JP2012066417A - Mold, method for manufacturing the same, method for manufacturing resin molding using the mold, and resin molding manufactured by the method for manufacturing the resin molding - Google Patents

Mold, method for manufacturing the same, method for manufacturing resin molding using the mold, and resin molding manufactured by the method for manufacturing the resin molding Download PDF

Info

Publication number
JP2012066417A
JP2012066417A JP2010211444A JP2010211444A JP2012066417A JP 2012066417 A JP2012066417 A JP 2012066417A JP 2010211444 A JP2010211444 A JP 2010211444A JP 2010211444 A JP2010211444 A JP 2010211444A JP 2012066417 A JP2012066417 A JP 2012066417A
Authority
JP
Japan
Prior art keywords
mold
periodic structure
pitch
fine periodic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010211444A
Other languages
Japanese (ja)
Other versions
JP5779813B2 (en
Inventor
Masaki Yamaguchi
昌樹 山口
Makoto Sasaki
誠 佐々木
Koichi Hirose
宏一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to JP2010211444A priority Critical patent/JP5779813B2/en
Publication of JP2012066417A publication Critical patent/JP2012066417A/en
Application granted granted Critical
Publication of JP5779813B2 publication Critical patent/JP5779813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a mold which gives water repellency to a plastic molding.SOLUTION: The mold 10 which forms a water-repellent area on a surface of a resin molding includes a mold body part 11 and a plating part 12 formed on at least a part of an inner peripheral surface of the mold body part 11. The plating part 12 has a minute periodic structure 20 on a contact surface side which resin material contacts. The minute periodic structure 20 is formed by having its cross section of a sawteeth-shape where V-shaped concave parts are closely arranged. The concave part expands toward the inside of a mold storing the resin material. A dimension between both shoulders of the concave part is equal to or larger than 1.0 μm and smaller than 100 μm.

Description

本発明は、プラスチック成形体などの樹脂成形体を成形するための金型に係り、特に樹脂成形体の表面の所望部位に撥水性を付与し得る金型とその製造方法、この金型を用いた樹脂成形体の製造方法並びにその製造方法によって製造された樹脂成形体に関する。   The present invention relates to a mold for molding a resin molded body such as a plastic molded body, and in particular, a mold capable of imparting water repellency to a desired portion of the surface of the resin molded body, a method for manufacturing the mold, and the use of this mold. The present invention relates to a method for producing a molded resin product and a resin molded product produced by the production method.

医療現場では、医療従事者への感染症の防止や、診断現場での利便性の観点等から、使い捨て式のプラスチック製医療用具を使用する要望が高く、例えばキット製品と呼ばれる試薬が一体化された複数のプラスチック部品からなる製品は年々使用量が増している。   In the medical field, there is a high demand for using disposable plastic medical tools from the viewpoint of prevention of infections to medical staff and convenience in the diagnosis field. For example, reagents called kit products are integrated. In addition, products made up of multiple plastic parts are increasing year by year.

血液検査では、マイクロ流路を備えたプラスチック製検査チップが多用され、患者の負担や肉体的苦痛を低減するために、採血量を1μL以下とする低侵襲化が進んでいる。分析技術の向上のためには、採取した極微量なサンプルを分析部へ無駄なく送る輸送技術が必須である。このために、血液及びそれに含まれるタンパクのマイクロ流路などのプラスチック製用具への付着、停留や拡散を防ぐことが重要であり、これにはマイクロ流路における親水性・撥水性の制御が極めて効果的である。例えばマイクロ流路の所望の部分に意図的に撥水性を付与できれば、サンプルを確実に送ることができる。   In blood tests, plastic test chips equipped with micro-channels are frequently used, and in order to reduce the burden on patients and physical pain, the amount of blood collected is reduced to 1 μL or less. In order to improve the analysis technology, a transport technology that sends a very small amount of collected sample to the analysis unit without waste is essential. For this reason, it is important to prevent adhesion and retention or diffusion of blood and proteins contained in it to plastic tools such as microchannels, and this requires extremely controlled hydrophilicity and water repellency in the microchannels. It is effective. For example, if water repellency can be intentionally imparted to a desired portion of the microchannel, the sample can be sent reliably.

撥水性とは、液体が持つ「形を容易に変えられる」性質の1形態であり、所謂「濡れ」と呼ばれる固体表面への液体の付着しやすさを示す。撥水性を、客観的且つ定量的に表すには、接触角が用いられることが多く、これは静的な撥水性を示す。
接触角とは、固体が液面と接している点において、図12に示すように液体表面の接線と固体表面とが成す角のうち液体を含む側の角度θである。
親水性 : θ<90°
撥水性 : 90°<θ<150°
超撥水性: 150≦θ≦180°
The water repellency is one form of the property of “the shape can be easily changed”, which the liquid has, and indicates the ease with which the liquid adheres to the solid surface, which is called “wetting”. In order to express water repellency objectively and quantitatively, a contact angle is often used, which indicates static water repellency.
The contact angle is an angle θ on the side containing the liquid among the angles formed by the tangent to the liquid surface and the solid surface at the point where the solid is in contact with the liquid surface, as shown in FIG.
Hydrophilicity: θ <90 °
Water repellency: 90 ° <θ <150 °
Super water repellency: 150 ≦ θ ≦ 180 °

これまで、撥水性はフッ素樹脂などの撥水性高分子を塗布して「化学的」に製品表面に付与されてきたが、コーティング層の剥離等の問題があり医療用具への応用は難しい。   Until now, water repellency has been "chemically" applied to the product surface by applying a water-repellent polymer such as a fluororesin, but it is difficult to apply to medical devices due to problems such as peeling of the coating layer.

表面の微細構造に起因する撥水性による清浄効果が、従来、ロータス効果として知られている。
非特許文献1では、ロータス効果を発現させるには、以下にあげる物理的条件(1)〜(3)を同時に満足させる必要があることを、実験的に報告している。
(1)周期的な凹凸の構造を有すること。
(2)凹凸のピッチは5〜20μm程度のサイズであること。
(3)図13に示すように、溝幅(a)と突起幅(b)のアスペクト比(a/b)が2以下であること。
The cleaning effect due to water repellency resulting from the fine structure of the surface is conventionally known as the Lotus effect.
Non-Patent Document 1 experimentally reports that it is necessary to satisfy the following physical conditions (1) to (3) at the same time in order to develop the Lotus effect.
(1) It has a periodic uneven structure.
(2) The uneven pitch is about 5 to 20 μm.
(3) As shown in FIG. 13, the aspect ratio (a / b) of the groove width (a) and the protrusion width (b) is 2 or less.

Reiner Furstner and Wilhelm Barthlott,"Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces",Langmuir 2005, 21, 956-961, Furstner & Barthlott, Langmuir, 21, 2005Reiner Furstner and Wilhelm Barthlott, "Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces", Langmuir 2005, 21, 956-961, Furstner & Barthlott, Langmuir, 21, 2005 Solga A, Cerman Z, Striffler BF, Spaeth M, Barthlott W: The dream of staying clean: Lotus and biomimetic surfaces, Bioinspir Biomim, 2(4), S126-S134, 2007Solga A, Cerman Z, Striffler BF, Spaeth M, Barthlott W: The dream of staying clean: Lotus and biomimetic surfaces, Bioinspir Biomim, 2 (4), S126-S134, 2007 河合 知彦、蛯原 建三、山本 明、小田 隆之、酒井田 康宏、見波 弘志、大木 武、中村 文信、矢羽多 和義:超精密加工機の開発,日本機械学会論文集C (2004) 2723-2729Tomohiko Kawai, Kenzo Sugawara, Akira Yamamoto, Takayuki Oda, Yasuhiro Saida, Hiroshi Minami, Takeshi Ohki, Fuminobu Nakamura, Kazuyoshi Yaha: Development of Ultra-precision Machining Machine, Proc. C (2004) 2723 -2729

ロータス効果の産業応用はすでに始まっているが、ミクロンサイズの微粒子を対象物の面に塗布する方法が主流である。
また、微細構造を形成するための対象物の加工方法としては、研磨材の粒子を圧縮空気で表面に吹き付けるブラスト加工が知られているが、対象物の表面に規則正しい周期構造を形成するのは不可能である。波長800−1200nmのフェムト秒レーザーによる表面加工は、凹凸の周期がレーザーの波長によって制限されるため5−20μmという比較的粗い処理には向いていない。
Although the industrial application of the Lotus effect has already begun, a method of applying micron-sized fine particles to the surface of an object is the mainstream.
In addition, as a processing method of an object for forming a fine structure, blasting in which abrasive particles are sprayed on the surface with compressed air is known, but forming a regular periodic structure on the surface of the object Impossible. Surface processing with a femtosecond laser with a wavelength of 800-1200 nm is not suitable for a relatively rough treatment of 5-20 μm because the period of irregularities is limited by the wavelength of the laser.

非特許文献1には撥水性を発現させるための条件(1)〜(3)が開示されているが、近年使用量が増加しているプラスチック製医療用具などのプラスチック成形体に撥水性を付与させる手法については、非特許文献1は何ら開示していない。つまり、プラスチック成形体のように型に樹脂を流し込んで製造される成形体については、金型から転写された成形体が撥水性を備えるよう金型を工夫する必要がある。   Non-Patent Document 1 discloses conditions (1) to (3) for expressing water repellency. However, water repellency is imparted to plastic molded articles such as plastic medical devices, which have been used in recent years. Non-patent document 1 does not disclose any technique to be applied. That is, for a molded body produced by pouring resin into a mold such as a plastic molded body, it is necessary to devise the mold so that the molded body transferred from the mold has water repellency.

本発明は以上の点に鑑みて創作されたもので、プラスチック成形体に撥水性を付与する金型、その製造方法、金型を用いた樹脂成形体の製造方法並びにその製造方法によって製造された樹脂成形体を提供することを目的とする。   The present invention was created in view of the above points, and was manufactured by a mold for imparting water repellency to a plastic molded body, a manufacturing method thereof, a manufacturing method of a resin molded body using the mold, and a manufacturing method thereof. It aims at providing the resin molding.

上記目的を達成するための本発明の第1の構成は、樹脂成形体の表面に撥水性領域を形成する金型であって、金型本体部と、この金型本体部の内周面の少なくとも一部に形成されたメッキ部と、を備え、メッキ部は、樹脂材が当接する接触面側に微細周期構造を有し、微細周期構造はV字型の凹部が隙間無く連なる鋸歯状の断面に形成されていて、凹部は樹脂材が収容される型内側へ向けて拡開しており、凹部の両肩間の寸法が、1.0μm以上であり、且つ、100μm未満であることを特徴としている。   In order to achieve the above object, a first configuration of the present invention is a mold for forming a water-repellent region on the surface of a resin molded body, and includes a mold body portion and an inner peripheral surface of the mold body portion. A plated portion formed at least in part, and the plated portion has a fine periodic structure on the side of the contact surface with which the resin material abuts, and the fine periodic structure has a sawtooth shape in which V-shaped concave portions are connected without gaps. It is formed in the cross section, the recess is expanded toward the inside of the mold in which the resin material is accommodated, and the dimension between the shoulders of the recess is 1.0 μm or more and less than 100 μm. It is a feature.

本発明の金型において、微細周期構造は複数の角錐体から構成されている。角錐体としては、例えば四角錐、三角錐、六角錐などを利用できる。   In the mold of the present invention, the fine periodic structure is composed of a plurality of pyramids. As the pyramid, for example, a quadrangular pyramid, a triangular pyramid, a hexagonal pyramid, or the like can be used.

本発明の金型において、微細周期構造はメッキ部に形成された複数の溝部から構成されており、溝部は、V字型断面に形成されていると共に、少なくとも下記(A1)〜(A2)の何れかを有する。
(A1)一方向に延びた直線部。
(A2)延出方向が次第に曲がるように延びたカーブ部。
In the mold of the present invention, the fine periodic structure is composed of a plurality of grooves formed in the plated portion, and the grooves are formed in a V-shaped cross section, and at least the following (A1) to (A2) Have either.
(A1) A straight line portion extending in one direction.
(A2) A curved portion extending so that the extending direction gradually bends.

上記目的を達成するための本発明の第2の構成は、樹脂成形体の表面に撥水性領域を形成する金型であって、金型本体部とこの金型本体部の内周面の少なくとも一部に形成されたメッキ部とを備え、メッキ部は樹脂材が当接する接触面側に微細周期構造を有し、微細周期構造は、同じ形状の複数の四角錐が金型表面で当該表面に沿った第1の軸方向とこの第1の軸方向に交差し当該表面に沿った第2の軸方向に整列して形成され、隣接する四角錐の頂点同士の間隔が1.0μm以上であり、且つ、100μm未満であることを特徴としている。   In order to achieve the above object, a second configuration of the present invention is a mold for forming a water-repellent region on the surface of a resin molded body, and includes at least a mold main body and an inner peripheral surface of the mold main body. A plating part formed in part, and the plating part has a fine periodic structure on the side of the contact surface with which the resin material abuts, and the fine periodic structure has a plurality of square pyramids of the same shape on the mold surface. And the first axis direction along the first axis direction and the second axis direction along the surface intersecting the first axis direction, and the spacing between the apexes of adjacent quadrangular pyramids is 1.0 μm or more It is characterized by being less than 100 μm.

本発明の金型において、第1の軸方向に沿った四角錐の頂点同士の間隔である第1ピッチと第2の軸方向に沿った四角錐の頂点同士の間隔である第2ピッチとが、以下の(B1)〜(B3)の何れかに選定され、第1の軸方向と第2の軸方向とが成す角度αが以下の(C1)〜(C2)の何れかに選定されている。
(B1)第1ピッチ=第2ピッチ
(B2)第1ピッチ>第2ピッチ
(B3)第1ピッチ<第2ピッチ
(C1)α=90°
(C2)α≠90°
In the mold of the present invention, a first pitch that is an interval between the vertices of the quadrangular pyramids along the first axial direction and a second pitch that is an interval between the vertices of the quadrangular pyramids along the second axial direction are The angle α formed by the first axial direction and the second axial direction is selected as one of the following (C1) to (C2). Yes.
(B1) 1st pitch = 2nd pitch (B2) 1st pitch> 2nd pitch (B3) 1st pitch <2nd pitch (C1) α = 90 °
(C2) α ≠ 90 °

上記目的を達成するための本発明の第3の構成は、金型の製造方法であって、被加工物の被加工面にメッキ部を形成する第1工程と、メッキ部の上面を平坦にする第2工程と、第2工程で平坦処理した表面を切削して微細周期構造を形成する第3工程と、を含むことを特徴としている。
この金型の製造方法において、好ましくは、さらにメッキ部を熱処理する第4工程を含む。
In order to achieve the above object, a third configuration of the present invention is a method for manufacturing a mold, in which a first step of forming a plated portion on a workpiece surface of a workpiece and a flat upper surface of the plating portion And a third step of forming a fine periodic structure by cutting the surface flattened in the second step.
This method for manufacturing a mold preferably further includes a fourth step of heat-treating the plated portion.

上記目的を達成するための本発明の第4の構成は、前記金型を用いて樹脂成形体を製造する成形体の製造方法である。
上記目的を達成するための本発明の第5の構成は、前記製造方法によって製造された、樹脂成形体である。
The 4th structure of this invention for achieving the said objective is the manufacturing method of the molded object which manufactures a resin molded object using the said metal mold | die.
A fifth configuration of the present invention for achieving the above object is a resin molded body manufactured by the manufacturing method.

本発明によれば、射出成形加工によりプラスチック成形体を製造することができ、例えば熱可塑性樹脂で成る材料を加温して軟化させ、金型に押し込み、冷して固化させる。これにより、プラスチック成形体の表面に撥水領域を形成することができる。   According to the present invention, a plastic molded body can be manufactured by injection molding. For example, a material made of a thermoplastic resin is heated and softened, pressed into a mold, and cooled to be solidified. Thereby, a water-repellent region can be formed on the surface of the plastic molded body.

本発明の第1実施形態に係る金型の一部の表面を示す平面図である。It is a top view which shows the one part surface of the metal mold | die which concerns on 1st Embodiment of this invention. 図1のA−A線に沿った金型の断面図である。It is sectional drawing of the metal mold | die along the AA line of FIG. 本発明の第1実施形態に係る金型の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the metal mold | die which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る金型の表面の概略平面図である。It is a schematic plan view of the surface of the metal mold | die which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態の変形例に係る金型の表面の概略平面図である。It is a schematic plan view of the surface of the metal mold | die which concerns on the modification of 2nd Embodiment of this invention. 本発明の第3実施形態に係る金型の一部の表面を示す平面図である。It is a top view which shows the one part surface of the metal mold | die which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る金型の一部の表面を示す斜視図である。It is a perspective view which shows the one part surface of the metal mold | die which concerns on 4th Embodiment of this invention. 本発明の実施形態に係る試料の表面の平面写真像である。It is a plane photographic image of the surface of the sample concerning an embodiment of the present invention. 各試料の表面粗さの測定結果を示す図である。It is a figure which shows the measurement result of the surface roughness of each sample. 各試料と樹脂成形品の接触角を示す図である。It is a figure which shows the contact angle of each sample and a resin molded product. (A)及び(B)は本発明の実施例に係るイムノセンサを示す図である。(A) And (B) is a figure which shows the immunosensor which concerns on the Example of this invention. 撥水性を説明するための図である。It is a figure for demonstrating water repellency. ロータス効果を発現させるための凹凸構造を示す概略断面図である。It is a schematic sectional drawing which shows the uneven structure for expressing a lotus effect.

