JP2012065620A - Renewable energy combined utilization system - Google Patents

Renewable energy combined utilization system Download PDF

Info

Publication number
JP2012065620A
JP2012065620A JP2010214732A JP2010214732A JP2012065620A JP 2012065620 A JP2012065620 A JP 2012065620A JP 2010214732 A JP2010214732 A JP 2010214732A JP 2010214732 A JP2010214732 A JP 2010214732A JP 2012065620 A JP2012065620 A JP 2012065620A
Authority
JP
Japan
Prior art keywords
biomass
power generation
renewable energy
methane fermentation
fermentation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010214732A
Other languages
Japanese (ja)
Other versions
JP5573548B2 (en
Inventor
Koichi Ito
鉱一 伊藤
Yoko Umeda
陽子 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010214732A priority Critical patent/JP5573548B2/en
Publication of JP2012065620A publication Critical patent/JP2012065620A/en
Application granted granted Critical
Publication of JP5573548B2 publication Critical patent/JP5573548B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Photovoltaic Devices (AREA)
  • Mushroom Cultivation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a renewable energy combined utilization system capable of intensifying the production energy density and increasing the efficiency in power generation of a photovoltaic power generation apparatus by utilizing the ground in which the photovoltaic power generation apparatus is set in multiple stages.SOLUTION: The renewable energy combined utilization system includes: the photovoltaic power generation apparatus set on the ground; a biomass cultivation device set under the ground of the photovoltaic power generation apparatus; and a methane fermentation tank for methane-fermenting the biomass cultivated in the biomass cultivation device. In the system, hot drain water used for cooling a light receiving surface of the photovoltaic power generation apparatus is used as a heating source for the methane fermentation tank. Organic wastes including the biomass cultivated in the biomass cultivation device are methane-fermented in the methane fermentation tank, and hot drain water used as the heating source for the methane fermentation tank is fed to the biomass cultivation device.

Description

本発明は、太陽光発電装置の発電効率を向上させるとともに、太陽光発電装置の冷却に用いた温排水をメタン発酵槽の加熱源として用い、該メタン発酵槽においては太陽光発電装置の地下で栽培したバイオマスを嫌気性発酵させメタンを生成することで、再生可能エネルギーを複合利用するシステムに関する。   The present invention improves the power generation efficiency of the solar power generation device and uses the warm drainage used for cooling the solar power generation device as a heating source of the methane fermentation tank. The present invention relates to a system that uses renewable energy in combination by anaerobic fermentation of cultivated biomass to produce methane.

人間の社会的活動に伴って、発電所、工場、自動車等から大気中に排出される二酸化炭素は地球温暖化の主たる原因であることが知られており、近年、この二酸化炭素の排出量を削減することが地球環境の保護の大きな課題となっている。かかる背景に鑑み、二酸化炭素の排出を増大させることなくエネルギーを得る方法として、太陽光発電や風力発電、地熱発電、ミニ水力発電あるいは波力発電等の自然エネルギーを利用した発電や、バイオマスを活用した発電やメタン、メタノール等の燃料製造など、再生可能エネルギーに関する技術開発が行われている。   It is known that carbon dioxide discharged into the atmosphere from power plants, factories, automobiles, etc. due to human social activities is the main cause of global warming. Reduction is a major issue in protecting the global environment. In view of this background, power generation using natural energy such as solar power generation, wind power generation, geothermal power generation, mini hydroelectric power generation or wave power generation, and biomass are used as methods for obtaining energy without increasing carbon dioxide emissions. Technology development related to renewable energy, such as power generation and fuel production such as methane and methanol, is underway.

太陽光発電においては、温度が発電効率に大きな影響を与え、太陽電池の温度が上昇すると発電量が低下することが知られている。例えば、シリコン系の太陽電池の場合、温度が80℃になると、25℃の定格状態と比較して、光電変換効率が2割以上低下することがある。また、太陽電池の温度が急激に上昇すると、太陽光発電装置の構成部材に熱負荷が掛かり、太陽電池が劣化するという問題が生じる場合もある。そこで、太陽光発電装置を空冷方式や水冷方式で冷却することが提案されている(例えば、特許文献1〜3参照)。   In solar power generation, it is known that the temperature greatly affects the power generation efficiency, and the amount of power generation decreases as the temperature of the solar cell increases. For example, in the case of a silicon-based solar cell, when the temperature reaches 80 ° C., the photoelectric conversion efficiency may decrease by 20% or more compared to the rated state of 25 ° C. Moreover, when the temperature of a solar cell rises rapidly, the heat load will be applied to the structural member of a solar power generation device, and the problem that a solar cell deteriorates may arise. Therefore, it has been proposed to cool the solar power generation apparatus by an air cooling method or a water cooling method (for example, see Patent Documents 1 to 3).

一方、バイオマスの嫌気性発酵によってメタンを生成し、燃料化する方法も提案されている(例えば、特許文献4、5参照)。しかしながら、栽培で得られるバイオマスは、調達量が非常に大きく、太陽光や風力と比較すると安価という利点はあるが、単位土地(栽培)面積当たりの得られるエネルギーは、他のRPS電源に比べて著しく低いという問題点があり、エネルギー密度は太陽光の1/50〜1/100程度である。   On the other hand, a method of producing methane by anaerobic fermentation of biomass and converting it to fuel has also been proposed (see, for example, Patent Documents 4 and 5). However, the biomass obtained by cultivation has a very large procurement amount and has the advantage of being cheap compared to solar and wind power, but the energy obtained per unit land (cultivation) area is more than that of other RPS power sources. There is a problem that it is remarkably low, and the energy density is about 1/50 to 1/100 that of sunlight.

特許文献4に開示されている方法は、太陽光発電や風力発電により得られた電力を有効に利用して、バイオマスを発酵させメタンガスを製造する方法である。太陽光や風力といった自然エネルギーと、再生可能なエネルギーであるバイオマスを融合させるものであるが、太陽光あるいは風力による発電を実施する場所とバイオマスを入手する場所を同じ場所に限定するものではなく、また、単位面積から得られる再生可能なエネルギー総量の増大を図ろうとするものではない。   The method disclosed in Patent Document 4 is a method for producing methane gas by fermenting biomass by effectively using electric power obtained by solar power generation or wind power generation. Natural energy such as sunlight and wind power and biomass, which is renewable energy, are merged, but the place where solar or wind power generation is performed and the place where biomass is obtained are not limited to the same place, Moreover, it is not intended to increase the total amount of renewable energy obtained from the unit area.

特許文献5に開示されている方法は、分散電源の余剰エネルギーで水素を製造し、その水素と二酸化炭素とでメタンを製造する方法である。   The method disclosed in Patent Document 5 is a method for producing hydrogen with surplus energy of a distributed power source and producing methane with the hydrogen and carbon dioxide.

特開2002−170974号公報(請求項1)JP 2002-170974 A (Claim 1) 特開2004−259797号公報(段落[0003]〜[0005])JP 2004-259797 A (paragraphs [0003] to [0005]) 特開2004−259797号公報(請求項1〜6)JP 2004-259797 A (Claims 1 to 6) 特開2007−313427号公報(特許請求の範囲、段落[0001]等)JP 2007-313427 A (Claims, paragraph [0001], etc.) 特開2009−077457号公報(特許請求の範囲、段落[0008]等)JP 2009-077457 (Claims, paragraph [0008], etc.)

本発明は、太陽光発電装置を設置した土地を多元的に利用することで生産エネルギー密度を高め、かつ、太陽光発電装置の発電効率を上げることができる、再生可能エネルギー複合利用システムを提供することを目的とする。   The present invention provides a combined renewable energy utilization system that can increase the production energy density and increase the power generation efficiency of a solar power generation device by using the land on which the solar power generation device is installed in a multiple manner. For the purpose.

上記目的を達成するため、本発明は、下記の構成のシステムを提供する。
(1)地上に設置された太陽光発電装置と、
該太陽光発電装置の地下に設置されたバイオマス栽培装置と、
該バイオマス栽培装置で栽培したバイオマスをメタン発酵させるメタン発酵槽と、
を備え、
前記太陽光発電装置の受光面の冷却に用いた温排水をメタン発酵槽の加熱源として用いると共に、メタン発酵槽において前記バイオマス栽培装置で栽培されたバイオマスを含む有機性廃棄物をメタン発酵させ、メタン発酵槽の加熱源として用いた温排水をバイオマス栽培装置に給水してバイオマスの栽培に利用することを特徴とする再生可能エネルギー複合利用システム。
(2)バイオマスが、モヤシ、ウドまたはキノコであることを特徴とする上記(1)に記載の再生可能エネルギー複合利用システム。
(3)バイオマス栽培装置に照明灯を付設し、メタン発酵槽で生成する二酸化炭素をメタンガス精製装置で分離した後、該バイオマス栽培装置に供給することを特徴とする上記(1)に記載の再生可能エネルギー複合利用システム。
(4)バイオマスが、モヤシまたはウドであることを特徴とする上記(3)に記載の再生可能エネルギー複合利用システム。
(5)バイオマス以外の有機性廃棄物が、生ゴミ、もみ殻、稲藁、蓄糞、食品残渣、廃材、古紙、水産物加工残渣、建廃材、伐採木、下水汚泥、厨芥類、紙類、木、竹または草類であることを特徴とする上記(1)〜(4)のいずれかに記載の再生可能エネルギー複合利用システム。
(6)太陽光発電装置の発電電力を蓄電する蓄電池を設置し、蓄電した電力を温排水回収槽の保温ヒーターに供給することを特徴とする上記(1)〜(5)のいずれかに記載の再生可能エネルギー複合利用システム。
(7)太陽光発電装置はその受光面に水を散布する散水装置を備え、該散水装置は太陽光発電装置の受光面に設置された温度センサの検知温度に連動して散水装置の電源をオンオフできる制御装置が付設されていることを特徴とする上記(1)〜(6)のいずれかに記載の再生可能エネルギー複合利用システム。
(8)制御装置が、温度センサの検知温度が第1の所定温度を越えた場合に前記受光面への水の散布を開始し、温度センサの検知温度が第2の所定温度以下になった場合に水の散布を停止することを特徴とする上記(7)に記載の再生可能エネルギー複合利用システム。
In order to achieve the above object, the present invention provides a system having the following configuration.
(1) a photovoltaic power generator installed on the ground;
A biomass cultivation apparatus installed in the basement of the solar power generation apparatus;
A methane fermentation tank for methane fermentation of biomass cultivated by the biomass cultivation apparatus;
With
While using the warm wastewater used for cooling the light receiving surface of the solar power generation device as a heating source of the methane fermentation tank, methane fermentation of organic waste containing biomass cultivated in the biomass cultivation apparatus in the methane fermentation tank, A renewable energy combined utilization system characterized in that hot wastewater used as a heating source for a methane fermentation tank is supplied to a biomass cultivation apparatus and used for cultivation of biomass.
(2) The renewable energy composite utilization system according to (1) above, wherein the biomass is bean sprouts, udo or mushrooms.
(3) Regeneration as described in (1) above, wherein an illuminating lamp is attached to the biomass cultivation apparatus, carbon dioxide produced in the methane fermentation tank is separated by the methane gas purification apparatus, and then supplied to the biomass cultivation apparatus Possible energy combined use system.
(4) The combined renewable energy utilization system according to (3) above, wherein the biomass is sprouts or wood.
(5) Organic waste other than biomass is garbage, rice husks, rice straw, feces, food residues, waste materials, waste paper, marine products processing residues, building waste materials, felled trees, sewage sludge, moss, papers, The renewable energy composite utilization system according to any one of (1) to (4) above, which is a tree, bamboo, or grass.
(6) The battery according to any one of the above (1) to (5), wherein a storage battery for storing the generated power of the solar power generation apparatus is installed, and the stored power is supplied to a heat retaining heater of the warm drainage recovery tank. Renewable energy combined use system.
(7) The solar power generation device includes a watering device that sprays water on the light receiving surface, and the watering device powers the watering device in conjunction with the temperature detected by a temperature sensor installed on the light receiving surface of the solar power generation device. The renewable energy composite utilization system according to any one of (1) to (6) above, further comprising a control device that can be turned on and off.
(8) When the temperature detected by the temperature sensor exceeds the first predetermined temperature, the control device starts spraying water on the light receiving surface, and the temperature detected by the temperature sensor becomes equal to or lower than the second predetermined temperature. In this case, the spraying of water is stopped, and the combined renewable energy system according to (7) above.

本発明の再生可能エネルギー複合利用システムによれば、地上に設置した太陽光発電装置の受光面に水を散布し、受光面を冷却することで、太陽光発電装置の光電変換効率の低下を防止すると共に、冷却に用いた温排水を、地下で栽培したバイオマスをメタン発酵させるメタン発酵槽の加熱源として供給することにより、太陽光発電装置からは電力が、バイオマスからはバイオマス燃料が得られるため、単位面積から得られる再生可能エネルギーの総量を増大させることが可能となる。   According to the renewable energy composite utilization system of the present invention, water is sprayed on the light receiving surface of a solar power generation device installed on the ground, and the light receiving surface is cooled, thereby preventing a decrease in photoelectric conversion efficiency of the solar power generation device. In addition, by supplying the hot effluent used for cooling as a heating source for a methane fermentation tank for methane fermentation of biomass cultivated underground, electricity can be obtained from the solar power generation device and biomass fuel can be obtained from the biomass. The total amount of renewable energy obtained from the unit area can be increased.

また、メタン発酵槽に供給された後の温排水は、地下に設置されたバイオマス栽培装置に給水されて栽培に利用される他、バイオマス栽培装置の温度調節用の熱源として有効利用することができる。さらに、メタン発酵槽で生成する二酸化炭素は、地下に設置されたバイオマス栽培装置に照明灯を付設しておくことで、バイオマスの栽培促進用として有効利用される。   Moreover, the warm wastewater after being supplied to the methane fermentation tank can be effectively used as a heat source for adjusting the temperature of the biomass cultivation apparatus, in addition to being supplied to the biomass cultivation apparatus installed underground and used for cultivation. . Furthermore, carbon dioxide produced in a methane fermentation tank is effectively used for promoting cultivation of biomass by attaching an illumination lamp to a biomass cultivation apparatus installed underground.

本発明に係る再生可能エネルギー複合利用システムの一実施形態を説明するブロック図である。It is a block diagram explaining one Embodiment of the renewable energy composite utilization system which concerns on this invention. 太陽光発電装置とバイオマス栽培装置を説明する図である。It is a figure explaining a solar power generation device and a biomass cultivation apparatus. 太陽光発電装置周辺の各装置の接続を示す概略図である。It is the schematic which shows the connection of each apparatus of a solar power generation device periphery.

以下、本発明に係る再生可能エネルギー複合利用システムの好ましい実施形態を、図面を参照しながら詳細に説明する。   Hereinafter, a preferred embodiment of a combined renewable energy system according to the present invention will be described in detail with reference to the drawings.

図1は、再生可能エネルギー複合利用システムの一実施形態を示すブロック図である。図2は、同システムにおける太陽光発電装置とバイオマス栽培装置を示す説明図である。図3は、太陽光発電装置周辺の各装置の接続を示す概略図である。なお、図1〜図3において同一の装置に対しては同じ番号を付与している。   FIG. 1 is a block diagram showing an embodiment of a combined renewable energy utilization system. FIG. 2 is an explanatory diagram showing a photovoltaic power generation apparatus and a biomass cultivation apparatus in the system. FIG. 3 is a schematic diagram showing connection of each device around the solar power generation device. 1 to 3, the same numbers are assigned to the same devices.

図1、図2に示すように、本発明の再生可能エネルギー複合利用システムでは、地上に設置した太陽光発電装置10の地下に、バイオマス栽培装置60を設置する。太陽光発電装置10は、その受光面11に水を散布する散水装置12を備えており、該散水装置12により散布された水で太陽光発電装置10の受光面11が冷却される。冷却に用いられた温排水は、温排水回収槽20に回収され必要に応じて温度調節された後、メタン発酵槽30の加熱源として用いられる。   As shown in FIGS. 1 and 2, in the renewable energy composite utilization system of the present invention, a biomass cultivation apparatus 60 is installed in the basement of the solar power generation apparatus 10 installed on the ground. The solar power generation device 10 includes a watering device 12 that sprays water on the light receiving surface 11, and the light receiving surface 11 of the solar power generation device 10 is cooled by the water sprayed by the watering device 12. The warm drainage used for cooling is recovered in the warm drainage recovery tank 20 and adjusted as necessary, and then used as a heating source for the methane fermentation tank 30.

メタン発酵槽30においては、バイオマス栽培装置60で栽培したバイオマスを含む有機性廃棄物をメタン発酵する。メタン発酵槽30の加熱源として用いた温排水は、メタン発酵槽30より移送され、バイオマス栽培装置60に給水される。   In the methane fermentation tank 30, the organic waste containing the biomass cultivated by the biomass cultivation apparatus 60 is subjected to methane fermentation. The warm wastewater used as a heating source for the methane fermentation tank 30 is transferred from the methane fermentation tank 30 and supplied to the biomass cultivation apparatus 60.

バイオマス栽培装置60で栽培するバイオマスとしては、モヤシ、ウド、キノコ等の暗所栽培が可能なバイオマスが挙げられる。これらのバイオマスの栽培適温は20〜30℃である。バイオマス栽培装置60は、多段方式に形成しておくことで、単位土地(栽培)面積当たりの得られるエネルギーを向上させることができる。   Examples of biomass cultivated by the biomass cultivation apparatus 60 include biomass that can be cultivated in the dark, such as bean sprouts, udos, and mushrooms. The cultivation suitable temperature of these biomass is 20-30 degreeC. The biomass cultivation apparatus 60 can improve the energy obtained per unit land (cultivation) area by forming it in a multistage system.

太陽光発電装置10は、その上部に受光面11を冷却するための水を散布する散水装置12を設置し、その下部に散布した水を回収する樋状の温排水回収管13を設置するのが良い。散水装置12としては、図2に示したように、所定の間隔で複数の孔を開けた管を、個々の太陽光発電装置10の受光面11の上部に固定して配置し、受光面11上に水を流し出す方式の散水装置等が挙げられるが、特に限定されない。太陽光発電装置10の受光面11を冷却する水は、河川水、工業用水、地下水、水道水等を用いることができる。   The solar power generation device 10 is provided with a watering device 12 for spraying water for cooling the light receiving surface 11 at the upper portion, and a bowl-shaped hot drainage collecting pipe 13 for collecting the water sprayed at the lower portion. Is good. As the watering device 12, as shown in FIG. 2, a tube having a plurality of holes formed at predetermined intervals is fixed to the upper part of the light receiving surface 11 of each solar power generation device 10. Although the water sprinkling apparatus etc. of the system which pours water up are mentioned, it does not specifically limit. River water, industrial water, ground water, tap water, or the like can be used as water for cooling the light receiving surface 11 of the solar power generation device 10.

また、太陽光発電装置10の受光面11には、冷却水の無駄をなくすために温度センサ14を取り付けると良い。冷却水は、ポンプ1及び水供給配管2を介して、散水装置12に供給される。散水装置12には、ポンプ1の駆動を制御するための制御装置17が付設されていると、受光面11および温排水の温度調節が容易である。   Further, a temperature sensor 14 may be attached to the light receiving surface 11 of the solar power generation device 10 in order to eliminate waste of cooling water. The cooling water is supplied to the watering device 12 via the pump 1 and the water supply pipe 2. If the sprinkler 12 is provided with a control device 17 for controlling the drive of the pump 1, it is easy to adjust the temperature of the light receiving surface 11 and the hot drainage.

太陽光が照射されると太陽光発電装置10の受光面11の温度が上昇する。制御装置17は、受光面11に設定された温度センサ14により検知された受光面11の温度が、予め設定された温度を越えると、ポンプ1を駆動させ、散水装置12より水を受光面11に散布するように作動する。   When sunlight is irradiated, the temperature of the light receiving surface 11 of the solar power generation device 10 increases. When the temperature of the light receiving surface 11 detected by the temperature sensor 14 set on the light receiving surface 11 exceeds a preset temperature, the control device 17 drives the pump 1 to receive water from the water sprinkler 12 and the light receiving surface 11. Operates to spray.

即ち、図3に示すように、太陽光発電装置10を、双方向コンバータ16を介して系統電源19と接続し、双方向コンバータ16の出力側と系統電源19の接続点には、スイッチ18を介してポンプ1を接続する。スイッチ18の開閉は制御装置17により制御される。双方向コンバータ16の入力側には、蓄電池90を接続する。複数の太陽光発電装置10を設置する場合、それぞれの太陽光発電装置10に対応して蓄電池90を設置しても良いが、複数の太陽光発電装置10を共通の1台の蓄電池90と並列に接続するのがシステムをコンパクト化できるので好ましい。   That is, as shown in FIG. 3, the photovoltaic power generation apparatus 10 is connected to the system power supply 19 via the bidirectional converter 16, and a switch 18 is connected to the connection point between the output side of the bidirectional converter 16 and the system power supply 19. The pump 1 is connected via Opening and closing of the switch 18 is controlled by the control device 17. A storage battery 90 is connected to the input side of the bidirectional converter 16. When installing a plurality of photovoltaic power generation apparatuses 10, storage batteries 90 may be installed corresponding to each photovoltaic power generation apparatus 10, but the plurality of photovoltaic power generation apparatuses 10 are arranged in parallel with a single storage battery 90. It is preferable to connect to the system because the system can be made compact.

太陽光発電装置10の受光面11に設置した温度センサ14は、制御装置17との間に接続回路を有し、温度センサ14により検知された受光面11の温度が、予め設定された第1の所定温度を越えると、制御装置17はスイッチ18をオンにしてポンプ1を駆動させ散水装置12より水を受光面11に散布する。受光面11が冷却され、温度センサ14により検知された受光面11の温度が予め設定された第2の所定温度以下に低下すると、制御装置17はスイッチ18をオフにしポンプ1の駆動を停止する。   The temperature sensor 14 installed on the light receiving surface 11 of the solar power generation device 10 has a connection circuit between the control device 17 and the temperature of the light receiving surface 11 detected by the temperature sensor 14 is set in advance. When the predetermined temperature is exceeded, the control device 17 turns on the switch 18 to drive the pump 1 to spray water from the water sprinkler 12 onto the light receiving surface 11. When the light receiving surface 11 is cooled and the temperature of the light receiving surface 11 detected by the temperature sensor 14 falls below a second predetermined temperature set in advance, the control device 17 turns off the switch 18 and stops driving the pump 1. .

太陽光発電装置10により発電された電力は、蓄電池90に充電されるとともに、ポンプ1、制御装置17及び温排水回収槽20のヒーター電源として使用される。太陽光発電装置10が発電状態にあり、かつ蓄電池90が放電状態にあり、ポンプ1、制御装置17及び温排水回収槽20を駆動するのに必要な電力よりも余剰となる電力は、系統電源19に逆潮流される。   The electric power generated by the solar power generation device 10 is charged to the storage battery 90 and used as a heater power source for the pump 1, the control device 17, and the warm waste water collection tank 20. The solar power generation device 10 is in a power generation state, the storage battery 90 is in a discharge state, and the power surplus than that required to drive the pump 1, the control device 17, and the warm wastewater recovery tank 20 is a grid power supply. 19 is reversed.

太陽光発電装置10の受光面11に太陽光が照射され、発電が行われるとともに温度が上昇してくるが、受光面11に設置された温度センサ14が温度を検知し、前記第1の所定温度を越えた時点で制御装置17が作動しスイッチ18をオンにすることでポンプ1が駆動して散水装置12より受光面11に水が散布されるので、太陽光発電装置10の光電変換効率の低下が防止される。そして、受光面11が冷却され前記第2の所定温度以下になった時点で制御装置17によってスイッチ18がオフになりポンプ1の駆動が停止されるので、無駄な電力を使用することなく効率的に受光面11が冷却される。   The light receiving surface 11 of the solar power generation device 10 is irradiated with sunlight, and power is generated and the temperature rises. The temperature sensor 14 installed on the light receiving surface 11 detects the temperature, and the first predetermined When the temperature exceeds the temperature, the control device 17 is activated and the switch 18 is turned on so that the pump 1 is driven and water is sprayed from the water spray device 12 to the light receiving surface 11. Is prevented. Since the switch 18 is turned off by the control device 17 and the pump 1 is stopped when the light-receiving surface 11 is cooled to the second predetermined temperature or lower, it is efficient without using wasted power. The light receiving surface 11 is cooled.

なお、太陽光発電装置10ならびに蓄電池90は、双方向コンバータ16を介して系統電源19と接続されているので、気象状況によって太陽光発電装置10の出力が蓄電池90を充電するのに不十分な場合は、系統電源19の交流を直流に変換して蓄電池90の充電が行われる。太陽光発電装置10と双方向コンバータ16の間には、逆流防止ダイオード15が配置されている。また、太陽光発電装置10による発電のない夜間において、メタン発酵槽30を運転する場合で、蓄電池90の蓄電量が放電下限値に近く、蓄電池90からの放電で運転できない場合には系統電源19の電力により運転される。   In addition, since the solar power generation device 10 and the storage battery 90 are connected to the system power supply 19 via the bidirectional converter 16, the output of the solar power generation device 10 is insufficient to charge the storage battery 90 depending on weather conditions. In this case, the accumulator 90 is charged by converting the alternating current of the system power supply 19 into direct current. A backflow prevention diode 15 is arranged between the solar power generation device 10 and the bidirectional converter 16. Further, in the case where the methane fermentation tank 30 is operated at night when there is no power generation by the solar power generation device 10, when the storage amount of the storage battery 90 is close to the discharge lower limit value and cannot be operated by the discharge from the storage battery 90, the grid power supply 19 It is driven by the electric power.

メタン発酵槽30においては、バイオマス栽培装置60で栽培したバイオマスを、混合槽70に移送し、必要に応じて生ゴミ、もみ殻、稲藁、蓄糞、食品残渣、廃材、古紙、水産物加工残渣、建廃材、伐採木、下水汚泥、厨芥類、紙類、木、竹または草類等の有機性廃棄物と混合した後、粉砕機80で粉砕してメタン発酵槽30に供給する。   In the methane fermentation tank 30, the biomass cultivated by the biomass cultivation apparatus 60 is transferred to the mixing tank 70, and if necessary, raw garbage, rice husk, rice straw, feces, food residue, waste material, waste paper, seafood processing residue Then, after mixing with organic waste such as building waste materials, felled trees, sewage sludge, moss, paper, wood, bamboo or grass, it is pulverized by a pulverizer 80 and supplied to the methane fermentation tank 30.

メタン発酵槽30では、従来公知の製造法を任意に適用することができる。例えば、混合槽70において、有機性廃棄物に水を加え、水分80%〜90%程度の濃度に希釈した後、粉砕機80で粉砕したものを、メタン発酵槽30に導入し発酵温度37〜55℃でメタン発酵させる方法が挙げられる。   In the methane fermentation tank 30, a conventionally known manufacturing method can be arbitrarily applied. For example, in the mixing tank 70, water is added to organic waste, diluted to a concentration of about 80% to 90% water, and then pulverized by the pulverizer 80 is introduced into the methane fermentation tank 30 and the fermentation temperature 37- A method of methane fermentation at 55 ° C is mentioned.

メタン発酵槽30の加熱源として用いる温排水は、温排水回収槽20において、温度が発酵温度の近傍に設定される。所定の温度に達しない場合は、ヒーター等の加熱手段を用いて加温しておき、ヒーター電源は蓄電池90より供給する。所定の温度に調節された温排水は、温排水供給配管3及びポンプ21を介して、メタン発酵槽30に導入され、メタン発酵の後、温排水供給配管4を介してバイオマス栽培装置60に供給され、バイオマスの加水に用いられる。   The temperature of the warm wastewater used as a heating source for the methane fermentation tank 30 is set in the vicinity of the fermentation temperature in the warm drainage recovery tank 20. If the temperature does not reach the predetermined temperature, it is heated using a heating means such as a heater, and the heater power is supplied from the storage battery 90. The warm drainage adjusted to a predetermined temperature is introduced into the methane fermentation tank 30 via the warm drainage supply pipe 3 and the pump 21 and supplied to the biomass cultivation apparatus 60 via the warm drainage supply pipe 4 after the methane fermentation. And used for biomass hydration.

また、温排水回収槽20に貯槽された温排水は、温排水供給配管5を介してバイオマス栽培装置60に供給され、装置の温度調節用の熱源としても利用されるので、省エネルギーである。   Moreover, the warm wastewater stored in the warm drainage recovery tank 20 is supplied to the biomass cultivation apparatus 60 via the warm drainage supply pipe 5 and is also used as a heat source for adjusting the temperature of the apparatus, which is energy saving.

メタン発酵槽30から排出されるメタンガスは、メタンガス精製装置40において他の副生ガス(二酸化炭素等)と分離される。メタンガス精製装置40としては、例えば、メタン発酵槽30の排ガスを0.55〜2.0MPaに加圧する圧縮機と、加圧された排ガスと水とを接触させて該水に二酸化炭素を溶解させるための吸収塔と、該吸収塔で二酸化炭素が溶解された水を大気圧状態に戻す減圧タンクとを有するものが挙げられる。吸収塔の内部を加圧条件とすることで、大気圧下における飽和濃度以上の二酸化炭素を水に溶解させ、排ガスからの二酸化炭素を除去し、高純度のメタンガスを吸収塔から排出させる。また、減圧タンクで吸収塔からの排水を大気圧状態に減圧し、過飽和に溶解している二酸化炭素の過飽和分を放出させた後の飽和炭酸水を排出できるように形成されているメタンガス精製装置を用いることができる。   The methane gas discharged from the methane fermentation tank 30 is separated from other by-product gases (such as carbon dioxide) in the methane gas purification device 40. As the methane gas purification apparatus 40, for example, a compressor that pressurizes the exhaust gas of the methane fermentation tank 30 to 0.55 to 2.0 MPa, and the pressurized exhaust gas and water are brought into contact with each other to dissolve carbon dioxide in the water. And a decompression tank for returning water in which carbon dioxide is dissolved in the absorption tower to an atmospheric pressure state. By setting the inside of the absorption tower to a pressurized condition, carbon dioxide having a saturation concentration or higher under atmospheric pressure is dissolved in water, carbon dioxide from the exhaust gas is removed, and high-purity methane gas is discharged from the absorption tower. In addition, the methane gas purifier is configured to discharge the saturated carbonated water after discharging the supersaturated portion of carbon dioxide dissolved in supersaturation by depressurizing the waste water from the absorption tower to atmospheric pressure with a decompression tank. Can be used.

吸収塔から排出されるガスは、高純度に精製されたメタンガスであるので、除湿器等を通過させて乾燥した後、メタンガスホルダー50に貯留して燃料として利用することができる。   Since the gas discharged from the absorption tower is methane gas purified with high purity, it can be passed through a dehumidifier or the like and dried, and then stored in the methane gas holder 50 and used as fuel.

減圧タンクで大気圧状態に戻されることで、過度に溶解されていた二酸化炭素が放出されるので、二酸化炭素ガス及び水に溶解された二酸化炭素(炭酸水)は、配管6を介してバイオマス栽培装置60に供給される。バイオマス栽培装置60で栽培されるバイオマスがウドやモヤシのような植物の場合は、バイオマス栽培装置60に照明灯を付設し、微弱な照明もしくは短時間の照明もしくはフラッシュ照明などを併用することで、二酸化炭素の供給により栽培が促進され、この際メタン発酵槽30で発生した二酸化炭素は、バイオマスに固定化されるため二酸化炭素量が増加しない。   Since the carbon dioxide that has been dissolved excessively is released by returning to the atmospheric pressure state in the decompression tank, the carbon dioxide dissolved in the carbon dioxide gas and water (carbonated water) is cultivated through the pipe 6 Supplied to the device 60. When the biomass cultivated by the biomass cultivation apparatus 60 is a plant such as Udo or sprout, an illumination lamp is attached to the biomass cultivation apparatus 60, and a weak illumination or a short-time illumination or a flash illumination is used in combination. Cultivation is promoted by the supply of carbon dioxide. At this time, carbon dioxide generated in the methane fermentation tank 30 is immobilized on biomass, so the amount of carbon dioxide does not increase.

以上、本発明によれば、太陽光発電装置の発電電力の一部を利用して、太陽光発電装置の受光面の冷却を行うことにより発電効率の向上が図れ、同時にバイオマスを栽培してメタン発酵させ、生成するメタンをバイオマス燃料として活用できるので、単位面積から得られる再生可能エネルギーの総量を増大させることができる。また、メタン発酵槽の加温熱源として温排水を回収して利用できるので、省エネルギーである。メタン発酵槽で発生する二酸化炭素は、バイオマス栽培装置に戻してバイオマスの栽培に利用できるので、二酸化炭素の発生をゼロにできる。   As described above, according to the present invention, it is possible to improve the power generation efficiency by cooling the light receiving surface of the solar power generation device by using a part of the generated power of the solar power generation device. Since the methane produced by fermentation can be used as biomass fuel, the total amount of renewable energy obtained from the unit area can be increased. Moreover, since the warm waste water can be recovered and used as a heating heat source of the methane fermentation tank, it is energy saving. Since carbon dioxide generated in the methane fermenter can be returned to the biomass cultivation apparatus and used for cultivation of biomass, generation of carbon dioxide can be made zero.

本発明の再生可能エネルギー複合利用システムによれば、バイオマスの栽培と太陽光発電を同じ場所で同時に実施することができ、しかも太陽光発電装置の受光面の冷却により発電効率の向上も図れるので、単位面積から得られる再生可能エネルギーの総量を増大させるシステムとして極めて有用である。   According to the renewable energy composite utilization system of the present invention, biomass cultivation and solar power generation can be performed simultaneously in the same place, and the power generation efficiency can be improved by cooling the light receiving surface of the solar power generation device. It is extremely useful as a system that increases the total amount of renewable energy obtained from a unit area.

1 ポンプ
2 水供給配管
3、4、5 温排水供給配管
6 配管
10 太陽光発電装置
11 受光面
12 散水装置
13 温排水回収管
14 温度センサ
15 逆流防止ダイオード
16 双方向コンバータ
17 制御装置
18 スイッチ
19 系統電源
20 温排水回収槽
21 ポンプ
30 メタン発酵槽
40 メタンガス精製装置
50 メタンガスホルダー
60 バイオマス栽培装置
70 混合槽
80 粉砕機
90 蓄電池
DESCRIPTION OF SYMBOLS 1 Pump 2 Water supply piping 3, 4, 5 Warm drainage supply piping 6 Piping 10 Photovoltaic power generation device 11 Light-receiving surface 12 Sprinkling device 13 Warm drainage collection tube 14 Temperature sensor 15 Backflow prevention diode 16 Bidirectional converter 17 Controller 18 Switch 19 System power supply 20 Warm waste water recovery tank 21 Pump 30 Methane fermentation tank 40 Methane gas purification apparatus 50 Methane gas holder 60 Biomass cultivation apparatus 70 Mixing tank 80 Crusher 90 Storage battery

Claims (8)

地上に設置された太陽光発電装置と、
該太陽光発電装置の地下に設置されたバイオマス栽培装置と、
該バイオマス栽培装置で栽培したバイオマスをメタン発酵させるメタン発酵槽と、
を備え、
前記太陽光発電装置の受光面の冷却に用いた温排水をメタン発酵槽の加熱源として用いると共に、メタン発酵槽において前記バイオマス栽培装置で栽培されたバイオマスを含む有機性廃棄物をメタン発酵させ、メタン発酵槽の加熱源として用いた温排水をバイオマス栽培装置に給水してバイオマスの栽培に利用することを特徴とする再生可能エネルギー複合利用システム。
A solar power generator installed on the ground;
A biomass cultivation apparatus installed in the basement of the solar power generation apparatus;
A methane fermentation tank for methane fermentation of biomass cultivated by the biomass cultivation apparatus;
With
While using the warm wastewater used for cooling the light receiving surface of the solar power generation device as a heating source of the methane fermentation tank, methane fermentation of organic waste containing biomass cultivated in the biomass cultivation apparatus in the methane fermentation tank, A renewable energy combined utilization system characterized in that hot wastewater used as a heating source for a methane fermentation tank is supplied to a biomass cultivation apparatus and used for cultivation of biomass.
バイオマスが、モヤシ、ウドまたはキノコであることを特徴とする請求項1に記載の再生可能エネルギー複合利用システム。   The renewable energy composite utilization system according to claim 1, wherein the biomass is sprout, udo or mushroom. バイオマス栽培装置に照明灯を付設し、メタン発酵槽で生成する二酸化炭素をメタンガス精製装置で分離した後、該バイオマス栽培装置に供給することを特徴とする請求項1に記載の再生可能エネルギー複合利用システム。   2. The combined use of renewable energy according to claim 1, wherein the biomass cultivation apparatus is provided with an illuminating lamp, and carbon dioxide produced in the methane fermentation tank is separated by the methane gas purification apparatus and then supplied to the biomass cultivation apparatus. system. バイオマスが、モヤシまたはウドであることを特徴とする請求項3に記載の再生可能エネルギー複合利用システム。   The renewable energy composite utilization system according to claim 3, wherein the biomass is sprout or Udo. バイオマス以外の有機性廃棄物が、生ゴミ、もみ殻、稲藁、蓄糞、食品残渣、廃材、古紙、水産物加工残渣、建廃材、伐採木、下水汚泥、厨芥類、紙類、木、竹または草類であることを特徴とする請求項1〜4のいずれかに記載の再生可能エネルギー複合利用システム。   Organic waste other than biomass is raw garbage, rice husk, rice straw, feces, food residues, waste materials, waste paper, marine product processing residues, building waste materials, felled trees, sewage sludge, moss, paper, wood, bamboo Or it is grass, The renewable energy composite utilization system in any one of Claims 1-4 characterized by the above-mentioned. 太陽光発電装置の発電電力を蓄電する蓄電池を設置し、蓄電した電力を温排水回収槽の保温ヒーターに供給することを特徴とする請求項1〜5のいずれかに記載の再生可能エネルギー複合利用システム。   6. A combined use of renewable energy according to any one of claims 1 to 5, wherein a storage battery for storing the generated power of the solar power generation apparatus is installed, and the stored power is supplied to a heat retaining heater of the warm drainage recovery tank. system. 太陽光発電装置はその受光面に水を散布する散水装置を備え、該散水装置は太陽光発電装置の受光面に設置された温度センサの検知温度に連動して散水装置の電源をオンオフできる制御装置が付設されていることを特徴とする請求項1〜6のいずれかに記載の再生可能エネルギー複合利用システム。   The solar power generation device is provided with a watering device that sprays water on the light receiving surface thereof, and the watering device is capable of turning on / off the watering device in conjunction with the temperature detected by the temperature sensor installed on the light receiving surface of the solar power generation device. An apparatus is attached, The combined renewable energy utilization system according to any one of claims 1 to 6. 制御装置が、温度センサの検知温度が第1の所定温度を越えた場合に前記受光面への水の散布を開始し、温度センサの検知温度が第2の所定温度以下になった場合に水の散布を停止することを特徴とする請求項7に記載の再生可能エネルギー複合利用システム。
The control device starts spraying water on the light receiving surface when the temperature detected by the temperature sensor exceeds the first predetermined temperature, and water is detected when the temperature detected by the temperature sensor falls below the second predetermined temperature. The renewable energy composite utilization system according to claim 7, wherein spraying of the fuel is stopped.
JP2010214732A 2010-09-27 2010-09-27 Renewable energy combined use system Expired - Fee Related JP5573548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010214732A JP5573548B2 (en) 2010-09-27 2010-09-27 Renewable energy combined use system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010214732A JP5573548B2 (en) 2010-09-27 2010-09-27 Renewable energy combined use system

Publications (2)

Publication Number Publication Date
JP2012065620A true JP2012065620A (en) 2012-04-05
JP5573548B2 JP5573548B2 (en) 2014-08-20

Family

ID=46163663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214732A Expired - Fee Related JP5573548B2 (en) 2010-09-27 2010-09-27 Renewable energy combined use system

Country Status (1)

Country Link
JP (1) JP5573548B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308347A (en) * 2021-07-08 2021-08-27 毅康科技有限公司 Device and method for preparing biogas through combined fermentation of various biomasses

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810790A (en) * 1994-07-05 1996-01-16 Seiichi Kitabayashi Device and method for taking out gaseous methane
JP2003199377A (en) * 2001-12-27 2003-07-11 Panahome Corp Solarlight power generator
JP2006212524A (en) * 2005-02-02 2006-08-17 Mitsubishi Heavy Ind Ltd Composite incineration system and method for waste
JP2006280252A (en) * 2005-03-31 2006-10-19 Koken Boring Mach Co Ltd Underground agricultural factory system
JP2008043314A (en) * 2006-08-10 2008-02-28 Fujiwara Sangyo Kk Method for increasing yield of plant as energy resource

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810790A (en) * 1994-07-05 1996-01-16 Seiichi Kitabayashi Device and method for taking out gaseous methane
JP2003199377A (en) * 2001-12-27 2003-07-11 Panahome Corp Solarlight power generator
JP2006212524A (en) * 2005-02-02 2006-08-17 Mitsubishi Heavy Ind Ltd Composite incineration system and method for waste
JP2006280252A (en) * 2005-03-31 2006-10-19 Koken Boring Mach Co Ltd Underground agricultural factory system
JP2008043314A (en) * 2006-08-10 2008-02-28 Fujiwara Sangyo Kk Method for increasing yield of plant as energy resource

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308347A (en) * 2021-07-08 2021-08-27 毅康科技有限公司 Device and method for preparing biogas through combined fermentation of various biomasses
CN113308347B (en) * 2021-07-08 2024-02-27 毅康科技有限公司 Device and method for preparing biogas by multi-type biomass combined fermentation

Also Published As

Publication number Publication date
JP5573548B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
US20090301399A1 (en) Fish and plant factory
WO2006053020A3 (en) Slurry dewatering and conversion of biosolids to a renewable fuel
KR101194168B1 (en) Heating method and heating plant for agricultural facility using biogas and regenerator
CN110465534A (en) A kind of comprehensive energy for farm utilizes system
JP5737567B2 (en) Renewable energy multistage utilization system
CN103427468A (en) Method and system of utilizing multiple energy sources to prepare hydrogen and supply green energy source
JP5573548B2 (en) Renewable energy combined use system
CN201620045U (en) Emergency water supply system based on wind-solar hybrid
CN203361690U (en) Solar bio-toilet
CN203360202U (en) Tower type concentrating solar photo-thermal energy storage and power generation system for sea water desalination, salt manufacturing and mudflat aquaculture
JP2011240238A (en) Anaerobic bioreactor
CN110905660A (en) Multi-energy complementary recycling system for facility agriculture and application method
CN101956577A (en) New energy moderate temperate water steam power generating system
CN205663257U (en) Photovoltaic ecological economics building
CN102373974A (en) Solar and biomass combined power generation system
CN202197231U (en) Methane-photovoltaic complementation combined energy system
US20160002549A1 (en) System and method for converting food waste into fuel
CN212106052U (en) A complementary cyclic utilization system of multipotency for facility agriculture
CN202500180U (en) Solar water preparation device
WO2012131414A1 (en) Zero carbon dioxide and heat emission integrated system of power generation from natural/renewable energy sources, organic waste reclamation and commodities production and method of conduction
RU2014120936A (en) DEVICE AND METHOD FOR PRODUCING ELECTRIC POWER AND TREATED WATER
DK2486169T3 (en) System for clean energy
CN201763402U (en) Solar-biomass combined generating system
TWM480597U (en) Composite renewable energy supply system
TWM577017U (en) Biomass energy power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees