、磁性導電粒子を構成する磁性材料としてニッケルを使用する場合、磁性導電粒子の凝集を抑制するために、ニッケル中にリン元素を含有させることが好ましい。リン元素の含有量は、0質量%より大、好ましくは0.1質量%以上、より好ましくは4質量%以上である。他方、ニッケル中のリン元素の含有量が多すぎると接続が高抵抗となるので、好ましくは10質量%以下、より好ましくは8質量%以下である。ニッケル中のリン元素は、通常、ニッケルメッキ浴のpH調整用に使用されるリン酸化合物、亜リン酸化合物等に由来するものであるが、これに制限されるものではない。   Moreover, when using nickel as a magnetic material which comprises a magnetic conductive particle, in order to suppress aggregation of a magnetic conductive particle, it is preferable to contain a phosphorus element in nickel. The content of the phosphorus element is greater than 0% by mass, preferably 0.1% by mass or more, more preferably 4% by mass or more. On the other hand, if the content of the phosphorus element in nickel is too large, the connection becomes high resistance, so that it is preferably 10% by mass or less, more preferably 8% by mass or less. The phosphorus element in nickel is usually derived from a phosphoric acid compound, a phosphorous acid compound, or the like used for adjusting the pH of the nickel plating bath, but is not limited thereto.

本発明で使用する磁性導電粒子の平均粒子径は、小さすぎると磁性導電粒子全体における磁性金属の割合が高くなるため磁気の影響を受け易くなり、そのため磁性導電粒子の凝集塊が生じてショートが発生したり、また、導電粒子の異方性導電機能が低下し、電子部品の端子の高さのバラツキに追随できなくなり接続信頼性に不具合が生じたりする傾向があり、他方、大きすぎると導電粒子により配線間の絶縁性が低下し、ファインピッチ接続自体に対応できなくなる傾向があるために、好ましくは0.5〜30μm、より好ましくは1〜10μmである。   If the average particle diameter of the magnetic conductive particles used in the present invention is too small, the ratio of the magnetic metal in the entire magnetic conductive particles becomes high, so that the magnetic conductive particles are easily affected by magnetism. In addition, there is a tendency that the anisotropic conductive function of the conductive particles is reduced and the variation in the height of the terminals of the electronic component cannot be followed, and the connection reliability becomes defective. Since the insulating property between the wirings is reduced by the particles and the fine pitch connection itself tends not to be supported, the thickness is preferably 0.5 to 30 μm, more preferably 1 to 10 μm.

以上説明した、磁性導電粒子の異方性導電フィルム中における含有量は、少なすぎると接続信頼性が不十分となり、多すぎると異方性が失われるので、好ましくは絶縁性接着剤組成物中の樹脂固形分(硬化後に膜形成成分となる全成分(モノマー、オリゴマー、非重合性ポリマー、硬化剤等))100質量部に対し、好ましくは1〜100質量部、より好ましくは2〜70質量部である。   If the content of the magnetic conductive particles in the anisotropic conductive film described above is too small, the connection reliability becomes insufficient, and if it is too large, the anisotropy is lost. Therefore, preferably in the insulating adhesive composition The resin solid content (all components (monomers, oligomers, non-polymerizable polymers, curing agents, etc.) that become film-forming components after curing) is preferably 1 to 100 parts by mass, more preferably 2 to 70 parts by mass, based on 100 parts by mass. Part.

(絶縁性接着剤組成物)
本発明の異方性導電接着フィルムを構成する絶縁性接着剤組成物としては、従来の異方性導電接着剤において用いられている熱硬化性のバインダー樹脂組成物の中から適宜選択して使用することができる。例えば、熱硬化型エポキシ樹脂、熱硬化型尿素樹脂、熱硬化型メラミン樹脂、熱硬化型フェノール樹脂等に、イミダゾール系硬化剤、アミン系硬化剤等の硬化剤を配合した絶縁性接着剤組成物を挙げることができる。中でも、硬化後の接着強度が良好な点を考慮すると、熱硬化型エポキシ樹脂をバインダー樹脂として使用した絶縁性接着剤組成物を好ましく使用することができる。
(Insulating adhesive composition)
The insulating adhesive composition constituting the anisotropic conductive adhesive film of the present invention is appropriately selected from thermosetting binder resin compositions used in conventional anisotropic conductive adhesives. can do. For example, an insulating adhesive composition in which a curing agent such as an imidazole curing agent or an amine curing agent is blended with a thermosetting epoxy resin, a thermosetting urea resin, a thermosetting melamine resin, a thermosetting phenol resin, or the like. Can be mentioned. Among these, in consideration of a good adhesive strength after curing, an insulating adhesive composition using a thermosetting epoxy resin as a binder resin can be preferably used.

このような熱硬化型エポキシ樹脂としては、液状でも固体状でもよく、エポキシ当量が通常100〜4000程度であって、分子中に2以上のエポキシ基を有するものが好ましい。例えば、ビスフェノールA型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、エステル型エポキシ化合物、脂環型エポキシ化合物等を好ましく使用することができる。また、これらの化合物にはモノマーやオリゴマーが含まれる。   Such a thermosetting epoxy resin may be liquid or solid, and preferably has an epoxy equivalent of usually about 100 to 4000 and having two or more epoxy groups in the molecule. For example, a bisphenol A type epoxy compound, a phenol novolac type epoxy compound, a cresol novolac type epoxy compound, an ester type epoxy compound, an alicyclic epoxy compound, or the like can be preferably used. These compounds include monomers and oligomers.

このような絶縁性接着剤組成物には、必要に応じてシリカ、マイカなどの充填剤、着色料、帯電防止剤などを含有させることができる。更に、防腐剤、ポリイソシアネート系架橋剤、シランカップリング剤、溶媒などを含有させることもできる。   Such an insulating adhesive composition can contain a filler such as silica and mica, a colorant, an antistatic agent, and the like, if necessary. Furthermore, a preservative, a polyisocyanate crosslinking agent, a silane coupling agent, a solvent, and the like can also be contained.

(異方性導電接着フィルム)
本発明で使用する異方性導電接着フィルムは、従来の異方性導電フィルムと同様の手法により製造することができる。
(Anisotropic conductive adhesive film)
The anisotropic conductive adhesive film used in the present invention can be produced by the same technique as that of a conventional anisotropic conductive film.

工程(B)[脱磁処理工程]
工程(A2)の次に、第1の電子部品に仮貼りされた異方性導電フィルムに対して脱磁処理を行う。この脱磁処理の意味は、磁性導電粒子をフィルム状の絶縁性樹脂組成物中に固定して効率よく脱磁処理することを意味する。脱磁処理の方法としては、従来の脱磁処理方法を適用することができる。具体的には、異方性導電フィルムを第1の電子部品に仮貼りしたまま、全体を公知の脱磁装置に投入し、脱磁処理すればよい。
Process (B) [Demagnetization process]
Next to the step (A2), demagnetization treatment is performed on the anisotropic conductive film temporarily attached to the first electronic component. The meaning of this demagnetization treatment means that the magnetic conductive particles are fixed in a film-like insulating resin composition and efficiently demagnetized. As a demagnetizing treatment method, a conventional demagnetizing treatment method can be applied. Specifically, the whole may be put into a known demagnetizing device and temporarily demagnetized while the anisotropic conductive film is temporarily attached to the first electronic component.

脱磁処理の際の磁界強度は、低すぎると脱磁の効果が得られなくなり、磁性導電粒子が凝集することとなり、高すぎると逆に導電粒子が着磁する可能性があるので、100〜2000Gの範囲で適宜使用することができ、好ましくは200〜2000G、より好ましくは200〜400Gである。   If the magnetic field strength at the time of demagnetization is too low, the effect of demagnetization cannot be obtained, and the magnetic conductive particles will aggregate. If it is too high, there is a possibility that the conductive particles will be magnetized. It can be suitably used in the range of 2000G, preferably 200 to 2000G, more preferably 200 to 400G.

さらに、脱磁処理の際の脱磁速度は、遅すぎると生産効率が低下し、速すぎると磁性効率が得られ難くなる傾向があるので、好ましくは0.1〜100mm/s、より好ましくは1〜100mm/s、更に好ましくは1〜50mm/sである。   Furthermore, since the demagnetization rate during the demagnetization process is too slow, the production efficiency is lowered, and when it is too fast, it tends to be difficult to obtain the magnetic efficiency, so it is preferably 0.1 to 100 mm / s, more preferably. 1-100 mm / s, more preferably 1-50 mm / s.

なお、第1の電子部品の端子が磁性材料から形成されている場合であって、工程(A1)[着磁処理工程]が実施されている場合には、本工程(B)の脱磁処理工程において、異方性導電フィルムに対して脱磁処理する際に、第1の電子部品の磁性材料からなる端子の脱磁処理を同時に行うことが好ましい。   If the terminal of the first electronic component is made of a magnetic material and the step (A1) [magnetization treatment step] is performed, the demagnetization treatment in this step (B) is performed. In the process, when the demagnetizing treatment is performed on the anisotropic conductive film, it is preferable to simultaneously demagnetize the terminal made of the magnetic material of the first electronic component.

脱磁処理の手法の具体例としては、図1に示すように、非磁性ベース1上に、第1の電子部品2と、その端子3上に仮貼りされた異方性導電フィルム4とからなる積層体5を載置し、その上から非磁性カバー6で押さえ、そして、異方性導電フィルム4を、第1の電子部品2に仮貼りされたまま、着脱磁コイル10により形成された磁場の中を、磁場強度を減衰させながら矢印の方向に少なくとも1回着脱磁コイル10から遠ざけるように移動させればよい。   As a specific example of the demagnetization treatment method, as shown in FIG. 1, the first electronic component 2 and the anisotropic conductive film 4 temporarily attached to the terminal 3 on the nonmagnetic base 1 are used. The laminated body 5 is placed and pressed by the nonmagnetic cover 6 from above, and the anisotropic conductive film 4 is formed by the detachable magnetic coil 10 while being temporarily attached to the first electronic component 2. The magnetic field may be moved away from the removable magnetic coil 10 at least once in the direction of the arrow while the magnetic field strength is attenuated.

また、脱磁処理の手法の別の具体例としては、リール状に巻き回した異方性導電フィルムを脱磁処理し、続けて脱磁処理された異方性導電フィルムを端子3上に仮貼りしてもよい。   As another specific example of the demagnetization treatment method, the anisotropic conductive film wound in a reel shape is demagnetized, and then the demagnetized anisotropic conductive film is temporarily placed on the terminal 3. It may be pasted.

脱磁処理の際の磁界強度は、低すぎると脱磁の効果が得られなくなり、導電粒子が凝集することとなり、高すぎると逆に導電粒子が着磁する可能性があるので、100〜2000Gの範囲で適宜使用することができ、好ましくは200〜2000G、より好ましくは200〜400Gである。   If the magnetic field strength during the demagnetization treatment is too low, the effect of demagnetization cannot be obtained, and the conductive particles will aggregate. If it is too high, the conductive particles may be magnetized. Can be suitably used within the range of 200 to 2000G, preferably 200 to 400G.

さらに、脱磁処理の際の脱磁速度は、図1のような構成の場合、遅すぎると生産効率が低下し、速すぎると磁性効率が得られ難くなる傾向があるので、好ましくは0.1〜100mm/s、より好ましくは1〜100mm/s、更に好ましくは1〜50mm/sである。   Further, in the case of the configuration shown in FIG. 1, the demagnetization speed in the case of the demagnetization treatment is preferably too low because production efficiency is lowered if it is too slow, and magnetic efficiency tends to be difficult to obtain if it is too fast. It is 1-100 mm / s, More preferably, it is 1-100 mm / s, More preferably, it is 1-50 mm / s.

工程(C)[電子部品仮設置工程]
第1の電子部品上の脱磁処理を受けた異方性導電フィルムに対し、第2の電子部品を仮設置する。この場合、第2の電子部品の端子を、それに対応する第1の電子部品の端子に位置合わせしながら仮設置する。仮設置の場合も、従来公知の加熱加圧ボンダーを使用し、異方性導電フィルムの絶縁性接着組成物が実質的に熱硬化せずに異方性導電フィルムの表面が粘着性を発現するような条件で加熱加圧すればよい。
Process (C) [Temporary installation process for electronic components]
A second electronic component is temporarily installed on the anisotropic conductive film subjected to the demagnetization treatment on the first electronic component. In this case, the terminal of the second electronic component is temporarily installed while being aligned with the corresponding terminal of the first electronic component. Also in the case of temporary installation, a conventionally known heat and pressure bonder is used, and the insulating adhesive composition of the anisotropic conductive film does not substantially thermoset, and the surface of the anisotropic conductive film exhibits stickiness. What is necessary is just to heat-press on such conditions.

工程(D)[異方性導電接続工程]
工程(C)の次に、仮設置された第2の電子部品を、加熱加圧ボンダーで加熱しながら第1の電子部品に対して押圧することにより、即ち、本熱圧着することにより、第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続する。これにより、第1の電子部品の端子と第2の電子部品の端子とが異方性導電接続されてなる接続構造体が得られる。
Process (D) [Anisotropic conductive connection process]
After the step (C), the second electronic component temporarily installed is pressed against the first electronic component while being heated by a heat and pressure bonder, that is, by thermocompression bonding. The terminal of the first electronic component and the terminal of the second electronic component are anisotropically conductively connected. Thereby, a connection structure is obtained in which the terminals of the first electronic component and the terminals of the second electronic component are anisotropically conductively connected.

本熱圧着条件は、使用する電子部品や端子の材質、種類、異方性導電フィルムの構成等に応じて、最適の条件を適宜選択すればよい。   The optimum thermocompression bonding conditions may be appropriately selected according to the materials and types of electronic components and terminals used, the structure of the anisotropic conductive film, and the like.

以下、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

参考例1
(ニッケル被覆樹脂粒子の調製)
3μm径のジビニルベンゼン系樹脂粒子(5g)に、パラジウム触媒を浸漬法により担持させた。次いで、この樹脂粒子に対し、硫酸ニッケル六水和物、次亜リン酸ナトリウム、クエン酸ナトリウム、トリエタノールアミン及び硝酸タリウムから調製された無電解ニッケルメッキ液(pH12、メッキ液温50℃)を用いて無電解ニッケルメッキを行い、ニッケルメッキ層(金属層)が表面に形成されたニッケル被覆樹脂粒子を導電粒子として得た。得られた導電粒子の平均粒子径は3〜4μmの範囲であった。
Reference example 1
(Preparation of nickel-coated resin particles)
A palladium catalyst was supported on the 3 μm diameter divinylbenzene resin particles (5 g) by an immersion method. Next, an electroless nickel plating solution (pH 12, plating solution temperature 50 ° C.) prepared from nickel sulfate hexahydrate, sodium hypophosphite, sodium citrate, triethanolamine and thallium nitrate is applied to the resin particles. Electroless nickel plating was used to obtain nickel-coated resin particles having a nickel plating layer (metal layer) formed on the surface as conductive particles. The average particle diameter of the obtained conductive particles was in the range of 3 to 4 μm.

参考例2
(金/ニッケル被覆樹脂粒子の調製)
塩化金酸ナトリウム10gをイオン交換水1000mLに溶解させた溶液に、参考例1で得られた無電解ニッケルメッキ粒子12gを混合して水性懸濁液を調整した。得られた水性懸濁液に、チオ硫酸アンモニウム15g、亜硫酸アンモニウム80g、及びリン酸水素アンモニウム40gを投入することにより金メッキ浴を調整した。得られた金メッキ浴にヒドロキシルアミン4gを投入後、アンモニアを用いて金メッキ浴のpHを9に調整し、そして浴温を60℃に15〜20分程度維持することにより、金/ニッケル被覆樹脂粒子を得た。
Reference example 2
(Preparation of gold / nickel coated resin particles)
An aqueous suspension was prepared by mixing 12 g of electroless nickel plating particles obtained in Reference Example 1 with a solution of 10 g of sodium chloroaurate dissolved in 1000 mL of ion-exchanged water. A gold plating bath was prepared by adding 15 g of ammonium thiosulfate, 80 g of ammonium sulfite, and 40 g of ammonium hydrogen phosphate to the obtained aqueous suspension. After adding 4 g of hydroxylamine to the obtained gold plating bath, the pH of the gold plating bath is adjusted to 9 using ammonia, and the bath temperature is maintained at 60 ° C. for about 15 to 20 minutes, whereby gold / nickel coated resin particles Got.

参考例3
(低溶融粘度タイプの単層異方性導電フィルムの作製)
参考例1で得られたニッケル被覆樹脂粒子35質量部と、成膜成分としてビスフェノールA型フェノキシ樹脂(YP50、東都化成(株))22質量部と、液状成分としてビスフェノールAエポキシ化合物(EP828、ジャパンエポキシレジン(株))38質量部と、アミン系硬化剤(PHX3941HP、旭化成(株))39質量部と、エポキシシランカップリング剤(A−187、モメンティブ・パフォーマンス・マテリアルズ(株))1質量部とを、トルエンで固形分が50質量%となるように希釈し混合することにより異方性導電接着剤を調製した。この接着剤を、剥離処理したポリエチレンテレフタレートフィルム上に乾燥厚が25μmとなるようにバーコーターで塗布し、80℃のオーブン中で5分間乾燥することにより、単層異方性導電フィルムを作製した。この単層異方性導電フィルムの80℃における溶融粘度は250Pa・sであった。
Reference example 3
(Production of low melt viscosity type single layer anisotropic conductive film)
35 parts by mass of the nickel-coated resin particles obtained in Reference Example 1, 22 parts by mass of bisphenol A type phenoxy resin (YP50, Toto Kasei Co., Ltd.) as a film forming component, and a bisphenol A epoxy compound (EP828, Japan) as a liquid component Epoxy Resin Co., Ltd.) 38 parts by mass, amine-based curing agent (PHX3941HP, Asahi Kasei Co., Ltd.) 39 parts by mass, and epoxy silane coupling agent (A-187, Momentive Performance Materials Co., Ltd.) 1 part by mass An anisotropic conductive adhesive was prepared by diluting a part with toluene so that the solid content was 50% by mass and mixing. The adhesive was applied on a peeled polyethylene terephthalate film with a bar coater so that the dry thickness was 25 μm, and dried in an oven at 80 ° C. for 5 minutes to produce a single-layer anisotropic conductive film. . The single layer anisotropic conductive film had a melt viscosity at 80 ° C. of 250 Pa · s.

参考例4
(低溶融粘度タイプの2層異方性導電フィルムの作製)
成膜成分としてビスフェノールA型フェノキシ樹脂(YP50、東都化成(株))22質量部と、液状成分としてビスフェノールAエポキシ化合物(EP828、ジャパンエポキシレジン(株))38質量部と、アミン系硬化剤(PHX3941HP、旭化成(株))39質量部と、エポキシシランカップリング剤(A−187、モメンティブ・パフォーマンス・マテリアルズ(株))1質量部とを、トルエンで固形分が50質量%となるように希釈し混合することにより絶縁性接着剤を調製した。この絶縁性接着剤を剥離基材上に成膜し、80℃のオーブン中で5分間乾燥することにより絶縁性接着フィルムを作製した。この絶縁性接着フィルムと、参考例3と同様に作製した単層異方性導電フィルムとを乾燥厚が25μmとなるようにラミネートすることにより2層異方性導電フィルムを作製した。この2層異方性導電フィルムの80℃における溶融粘度は150Pa・sであった。
Reference example 4
(Production of low melt viscosity type two-layer anisotropic conductive film)
22 parts by mass of a bisphenol A type phenoxy resin (YP50, Toto Kasei Co., Ltd.) as a film forming component, 38 parts by mass of a bisphenol A epoxy compound (EP828, Japan Epoxy Resin Co., Ltd.) as a liquid component, and an amine curing agent ( PHX3941HP, Asahi Kasei Co., Ltd.) 39 parts by mass, and epoxy silane coupling agent (A-187, Momentive Performance Materials Co., Ltd.) 1 part by mass so that the solid content is 50 mass% with toluene. An insulating adhesive was prepared by diluting and mixing. This insulating adhesive was formed on a release substrate and dried in an oven at 80 ° C. for 5 minutes to produce an insulating adhesive film. A two-layer anisotropic conductive film was prepared by laminating this insulating adhesive film and a single-layer anisotropic conductive film prepared in the same manner as in Reference Example 3 so that the dry thickness was 25 μm. The melt viscosity at 80 ° C. of this two-layer anisotropic conductive film was 150 Pa · s.

参考例5
(中溶融粘度タイプの単層異方性導電フィルムの作製)
成膜成分としてビスフェノールA型フェノキシ樹脂(YP50、東都化成(株))を30質量部、液状成分としてビスフェノールAエポキシ化合物(EP828、ジャパンエポキシレジン(株))を30質量部使用すること以外、参考例3と同様にして単層異方性導電フィルムを作製した。この単層異方性導電フィルムの80℃における溶融粘度は2400Pa・sであった。
Reference Example 5
(Preparation of medium melt viscosity type single layer anisotropic conductive film)
Other than using 30 parts by mass of bisphenol A type phenoxy resin (YP50, Toto Kasei Co., Ltd.) as a film forming component and 30 parts by mass of bisphenol A epoxy compound (EP828, Japan Epoxy Resin Co., Ltd.) as a liquid component. A single-layer anisotropic conductive film was produced in the same manner as in Example 3. The single layer anisotropic conductive film had a melt viscosity at 80 ° C. of 2400 Pa · s.

参考例6
(中溶融粘度タイプの2層異方性導電フィルムの作製)
成膜成分としてビスフェノールA型フェノキシ樹脂(YP50、東都化成(株))を30質量部と、液状成分としてビスフェノールAエポキシ化合物(EP828、ジャパンエポキシレジン(株))を30質量部使用すること以外、参考例4と同様にして2層異方性導電フィルムを作製した。この2層異方性導電フィルムの80℃における溶融粘度は2000Pa・sであった。
Reference Example 6
(Preparation of medium melt viscosity type two-layer anisotropic conductive film)
Other than using 30 parts by mass of bisphenol A type phenoxy resin (YP50, Toto Kasei Co., Ltd.) as a film-forming component and 30 parts by mass of bisphenol A epoxy compound (EP828, Japan Epoxy Resin Co., Ltd.) as a liquid component, A two-layer anisotropic conductive film was produced in the same manner as in Reference Example 4. The melt viscosity at 80 ° C. of this two-layer anisotropic conductive film was 2000 Pa · s.

参考例7
(高溶融粘度タイプの単層異方性導電フィルムの作製)
成膜成分としてビスフェノールA型フェノキシ樹脂(YP50、東都化成(株))を40質量部、液状成分としてビスフェノールAエポキシ化合物(EP828、ジャパンエポキシレジン(株))を20質量部使用すること以外、参考例3と同様にして単層異方性導電フィルムを作製した。この単層異方性導電フィルムの80℃における溶融粘度は5000Pa・sであった。
Reference Example 7
(Production of high melt viscosity type single layer anisotropic conductive film)
Except for using 40 parts by mass of bisphenol A type phenoxy resin (YP50, Toto Kasei Co., Ltd.) as a film forming component and 20 parts by mass of bisphenol A epoxy compound (EP828, Japan Epoxy Resin Co., Ltd.) as a liquid component. A single-layer anisotropic conductive film was produced in the same manner as in Example 3. The single layer anisotropic conductive film had a melt viscosity at 80 ° C. of 5000 Pa · s.

参考例8
(高溶融粘度タイプの2層異方性導電フィルムの作製)
成膜成分としてビスフェノールA型フェノキシ樹脂(YP50、東都化成(株))を40質量部と、液状成分としてビスフェノールAエポキシ化合物(EP828、ジャパンエポキシレジン(株))を20質量部使用すること以外、参考例4と同様にして2層異方性導電フィルムを作製した。この2層異方性導電フィルムの80℃における溶融粘度は4000Pa・sであった。
Reference Example 8
(Production of high melt viscosity type two-layer anisotropic conductive film)
Except for using 40 parts by mass of bisphenol A type phenoxy resin (YP50, Toto Kasei Co., Ltd.) as a film forming component and 20 parts by mass of bisphenol A epoxy compound (EP828, Japan Epoxy Resin Co., Ltd.) as a liquid component, A two-layer anisotropic conductive film was produced in the same manner as in Reference Example 4. The melt viscosity at 80 ° C. of this two-layer anisotropic conductive film was 4000 Pa · s.

実施例1
(接続構造体の作製(着磁処理工程はないが脱磁処理工程あり))
参考例3の低溶融粘度タイプの単層異方性導電フィルムを、0.5μm厚のニッケルからなるペリフェラル配置の端子を有するガラス配線基板の当該端子上に、フリップチップボンダーで80℃、0.5MPaで2秒間加熱加圧することにより仮貼りした。ガラス配線基板に仮貼りされた単層異方性導電フィルムを、ガラス配線基板ごと、着脱磁装置(ソニーケミカル&インフォメーションデバイス(株))に投入し、磁界強度400G、脱磁速度100mm/sという条件で脱磁処理を行った。
Example 1
(Production of connection structure (there is no demagnetization process but demagnetization process))
The low melt viscosity type single layer anisotropic conductive film of Reference Example 3 is placed on a terminal of a glass wiring board having a peripheral arrangement terminal made of nickel having a thickness of 0.5 μm at 80 ° C. with a flip chip bonder. Temporary pasting was performed by heating and pressing at 5 MPa for 2 seconds. The single-layer anisotropic conductive film temporarily attached to the glass wiring board is put into the detachable magnetic apparatus (Sony Chemical & Information Device Co., Ltd.) together with the glass wiring board, and the magnetic field strength is 400 G and the demagnetization speed is 100 mm / s. Demagnetization treatment was performed under the conditions.

脱磁処理が施された単層異方性導電フィルム上に、高さ15μmのペリフェラル配置の金バンプが形成された13mm×1.5mm角のICチップを、当該バンプとガラス配線基板の端子とを位置合わせし、フリップチップボンダーで50℃、5MPaで1秒間加熱加圧することにより仮設置し、続いて210℃、60MPaで10秒間加熱加圧することにより本熱圧着して異方性導電接続を行うことにより接続構造体を得た。   A 13 mm × 1.5 mm square IC chip in which gold bumps with a peripheral arrangement of 15 μm in height are formed on a single-layer anisotropic conductive film that has been demagnetized, and the bumps and the terminals of the glass wiring board are connected. , And temporarily installed by heating and pressing at 50 ° C. and 5 MPa for 1 second with a flip chip bonder, followed by main thermocompression bonding by heating and pressing at 210 ° C. and 60 MPa for 10 seconds to form an anisotropic conductive connection. The connection structure was obtained by doing.

実施例2
(接続構造体の作製(着磁処理工程の後に脱磁処理工程あり))
ガラス配線基板として、着脱磁装置(ソニーケミカル&インフォメーションデバイス(株))で1000Gの磁場に5分間放置という条件で予め着磁処理を施したものを使用すること以外、実施例1と同様にして接続構造体を得た。
Example 2
(Fabrication of connection structure (demagnetization process after magnetizing process))
As a glass wiring board, the same as in Example 1 except that a detachable magnetic apparatus (Sony Chemical & Information Device Co., Ltd.) is used which has been preliminarily magnetized under a condition of being left in a 1000 G magnetic field for 5 minutes. A connection structure was obtained.

実施例3
(接続構造体の作製(着磁処理工程の後に脱磁処理工程あり))
参考例1のニッケル被覆樹脂粒子に代えて参考例2のAu/ニッケル被覆樹脂粒子を使用すること以外、参考例3を繰り返すことにより単層異方性導電フィルムを作製した。得られたこの単層異方性導電フィルムを使用すること以外、実施例2と同様にして接続構造体を得た。
Example 3
(Fabrication of connection structure (demagnetization process after magnetizing process))
A single-layer anisotropic conductive film was prepared by repeating Reference Example 3 except that the Au / nickel-coated resin particles of Reference Example 2 were used instead of the nickel-coated resin particles of Reference Example 1. A connection structure was obtained in the same manner as in Example 2 except that the obtained single layer anisotropic conductive film was used.

実施例4
(接続構造体の作製(着磁処理工程の後に脱磁処理工程あり))
参考例3の低溶融粘度タイプの単層異方性導電フィルムに代えて参考例4の低溶融粘度タイプの2層異方性導電フィルムを使用すること以外、実施例2と同様にして接続構造体を得た。
Example 4
(Fabrication of connection structure (demagnetization process after magnetizing process))
A connection structure in the same manner as in Example 2 except that the low melt viscosity type single layer anisotropic conductive film of Reference Example 3 is used instead of the low melt viscosity type two layer anisotropic conductive film of Reference Example 4. Got the body.

実施例5
(接続構造体の作製(着磁処理工程の後に脱磁処理工程あり))
参考例3の低溶融粘度タイプの単層異方性導電フィルムに代えて参考例5の中溶融粘度タイプの単層異方性導電フィルムを使用すること以外、実施例2と同様にして接続構造体を得た。
Example 5
(Fabrication of connection structure (demagnetization process after magnetizing process))
Connection structure in the same manner as in Example 2 except that a medium melt viscosity type single layer anisotropic conductive film of Reference Example 5 is used instead of the low melt viscosity type single layer anisotropic conductive film of Reference Example 3. Got the body.

実施例6
(接続構造体の作製(着磁処理工程の後に脱磁処理工程あり))
参考例3の低溶融粘度タイプの単層異方性導電フィルムに代えて参考例6の中溶融粘度タイプの2層異方性導電フィルムを使用すること以外、実施例2と同様にして接続構造体を得た。
Example 6
(Fabrication of connection structure (demagnetization process after magnetizing process))
A connection structure in the same manner as in Example 2 except that a medium melt viscosity type two-layer anisotropic conductive film of Reference Example 6 is used instead of the low melt viscosity type single layer anisotropic conductive film of Reference Example 3 Got the body.

実施例7
(接続構造体の作製(着磁処理工程の後に脱磁処理工程あり))
参考例3の低溶融粘度タイプの単層異方性導電フィルムに代えて参考例7の高溶融粘度タイプの単層異方性導電フィルムを使用すること以外、実施例2と同様にして接続構造体を得た。
Example 7
(Fabrication of connection structure (demagnetization process after magnetizing process))
Connection structure in the same manner as in Example 2 except that the high melt viscosity type single layer anisotropic conductive film of Reference Example 7 is used instead of the low melt viscosity type single layer anisotropic conductive film of Reference Example 3 Got the body.

実施例8
(接続構造体の作製(着磁処理工程の後に脱磁処理工程あり))
参考例3の低溶融粘度タイプの単層異方性導電フィルムに代えて参考例8の高溶融粘度タイプの2層異方性導電フィルムを使用すること以外、実施例2と同様にして接続構造体を得た。
Example 8
(Fabrication of connection structure (demagnetization process after magnetizing process))
Connection structure in the same manner as in Example 2 except that the low melt viscosity type single-layer anisotropic conductive film of Reference Example 3 is used and the high melt viscosity type two-layer anisotropic conductive film of Reference Example 8 is used. Got the body.

比較例1
(接続構造体の作製(着磁処理工程も脱磁処理工程もなし))
仮貼り時の脱磁処理を行わない以外は、実施例1と同様にして接続構造体を得た。この接続構造体は、着磁処理も脱磁処理も施されていないものであった。
Comparative Example 1
(Preparation of connection structure (no magnetizing process or demagnetizing process))
A connection structure was obtained in the same manner as in Example 1 except that the demagnetization treatment at the time of temporary attachment was not performed. This connection structure was neither magnetized nor demagnetized.

比較例2
(接続構造体の作製(着磁処理工程はあるが脱磁処理工程なし))
仮貼り時の脱磁処理を行わない以外は、ガラス配線基板として着磁処理を施したものを使用した実施例2と同様にして接続構造体を得た。
Comparative Example 2
(Production of connection structure (there is a magnetizing process but no demagnetizing process))
A connection structure was obtained in the same manner as in Example 2 using a glass wiring board that had been magnetized, except that the demagnetization process at the time of temporary attachment was not performed.

比較例3
(接続構造体の作製(脱磁処理工程の後に着磁処理工程あり)
実施例1と同様のガラス配線基板を、着脱磁装置(ソニーケミカル&インフォメーションデバイス(株))に投入し、予め実施例1と同様な条件で脱磁処理を行った。
Comparative Example 3
(Preparation of connection structure (there is a magnetizing process after the demagnetizing process)
The same glass wiring substrate as in Example 1 was put into a detachable magnetic apparatus (Sony Chemical & Information Device Co., Ltd.), and demagnetization treatment was performed in advance under the same conditions as in Example 1.

脱磁処理が施されたこのガラス配線基板の端子上に、参考例3の低溶融粘度タイプの単層異方性導電フィルムを、フリップチップボンダーで80℃、0.5MPaで2秒間加熱加圧することにより仮貼りした。ガラス配線基板に仮貼りされた単層異方性導電フィルムを、ガラス配線基板ごと、着脱磁装置(ソニーケミカル&インフォメーションデバイス(株))に投入し、実施例2と同様な条件で着磁処理を行った。   The low melt viscosity type single-layer anisotropic conductive film of Reference Example 3 is heated and pressed at 80 ° C. and 0.5 MPa for 2 seconds on the terminal of the glass wiring board that has been demagnetized. Was temporarily attached. The single-layer anisotropic conductive film temporarily attached to the glass wiring board is put into the detachable magnetic apparatus (Sony Chemical & Information Device Co., Ltd.) together with the glass wiring board, and magnetized under the same conditions as in Example 2. Went.

着磁処理が施された単層異方性導電フィルム上に、高さ15μmのペリフェラル配置の金バンプが形成された13mm×1.5mm角のICチップを、当該バンプとガラス配線基板の端子とを位置合わせし、フリップチップボンダーで50℃、5MPaで1秒間加熱加圧することにより仮設置し、続いて、200℃、60MPaで10秒間加熱加圧することにより本熱圧着して異方性導電接続を行うことにより接続構造体を得た。   A 13 mm × 1.5 mm square IC chip in which gold bumps with a peripheral arrangement of 15 μm in height are formed on a single-layer anisotropic conductive film that has been magnetized, and the bumps and the terminals of the glass wiring board are connected. Is temporarily installed by heating and pressing at 50 ° C. and 5 MPa for 1 second with a flip chip bonder, followed by main thermocompression bonding by heating and pressing at 200 ° C. and 60 MPa for 10 seconds for anisotropic conductive connection To obtain a connection structure.

(評価)
得られた異方性導電フィルム又は接続構造体について、「粒子捕捉率」、「絶縁性」及び「接続信頼性(初期と加速試験後(85℃、85RH%、500時間))を、以下に説明するように行い評価した。得られた結果を表1に示す。
(Evaluation)
About the obtained anisotropic conductive film or connection structure, “particle capture rate”, “insulation” and “connection reliability (initial and after accelerated test (85 ° C., 85 RH%, 500 hours)) are as follows: Evaluation was performed as described, and the results obtained are shown in Table 1.

<粒子捕捉率>
得られた接続構造体の基板側から光学顕微鏡によりバンプと基板電極との間に配置された導電粒子の数をカウントし、以下の式から粒子捕捉率を算出した。
<Particle capture rate>
From the substrate side of the obtained connection structure, the number of conductive particles arranged between the bump and the substrate electrode was counted with an optical microscope, and the particle capture rate was calculated from the following equation.

粒子捕捉率=〔圧着後にバンプと電極との間に配置された導電粒子の数〕/〔圧着前にバンプと電極との間に配置された導電粒子の数〕。   Particle capture rate = [number of conductive particles arranged between bump and electrode after pressure bonding] / [number of conductive particles arranged between bump and electrode before pressure bonding].

ランク 基準
AA: 35%以上
A: 20%以上35%未満
B: 10%以上20%未満
C: 10%未満
Rank Criteria AA: 35% or more A: 20% or more and less than 35% B: 10% or more and less than 20% C: Less than 10%

<絶縁性>
剥離処理したポリエチレンテレフタレートフィルムを引き剥がしていないそれぞれの異方性導電フィルムの接着層面に、ガラス基板上に櫛の歯状に配設されたITO配線に有するショート評価用絶縁TEG(チップサイズ25×2.5mm;バンプ数8376個;バンプサイズ35×55μm;バンプ間スペース10μm)を、ボンダーで到達温度210℃、圧着時間10秒という条件で圧着した。そしてバンプ間の絶縁抵抗を測定し、ショートの発生数をカウントし、以下の評価基準に従って評価した。なお、ショート発生部分においては、光学顕微鏡を用いて導電粒子の詰まり具合等から、凝集の有無、程度についても観察した。
<Insulation>
Insulation TEG for short evaluation (chip size 25 ×) on the ITO wiring arranged in a comb tooth shape on the glass substrate on the adhesive layer surface of each anisotropic conductive film on which the peeled polyethylene terephthalate film has not been peeled off 2.5 mm; number of bumps: 8376; bump size: 35 × 55 μm; space between bumps: 10 μm) was bonded with a bonder under conditions of an ultimate temperature of 210 ° C. and a pressing time of 10 seconds. Then, the insulation resistance between the bumps was measured, the number of occurrences of short circuits was counted, and evaluated according to the following evaluation criteria. In addition, in the short generation | occurrence | production part, the presence or absence and the grade of aggregation were observed using the optical microscope from the clogging condition of the conductive particles.

ランク 基準
AA: 絶縁ショート発生数が40サンプル中、5個未満
A: 絶縁ショート発生数が40サンプル中、5個以上、10個未満
B: 絶縁ショート発生数が40サンプル中、10個以上20個未満
C: 絶縁ショート発生数が40サンプル中、20個以上
Rank Standard AA: Number of insulation shorts occurring less than 5 out of 40 samples A: Number of insulation shorts occurring between 5 and less than 10 out of 40 samples B: Number of insulation shorts occurring between 10 and 20 out of 40 samples Less than C: The number of insulation shorts is 20 or more in 40 samples

<接続信頼性(初期・加速試験後)>
実施例び比較例で得た直後の接続構造体の導通抵抗を4端子法により測定した。得られた測定値を指標に、以下の評価基準に従って接続構造体の接続信頼性を評価した。
<Connection reliability (after initial and accelerated tests)>
The conduction resistance of the connection structure immediately after obtained in the examples and comparative examples was measured by the four-terminal method. The connection reliability of the connection structure was evaluated according to the following evaluation criteria using the obtained measurement value as an index.

ランク 内容
A: 導通抵抗値が10Ω未満
B: 導通抵抗値が10Ω以上50Ω未満
C: 導通抵抗値が50Ω以上
Rank Contents A: Conduction resistance value is less than 10Ω B: Conduction resistance value is 10Ω or more and less than 50Ω C: Conduction resistance value is 50Ω or more

Figure 2012069255
Figure 2012069255

表1の結果からわかるように、ガラス配線基板に仮貼りされた異方性導電フィルムを脱磁処理した実施例1〜8の接続構造体は、粒子捕捉性、絶縁性、接続信頼性(初期、加速試験後)のいずれの評価項目についても、良好な結果を示した。   As can be seen from the results in Table 1, the connection structures of Examples 1 to 8 in which the anisotropic conductive film temporarily attached to the glass wiring substrate was demagnetized were subjected to particle trapping properties, insulating properties, and connection reliability (initial stage). Good results were obtained for all evaluation items (after the accelerated test).

また、実施例2と実施例1との対比から、ガラス配線基板として、予め着磁処理されたものを使用すると、着磁処理されていないガラス配線基板を使用した場合に比べ、粒子捕捉率が改善され、良好な接続信頼性を発現することがわかる。   Further, from the comparison between Example 2 and Example 1, when a glass wiring board that has been pre-magnetized is used, the particle capture rate is higher than when a non-magnetized glass wiring board is used. It can be seen that the improved connection reliability is exhibited.

実施例3と実施例2との対比から、導電粒子として金/ニッケル樹脂粒子を使用すると、金が磁性材料でないことから着磁された電極の効果が低下し、ニッケル樹脂粒子を使用した場合に比べ、粒子捕捉率の点が若干劣るが、実用には問題ないレベルであった。   From the comparison between Example 3 and Example 2, when gold / nickel resin particles are used as the conductive particles, the effect of the magnetized electrode is reduced because gold is not a magnetic material, and nickel resin particles are used. In comparison, the particle capture rate was slightly inferior, but it was at a level that was not problematic for practical use.

実施例4と実施例2との対比、実施例6と実施例5との対比、また、実施例8と実施例7との対比から、絶縁性接着層を設けた2層異方性導電フィルムを使用すると、単層異方性導電フィルムを使用した場合に比べ、粒子捕捉率の点が改善されることがわかる。   From the comparison between Example 4 and Example 2, the comparison between Example 6 and Example 5, and the comparison between Example 8 and Example 7, a two-layer anisotropic conductive film provided with an insulating adhesive layer It can be seen that the use of, the particle capture rate is improved as compared with the case where a single-layer anisotropic conductive film is used.

実施例2と実施例5と実施例7との対比から、異方性導電フィルムの仮貼り時の溶融粘度が高くなるにつれ、粒子の流動が低下する為に、粒子捕捉率が低下することがわかる。   From the comparison between Example 2, Example 5 and Example 7, as the melt viscosity at the time of temporary attachment of the anisotropic conductive film increases, the flow of particles decreases, so that the particle capture rate may decrease. Recognize.

一方、着磁処理が施されていないガラス配線基板に仮貼りされた異方性導電フィルムについて脱磁処理を施していない比較例1の接続構造体は、粒子捕捉率に問題があった。また、着磁処理が施されているガラス配線基板に仮貼りされた異方性導電フィルムについて脱磁処理を施していない比較例2の接続構造体は、絶縁性に問題があった。脱磁処理が施されているガラス配線基板に仮貼りされた異方性導電フィルムについて着磁処理を施している比較例3の接続構造体は、粒子捕捉率と絶縁性とに問題があった。   On the other hand, the connection structure of Comparative Example 1 in which the demagnetization treatment was not performed on the anisotropic conductive film temporarily attached to the glass wiring board that was not magnetized had a problem in the particle capture rate. Moreover, the connection structure of Comparative Example 2 in which the demagnetization treatment was not performed on the anisotropic conductive film temporarily attached to the glass wiring substrate on which the magnetization treatment was performed had a problem in insulation. The connection structure of Comparative Example 3 in which the anisotropic conductive film temporarily attached to the glass wiring substrate on which the demagnetization treatment has been performed has a problem in the particle capture rate and the insulation. .

本発明の接続構造体の製造方法においては、異方性導電接続に使用する異方性導電フィルムとして磁性導電粒子を含有するものを使用し、しかも本加熱圧着に先立って、電子部品に仮貼りされた異方性導電フィルムに対し脱磁処理を行う。この結果、本加熱加圧の条件下で異方性導電フィルムが流動した時に、磁性導電粒子の凝集を防止もしくは大きく抑制することができる。よって、本発明の製造方法は、磁性導電粒子を使用した異方性導電フィルムを用いて接続構造体を製造した際には、良好な絶縁性、粒子捕捉性及び導通信頼性を示す接続構造体を製造する場合に有用である。   In the manufacturing method of the connection structure of the present invention, an anisotropic conductive film containing magnetic conductive particles is used as an anisotropic conductive connection, and is temporarily attached to an electronic component prior to the thermocompression bonding. Demagnetization treatment is performed on the anisotropic conductive film. As a result, the aggregation of the magnetic conductive particles can be prevented or greatly suppressed when the anisotropic conductive film flows under the main heating and pressing conditions. Therefore, the manufacturing method of the present invention provides a connection structure that exhibits good insulating properties, particle trapping properties, and conduction reliability when a connection structure is manufactured using an anisotropic conductive film using magnetic conductive particles. It is useful when manufacturing.

1 非磁性ベース
2 第1の電子部品
3 端子
4 異方性導電フィルム
5 積層体
6 非磁性カバー
10 着脱磁コイル
DESCRIPTION OF SYMBOLS 1 Nonmagnetic base 2 1st electronic component 3 Terminal 4 Anisotropic conductive film 5 Laminated body 6 Nonmagnetic cover 10 Detachable magnetic coil

Claims (11)

第1の電子部品の端子と第2の電子部品の端子とが異方性導電接続されてなる接続構造体の製造方法において、以下の工程(A2)、(B)、(C)及び(D):
工程(A2)
第1の電子部品の端子に対し、磁性導電粒子を含有する異方性導電フィルムを仮貼りする異方性導電フィルム仮貼り工程;
工程(B)
第1の電子部品に仮貼りされた異方性導電フィルムに対して脱磁処理を行う脱磁処理工程;
工程(C)
第1の電子部品上の脱磁処理を受けた異方性導電フィルムに対し、第2の電子部品を仮設置する電子部品仮設置工程;及び
工程(D)
仮設置された第2の電子部品を、加熱加圧ボンダーで加熱しながら第1の電子部品に対して押圧することにより、第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続する異方性導電接続工程
を有することを特徴とする製造方法。
In the method for manufacturing a connection structure in which the terminals of the first electronic component and the terminals of the second electronic component are anisotropically conductively connected, the following steps (A2), (B), (C) and (D) ):
Step (A2)
An anisotropic conductive film temporary sticking step of temporarily sticking an anisotropic conductive film containing magnetic conductive particles to the terminals of the first electronic component;
Process (B)
A demagnetizing treatment step of demagnetizing the anisotropic conductive film temporarily attached to the first electronic component;
Process (C)
An electronic component temporary installation step of temporarily installing the second electronic component on the anisotropic conductive film subjected to the demagnetization treatment on the first electronic component; and step (D)
The terminal of the first electronic component is different from the terminal of the second electronic component by pressing the temporarily installed second electronic component against the first electronic component while being heated by a heat and pressure bonder. A manufacturing method comprising an anisotropic conductive connecting step for conducting a conductive conductive connection.
該磁性導電粒子が、金/ニッケル被覆樹脂粒子、ニッケル被覆樹脂粒子またはニッケル金属粒子である請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the magnetic conductive particles are gold / nickel-coated resin particles, nickel-coated resin particles, or nickel metal particles. 該磁性導電粒子が、リン元素含有ニッケル被覆樹脂粒子である請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the magnetic conductive particles are phosphorus-coated nickel-coated resin particles. ニッケル被覆樹脂粒子のニッケル中のリン元素の含有量が、0.1〜10質量%である請求項3記載の製造方法。   The production method according to claim 3, wherein the content of the phosphorus element in the nickel of the nickel-coated resin particles is 0.1 to 10% by mass. 磁性導電粒子の平均粒子径が、0.5〜30μmである請求項1〜4のいずれかに記載の製造方法。   The production method according to claim 1, wherein the magnetic conductive particles have an average particle diameter of 0.5 to 30 μm. 第1の電子部品の端子が、磁性材料から構成されている請求項1〜5のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the terminal of the first electronic component is made of a magnetic material. 工程(A2)の異方性導電フィルム仮貼り工程に先だって、以下の工程(A1)
工程(A1)
第1の電子部品の端子を着磁処理する着磁処理工程
を有する請求項6記載の製造方法。
Prior to the anisotropic conductive film temporary pasting step of step (A2), the following step (A1)
Step (A1)
The manufacturing method according to claim 6, further comprising a magnetizing process for magnetizing a terminal of the first electronic component.
工程(B)の脱磁処理工程において、異方性導電フィルムに対して脱磁処理する際に、第1の電子部品の磁性材料からなる端子の脱磁処理も行う請求項7記載の製造方法。   The manufacturing method according to claim 7, wherein in the demagnetizing treatment step of the step (B), the demagnetizing treatment of the terminal made of the magnetic material of the first electronic component is also performed when the anisotropic conductive film is demagnetized. . 工程(A2)の異方性導電フィルム仮貼り工程において、溶融粘度が150〜5000Pa・sとなるように異方性導電フィルムを加熱して仮貼りする請求項1〜8のいずれかに記載の製造方法。   The anisotropic conductive film temporary sticking process of a process (A2) WHEREIN: An anisotropic conductive film is heated and temporarily stuck so that melt viscosity may be set to 150-5000 Pa.s. Production method. 第1の電子部品がディスプレイパネルである請求項1〜9のいずれかに記載の製造方法。   The manufacturing method according to claim 1, wherein the first electronic component is a display panel. 請求項1〜10のいずれかの製造方法により製造された接続構造体。   The connection structure manufactured by the manufacturing method in any one of Claims 1-10.
JP2010210560A 2010-09-21 2010-09-21 Method for manufacturing connection structure Active JP5505225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010210560A JP5505225B2 (en) 2010-09-21 2010-09-21 Method for manufacturing connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010210560A JP5505225B2 (en) 2010-09-21 2010-09-21 Method for manufacturing connection structure

Publications (2)

Publication Number Publication Date
JP2012069255A true JP2012069255A (en) 2012-04-05
JP5505225B2 JP5505225B2 (en) 2014-05-28

Family

ID=46166291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010210560A Active JP5505225B2 (en) 2010-09-21 2010-09-21 Method for manufacturing connection structure

Country Status (1)

Country Link
JP (1) JP5505225B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230019815A (en) 2020-06-04 2023-02-09 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive materials, and connected structures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430532A (en) * 1990-05-28 1992-02-03 Matsushita Electric Works Ltd Structure and manufacture of projecting electrode bump
JP2010135255A (en) * 2008-12-08 2010-06-17 Sony Chemical & Information Device Corp Anisotropic conductive film, joint body, and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430532A (en) * 1990-05-28 1992-02-03 Matsushita Electric Works Ltd Structure and manufacture of projecting electrode bump
JP2010135255A (en) * 2008-12-08 2010-06-17 Sony Chemical & Information Device Corp Anisotropic conductive film, joint body, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230019815A (en) 2020-06-04 2023-02-09 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive materials, and connected structures

Also Published As

Publication number Publication date
JP5505225B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
US8932716B2 (en) Conductive particle, and anisotropic conductive film, bonded structure, and bonding method
US9331044B2 (en) Semiconductor device connected by anisotropic conductive film
JP2008231405A (en) Anisotropic electroconductive film and its adhesion method
JP6209313B2 (en) Anisotropic conductive film, connection structure, method for manufacturing connection structure, and connection method
JP5650611B2 (en) Anisotropic conductive film, method for manufacturing anisotropic conductive film, connection method, and joined body
US9279070B2 (en) Anisotropic conductive adhesive, method of producing the same, connection structure and producing method thereof
JP7259113B2 (en) Anisotropic conductive film, display device including same and/or semiconductor device including same
TW202006750A (en) Anisotropic conductive film, method for producing same, and method for producing connection structure
JP2007317563A (en) Circuit connecting adhesive
JP5505225B2 (en) Method for manufacturing connection structure
JP2013251099A (en) Conductive particle and process of manufacturing the same
JP5543267B2 (en) Anisotropic conductive film and manufacturing method thereof, and mounting body and manufacturing method thereof
JP5698080B2 (en) Anisotropic conductive film, connection method, and joined body
JP5768676B2 (en) Anisotropic conductive film, manufacturing method thereof, connection structure and manufacturing method thereof
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP5890614B2 (en) Connection method, connection structure, and manufacturing method of connection structure
JP2011211245A (en) Method of manufacturing connection structure, connection structure, and connection method
JP2012015544A (en) Method of manufacturing connecting structure, and connecting structure and connecting method
KR101412856B1 (en) Method for demagnetizing magnetic powder
JP5962024B2 (en) Method for estimating magnetic flux density of magnetic conductive particles, and method for determining quality of magnetic state of magnetic conductive particles
JP6394159B2 (en) Anisotropic conductive adhesive, manufacturing method thereof, connection structure and manufacturing method thereof
JP2020035751A (en) Anisotropically conductive film and connection structure
JP2010135576A (en) Printed wiring board, and method of manufacturing printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5505225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250