以下、本発明の実施形態について、必要箇所では図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings where necessary.

[第1実施形態]
図1は本発明の第1実施形態に係る金型10の一部の表面を示す平面図である。この金型10は、プラスチック成形体の少なくとも一部の表面に撥水性領域を成形するための金型である。撥水性領域をプラスチック成形体に形成するために、金型10は図1に示すように型の内面10Aの少なくとも一部に微細周期構造20を備えている。図2は図1のA−A線に沿った金型10の断面図である。
[First Embodiment]
FIG. 1 is a plan view showing a partial surface of a mold 10 according to the first embodiment of the present invention. The mold 10 is a mold for forming a water-repellent region on at least a part of the surface of a plastic molded body. In order to form the water-repellent region in the plastic molded body, the mold 10 is provided with a fine periodic structure 20 on at least a part of the inner surface 10A of the mold as shown in FIG. FIG. 2 is a cross-sectional view of the mold 10 taken along line AA of FIG.

金型10は、図2に示すように、金型本体部11と、金型本体部11の内面上に設けられたメッキ部12と、から構成されている。
微細周期構造20は、メッキ部12を加工して形成されており、複数の微細構造物である角錐体を有する。各角錐体は同じ形状に形成されており、本実施形態では角錐体は一つの辺が数十μmオーダーのサイズに選定された四角錐21に形成されている。
As shown in FIG. 2, the mold 10 includes a mold main body 11 and a plating part 12 provided on the inner surface of the mold main body 11.
The fine periodic structure 20 is formed by processing the plated portion 12, and has a pyramid that is a plurality of fine structures. Each pyramid is formed in the same shape, and in this embodiment, the pyramid is formed in a quadrangular pyramid 21 in which one side is selected to have a size of the order of several tens of μm.

各四角錐21は整列して金型表面に形成されている。具体的には、隣接する四角錐21はその底部を形成する辺(以下、底辺と呼ぶ場合がある。)を共通にして形成されており、さらに隣接する四角錐21間の底辺が直線状に連なるよう各四角錐21は例えば第1の軸方向であるX方向(図1参照)及び第2の軸方向であるY方向(図1参照)に沿ってそれぞれ直線状に並ぶように位置を揃えて形成されている。X方向とY方向とが成す角度αは、本実施形態では90°に選定されている。図示例の四角錐21は正四角錐に形成されている。本実施形態では、図2に示すように、微細周期構造20はV字型の凹部22が隙間無く連なる鋸歯状の断面に形成されている。この鋸歯状の断面がX方向及びY方向に複数、詳しくは後述のピッチPX,PYの間隔で形成されている。図2に示すように、凹部22は、底部21Bとその両横側であり且つ上側にある肩部としての一対の頂部21Aとをそれぞれ通る面によってV字型に形成されている。
図1において、実線は底部21Bから頂部21Aへ延びる稜線を、破線は底部21Bの線を、一点鎖線は肩部の線を表している。
Each square pyramid 21 is aligned and formed on the mold surface. Specifically, adjacent quadrangular pyramids 21 are formed with a common side (hereinafter sometimes referred to as a base) forming the bottom thereof, and the bases between adjacent quadrangular pyramids 21 are linear. The quadrangular pyramids 21 are aligned so that they are arranged in a straight line, for example, along the X direction (see FIG. 1) which is the first axial direction and the Y direction (see FIG. 1) which is the second axial direction. Is formed. The angle α formed by the X direction and the Y direction is selected as 90 ° in this embodiment. The quadrangular pyramid 21 in the illustrated example is formed as a regular quadrangular pyramid. In the present embodiment, as shown in FIG. 2, the fine periodic structure 20 is formed in a sawtooth cross section in which V-shaped concave portions 22 are connected without gaps. A plurality of sawtooth cross sections are formed in the X and Y directions, specifically, at intervals of pitches P X and P Y described later. As shown in FIG. 2, the recess 22 is formed in a V shape by surfaces passing through the bottom 21 </ b> B and a pair of tops 21 </ b> A as shoulders on both sides and on the upper side.
In FIG. 1, a solid line represents a ridge line extending from the bottom 21B to the top 21A, a broken line represents a line of the bottom 21B, and a one-dot chain line represents a shoulder line.

本実施形態では、隣接する四角錐21の頂部21Aの間隔であるピッチL(図2)が1.0μm≦L<100μmに設定されている。ピッチLが小さすぎると、その金型を用いたプラスチック成形体では接触角が低下して撥水性を発揮することはできない。これはピッチLが0.8μmより小さいと金型内面に形成された微細な構造が成す形状がプラスチック成形体へ十分に転写されないことに拠ると考えられる。これに対して、ピッチLが1.0μmである場合、プラスチック成形体に微細周期構造20を転写できた。また、ピッチLが100μmより大きいと、接触角が0°〜90°の範囲内になり、親水性を呈することになる。なお、このように、ピッチが100μmより大きいと親水性を呈することは、従来から知られている(非特許文献1,2)。なお、図1では、X方向のピッチをPXと表しており、Y方向のピッチをPYと表しており、本実施形態では、PXとPYとは同じ寸法に設定されている。
また、各四角錐21の高さであると共に凹部22の深さをdとして、このdはピッチLと同様に数十マイクロメートルオーダーに選定される。
このような微細周期構造20が形成されるメッキ部12としては、ニッケル皮膜、銅皮膜を利用することができる(非特許文献3)。本実施形態において、メッキ部12は、例えば無電解メッキで形成することができる。また、メッキ部12の結晶はアモルファスである。
In the present embodiment, the pitch L (FIG. 2) that is the interval between the apexes 21A of the adjacent quadrangular pyramids 21 is set to 1.0 μm ≦ L <100 μm. If the pitch L is too small, the plastic molded body using the mold cannot lower the contact angle and exhibit water repellency. This is considered to be because when the pitch L is smaller than 0.8 μm, the shape formed by the fine structure formed on the inner surface of the mold is not sufficiently transferred to the plastic molding. On the other hand, when the pitch L was 1.0 μm, the fine periodic structure 20 could be transferred to the plastic molded body. On the other hand, when the pitch L is larger than 100 μm, the contact angle is in the range of 0 ° to 90 ° and exhibits hydrophilicity. In addition, it has been conventionally known that when the pitch is larger than 100 μm, hydrophilicity is exhibited (Non-Patent Documents 1 and 2). In FIG. 1, the pitch in the X direction is represented as P X, and the pitch in the Y direction is represented as P Y. In this embodiment, P X and P Y are set to the same dimension.
Further, d is the height of each square pyramid 21 and the depth of the recess 22 is d, and this d is selected on the order of several tens of micrometers as with the pitch L.
As the plating part 12 on which such a fine periodic structure 20 is formed, a nickel film or a copper film can be used (Non-Patent Document 3). In this embodiment, the plating part 12 can be formed by electroless plating, for example. Further, the crystal of the plated portion 12 is amorphous.

金型本体部11の形成材料としては、通常使用されているものであれば特に限定されるものではなく、ダイス鋼、粉末ハイス鋼、超硬合金等を利用することができる。   The material for forming the mold main body 11 is not particularly limited as long as it is normally used, and die steel, powdered high-speed steel, cemented carbide or the like can be used.

本実施形態の金型10の製造方法について図3のフローチャートを用いて説明する。
例えば、プラスチック成形体の表面の一部に撥水性を付与したい場合に、当該プラスチック成形体を射出成形するときに利用していた金型を金型本体部11(以下、被加工物と呼ぶ。)として準備する(ステップS1)。
撥水性を付与させたいプラスチック成形体の表面部分に対応して、被加工物の被加工面の一部に、具体的には金型の内周面の一部に、メッキ部12を形成する(ステップS2)。例えば、被加工物の被加工面に無電解(Ni−P)メッキでニッケル皮膜を厚さ100μm程析出させる。皮膜の厚さは例えば数十μm〜数百μmでよい。
次に、平板溝加工機を用いてメッキ部の上面を平坦にする(ステップS3)。例えばニッケル皮膜を切削加工して平面度十nmオーダーの平坦化処理を行う。
平板溝加工機は、切削加工機の一種で、工具は刃先が鋭利で凹凸が少ない単結晶ダイアモンドを用い、2次元平面上に溝加工を施すのに用いる装置である。加工方法は、回転工具を用いるミリング加工が主である。10μmオーダーの微細構造でも切削反力が微小なため、微小な工具を製作することで加工できる。
さらに、被加工物を固定したまま平板溝加工機のバイトを交換して被加工物を切削し、図1に示す微細周期構造20を形成する(ステップS4)。この場合、ダイヤモンドバイトで被加工物を加工する。
なお、平坦化したメッキ部12の表面に、例えば図1に示すようにX方向に延びる断面V字状の溝部を横並びに複数形成し、このX方向と角度αを成す方向へ延びる断面V字状の溝部を横並びに複数形成し、それらの溝部が交差することで複数の四角錐21が各ピッチLで形成される。このように、X方向及びY方向を総称して2軸方向と称し、2軸方向に溝部を形成する切削を「2軸切削加工」と呼ぶ。なお、後述する「2軸レーザー加工」とは、ここでは2軸方向にそれぞれ延びる溝部をレーザーで加工して形成する工法である。
The manufacturing method of the metal mold | die 10 of this embodiment is demonstrated using the flowchart of FIG.
For example, when it is desired to impart water repellency to a part of the surface of a plastic molded body, a mold used for injection molding the plastic molded body is referred to as a mold body 11 (hereinafter referred to as a workpiece). ) Is prepared (step S1).
Corresponding to the surface portion of the plastic molded body to which water repellency is to be imparted, the plated portion 12 is formed on a part of the processed surface of the workpiece, specifically, on a part of the inner peripheral surface of the mold. (Step S2). For example, a nickel film having a thickness of about 100 μm is deposited on the work surface of the work piece by electroless (Ni—P) plating. The thickness of the film may be, for example, several tens of μm to several hundreds of μm.
Next, the upper surface of the plating part is flattened using a flat plate groove processing machine (step S3). For example, the nickel film is cut and flattened to a flatness of the order of 10 nm.
The flat plate grooving machine is a kind of cutting machine, and the tool is a device used to perform grooving on a two-dimensional plane using a single crystal diamond with sharp edges and few irregularities. The processing method is mainly milling using a rotary tool. Even with a microstructure of the order of 10 μm, the cutting reaction force is very small, so that it can be processed by manufacturing a minute tool.
Further, the workpiece is cut by exchanging the cutting tool of the flat plate grooving machine while the workpiece is fixed, and the fine periodic structure 20 shown in FIG. 1 is formed (step S4). In this case, the workpiece is processed with a diamond tool.
For example, as shown in FIG. 1, a plurality of V-shaped grooves extending in the X direction are formed side by side on the surface of the flattened plating portion 12, and the cross-section V-shaped extending in a direction that forms an angle α with the X direction. A plurality of rectangular groove portions are formed side by side, and a plurality of quadrangular pyramids 21 are formed at each pitch L by intersecting the groove portions. Thus, the X direction and the Y direction are collectively referred to as a biaxial direction, and cutting that forms a groove in the biaxial direction is referred to as “biaxial cutting”. The “biaxial laser processing” to be described later is a method of forming a groove portion extending in the biaxial direction by laser processing here.

このように形成された金型10を利用して成形したプラスチック成形体には、金型10の微細周期構造20が転写されて、撥水性領域が形成される。この場合、プラスチック成形体の表面には、接触角θが90°以上の撥水性を発現させることができた。   The fine periodic structure 20 of the mold 10 is transferred to the plastic molded body molded using the mold 10 formed in this manner, and a water-repellent region is formed. In this case, water repellency with a contact angle θ of 90 ° or more could be expressed on the surface of the plastic molded body.

このように、本実施形態の金型10を利用して射出成形加工によりプラスチック成形体を製造することができる。例えば熱可塑性樹脂で成る材料を加温して軟化させて金型に押し込み、さらに冷して固化させる。これにより、プラスチック成形体の表面に撥水性を有する領域を形成することができる。   Thus, a plastic molded body can be manufactured by injection molding using the mold 10 of the present embodiment. For example, a material made of a thermoplastic resin is heated and softened, pushed into a mold, and further cooled and solidified. Thereby, the area | region which has water repellency can be formed in the surface of a plastic molding.

非特許文献1によれば、金属の被加工面に撥水性を付与するために5〜20μmピッチで金属の被加工面に、図13に示す断面矩形型の凹部210と断面矩形型の凸部220とを規則的に形成する必要があるが、実際に数μmオーダーの加工を施すには金属の被加工面はそれよりも2桁ほど低い十nmオーダーの平面度や表面粗さとする被加工面の面出しの前処理が必要である。ところが、面出しと微細周期構造の加工を別の加工機で行ってしまうと、十nmオーダーの平面度の実現は不可能である。
これに対して、本実施形態の金型10の製造方法によれば、金型形成材料で成る被加工物を用意し、被加工物の被加工面にニッケル皮膜を形成し、このニッケル皮膜を加工するため、平坦処理した後に切削加工して微細構造を形成することができる。これは、金型本体部11に比べて、メッキ部12の粒子が細かいためにナノミクロンオーダーの加工が容易で、また硬さが硬いことに基づくものである。
According to Non-Patent Document 1, a rectangular cross-section concave portion 210 and a rectangular cross-section convex portion shown in FIG. 13 are provided on a metal processing surface at a pitch of 5 to 20 μm to impart water repellency to the metal processing surface. 220 is regularly formed, but in order to actually perform processing on the order of several μm, the processing surface of the metal is processed to have a flatness and surface roughness of the order of 10 nm, which is two orders of magnitude lower than that. It is necessary to pre-process the surface. However, if the chamfering and the processing of the fine periodic structure are performed with different processing machines, it is impossible to achieve a flatness of the order of 10 nm.
On the other hand, according to the method for manufacturing the mold 10 of the present embodiment, a workpiece made of a mold forming material is prepared, a nickel film is formed on the workpiece surface of the workpiece, and the nickel film is formed. In order to process, it is possible to form a fine structure by cutting after flattening. This is based on the fact that, since the particles of the plating part 12 are finer than the mold body part 11, the processing on the nano-micron order is easy and the hardness is hard.

さらに、メッキ部12を加工して微細周期構造20を形成した後に、ニッケル皮膜のアモルファス構造を熱処理することで、ニッケル皮膜が結晶化して、耐摩耗性を向上させることができる。また、メッキ部12として無電解メッキを利用するとしても、プラスチック成形体の一部の表面に撥水効果を付与するよう金型表面の一部に無電解メッキ処理するだけなので、メッキ液による環境負荷は最小限に抑えることができる。   Furthermore, after the plated portion 12 is processed to form the fine periodic structure 20, the nickel film is crystallized by heat-treating the amorphous structure of the nickel film, thereby improving the wear resistance. Further, even if electroless plating is used as the plating portion 12, only the electroless plating treatment is performed on a part of the mold surface so as to impart a water repellent effect to a part of the surface of the plastic molded body. The load can be minimized.

[第2実施形態]
図4は本発明の第2実施形態に係る金型30の表面、特に微細周期構造20の概略平面図である。
この図に示すように、第2実施形態に係る金型30は、微細周期構造20を構成する各四角錐21が底面を長方形に形成された長方錐に形成されている。具体的には、図示例ではX方向のピッチPXがY方向のピッチPYよりも大きく設定されている。本実施形態では、第1実施形態と同様に、X方向とY方向とが成す角度αは、本実施形態では90°に選定されている。
このような金型30によって成形されたプラスチック成形体では、金型30の微細周期構造20が転写されてなる撥水性領域において、長方錐の底面の長辺が延びる方向、つまり図示例ではX方向側へ水滴が流れ易くなる。
[Second Embodiment]
FIG. 4 is a schematic plan view of the surface of the mold 30 according to the second embodiment of the present invention, particularly the fine periodic structure 20.
As shown in this figure, in the mold 30 according to the second embodiment, each quadrangular pyramid 21 constituting the fine periodic structure 20 is formed in a rectangular pyramid having a rectangular bottom surface. Specifically, in the illustrated example, the pitch P X in the X direction is set larger than the pitch P Y in the Y direction. In the present embodiment, as in the first embodiment, the angle α formed by the X direction and the Y direction is selected to be 90 ° in the present embodiment.
In the plastic molded body molded by such a mold 30, in the water-repellent region formed by transferring the fine periodic structure 20 of the mold 30, the long side of the bottom surface of the rectangular cone extends, that is, X in the illustrated example. Water drops easily flow to the direction side.

[第2実施形態の変形例]
図5は本発明の第2実施形態の変形例に係る金型40の表面、特に微細周期構造20の概略平面図である。
この図に示すように、本実施形態に係る金型40は、微細周期構造20を構成する各四角錐21の底面がひし形に形成されている。具体的には、図示例では、X方向のピッチPXとY方向のピッチPYとが同じ寸法に選定されているが、本実施形態では、前述の実施形態と異なり、X方向とY方向とが成す角度αが90°より大きい角度に選定されている。
このような金型40によって成形されたプラスチック成形体では、金型40の微細周期構造20が転写されてなる撥水性領域において、ひし形の長い対角線(図中の破線41)が延びる方向へ水滴が流れ易くなる。
その他の応用例として、各四角錐21の底面をひし形に代えて、PX≠PY且つ角度α≠90°(但し、α≠0,180)として平行四辺形に形成してもよい。
このように、四角錐の底面を成す第1の辺とこの第1の辺に繋がっていると共に第1の辺と角度αを成す第2の辺を規定するX方向のピッチPXとY方向のピッチPYと角度αを変えることで、プラスチック成形体の表面についた水滴が流れる方向を制御することができる。
[Modification of Second Embodiment]
FIG. 5 is a schematic plan view of the surface of the mold 40 according to a modification of the second embodiment of the present invention, particularly the fine periodic structure 20.
As shown in this figure, in the mold 40 according to the present embodiment, the bottom surface of each square pyramid 21 constituting the fine periodic structure 20 is formed in a rhombus. Specifically, in the illustrated example, the pitch P Y pitch P X and Y direction of the X direction is selected to be the same size, in the present embodiment, unlike the embodiment described above, X and Y directions Is selected to be greater than 90 °.
In the plastic molded body molded by such a mold 40, in the water-repellent region formed by transferring the fine periodic structure 20 of the mold 40, water droplets extend in the direction in which the long diagonal line (dashed line 41 in the figure) extends. It becomes easy to flow.
As another application example, the bottom surface of each quadrangular pyramid 21 may be formed into a parallelogram with P X ≠ P Y and an angle α ≠ 90 ° (where α ≠ 0, 180) instead of a rhombus.
In this way, the pitch P X in the X direction and the Y direction defining the first side forming the bottom surface of the quadrangular pyramid and the second side connected to the first side and forming the angle α with the first side. By changing the pitch P Y and the angle α, it is possible to control the direction in which water drops on the surface of the plastic molded body flow.

[第3実施形態]
図6は本発明の第3実施形態に係る金型50の一部の表面を示す平面図である。この金型50は、第1実施形態に係る金型10と同様に、金型本体部11とメッキ部12とから構成されており、微細周期構造20がメッキ部12を加工して形成されている。本実施形態の微細周期構造20では複数の微細構造物である角錐体が三角錐25に形成されている。各三角錐25は同じ形状に形成されており、本実施形態では、一つの辺が数十μmオーダーの寸法サイズに選定されている。
[Third Embodiment]
FIG. 6 is a plan view showing a part of the surface of the mold 50 according to the third embodiment of the present invention. Similar to the mold 10 according to the first embodiment, the mold 50 includes a mold body 11 and a plating part 12, and a fine periodic structure 20 is formed by processing the plating part 12. Yes. In the fine periodic structure 20 of the present embodiment, a pyramid that is a plurality of fine structures is formed in the triangular pyramid 25. Each triangular pyramid 25 is formed in the same shape, and in this embodiment, one side is selected to have a dimension size on the order of several tens of μm.

各三角錐25は整列して金型表面に形成されている。具体的には、隣接する三角錐25はその底部を形成する底辺を共通にして形成されており、さらに隣接する三角錐25の底辺が直線状に連なるよう各三角錐25は例えば第1の軸方向であるX方向(図6参照)と第2の軸方向であるY方向(図6参照)と第3の軸方向であるZ方向(図6参照)に沿ってそれぞれ直線状に並ぶように位置を揃えて形成されている。各方向同士が成す角度α1,α2は、本実施形態では60°に選定されている。図示例の三角錐25は正三角錐に形成されている。本実施形態の微細周期構造20は、第1実施形態と同様に、V字型の凹部22が隙間無く連なる鋸歯状(第1実施形態と形状は異なる)の断面に形成されている。この鋸歯状の断面がX方向、Y方向及びZ方向に複数、詳しくは所定のピッチ間隔で形成されている。図6において、実線が凹部22の底部21Bから頂部21Aへ延びる稜線、破線が底部21Bの線を表している。
本実施形態でも、隣接する三角錐25の頂部21Aの間隔をピッチLとして、このピッチLが、1.0μm≦L<100μmに設定されている。
The triangular pyramids 25 are aligned and formed on the mold surface. Specifically, the adjacent triangular pyramids 25 are formed with a common base that forms the bottom thereof, and each triangular pyramid 25 has, for example, a first axis so that the bases of the adjacent triangular pyramids 25 are connected in a straight line. The X direction (see FIG. 6) as the direction, the Y direction (see FIG. 6) as the second axial direction, and the Z direction (see FIG. 6) as the third axial direction are arranged in a straight line. It is formed with the same position. In this embodiment, the angles α1 and α2 formed by the respective directions are selected to be 60 °. The triangular pyramid 25 in the illustrated example is formed in a regular triangular pyramid. Similar to the first embodiment, the fine periodic structure 20 of the present embodiment is formed in a sawtooth-shaped cross section in which V-shaped concave portions 22 are connected without gaps (the shape is different from that of the first embodiment). A plurality of sawtooth cross sections are formed in the X direction, the Y direction, and the Z direction, specifically, at a predetermined pitch interval. In FIG. 6, the solid line represents the ridge line extending from the bottom 21 </ b> B of the recess 22 to the top 21 </ b> A, and the broken line represents the line of the bottom 21 </ b> B.
Also in this embodiment, the pitch L is set to 1.0 μm ≦ L <100 μm, where the interval between the apexes 21A of the adjacent triangular pyramids 25 is the pitch L.

このように形成された金型50を利用して成形したプラスチック成形体には、金型50の微細周期構造20が転写されて、撥水性領域が形成される。   The fine periodic structure 20 of the mold 50 is transferred to the plastic molded body molded using the mold 50 formed in this manner, and a water-repellent region is formed.

[第4実施形態]
図7は本発明の第4実施形態に係る金型60の一部の表面を示す斜視図である。この金型60は、第1実施形態に係る金型10と同様に、金型本体部11とメッキ部12とから構成されている。本実施形態の微細周期構造20はメッキ部12に形成された複数の溝部27から構成されている。各溝部27はV字型断面に形成されている。溝部27は樹脂材が収容される型内側へ向けて拡開しており、溝の両肩間の寸法が、1.0μm以上で、且つ、100μm未満に設定されている。これらの溝部27は、互いに隣接しており、V字型の溝肩27Aを共通にしている。
このように、本実施形態の微細周期構造20も、前述の実施形態と同様に、V字型の凹部22が隙間無く連なる鋸歯状の断面に形成されている。
図示例の溝部27はその全長に亘って一方向(図7中のD1方向)に延びた直線部として形成されている。
[Fourth Embodiment]
FIG. 7 is a perspective view showing a part of the surface of a mold 60 according to the fourth embodiment of the present invention. Similar to the mold 10 according to the first embodiment, the mold 60 includes a mold body portion 11 and a plating portion 12. The fine periodic structure 20 of the present embodiment includes a plurality of groove portions 27 formed in the plated portion 12. Each groove portion 27 is formed in a V-shaped cross section. The groove part 27 is expanded toward the inside of the mold in which the resin material is accommodated, and the dimension between both shoulders of the groove is set to 1.0 μm or more and less than 100 μm. These groove portions 27 are adjacent to each other and share a V-shaped groove shoulder 27A.
As described above, the fine periodic structure 20 of the present embodiment is also formed in a sawtooth cross section in which the V-shaped concave portions 22 are connected without gaps, as in the above-described embodiment.
The groove portion 27 in the illustrated example is formed as a straight portion extending in one direction (D1 direction in FIG. 7) over its entire length.

このように形成された金型60を利用して成形したプラスチック成形体には、金型60の微細周期構造20が転写されて、撥水性領域が形成される。   The fine periodic structure 20 of the mold 60 is transferred to the plastic molded body molded using the mold 60 formed in this manner, and a water-repellent region is formed.

次に、実験例について説明する。
実験目的:金型から転写したプラスチック成形体の撥水性評価
実験条件:
金型・・・金型に使用される鋼材としてダイス鋼(SKD11)を用意した。この評価対象となる金型を利用して、以下の4つのサンプルを用意した。
試料1:金型そのもの(所謂、母材としてSKD11相当品)
試料2:表面にブラスト加工を施し非周期構造を有する金型
試料3:表面に2軸レーザー加工を施し微細周期構造を有する金型
試料4:表面に2軸切削加工を施し微細周期構造を有する金型
ここで、試料4は、本発明の実施形態の金型に相当するものであり、ダイス鋼(SKD11)上に無電解めっき処理を施してメッキ部を形成し、このメッキ部の上面を平坦化処理し、さらに平坦な表面71に同じ方向に沿って断面V字型の溝加工を2軸方向に行って微細周期構造20を形成した。図8は試料4の表面の平面写真像である。この2軸切削加工によって表面71に、微細周期構造20、つまり複数の四角錐72が隣接して形成された。
樹脂材料・・・100%ポリ酸(ユニチカ株式会社製、「テラマック」,TE−2000)
成形機・・・40tonの成形機を用い、速度33%、圧力30%とした。
成形温度条件・・・材料メーカーでは金型温度10−30℃、シリンダー温度180−210℃を推奨している設定を、施行錯誤の結果、金型温度30℃、ノズル温度230℃、前部温度235℃、中央部温度230℃、後部温度225℃とした。
撥水性の評価法・・・接触角により静的撥水性を求めた。
接触角の測定・・・マイクロスコープ(VH−E500,キーエンス、×50)と画像解析ソフトウェア(Image J,オープンソースのフリーソフトウェア)を用いた。
その他・・・母材表面の表面粗さが接触角に与える影響を除くために、微細構造の加工前の母材表面は、中心線平均粗さRa=0.05μmに磨き加工したものを用いた。表面粗さの測定には、3次元表面粗さ計(sv−3000m4,株式会社ミツトヨ)を用いた。
Next, experimental examples will be described.
Experimental purpose: Evaluation of water repellency of plastic moldings transferred from molds Experimental conditions:
Die: Die steel (SKD11) was prepared as a steel material used for the mold. The following four samples were prepared using the metal mold to be evaluated.
Sample 1: Mold itself (so-called SKD11 equivalent as a base material)
Sample 2: Mold having a non-periodic structure by blasting the surface Sample 3: Mold having a fine periodic structure by biaxial laser processing on the surface Sample 4: Having a fine periodic structure by biaxial cutting on the surface Mold Here, the sample 4 corresponds to the mold of the embodiment of the present invention, and an electroless plating process is performed on the die steel (SKD11) to form a plated portion, and an upper surface of the plated portion is formed. The fine periodic structure 20 was formed by performing a flattening process and further performing a V-shaped groove processing along the same direction on the flat surface 71 in the biaxial direction. FIG. 8 is a plan photographic image of the surface of the sample 4. The fine periodic structure 20, that is, a plurality of quadrangular pyramids 72 were formed adjacent to the surface 71 by this biaxial cutting.
Resin material: 100% polyacid (manufactured by Unitika Ltd., “Teramac”, TE-2000)
Molding machine: A 40 ton molding machine was used with a speed of 33% and a pressure of 30%.
Molding temperature condition: The material manufacturer recommends a mold temperature of 10-30 ° C and a cylinder temperature of 180-210 ° C. As a result of implementation and error, the mold temperature is 30 ° C, the nozzle temperature is 230 ° C, and the front temperature. 235 ° C., central temperature 230 ° C., rear temperature 225 ° C.
Evaluation method of water repellency: Static water repellency was determined by contact angle.
Measurement of contact angle: A microscope (VH-E500, Keyence, × 50) and image analysis software (Image J, open source free software) were used.
Other: To remove the influence of the surface roughness of the base material surface on the contact angle, the surface of the base material before processing the fine structure is polished to a center line average roughness Ra = 0.05 μm. It was. For the measurement of the surface roughness, a three-dimensional surface roughness meter (sv-3000m4, Mitutoyo Corporation) was used.

図9は各試料の表面粗さの測定結果を示し、図10は各試料1〜4の金型と樹脂成形品の接触角、つまり静的撥水性を示している。
接触角θの初期値は、試料1である金型鋼(SKD11相当品)で78.1°、試料1の表面にNi−Pめっきを施したもので52.0°であった。両者の差は、材質の表面自由エネルギーの影響と考えられる。試料2のブラスト加工による非周期構造では、Ra=0.21μmよりも粗い加工は困難であったが、接触角θが17.9°向上した。2軸レーザー加工によってピッチL=0.4〜0.8μmの周期構造を有する試料3では、接触角θが初期値より+57.4度、2軸切削加工によってピッチL=10μmの周期構造を有する試料4では、接触角θが初期値より+43.7°と大きく向上した。
さらに、試料3、試料4の微細周期構造を有する金型を転写したプラスチック成形体の撥水性について説明する。
先ず、図10に示すように、試料3の金型を用いたプラスチック成形体では、接触角θが金型自体の接触角θ(=135.5°)より44.6°低下して、90.9°であった。これは流動性の低いバイオマスプラスチックのため、微細周期構造が十分に転写されなかったことによると考えられた。このことから、微細周期構造20のピッチLは0.8μmよりも大きいことが望ましいことが理解できる。
一方、図10に示すように、試料4、つまり本発明の実施形態に係る金型を用いたプラスチック成形体では、接触角θが金型自体の接触角θ(=95.7°)より14.4°大きくなり、110.1°であった。本実施形態では、加工前と比べると58.1°向上した。
FIG. 9 shows the measurement results of the surface roughness of each sample, and FIG. 10 shows the contact angle between the mold and the resin molded product of each sample 1-4, that is, static water repellency.
The initial value of the contact angle θ was 78.1 ° for the mold steel (equivalent to SKD11) as the sample 1 and 52.0 ° for the surface of the sample 1 subjected to Ni—P plating. The difference between the two is considered to be the effect of the surface free energy of the material. In the non-periodic structure obtained by blast processing of Sample 2, it was difficult to perform processing rougher than Ra = 0.21 μm, but the contact angle θ was improved by 17.9 °. Sample 3 having a periodic structure with a pitch L = 0.4 to 0.8 μm by biaxial laser processing has a periodic structure with a contact angle θ of +57.4 degrees from the initial value and a pitch L = 10 μm by biaxial cutting. In Sample 4, the contact angle θ was greatly improved to + 43.7 ° from the initial value.
Furthermore, the water repellency of the plastic molded body to which the mold having the fine periodic structure of Sample 3 and Sample 4 is transferred will be described.
First, as shown in FIG. 10, in the plastic molded body using the mold of Sample 3, the contact angle θ is 44.6 ° lower than the contact angle θ (= 135.5 °) of the mold itself, and 90 It was 9 °. This was thought to be because the fine periodic structure was not fully transferred due to the low-fluidity biomass plastic. From this, it can be understood that the pitch L of the fine periodic structure 20 is desirably larger than 0.8 μm.
On the other hand, as shown in FIG. 10, in the sample 4, that is, the plastic molded body using the mold according to the embodiment of the present invention, the contact angle θ is 14 from the contact angle θ (= 95.7 °) of the mold itself. Increased by 4 ° to 110.1 °. In this embodiment, it was improved 58.1 ° compared to before processing.

この実験結果からも分かるように、本実施形態の金型を利用して、撥水性を有するプラスチック成形体を製造することができたことを確認できた。   As can be seen from the experimental results, it was confirmed that a plastic molded body having water repellency could be produced using the mold of the present embodiment.

次に、本発明の金型を利用したプラスチック製品例について例示する。
[イムノセンサ]
イムノセンサは、マイクロ流路に1μLの血液サンプルを滴下すると、血球を分離した後に、電極上に固定化された抗体で被測定物質を補足し、電気化学反応によって血液サンプルを定量分析する。図11(A)に示すように、イムノセンサ100は、例えばマイクロ流路101と、血球分離膜102と、この血球分離膜102を支持するホルダー103と、電極部104と、電極部104を収容するハウジング105と、を備えている。
このイムノセンサ100では、マイクロ流路101と、ホルダー103と、電極部104のプラスチック部分や、ハウジング105の隔壁の内周面に血液が付着、停留することを防ぐ必要がある。この場合、既に試作済みの金型の所望の部分のみに本発明の微細周期構造20を追加工することで、これらの部材に撥水性を付与することができる。例えば撥水性が必要な部分に対応する入駒を金型に組み込んで、組込射出成形を行う。図11(A)中の斜線ハッチング部分が微細周期構造20を適用した部位であり、図11(B)中の△が微細周期構造20を成す四角錐21を模式的に表している。
このように、イムノセンサ100の各部品に微細周期構造20を適用して撥水性を付与することで、センサー感度の向上を図ることができる。
Next, an example of a plastic product using the mold of the present invention will be illustrated.
[Immunosensor]
When a 1 μL blood sample is dropped into the microchannel, the immunosensor separates the blood cells, supplements the substance to be measured with the antibody immobilized on the electrode, and quantitatively analyzes the blood sample by an electrochemical reaction. As shown in FIG. 11A, the immunosensor 100 accommodates, for example, a microchannel 101, a blood cell separation membrane 102, a holder 103 that supports the blood cell separation membrane 102, an electrode portion 104, and an electrode portion 104. And a housing 105.
In this immunosensor 100, it is necessary to prevent blood from adhering to and staying on the microchannel 101, the holder 103, the plastic portion of the electrode portion 104, and the inner peripheral surface of the partition wall of the housing 105. In this case, water repellent properties can be imparted to these members by additionally processing the fine periodic structure 20 of the present invention only on a desired portion of a mold that has already been prototyped. For example, an insertion piece corresponding to a portion requiring water repellency is incorporated into a mold and built-in injection molding is performed. A hatched portion in FIG. 11A is a portion to which the fine periodic structure 20 is applied, and Δ in FIG. 11B schematically represents a quadrangular pyramid 21 forming the fine periodic structure 20.
Thus, by applying the fine periodic structure 20 to each component of the immunosensor 100 to impart water repellency, the sensor sensitivity can be improved.

[本発明のその他の使用例]
新たなバイオセンサや化学分析方法が従来から提案されているが、原理的に素晴らしくても、コスト的に見合わず、実際に使用されない場合が多い。
本発明によって、金型表面の微細周期構造20で、検査チップの所望の部位だけに超撥水性を付与することができる。従って、本発明は、医療検査チップの高精度化に大きく寄与し、今まで利用することができなかった分析機技術を実現させることも可能である。例えば、現在(0.1ng/mL)よりも一桁高感度な10pg/mLオーダーの高精度分析技術が実現されれば、ガン,肝炎,感染症などの早期診断・正確さの向上を図ることができ、様々な診断技術が一気に実用化へと進むことが期待できる。
さらに本発明は、医療検査チップだけでなく、他の医療製品や産業製品へ応用できることは勿論である。
[Other use examples of the present invention]
New biosensors and chemical analysis methods have been proposed in the past, but even if they are excellent in principle, they are often not used in practice because they do not match the cost.
According to the present invention, super-water repellency can be imparted only to a desired portion of the inspection chip with the fine periodic structure 20 on the mold surface. Therefore, the present invention greatly contributes to the improvement of the accuracy of the medical test chip, and it is also possible to realize an analyzer technique that has not been used so far. For example, if high-precision analysis technology of the order of 10 pg / mL, which is an order of magnitude more sensitive than the current (0.1 ng / mL), is realized, early diagnosis and accuracy of cancer, hepatitis, infectious diseases, etc. will be improved. It can be expected that various diagnostic technologies will be put into practical use at once.
Further, the present invention can be applied not only to medical test chips but also to other medical products and industrial products.

以上詳述したが、本発明は発明の趣旨を逸脱しない範囲において様々な形態で実施できる。
本発明は、医療用具に用途を限定されるものではなく、その他の産業用に利用されてもよいことは勿論である。
また、本発明の微細周期構造を構成する微細構造物は、四角錐21、三角錐25、溝部27に限らず、その他の六角錐などの角錐体であってもよい。溝部27はその全長の一部が直線部として形成され、或いは全長の一部の延出方向が次第に湾曲したにカーブ部(図7中で二点鎖線で示すD2方向)を有するように構成されてもよいことは勿論である。
Although detailed above, the present invention can be implemented in various forms without departing from the spirit of the invention.
Of course, the application of the present invention is not limited to medical devices, and may be used for other industrial purposes.
The fine structure constituting the fine periodic structure of the present invention is not limited to the quadrangular pyramid 21, the triangular pyramid 25, and the groove 27, but may be a pyramid such as another hexagonal pyramid. The groove part 27 is configured such that a part of the entire length is formed as a straight part, or a curved part (D2 direction indicated by a two-dot chain line in FIG. 7) is formed in which the extending direction of a part of the entire length is gradually curved. Of course, it may be.

10,30,40,50,60 金型
10A 金型の内面
11 金型本体部
12 メッキ部
20 微細周期構造
21 四角錐
21B 溝底
25 三角錐
27 溝部
10, 30, 40, 50, 60 Mold 10A Mold inner surface 11 Mold body 12 Plated portion 20 Fine periodic structure 21 Square pyramid 21B Groove bottom 25 Triangular pyramid 27 Groove

Claims (9)

樹脂成形体の表面に撥水性領域を形成する金型であって、
金型本体部と、この金型本体部の内周面の少なくとも一部に形成されたメッキ部と、を備え、
上記メッキ部は、樹脂材が当接する接触面側に微細周期構造を有し、
上記微細周期構造はV字型の凹部が隙間無く連なる鋸歯状の断面に形成されており、
上記凹部は上記樹脂材が収容される型内側へ向けて拡開しており、
上記凹部の両肩間の寸法が、1.0μm以上で100μm未満であることを特徴とする、金型。
A mold for forming a water-repellent region on the surface of a resin molded body,
A mold body, and a plating part formed on at least a part of the inner peripheral surface of the mold body,
The plated portion has a fine periodic structure on the contact surface side with which the resin material abuts,
The fine periodic structure is formed in a sawtooth cross section in which V-shaped concave portions are continuous without gaps,
The concave portion is expanded toward the inside of the mold in which the resin material is accommodated,
The metal mold | die characterized by the dimension between the both shoulders of the said recessed part being 1.0 micrometer or more and less than 100 micrometers.
前記微細周期構造は複数の角錐体から構成されていることを特徴とする、請求項1に記載の金型。   The mold according to claim 1, wherein the fine periodic structure includes a plurality of pyramids. 前記微細周期構造は前記メッキ部に形成された複数の溝部から構成されており、
上記溝部は、V字型断面に形成されていると共に、少なくとも下記(A1)〜(A2)の何れかを有することを特徴とする、請求項1に記載の金型。
(A1)一方向に延びた直線部。
(A2)延出方向が次第に曲がるように延びたカーブ部。
The fine periodic structure is composed of a plurality of grooves formed in the plated portion,
2. The mold according to claim 1, wherein the groove is formed in a V-shaped cross section and has at least one of the following (A1) to (A2).
(A1) A straight line portion extending in one direction.
(A2) A curved portion extending so that the extending direction gradually bends.
樹脂成形体の表面に撥水性領域を形成する金型であって、
金型本体部と、この金型本体部の内周面の少なくとも一部に形成されたメッキ部と、を備え、
上記メッキ部は、樹脂材が当接する接触面側に微細周期構造を有し、
上記微細周期構造は、複数の四角錐が金型表面で当該表面に沿った第1の軸方向とこの第1の軸方向に交差し当該表面に沿った第2の軸方向に整列して形成され、
隣接する四角錐の頂点同士の間隔が1.0μm以上で100μm未満であることを特徴とする、金型。
A mold for forming a water-repellent region on the surface of a resin molded body,
A mold body, and a plating part formed on at least a part of the inner peripheral surface of the mold body,
The plated portion has a fine periodic structure on the contact surface side with which the resin material abuts,
The fine periodic structure is formed by arranging a plurality of quadrangular pyramids on the mold surface so as to intersect the first axial direction along the surface and the second axial direction along the surface intersecting the first axial direction. And
A mold characterized in that the interval between the apexes of adjacent quadrangular pyramids is 1.0 μm or more and less than 100 μm.
前記第1の軸方向に沿った四角錐の頂点同士の間隔である第1ピッチと前記第2の軸方向に沿った四角錐の頂点同士の間隔である第2ピッチとが、以下の(B1)〜(B3)の何れかに選定され、前記第1の軸方向と前記第2の軸方向とが成す角度αが以下の(C1)〜(C2)の何れかに選定されているこことを特徴とする、請求項4に記載の金型。
(B1)第1ピッチ=第2ピッチ
(B2)第1ピッチ>第2ピッチ
(B3)第1ピッチ<第2ピッチ
(C1)α=90°
(C2)α≠90°
The first pitch that is the interval between the apexes of the quadrangular pyramids along the first axial direction and the second pitch that is the interval between the apexes of the quadrangular pyramids along the second axial direction are the following (B1 ) To (B3), and the angle α formed by the first axial direction and the second axial direction is selected from any of the following (C1) to (C2) The mold according to claim 4, characterized in that:
(B1) 1st pitch = 2nd pitch (B2) 1st pitch> 2nd pitch (B3) 1st pitch <2nd pitch (C1) α = 90 °
(C2) α ≠ 90 °
被加工物の被加工面にメッキ部を形成する第1工程と、
上記メッキ部の上面を平坦にする第2工程と、
上記第2工程で平坦処理した表面を切削して微細周期構造を形成する第3工程と、を含むことを特徴とする、金型の製造方法。
A first step of forming a plated portion on the work surface of the work piece;
A second step of flattening the upper surface of the plated portion;
And a third step of forming a fine periodic structure by cutting the surface flattened in the second step.
さらに、前記メッキ部を熱処理する第4工程を含む、請求項6に記載の金型の製造方法。   Furthermore, the manufacturing method of the metal mold | die of Claim 6 including the 4th process of heat-processing the said plating part. 前記請求項1〜5の金型を用いて樹脂成形体を製造する成形体製造方法。   The molded object manufacturing method which manufactures a resin molded object using the metal mold | die of the said Claims 1-5. 前記請求項8の成形体製造方法によって製造された、樹脂成形体。   A resin molded body manufactured by the method for manufacturing a molded body according to claim 8.
JP2010211444A 2010-09-21 2010-09-21 Mold, method for manufacturing the same, method for manufacturing resin molded body using mold, and resin molded body manufactured by the manufacturing method Expired - Fee Related JP5779813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010211444A JP5779813B2 (en) 2010-09-21 2010-09-21 Mold, method for manufacturing the same, method for manufacturing resin molded body using mold, and resin molded body manufactured by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211444A JP5779813B2 (en) 2010-09-21 2010-09-21 Mold, method for manufacturing the same, method for manufacturing resin molded body using mold, and resin molded body manufactured by the manufacturing method

Publications (2)

Publication Number Publication Date
JP2012066417A true JP2012066417A (en) 2012-04-05
JP5779813B2 JP5779813B2 (en) 2015-09-16

Family

ID=46164277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211444A Expired - Fee Related JP5779813B2 (en) 2010-09-21 2010-09-21 Mold, method for manufacturing the same, method for manufacturing resin molded body using mold, and resin molded body manufactured by the manufacturing method

Country Status (1)

Country Link
JP (1) JP5779813B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031190A (en) * 2012-08-02 2014-02-20 Tokan Kogyo Co Ltd Container and molding die
JP2014113721A (en) * 2012-12-07 2014-06-26 Denki Kagaku Kogyo Kk Laminate sheet having water repellency and film for laminate
JP2014162123A (en) * 2013-02-26 2014-09-08 Shibaura Institute Of Technology In-mold adhesion molding method between dissimilar polymers, and manufacturing method of water proof product
EP2840121A1 (en) 2013-08-19 2015-02-25 Seiko Epson Corporation Ink composition, set of ink composition and ink container, ink container, and recording apparatus
WO2016017411A1 (en) * 2014-07-29 2016-02-04 コニカミノルタ株式会社 Molding die, molding die manufacturing method, micromixer, micromixer manufacturing method, microfluidic chip, and microfluidic chip manufacturing method
WO2016036001A1 (en) * 2014-09-01 2016-03-10 한양대학교 산학협력단 Super water repellent polymer hierarchical structure, heat exchanger having super water repellency, and manufacturing method therefor
JP2017177397A (en) * 2016-03-28 2017-10-05 株式会社吉野工業所 Resin-made injection molded article, and method for production thereof
EP3342832A1 (en) 2016-12-29 2018-07-04 Seiko Epson Corporation Ink composition, ink set, and ink jet recording device
JPWO2018008672A1 (en) * 2016-07-06 2019-04-18 ニプロ株式会社 Sample collection chip, sample preparation container and sample preparation kit
JP2019188616A (en) * 2018-04-18 2019-10-31 株式会社吉野工業所 Liquid repellent synthetic resin product
US10537044B2 (en) 2014-01-21 2020-01-14 Fujitsu Limited Heat dissipating component, manufacturing method for heat dissipating component, electronic device, manufacturing method for electronic device, integrated module, and information processing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172808A (en) * 2001-12-06 2003-06-20 Hitachi Maxell Ltd Super water-repellent plastic substrate and reflection preventive film
WO2007077737A1 (en) * 2005-12-28 2007-07-12 Zeon Corporation Mold part and molded flat-plate product
JP2009034894A (en) * 2007-08-01 2009-02-19 Meiki Co Ltd Mold for injection compression molding of light guide plate
JP2010058284A (en) * 2008-09-01 2010-03-18 Nippon Zeon Co Ltd Mold and method for producing optical tabular member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172808A (en) * 2001-12-06 2003-06-20 Hitachi Maxell Ltd Super water-repellent plastic substrate and reflection preventive film
WO2007077737A1 (en) * 2005-12-28 2007-07-12 Zeon Corporation Mold part and molded flat-plate product
JP2009034894A (en) * 2007-08-01 2009-02-19 Meiki Co Ltd Mold for injection compression molding of light guide plate
JP2010058284A (en) * 2008-09-01 2010-03-18 Nippon Zeon Co Ltd Mold and method for producing optical tabular member

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031190A (en) * 2012-08-02 2014-02-20 Tokan Kogyo Co Ltd Container and molding die
JP2014113721A (en) * 2012-12-07 2014-06-26 Denki Kagaku Kogyo Kk Laminate sheet having water repellency and film for laminate
JP2014162123A (en) * 2013-02-26 2014-09-08 Shibaura Institute Of Technology In-mold adhesion molding method between dissimilar polymers, and manufacturing method of water proof product
EP2840121A1 (en) 2013-08-19 2015-02-25 Seiko Epson Corporation Ink composition, set of ink composition and ink container, ink container, and recording apparatus
EP2839962A2 (en) 2013-08-19 2015-02-25 Seiko Epson Corporation Ink container
US10537044B2 (en) 2014-01-21 2020-01-14 Fujitsu Limited Heat dissipating component, manufacturing method for heat dissipating component, electronic device, manufacturing method for electronic device, integrated module, and information processing system
WO2016017411A1 (en) * 2014-07-29 2016-02-04 コニカミノルタ株式会社 Molding die, molding die manufacturing method, micromixer, micromixer manufacturing method, microfluidic chip, and microfluidic chip manufacturing method
JPWO2016017411A1 (en) * 2014-07-29 2017-04-27 コニカミノルタ株式会社 MOLD FOR MOLDING, MOLDING MOLD MANUFACTURING METHOD, MICROMIXER, MICROMIXER MANUFACTURING METHOD, MICROFLUID CHIP, AND MICROFLUID CHIP MANUFACTURING METHOD
US10503063B2 (en) 2014-09-01 2019-12-10 Industry-University Cooperation Foundation Hanyang University Super water repellent polymer hierarchical structure, heat exchanger having super water repellency, and manufacturing method therefor
WO2016036001A1 (en) * 2014-09-01 2016-03-10 한양대학교 산학협력단 Super water repellent polymer hierarchical structure, heat exchanger having super water repellency, and manufacturing method therefor
JP2017177397A (en) * 2016-03-28 2017-10-05 株式会社吉野工業所 Resin-made injection molded article, and method for production thereof
JPWO2018008672A1 (en) * 2016-07-06 2019-04-18 ニプロ株式会社 Sample collection chip, sample preparation container and sample preparation kit
US11448571B2 (en) 2016-07-06 2022-09-20 Nipro Corporation Specimen collection tip, specimen preparation container and specimen preparation kit
US10414931B2 (en) 2016-12-29 2019-09-17 Seiko Epson Corporation Ink composition, ink set, and ink jet recording device
EP3342832A1 (en) 2016-12-29 2018-07-04 Seiko Epson Corporation Ink composition, ink set, and ink jet recording device
JP2019188616A (en) * 2018-04-18 2019-10-31 株式会社吉野工業所 Liquid repellent synthetic resin product
JP7046693B2 (en) 2018-04-18 2022-04-04 株式会社吉野工業所 Manufacturing method of liquid-repellent synthetic resin products

Also Published As

Publication number Publication date
JP5779813B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5779813B2 (en) Mold, method for manufacturing the same, method for manufacturing resin molded body using mold, and resin molded body manufactured by the manufacturing method
Fang et al. Nanomanufacturing—perspective and applications
Durgun et al. Experimental investigation of FDM process for improvement of mechanical properties and production cost
US9908266B2 (en) Mold fabrication method for gecko-inspired adhesives
Wilson et al. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography
Yoshino et al. Engineering surface and development of a new DNA micro array chip
Zhang et al. Manufacturing microstructured tool inserts for the production of polymeric microfluidic devices
Matsumura et al. Micro machining for control of wettability with surface topography
Lantada et al. Toward mass production of microtextured microdevices: linking rapid prototyping with microinjection molding
To et al. Novel end-fly-cutting-servo system for deterministic generation of hierarchical micro–nanostructures
JP6796371B2 (en) Manufacturing method of master for micro flow path manufacturing
Li et al. Micro cutting of V-shaped cylindrical grating template for roller nano-imprint
Zhou et al. Development of polycrystalline Ni–P mold by heat treatment for glass microgroove forming
Cho et al. Facile fabrication of superhydrophobic poly (methyl methacrylate) substrates using ultrasonic imprinting
Moronuki Functional texture design and texturing processes
Yan et al. Manufacturing structured surface by combining microindentation and ultraprecision cutting
Cheng et al. Wetting characteristics of bare micro-patterned cyclic olefin copolymer surfaces fabricated by ultra-precision raster milling
Wu et al. Surface wettability analysis and preparation of hydrophobic microcylindrical arrays by μ-SLA 3D printing
Chen et al. A novel surface microtexture array generation approach using a fast-tool-feeding mechanism with elliptical cam drive
Chen et al. Key machining characteristics in ultrasonic vibration cutting of single crystal silicon for micro grooves
Romano et al. Effects of mould wear on hydrophobic polymer surfaces replicated using plasma-treated and laser-textured stainless steel inserts
Huovinen et al. Fabrication and quantitative roughness analysis of hierarchical multiscale polymer surface structures
Wu et al. Anisotropic wetting surfaces machined by diamond tool with tips microstructured by focused ion beam
He et al. A one-step hot-embossing process for fabricating a channel with superhydrophobic inner walls
Sharma et al. Quasi-superhydrophobic microscale two-dimensional phononic crystals of stainless steel 304

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150625

R150 Certificate of patent or registration of utility model

Ref document number: 5779813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees