JP2012068021A - Slit light luminance distribution design method and optical cutting irregularity flaw detection device - Google Patents

Slit light luminance distribution design method and optical cutting irregularity flaw detection device Download PDF

Info

Publication number
JP2012068021A
JP2012068021A JP2010210314A JP2010210314A JP2012068021A JP 2012068021 A JP2012068021 A JP 2012068021A JP 2010210314 A JP2010210314 A JP 2010210314A JP 2010210314 A JP2010210314 A JP 2010210314A JP 2012068021 A JP2012068021 A JP 2012068021A
Authority
JP
Japan
Prior art keywords
slit light
luminance distribution
light source
axis
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010210314A
Other languages
Japanese (ja)
Other versions
JP5768349B2 (en
Inventor
Naofumi Yamahira
尚史 山平
Toshibumi Kodama
俊文 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010210314A priority Critical patent/JP5768349B2/en
Publication of JP2012068021A publication Critical patent/JP2012068021A/en
Application granted granted Critical
Publication of JP5768349B2 publication Critical patent/JP5768349B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slit light luminance distribution design method and an optical cutting irregularity flaw detection device for performing stable optical cutting irregularity flaw detection corresponding to the range widening and speeding-up of surface flaw inspection.SOLUTION: The slit light luminance distribution design method in an optical cutting irregularity flaw detection method for irradiating a measurement object with a slit light, and for picking up the image of a reflected light from an angle which is different from that of a slit light source, and for detecting an irregularity flaw based on the pickup image includes: an average reflection rate measurement process of measuring the average reflection rate of the measurement object to the direction of an image pickup device using a slit light source A whose luminance distribution is already known; and a slit light luminance distribution calculation process of calculating the optimal luminance distribution of the slight light source for picking up the image of the reflected light as uniform luminance based on the measured average reflection rate.

Description

本発明は、撮像装置上でスリット光が一様な輝度として観測されるためのスリット光輝度分布設計方法および設計したスリット光源を用いた光切断凹凸疵検出装置に関するものである。   The present invention relates to a slit light luminance distribution design method for observing slit light as uniform luminance on an image pickup apparatus, and a light cutting unevenness wrinkle detecting device using the designed slit light source.

光学的な疵検出のための簡便な3次元計測手法として、光切断法が知られている。図1は、撮像装置上で通常観測されるスリット光輝度差を示す図である。図中、1は撮像装置、2はスリット光源、3は測定対象面上のスリット光、および4は撮像画像をそれぞれ表す。輝度分布が均一なスリット光源2を表面粗さが均一な平面に照射し、撮像装置1で撮像する(図1中の上図)と、図1中の中図または下図に示すように撮像視野範囲の中央部の輝度が高く、端の輝度が低くなる現象が見られる。   As a simple three-dimensional measurement technique for optical wrinkle detection, a light cutting method is known. FIG. 1 is a diagram illustrating a slit light luminance difference that is normally observed on an imaging apparatus. In the figure, 1 is an imaging device, 2 is a slit light source, 3 is slit light on the surface to be measured, and 4 is a captured image. When a slit light source 2 having a uniform luminance distribution is irradiated onto a plane having a uniform surface roughness and picked up by the image pickup apparatus 1 (upper view in FIG. 1), an imaging field of view as shown in the middle or lower view in FIG. There is a phenomenon in which the luminance at the center of the range is high and the luminance at the end is low.

図2は、スリット光源〜測定対象〜撮像装置の位置関係を示す図である。図中、符号は図1と同じである。上述した、撮像視野範囲の中央部の輝度が高く、端の輝度が低くなる現象の一つの理由を説明する図である。   FIG. 2 is a diagram illustrating a positional relationship between the slit light source, the measurement target, and the imaging device. In the figure, the reference numerals are the same as those in FIG. It is a figure explaining one reason of the phenomenon which the brightness | luminance of the center part of the imaging visual field range mentioned above becomes high, and the brightness | luminance of an edge becomes low.

すなわち、図2に示すように中央部分は正反射に近い角度(a1)の反射光となるのに対して、端部分では角度の浅い角度(a2)の後方拡散光となるため、端部での撮像装置のエリアセンサ方向への反射が中央部に比べて相対的に小さくなることによる。またその他の理由には、口径食による影響などが考えられる。   That is, as shown in FIG. 2, the central portion is reflected light at an angle (a1) close to regular reflection, whereas the end portion is back diffused light at a shallow angle (a2). This is because the reflection in the direction of the area sensor of the imaging device becomes relatively smaller than that of the central portion. Other reasons include the effects of vignetting.

このように生じた輝度分布は、スリット光中央部分ではハレーションによる精度低下の原因となり、スリット光端部分で輝度不足となり計測不良の原因となる。   The luminance distribution thus generated causes a reduction in accuracy due to halation at the center portion of the slit light, and causes insufficient measurement at the end portion of the slit light, causing a measurement failure.

これに対処すべく、例えば、特許文献1には、スリット光輝度分布によるハレーションを防ぐ目的で、絞りを調整して撮像を2回行う方法が開示されている。また、特許文献2には、通常照明での撮像画像と、スリット光投影での撮像画像との演算により、輝度の分布を補正する方法が開示されている。   In order to cope with this, for example, Patent Document 1 discloses a method of performing imaging twice by adjusting the diaphragm for the purpose of preventing halation due to the luminance distribution of slit light. Patent Document 2 discloses a method of correcting the luminance distribution by calculating a captured image with normal illumination and a captured image with slit light projection.

特開平7−120238号公報JP-A-7-120238 特開平9−152316号公報JP-A-9-152316

近年、表面疵検査には広範囲化、高速化が求められており、光切断法の場合、広範囲化のためには撮像装置の視野を広げると同時に、スリット光源の照射範囲を広げる必要がある。このようにスリット光源を広範囲に照射し、反射光を撮像装置により撮像した場合、撮像画像上での輝度差はより大きくなる。   In recent years, surface flaw inspection has been required to have a wide range and high speed. In the case of the light cutting method, it is necessary to widen the field of view of the imaging device and widen the irradiation range of the slit light source in order to widen the range. In this way, when the slit light source is irradiated over a wide area and the reflected light is imaged by the imaging device, the luminance difference on the captured image becomes larger.

この輝度差の問題を解決するためには、前述した特許文献1および特許文献2に開示された方法では、同一面に対して、特許文献1では絞りを調整して撮像を2回行わなければならない、特許文献2ではスリット光源を用いての撮像の他に、通常照明での撮像が必要である。すなわち、それぞれ複数回の撮像とともに広範囲化により多くの撮像が必要となってしまい、検査の高速化が実現できないという問題がある。   In order to solve this luminance difference problem, in the methods disclosed in Patent Document 1 and Patent Document 2 described above, it is necessary to adjust the aperture of the same surface and perform imaging twice in Patent Document 1 with respect to the same surface. However, in Patent Document 2, in addition to imaging using a slit light source, imaging with normal illumination is required. That is, there is a problem in that it is impossible to realize a high-speed inspection because a large number of images are required together with a plurality of times of imaging and a wide range is required.

本発明は、このような事情に鑑みてなされたものであり、表面疵検査の広範囲化、高速化に対応して安定した光切断凹凸疵検出ができる、スリット光輝度分布設計方法および光切断凹凸疵検出装置を提供することを課題とする。   The present invention has been made in view of such circumstances, and a slit light luminance distribution design method and a light cutting unevenness capable of stably detecting a light cutting unevenness corresponding to the widening and speeding up of the surface defect inspection. It is an object to provide a wrinkle detection device.

上記課題は次の発明により解決される。   The above problems are solved by the following invention.

[1] 測定対象にスリット光を照射し、その反射光をスリット光源とは異なる角度から撮像し、撮像画像に基いて凹凸疵を検出する光切断凹凸疵検出方法における、スリット光輝度分布設計方法であって、
輝度分布が既知であるスリット光源Aを用いた測定対象の撮像装置方向への平均反射率を測定する平均反射率測定工程と、
測定された平均反射率に基いて、前記反射光が一様な輝度として撮像されるためのスリット光源の最適輝度分布を算出するスリット光輝度分布算出工程と、を有することを特徴とするスリット光輝度分布設計方法。
[1] A slit light luminance distribution design method in a light cutting uneven wrinkle detection method that irradiates a measurement object with slit light, images the reflected light from an angle different from that of the slit light source, and detects uneven wrinkles based on the captured image. Because
An average reflectance measurement step of measuring an average reflectance in the direction of the imaging device to be measured using the slit light source A having a known luminance distribution;
A slit light luminance distribution calculating step of calculating an optimum luminance distribution of the slit light source for imaging the reflected light as uniform luminance based on the measured average reflectance. Luminance distribution design method.

[2] 上記[1]に記載のスリット光輝度分布設計方法において、
前記平均反射率測定工程では、
前記スリット光源Aのスリット光と平行にx軸を設定し、x軸上における前記スリット光源Aのスリット光の輝度分布Li(x)と、撮像画像上で観察されるスリット光長手方向(x’軸)の平均輝度分布Lo(x’)と、関数gを用いたx軸とx’軸の関係式x’=g(x)とから、x軸における平均反射率R(x)をLo((g(x))/Li(x)の演算式から測定し、
前記スリット光輝度分布算出工程では、
測定された平均反射率R(x)と、スリット光源の一定パワーCとから、前記最適輝度分布Ld(x)をC/R(x) の演算式から算出する、
ことを特徴とするスリット光輝度分布設計方法。
[2] In the slit light luminance distribution design method according to [1] above,
In the average reflectance measurement step,
The x-axis is set in parallel with the slit light of the slit light source A, the luminance distribution Li (x) of the slit light of the slit light source A on the x-axis, and the longitudinal direction of the slit light (x ′) observed on the captured image The average reflectance R (x) on the x axis is Lo (x) from the average luminance distribution Lo (x ') of the x axis and the relational expression x' = g (x) between the x axis and the x 'axis using the function g. Measure from the equation (g (x)) / Li (x)
In the slit light luminance distribution calculation step,
From the measured average reflectance R (x) and the constant power C of the slit light source, the optimal luminance distribution Ld (x) is calculated from the arithmetic expression of C / R (x).
A slit light luminance distribution design method characterized by the above.

[3] 測定対象に照射するスリット光源と、そのスリット光源の反射光をスリット光源とは異なる角度から撮像する撮像装置によって構成される光切断凹凸疵検出装置において、
前記スリット光源は、
スリット光の中央部より端部の輝度が高いスリット光輝度分布を具備することを特徴とする光切断凹凸疵検出装置。
[3] In a light-cutting unevenness wrinkle detecting device configured by a slit light source that irradiates a measurement target and an imaging device that captures reflected light of the slit light source from an angle different from that of the slit light source,
The slit light source is
A light-cutting unevenness wrinkle detecting device comprising a slit light luminance distribution having a higher luminance at an end portion than a central portion of the slit light.

[4] 上記[3]に記載の光切断凹凸疵検出装置において、
前記スリット光輝度分布Ld(x)を、
輝度分布が既知であるスリット光源Aのスリット光と平行にx軸を設定し、x軸上における前記スリット光源Aのスリット光の輝度分布Li(x)と、撮像画像上で観察されるスリット光長手方向(x’軸)の平均輝度分布Lo(x’)と、関数gを用いたx軸とx’軸の関係式x’=g(x)とから、x軸における平均反射率R(x)をLo((g(x))/Li(x)の演算式から測定し、
測定された平均反射率R(x)と、スリット光源の一定パワーCとから、C/R(x) の演算式から算出することを特徴とする光切断凹凸疵検出装置。
[4] In the light cutting uneven surface wrinkle detecting device according to [3] above,
The slit light luminance distribution Ld (x),
The x-axis is set in parallel with the slit light of the slit light source A whose luminance distribution is known, the luminance distribution Li (x) of the slit light of the slit light source A on the x-axis, and the slit light observed on the captured image From the average luminance distribution Lo (x ′) in the longitudinal direction (x ′ axis) and the relational expression x ′ = g (x) between the x axis and the x ′ axis using the function g, the average reflectance R ( x) is measured from the equation of Lo ((g (x)) / Li (x)
A light-cut irregularity wrinkle detection device, which is calculated from an arithmetic expression of C / R (x) from a measured average reflectance R (x) and a constant power C of a slit light source.

本発明によれば、輝度分布が既知であるスリット光源1を用いた測定対象の撮像装置方向への平均反射率を測定し、測定された平均反射率に基いて、反射光が一様な輝度として撮像されるためのスリット光源の最適輝度分布を算出するようにしたので、広範囲の検査であっても、スリット光源が撮像画像上で均一に観測され、高速かつ安定した疵検出ができるようになった。   According to the present invention, the average reflectance in the direction of the imaging device to be measured using the slit light source 1 having a known luminance distribution is measured, and the reflected light has a uniform luminance based on the measured average reflectance. Since the optimal luminance distribution of the slit light source for image capturing is calculated, the slit light source can be observed uniformly on the captured image even in a wide range of inspections, enabling fast and stable eyelid detection became.

撮像装置上で通常観測されるスリット光輝度差を示す図である。It is a figure which shows the slit light luminance difference normally observed on an imaging device. スリット光源〜測定対象〜撮像装置の位置関係を示す図である。It is a figure which shows the positional relationship of a slit light source-a measuring object-an imaging device. 光学系と撮像画像上の座標系、ならびに撮像画像例を示す図である。It is a figure which shows the optical system, the coordinate system on a captured image, and the example of a captured image. 本実施例に用いた機器構成を示す図である。It is a figure which shows the apparatus structure used for the present Example. 中央部より端部の輝度が高いレーザを用いた場合に、撮像装置上のスリット光輝度分布をプロットした図である。It is the figure which plotted the slit light luminance distribution on an imaging device, when using the laser whose brightness | luminance of an edge part is higher than a center part. 輝度均一レーザを用いた場合に、撮像装置上のスリット光輝度分布をプロットした図である。It is the figure which plotted the slit light luminance distribution on an imaging device at the time of using a luminance uniform laser.

前述したように、測定対象から撮像装置までの反射角がスリット光の各地点で異なることが原因で、中央部の輝度が高く、端の輝度が低くなる現象が見られる。そこで、中央より、端の輝度が高いスリット光源を用いることで、撮像装置上での輝度差を小さくまたは、均一にすることができ、精度低下、計測不良の防止が可能であるとの考えから、本発明を想到したものである。なお、必ずしも輝度差が厳密に均一にならない場合でも、輝度差を小さくすることができれば、十分に精度低下防止、ならびに計測不良防止効果が期待できる。   As described above, there is a phenomenon in which the luminance at the center is high and the luminance at the edge is low because the reflection angle from the measurement target to the imaging device is different at each point of the slit light. Therefore, from the idea that by using a slit light source with higher brightness from the center, the brightness difference on the imaging device can be made smaller or uniform, and accuracy can be prevented and measurement errors can be prevented. The present invention has been conceived. Even when the luminance difference is not necessarily uniform, if the luminance difference can be reduced, it is possible to sufficiently prevent the deterioration of accuracy and prevent measurement failure.

撮像装置上で輝度差を均一にするためのスリット光源の輝度分布設計法を、以下に示す。先ず光切断凹凸疵検出装置では、決まった形状の製品中にある異常部分を検出する用途が主である。そのため、異常部分を除けば、表面粗さが検出中に大きく変化することは少ないと考えられるために、測定対象の表面粗さは一定と仮定する。   A method for designing the luminance distribution of the slit light source for making the luminance difference uniform on the image pickup apparatus will be described below. First of all, the light-cut uneven wrinkle detecting device is mainly used for detecting an abnormal portion in a product having a predetermined shape. For this reason, it is considered that the surface roughness of the measurement target is constant because the surface roughness is considered to hardly change during the detection except for the abnormal portion.

図3は、光学系と撮像画像上の座標系、ならびに撮像画像例を示す図である。図3(a)に示すようにスリットレーザ光と平行にx軸を設定する。図3(b)はエリアセンサ上における撮像画像を示しており、撮像画像中のスリット長手方向と平行な方向にx’軸を設ける。xとx’の関係を、関数gを用いて、x’=g(x)とする。   FIG. 3 is a diagram illustrating an optical system, a coordinate system on a captured image, and a captured image example. As shown in FIG. 3A, the x-axis is set in parallel with the slit laser beam. FIG. 3B shows a captured image on the area sensor, and the x ′ axis is provided in a direction parallel to the slit longitudinal direction in the captured image. The relationship between x and x ′ is set to x ′ = g (x) using the function g.

なお、xとx’の関係は、レンズの焦点距離f、撮像距離nにより、例えば、ピンホールカメラとして近似した場合には、以下のように容易に対応付けられる。   Note that the relationship between x and x ′ is easily correlated as follows, for example, when approximated as a pinhole camera by the focal length f and imaging distance n of the lens.

x’/f=x/n   x ′ / f = x / n

測定対象の平均反射率を計測するために、輝度分布が既知のスリット光源Aを用い、x軸上における輝度分布をLi(x)と置く。スリット光源Aを用いて、複数枚の撮像を行いそのときに撮像画像上で観察されるスリット光の平均輝度分布をLo(x’)とおくと、x軸における平均反射率R(x)は、等式Lo(x’)=Li(x)R(x)から、R(x)=Lo((g(x))/Li(x)である。   In order to measure the average reflectance of the measurement object, a slit light source A with a known luminance distribution is used, and the luminance distribution on the x-axis is set as Li (x). When the average luminance distribution of the slit light observed on the captured image is set to Lo (x ′) using the slit light source A, the average reflectance R (x) on the x axis is From the equation Lo (x ′) = Li (x) R (x), R (x) = Lo ((g (x)) / Li (x).

設計するスリットレーザの輝度分布をLd(x)とすると、エリアセンサ上で輝度分布が一定になるように設計するためには、Ld(x)R(x)=C(一定)であればよい。これより、輝度分布がLd(x)=C/R(x)となるようなスリットレーザを設計すればよい。ただし、Cは全体のスリット光源のパワーを表すので撮像画像上で十分輝度が確保できるように設定しなければならない。   If the luminance distribution of the slit laser to be designed is Ld (x), Ld (x) R (x) = C (constant) may be used in order to design the luminance distribution to be constant on the area sensor. . Thus, a slit laser having a luminance distribution Ld (x) = C / R (x) may be designed. However, since C represents the power of the entire slit light source, it must be set so that sufficient luminance can be secured on the captured image.

図4は、本実施例に用いた機器構成を示す図である。本発明の効果を確かめるべく、黒皮材の鋼管サンプル6の疵検出を行ったものであり、スリット光源2としては赤色のスリットレーザを用いた。図4に示すようにスリットレーザはサンプル表面とのなす角が30度、撮像装置1はレーザと反対側で、サンプル表面とのなす角が60度になるように設置した。また、撮像装置1の視野は約300mmになるように構成した。   FIG. 4 is a diagram showing a device configuration used in this embodiment. In order to confirm the effect of the present invention, wrinkle detection was performed on a steel pipe sample 6 of a black skin material, and a red slit laser was used as the slit light source 2. As shown in FIG. 4, the slit laser is set so that the angle formed with the sample surface is 30 degrees, and the imaging device 1 is installed on the side opposite to the laser so that the angle formed with the sample surface is 60 degrees. Further, the field of view of the imaging device 1 was configured to be about 300 mm.

図5は、中央部より端部の輝度が高いレーザを用いた場合に、撮像装置上のスリット光輝度分布をプロットした図である。また、図6は、輝度均一レーザを用いた場合に、撮像装置上のスリット光輝度分布をプロットした図である。   FIG. 5 is a diagram in which the slit light luminance distribution on the imaging device is plotted when a laser having a higher luminance at the end than at the center is used. FIG. 6 is a diagram in which the slit light luminance distribution on the imaging device is plotted when a uniform luminance laser is used.

図5は、端部の輝度が中央に対して約4倍のレーザを用いた場合の結果である。ただし、輝度分布はほぼ左右対称になるため、半視野分のデータであり、移動平均後、最大輝度で正規化したものになっている。黒皮材は表面の鏡面反射性が強いため、中央部(図5左端)の輝度分布が端部(図5右端)に比べて高くなっていることが分る。中央部分と端部分の輝度比率は、約9倍となっている。これは、1画素256階調で考えると、中央部で最大の255の値を取った場合、端部では約29となる。   FIG. 5 shows the results obtained when a laser whose edge brightness is about four times the center is used. However, since the luminance distribution is almost symmetrical, it is data for a half field of view and is normalized by the maximum luminance after moving average. Since the black skin material has a strong specular reflectivity on the surface, it can be seen that the luminance distribution at the center (left end in FIG. 5) is higher than that at the end (right end in FIG. 5). The luminance ratio between the central part and the edge part is about 9 times. Considering 256 gradations per pixel, when the maximum value of 255 is taken at the center, it becomes about 29 at the end.

これに対して、図6はスリットレーザとして、輝度が均一なスリットレーザを用いた場合に撮像装置上で観測された輝度分布である。同様に移動平均後に、最大輝度で正規化している。この比率は約32倍である。中央部で最大の255の値を取った場合、端部では約8となり、本発明の結果例(図5)と比較してSN比が小さくなり、端部だけ外乱光やノイズに対して弱くなっていることが分る。   On the other hand, FIG. 6 shows the luminance distribution observed on the imaging device when a slit laser having a uniform luminance is used as the slit laser. Similarly, after moving average, normalization is performed with the maximum luminance. This ratio is about 32 times. When the maximum value of 255 is taken at the central portion, it becomes about 8 at the end portion, and the SN ratio becomes smaller than the result example of the present invention (FIG. 5), and only the end portion is weak against disturbance light and noise. You can see that

SN比をより改善するには本発明で用いた設計法を用いて、さらに中央部と端部の輝度が高いレーザを用いればよいが、スリットレーザの輝度分布を自由に設計することが困難であるため、光学フィルタを用いるなどして実現する必要がある。   In order to further improve the S / N ratio, the design method used in the present invention may be used and a laser with higher brightness at the center and at the end may be used. However, it is difficult to freely design the brightness distribution of the slit laser. For this reason, it must be realized by using an optical filter.

1 撮像装置
2 スリット光源
3 測定対象面上のスリット光
4 撮像画像
5 撮像画像上のスリット光輝度分布
6 鋼管サンプル
DESCRIPTION OF SYMBOLS 1 Image pick-up device 2 Slit light source 3 Slit light on measuring surface 4 Captured image 5 Slit light luminance distribution 6 on captured image

Claims (4)

測定対象にスリット光を照射し、その反射光をスリット光源とは異なる角度から撮像し、撮像画像に基いて凹凸疵を検出する光切断凹凸疵検出方法における、スリット光輝度分布設計方法であって、
輝度分布が既知であるスリット光源Aを用いた測定対象の撮像装置方向への平均反射率を測定する平均反射率測定工程と、
測定された平均反射率に基いて、前記反射光が一様な輝度として撮像されるためのスリット光源の最適輝度分布を算出するスリット光輝度分布算出工程と、を有することを特徴とするスリット光輝度分布設計方法。
A slit light luminance distribution design method in a light cutting uneven wrinkle detection method that irradiates a measurement object with slit light, images the reflected light from an angle different from that of the slit light source, and detects uneven wrinkles based on the captured image. ,
An average reflectance measurement step of measuring an average reflectance in the direction of the imaging device to be measured using the slit light source A having a known luminance distribution;
A slit light luminance distribution calculating step of calculating an optimum luminance distribution of the slit light source for imaging the reflected light as uniform luminance based on the measured average reflectance. Luminance distribution design method.
請求項1に記載のスリット光輝度分布設計方法において、
前記平均反射率測定工程では、
前記スリット光源Aのスリット光と平行にx軸を設定し、x軸上における前記スリット光源Aのスリット光の輝度分布Li(x)と、撮像画像上で観察されるスリット光長手方向(x’軸)の平均輝度分布Lo(x’)と、関数gを用いたx軸とx’軸の関係式x’=g(x)とから、x軸における平均反射率R(x)をLo((g(x))/Li(x)の演算式から測定し、
前記スリット光輝度分布算出工程では、
測定された平均反射率R(x)と、スリット光源の一定パワーCとから、前記最適輝度分布Ld(x)をC/R(x) の演算式から算出する、
ことを特徴とするスリット光輝度分布設計方法。
In the slit light luminance distribution design method according to claim 1,
In the average reflectance measurement step,
The x-axis is set in parallel with the slit light of the slit light source A, the luminance distribution Li (x) of the slit light of the slit light source A on the x-axis, and the longitudinal direction of the slit light (x ′) observed on the captured image The average reflectance R (x) on the x axis is Lo (x) from the average luminance distribution Lo (x ') of the x axis and the relational expression x' = g (x) between the x axis and the x 'axis using the function g. Measure from the equation (g (x)) / Li (x)
In the slit light luminance distribution calculation step,
From the measured average reflectance R (x) and the constant power C of the slit light source, the optimal luminance distribution Ld (x) is calculated from the arithmetic expression of C / R (x).
A slit light luminance distribution design method characterized by the above.
測定対象に照射するスリット光源と、そのスリット光源の反射光をスリット光源とは異なる角度から撮像する撮像装置によって構成される光切断凹凸疵検出装置において、
前記スリット光源は、
スリット光の中央部より端部の輝度が高いスリット光輝度分布を具備することを特徴とする光切断凹凸疵検出装置。
In the light cutting uneven surface wrinkle detecting device configured by the slit light source that irradiates the measurement object and the imaging device that captures the reflected light of the slit light source from an angle different from the slit light source,
The slit light source is
A light-cutting unevenness wrinkle detecting device comprising a slit light luminance distribution having a higher luminance at an end portion than a central portion of the slit light.
請求項3に記載の光切断凹凸疵検出装置において、
前記スリット光輝度分布Ld(x)を、
輝度分布が既知であるスリット光源Aのスリット光と平行にx軸を設定し、x軸上における前記スリット光源Aのスリット光の輝度分布Li(x)と、撮像画像上で観察されるスリット光長手方向(x’軸)の平均輝度分布Lo(x’)と、関数gを用いたx軸とx’軸の関係式x’=g(x)とから、x軸における平均反射率R(x)をLo((g(x))/Li(x)の演算式から測定し、
測定された平均反射率R(x)と、スリット光源の一定パワーCとから、C/R(x) の演算式から算出することを特徴とする光切断凹凸疵検出装置。
In the light cutting uneven surface wrinkle detecting device according to claim 3,
The slit light luminance distribution Ld (x),
The x-axis is set in parallel with the slit light of the slit light source A whose luminance distribution is known, the luminance distribution Li (x) of the slit light of the slit light source A on the x-axis, and the slit light observed on the captured image From the average luminance distribution Lo (x ′) in the longitudinal direction (x ′ axis) and the relational expression x ′ = g (x) between the x axis and the x ′ axis using the function g, the average reflectance R ( x) is measured from the equation of Lo ((g (x)) / Li (x)
A light-cut irregularity wrinkle detection device, which is calculated from an arithmetic expression of C / R (x) from a measured average reflectance R (x) and a constant power C of a slit light source.
JP2010210314A 2010-09-21 2010-09-21 Slit light intensity distribution design method and light cutting uneven surface wrinkle detecting device Expired - Fee Related JP5768349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010210314A JP5768349B2 (en) 2010-09-21 2010-09-21 Slit light intensity distribution design method and light cutting uneven surface wrinkle detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010210314A JP5768349B2 (en) 2010-09-21 2010-09-21 Slit light intensity distribution design method and light cutting uneven surface wrinkle detecting device

Publications (2)

Publication Number Publication Date
JP2012068021A true JP2012068021A (en) 2012-04-05
JP5768349B2 JP5768349B2 (en) 2015-08-26

Family

ID=46165485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010210314A Expired - Fee Related JP5768349B2 (en) 2010-09-21 2010-09-21 Slit light intensity distribution design method and light cutting uneven surface wrinkle detecting device

Country Status (1)

Country Link
JP (1) JP5768349B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064318A (en) * 2013-09-26 2015-04-09 株式会社日本触媒 Method of inspecting ceramic sheet for solid electrolyte of solid oxide fuel cell and method of manufacturing ceramic sheet
CN112384770A (en) * 2018-07-10 2021-02-19 诺斯克埃莱克特罗奥普体克公司 Hyperspectral camera

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230007A (en) * 1984-04-27 1985-11-15 Kawasaki Steel Corp Detector for surface defect
JPH07139930A (en) * 1993-11-18 1995-06-02 Tokai Rika Co Ltd Automatic light-adjusting type apparatus for measuring surface state
JPH08285780A (en) * 1995-04-19 1996-11-01 Nkk Corp Method for inspecting flaw on outer surface of steel pipe
JPH1038511A (en) * 1996-07-17 1998-02-13 Nippon Telegr & Teleph Corp <Ntt> Method and device for lighting
JPH10339614A (en) * 1997-06-06 1998-12-22 Kawatetsu Techno Res Corp Method and device for determining weld line center position
JP2001201327A (en) * 2000-01-20 2001-07-27 Nkk Corp Shape and dimension measuring method and apparatus for weld zone
JP2008116274A (en) * 2006-11-02 2008-05-22 Juki Corp Three-dimensional measuring apparatus for electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230007A (en) * 1984-04-27 1985-11-15 Kawasaki Steel Corp Detector for surface defect
JPH07139930A (en) * 1993-11-18 1995-06-02 Tokai Rika Co Ltd Automatic light-adjusting type apparatus for measuring surface state
JPH08285780A (en) * 1995-04-19 1996-11-01 Nkk Corp Method for inspecting flaw on outer surface of steel pipe
JPH1038511A (en) * 1996-07-17 1998-02-13 Nippon Telegr & Teleph Corp <Ntt> Method and device for lighting
JPH10339614A (en) * 1997-06-06 1998-12-22 Kawatetsu Techno Res Corp Method and device for determining weld line center position
JP2001201327A (en) * 2000-01-20 2001-07-27 Nkk Corp Shape and dimension measuring method and apparatus for weld zone
JP2008116274A (en) * 2006-11-02 2008-05-22 Juki Corp Three-dimensional measuring apparatus for electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064318A (en) * 2013-09-26 2015-04-09 株式会社日本触媒 Method of inspecting ceramic sheet for solid electrolyte of solid oxide fuel cell and method of manufacturing ceramic sheet
CN112384770A (en) * 2018-07-10 2021-02-19 诺斯克埃莱克特罗奥普体克公司 Hyperspectral camera
CN112384770B (en) * 2018-07-10 2024-04-30 诺斯克埃莱克特罗奥普体克公司 Hyperspectral camera

Also Published As

Publication number Publication date
JP5768349B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
CN107735674B (en) Surface defect detection device, surface defect detection method, and steel product manufacturing method
KR101832081B1 (en) Surface defect detection method and surface defect detection device
JP6394514B2 (en) Surface defect detection method, surface defect detection apparatus, and steel material manufacturing method
CN106052591B (en) Measuring device, measurement method, system and article production method
US7924418B2 (en) Inspection apparatus and method
US10379335B2 (en) Illumination setting method, light sheet microscope apparatus, and recording medium
KR20180009791A (en) Surface flaw detection method, surface flaw detection device, and manufacturing method for steel material
JP2009293999A (en) Wood defect detector
US20170186148A1 (en) Inspection apparatus, inspection system, and method of manufacturing article
JP5842373B2 (en) Surface defect detection method and surface defect detection apparatus
JP2010181328A (en) Device, program and method for inspecting surface of solar battery wafer
US10955354B2 (en) Cylindrical body surface inspection device and cylindrical body surface inspection method
JP5768349B2 (en) Slit light intensity distribution design method and light cutting uneven surface wrinkle detecting device
JP2014240766A (en) Surface inspection method and device
JP2007333732A (en) Surface inspection system, and diagnositc method of inspection capacity of the surface inspection system
JP2007071562A (en) Surface inspection device, surface inspection method, and manufacturing method of film
WO2006082932A1 (en) Defective particle measuring apparatus and defective particle measuring method
JP2014119361A (en) Surface defect detection device and surface defect detection method
TWI738808B (en) Method and system for measuring geometric parameters of through holes
JP2020106295A (en) Sheet defect inspection device
JP6566903B2 (en) Surface defect detection method and surface defect detection apparatus
JP2021162584A (en) Surface defect detector, surface defect detecting method, steel plate production method, steel plate quality management method and steel plate production facility
JP6870262B2 (en) Flat glass inspection method and flat glass inspection equipment
JP2008032669A (en) Optical scanning type planal visual inspecting apparatus
KR20150022359A (en) Inspection-Object Location estimation device using multi camera.

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5768349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees