JP2012061836A - Method of manufacturing surface shape transfer resin sheet - Google Patents

Method of manufacturing surface shape transfer resin sheet Download PDF

Info

Publication number
JP2012061836A
JP2012061836A JP2010258091A JP2010258091A JP2012061836A JP 2012061836 A JP2012061836 A JP 2012061836A JP 2010258091 A JP2010258091 A JP 2010258091A JP 2010258091 A JP2010258091 A JP 2010258091A JP 2012061836 A JP2012061836 A JP 2012061836A
Authority
JP
Japan
Prior art keywords
resin sheet
roll
shape
resin
transfer mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010258091A
Other languages
Japanese (ja)
Inventor
Toyohiro Hamamatsu
豊博 濱松
Maki Kawamura
麻貴 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010258091A priority Critical patent/JP2012061836A/en
Priority to PCT/JP2011/067980 priority patent/WO2012023447A1/en
Priority to TW100128945A priority patent/TW201210796A/en
Publication of JP2012061836A publication Critical patent/JP2012061836A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/222Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9155Pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface shape transfer resin sheet manufacturing method that can accurately transfer a transfer pattern to the surface of a resin sheet and, in addition, can prevent the occurrence of a winding phenomenon at a shaped roll.SOLUTION: A resin sheet 53 is formed by continuously extruding a resin in a heat-melting state from a die 58, and the resin sheet 53 is inserted between an upper roll 63 and an intermediate roll 64. Next, the resin sheet 53 is conveyed while being firmly attached to the intermediate roll 64, and the conveyed resin sheet 53 is inserted between the intermediate roll 64 and a lower roll 65. Upon insertion between the intermediate roll 64 and the lower roll 65, an intaglio transfer pattern 69 formed on the lower roll 65 is transferred to the surface 76 of the resin sheet 53. As the lower roll 65, a shaped roll is used, which is equipped with the intaglio transfer pattern 69 having the surface with a wetting tension of ≤35 mN/m measured conforming to JIS K6768.

Description

本発明は、光拡散板や光学フィルム用途などに利用することができる表面形状転写樹脂シートの製造方法に関する。   The present invention relates to a method for producing a surface shape transfer resin sheet that can be used for applications such as light diffusion plates and optical films.

表面形状転写樹脂シートは、溶融混練された樹脂をダイから連続的に押し出して樹脂シートを成形し、当該樹脂シートに転写型の凹凸形状を転写することによって得られるシートである。
表面形状転写樹脂シートの製造方法として、例えば、ダイから連続的に押し出された連続樹脂シートを、第一押圧ロールと第二押圧ロールとの間に挟み込む工程と、第二押圧ロールの表面に密着させたまま搬送する工程と、第二押圧ロールと第三押圧ロールとの間に挟み込む工程とを含む、製造方法が提案されている(例えば、特許文献1参照)。この方法では、第三ロールに転写型が装着されており、第二押圧ロールと第三押圧ロールとの間に樹脂シートを挟みこんだ際、樹脂シートの表面に凹凸形状が転写される。
The surface shape transfer resin sheet is a sheet obtained by continuously extruding a melt-kneaded resin from a die to form a resin sheet, and transferring the uneven shape of the transfer mold to the resin sheet.
As a method for producing a surface shape transfer resin sheet, for example, a step of sandwiching a continuous resin sheet continuously extruded from a die between a first pressing roll and a second pressing roll, and adhesion to the surface of the second pressing roll There has been proposed a manufacturing method including a step of conveying the material while it is left and a step of sandwiching between a second pressing roll and a third pressing roll (see, for example, Patent Document 1). In this method, a transfer mold is attached to the third roll, and when the resin sheet is sandwiched between the second pressing roll and the third pressing roll, the uneven shape is transferred to the surface of the resin sheet.

特開2009−220555号公報JP 2009-220555 A

表面形状転写樹脂シートの用途として、液晶表示装置のバックライト装置に組み込まれる光拡散板や光学フィルムとしての使用用途などが普及しつつある。その場合、樹脂シートを製造する際に凹凸形状が精度よく転写されていないと(転写率が高くないと)、光拡散板および光学フィルムに設計どおりの光学特性を付与することが困難である。そのため、近年では、転写型を精度よく樹脂シートに転写させるための手法の確立が望まれている。   As a use of the surface shape transfer resin sheet, a use as a light diffusion plate or an optical film incorporated in a backlight device of a liquid crystal display device is becoming widespread. In this case, if the uneven shape is not accurately transferred when the resin sheet is manufactured (if the transfer rate is not high), it is difficult to impart optical characteristics as designed to the light diffusion plate and the optical film. Therefore, in recent years, establishment of a technique for accurately transferring a transfer mold onto a resin sheet is desired.

そのような手法として、例えば、転写型が装着されたロール温度を高くする手法が考えられる。この手法では、ロールから樹脂シートに伝わる熱により樹脂シートの流動性を高めることができ、転写型の溝部の先端にまで樹脂を入り込ませることができるので、転写率の向上が期待できる。
しかしながら、ロール温度を高くし過ぎると、樹脂シートがロール表面に貼り付く「トラレ現象」が発生し易くなる。その結果、形状転写後の樹脂シートの表面に、その一部が盛り上がって形成される「タックマーク」が発生するという不具合がある。
As such a method, for example, a method of increasing the temperature of the roll on which the transfer mold is mounted can be considered. In this method, the fluidity of the resin sheet can be increased by the heat transmitted from the roll to the resin sheet, and the resin can be introduced into the tip of the groove portion of the transfer mold, so that an improvement in transfer rate can be expected.
However, if the roll temperature is too high, a “trailing phenomenon” in which the resin sheet sticks to the roll surface tends to occur. As a result, there is a problem that a “tack mark” is formed on the surface of the resin sheet after the shape transfer.

本発明の目的は、樹脂シートの表面に転写型を精度よく転写することができ、しかも形状ロールにおけるトラレ現象の発生を防止することができる表面形状転写樹脂シートの製造方法を提供することである。   An object of the present invention is to provide a method for producing a surface shape transfer resin sheet that can accurately transfer a transfer mold to the surface of a resin sheet and can prevent the occurrence of a trail phenomenon in a shape roll. .

上記目的を達成するための本発明の表面形状転写樹脂シートの製造方法は、樹脂を加熱溶融状態でダイから連続的に押し出して連続樹脂シートを形成する工程と、JIS K 6768に準拠して測定される濡れ張力が35mN/m以下の表面を有する転写型を有する形状ロールを用いて、当該連続樹脂シートの表面に前記転写型の前記表面を押し当てることにより、前記転写型の形状を転写する工程とを含むことを特徴としている。   The method for producing a surface shape transfer resin sheet of the present invention for achieving the above object comprises a step of forming a continuous resin sheet by continuously extruding a resin from a die in a heated and melted state, and measuring in accordance with JIS K 6768 The shape of the transfer mold is transferred by pressing the surface of the transfer mold against the surface of the continuous resin sheet using a shape roll having a transfer mold having a surface with a wetting tension of 35 mN / m or less. And a process.

また、本発明の表面形状転写樹脂シートの製造方法では、前記形状ロールとして、前記表面に対して有機ポリシロキサン処理が施されている転写型を有する形状ロールを用いることが好適である。
また、本発明の表面形状転写樹脂シートの製造方法では、前記形状ロールとして、前記有機ポリシロキサン処理後、前記表面が洗浄された転写型を有する形状ロールを用いることが好適である。
Moreover, in the manufacturing method of the surface shape transfer resin sheet of this invention, it is suitable to use the shape roll which has the transfer type | mold in which the organic polysiloxane process is performed with respect to the said surface as said shape roll.
Moreover, in the manufacturing method of the surface shape transfer resin sheet of this invention, it is suitable to use the shape roll which has the transfer type by which the said surface was wash | cleaned after the said organic polysiloxane process as said shape roll.

さらに、本発明の表面形状転写樹脂シートの製造方法では、前記樹脂のガラス転移温度をTg(℃)、転写後の前記連続樹脂シートの厚さをT(mm)として表したときに、前記形状ロールの表面温度がTg−30(℃)〜Tg+50(℃)であり、前記連続樹脂シートの搬送速度が0.2/T(m/min)〜50/T(m/min)であり、前記形状ロールに接触する前の前記連続樹脂シートの表面温度がTg+50(℃)〜Tg+160(℃)であることが好適である。   Furthermore, in the method for producing a surface shape transfer resin sheet of the present invention, when the glass transition temperature of the resin is expressed as Tg (° C.) and the thickness of the continuous resin sheet after transfer is expressed as T (mm), the shape The surface temperature of the roll is Tg-30 (° C.) to Tg + 50 (° C.), the transport speed of the continuous resin sheet is 0.2 / T (m / min) to 50 / T (m / min), It is preferable that the surface temperature of the continuous resin sheet before contacting the shape roll is Tg + 50 (° C.) to Tg + 160 (° C.).

本発明の表面形状転写樹脂シートの製造方法によれば、転写型の表面(連続樹脂シートとの接触面)の濡れ張力が35mN/m以下であるので、形状ロールの温度が高くなっても、転写型に樹脂シートが貼り付く「トラレ現象」の発生を防止することができる。そのため、樹脂シートの搬送速度、樹脂シートの表面温度などの製造条件とともに、形状ロールの温度を適切にコントロールすることにより、転写型の凹部に樹脂を良好に入り込ませることができる。そのため、樹脂シートの表面に転写型を精度よく転写することができる。その結果、この製造方法により得られる樹脂シートを液晶表示装置の光拡散板や光学フィルムとして用いれば、優れた光学特性を発現することができる。   According to the method for producing a surface shape transfer resin sheet of the present invention, since the wetting tension of the surface of the transfer mold (the contact surface with the continuous resin sheet) is 35 mN / m or less, even if the temperature of the shape roll increases, Occurrence of the “torre phenomenon” in which the resin sheet sticks to the transfer mold can be prevented. Therefore, by appropriately controlling the temperature of the shape roll together with the production conditions such as the transport speed of the resin sheet and the surface temperature of the resin sheet, the resin can be satisfactorily introduced into the concave portion of the transfer mold. Therefore, the transfer mold can be accurately transferred onto the surface of the resin sheet. As a result, if the resin sheet obtained by this manufacturing method is used as a light diffusing plate or an optical film of a liquid crystal display device, excellent optical characteristics can be expressed.

図1は、本発明の一実施形態に係る樹脂シートが搭載された液晶表示装置の模式的な側面図である。FIG. 1 is a schematic side view of a liquid crystal display device on which a resin sheet according to an embodiment of the present invention is mounted. 図2は、図1に示す液晶表示装置の模式的な斜視図である。FIG. 2 is a schematic perspective view of the liquid crystal display device shown in FIG. 図3Aは、本発明の一実施形態に係る樹脂シートからなる光拡散板の模式的な斜視図である。FIG. 3A is a schematic perspective view of a light diffusing plate made of a resin sheet according to an embodiment of the present invention. 図3Bは、本発明の一実施形態に係る樹脂シートからなる光学フィルムの模式的な斜視図である。FIG. 3B is a schematic perspective view of an optical film made of a resin sheet according to an embodiment of the present invention. 図4は、光拡散板および光学フィルムの取り付け状態を示すランプボックスの要部拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a main part of the lamp box showing a mounting state of the light diffusion plate and the optical film. 図5は、本発明の一実施形態に係る樹脂シートの製造方法に使用される製造装置の概略構成図である。FIG. 5 is a schematic configuration diagram of a manufacturing apparatus used in the method for manufacturing a resin sheet according to an embodiment of the present invention. 図6は、下ロールに取り付けられた凹版転写型の模式断面図である。FIG. 6 is a schematic cross-sectional view of the intaglio transfer mold attached to the lower roll. 図7は、凹版転写型の第1の変形例(略半円形状)を示す図である。FIG. 7 is a view showing a first modified example (substantially semicircular shape) of the intaglio transfer mold. 図8は、凹版転写型の第2の変形例(略プリズム形状)を示す図である。FIG. 8 is a diagram showing a second modified example (substantially prism shape) of the intaglio transfer type. 図9は、図5に示すシート製造装置の変形例を示す図である。FIG. 9 is a view showing a modification of the sheet manufacturing apparatus shown in FIG. 図10は、実施例および比較例の転写型表面のIRスペクトルを示す図である。FIG. 10 is a diagram showing IR spectra of the transfer mold surfaces of Examples and Comparative Examples.

以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
<液晶表示装置の全体構成>
図1は、本発明の一実施形態に係る樹脂シートが搭載された液晶表示装置の模式的な側面図である。図2は、図1に示す液晶表示装置の模式的な斜視図である。
液晶表示装置1(液晶テレビ)は、いわゆる直下型液晶表示装置であって、バックライトシステム2と、バックライトシステム2の前面に配置された液晶パネル3と、バックライトシステム2と液晶パネル3との間に配置された光学フィルム4とを備えている。なお、図1および図2では、液晶表示装置1を便宜的に、その前側を紙面上側に向けた姿勢で表している。また、以下の図で表される液晶表示装置1、バックライトシステム2、液晶パネル3などの各構成部材の縮尺は、説明の便宜上それぞれ設定されたものであり、全ての構成部材の縮尺が同じであるわけではない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<Overall configuration of liquid crystal display device>
FIG. 1 is a schematic side view of a liquid crystal display device on which a resin sheet according to an embodiment of the present invention is mounted. FIG. 2 is a schematic perspective view of the liquid crystal display device shown in FIG.
The liquid crystal display device 1 (liquid crystal television) is a so-called direct liquid crystal display device, and includes a backlight system 2, a liquid crystal panel 3 disposed in front of the backlight system 2, a backlight system 2, and a liquid crystal panel 3. And an optical film 4 disposed between the two. In FIG. 1 and FIG. 2, the liquid crystal display device 1 is shown in a posture with its front side facing the upper side of the drawing for the sake of convenience. Further, the scales of the constituent members such as the liquid crystal display device 1, the backlight system 2, and the liquid crystal panel 3 shown in the following drawings are set for convenience of explanation, and the scales of all the constituent members are the same. Not that.

バックライトシステム2は、四角板状の後壁5および後壁5の周縁から前方へ一体的に立設された四角枠状の側壁6を有し、前面側が開放された薄型箱状の樹脂製ランプボックス7と、ランプボックス7内に設けられた複数の線状光源8と、ランプボックス7の開放面9(前面)を塞ぐ光拡散板10とを備えている。
すなわち、箱状のランプボックス7は、その開放面9の輪郭が四角枠状の側壁6により区画され、側壁6および後壁5により囲まれる空間内に、線状光源8が設けられている。ランプボックス7の後壁5内面には、例えば、線状光源8から後壁5側へ入射する光を、ボックスの開放面9側へ反射させるための反射板(図示せず)が全体に取り付けられている。
The backlight system 2 has a rectangular plate-shaped rear wall 5 and a rectangular frame-shaped side wall 6 integrally standing upright from the periphery of the rear wall 5, and is made of a thin box-shaped resin whose front side is open. A lamp box 7, a plurality of linear light sources 8 provided in the lamp box 7, and a light diffusion plate 10 that closes an open surface 9 (front surface) of the lamp box 7 are provided.
That is, the box-shaped lamp box 7 has an open surface 9 whose outline is defined by a square-shaped side wall 6, and a linear light source 8 is provided in a space surrounded by the side wall 6 and the rear wall 5. On the inner surface of the rear wall 5 of the lamp box 7, for example, a reflection plate (not shown) for reflecting light incident on the rear wall 5 side from the linear light source 8 toward the open surface 9 side of the box is attached to the whole. It has been.

線状光源8は、例えば、直径が2mm〜4mmの円筒状ランプである。複数の線状光源8は、光拡散板10の背面18に対して一定間隔を空けた状態で、互いに平行に等しい間隔を空けて配置されている。
隣り合う線状光源8の中心同士の間隔Lは、省電力化の観点から、30mm〜60mmであることが好ましい。また、光拡散板10の背面18(例えば、背面18における中央部)と線状光源8の中心との距離Dは、薄型化の観点から、10mm〜20mmであることが好ましい。また、距離Dに対する間隔Lの比率(L/D)は、2.5〜4.0であることが好ましい。とりわけ、間隔Lは、40mm〜55mmであることが好ましく、距離Dは、13mm〜17mmであることが好ましい。また、線状光源8の数は、ランプボックス7のサイズ(液晶表示装置1の画面サイズ)および間隔Lにより必然的に決まるが、例えば、32型の液晶表示装置1では、6〜10本であることが好ましい。なお、図1および図2では、図解し易くするために、線状光源8を5本分だけ表している。
The linear light source 8 is, for example, a cylindrical lamp having a diameter of 2 mm to 4 mm. The plurality of linear light sources 8 are arranged in parallel with each other at an equal interval in a state where they are spaced apart from the back surface 18 of the light diffusion plate 10.
The distance L between the centers of the adjacent linear light sources 8 is preferably 30 mm to 60 mm from the viewpoint of power saving. Moreover, it is preferable that the distance D of the back surface 18 (for example, center part in the back surface 18) of the light diffusing plate 10 and the center of the linear light source 8 is 10 mm-20 mm from a viewpoint of thickness reduction. Moreover, it is preferable that the ratio (L / D) of the space | interval L with respect to the distance D is 2.5-4.0. In particular, the distance L is preferably 40 mm to 55 mm, and the distance D is preferably 13 mm to 17 mm. The number of the linear light sources 8 is inevitably determined by the size of the lamp box 7 (screen size of the liquid crystal display device 1) and the interval L. For example, in the 32 type liquid crystal display device 1, the number is 6-10. Preferably there is. In FIGS. 1 and 2, only five linear light sources 8 are shown for easy illustration.

また、線状光源8としては、例えば、蛍光管(冷陰極管)、ハロゲンランプ、タングステンランプなど、公知の筒形ランプを用いることができる。また、バックライトシステム2の光源としては、線状光源8に代えて、発光ダイオード(LED)などの点状光源などを用いることもできる。
液晶パネル3は、液晶セル11と、液晶セル11を厚さ方向両側から挟む1対の偏光板12,13とを備えている。このような液晶パネル3は、背面側の偏光板12と光拡散板10とが対向するように、バックライトシステム2の前面に配置される。
Moreover, as the linear light source 8, well-known cylindrical lamps, such as a fluorescent tube (cold cathode tube), a halogen lamp, a tungsten lamp, can be used, for example. Further, as the light source of the backlight system 2, a point light source such as a light emitting diode (LED) can be used instead of the linear light source 8.
The liquid crystal panel 3 includes a liquid crystal cell 11 and a pair of polarizing plates 12 and 13 that sandwich the liquid crystal cell 11 from both sides in the thickness direction. Such a liquid crystal panel 3 is disposed on the front surface of the backlight system 2 so that the polarizing plate 12 on the back side and the light diffusion plate 10 face each other.

液晶セル11としては、例えば、TFT型液晶セル、STN型液晶セルなど、公知の液晶セルを用いることができる。
光学フィルム4としては、特に制限されず、例えば、マイクロレンズフィルム、略半円状のレンチキュラーレンズフィルム、拡散フィルム、プリズムフィルム、反射型偏光分離フィルムなどが挙げられる。
<光拡散板および光学フィルムの構成>
図3Aは、本発明の一実施形態に係る樹脂シートからなる光拡散板の模式的な斜視図である。図3Bは、本発明の一実施形態に係る樹脂シートからなる光学フィルムの模式的な斜視図である。図4は、光拡散板の取り付け状態を示すランプボックスの要部拡大断面図である。
As the liquid crystal cell 11, for example, a known liquid crystal cell such as a TFT liquid crystal cell or an STN liquid crystal cell can be used.
The optical film 4 is not particularly limited, and examples thereof include a microlens film, a substantially semicircular lenticular lens film, a diffusion film, a prism film, and a reflective polarization separation film.
<Configuration of light diffusion plate and optical film>
FIG. 3A is a schematic perspective view of a light diffusing plate made of a resin sheet according to an embodiment of the present invention. FIG. 3B is a schematic perspective view of an optical film made of a resin sheet according to an embodiment of the present invention. FIG. 4 is an enlarged cross-sectional view of a main part of the lamp box showing a mounted state of the light diffusion plate.

図3Aに示すように、光拡散板10は、ランプボックス7の側壁6の枠形状とほぼ同じ四角の板状に形成されている。
光拡散板10の一方の主面(前面16)には、光拡散板10の1組の対向周縁間に延びる半楕円凸条17が多数筋状に形成されている。すなわち、光拡散板10の前面16には、半楕円凸条17と、隣り合う半楕円凸条17との間の凹溝19とが交互に形成されている。
As shown in FIG. 3A, the light diffusion plate 10 is formed in a square plate shape that is substantially the same as the frame shape of the side wall 6 of the lamp box 7.
On one main surface (front surface 16) of the light diffusing plate 10, a plurality of semi-elliptical ridges 17 extending between a pair of opposed peripheral edges of the light diffusing plate 10 are formed in a streak shape. That is, on the front surface 16 of the light diffusing plate 10, semi-elliptical ridges 17 and concave grooves 19 between adjacent semi-elliptical ridges 17 are alternately formed.

半楕円凸条17は、その形状に直交する切断面が略半楕円形状の輪郭を有している。多数の半楕円凸条17は、互いに平行に等しい間隔E(例えば、1μm〜15μm)を空けて配置されている。隣り合う半楕円凸条17の中心同士の距離(ピッチP´)は、例えば、200μm〜500μmである。また、半楕円凸条17の高さ(凹溝19の深さ)H´は、例えば、100μm〜500μmである。また、半楕円凸条17のピッチP´に対する高さH´の比率(H´/P´)で表されるアスペクト比は、例えば、0.4以上、好ましくは、0.5〜0.7である。 The semi-elliptical ridge 17 has a substantially semi-elliptical outline in a cut surface perpendicular to the shape thereof. A large number of semi-elliptical ridges 17 are arranged at an equal interval E 1 (for example, 1 μm to 15 μm) in parallel with each other. The distance (pitch P 1 ′) between the centers of adjacent semi-elliptical ridges 17 is, for example, 200 μm to 500 μm. The height of the semi-elliptical ridge 17 (depth of the groove 19) H 1 'is, for example, 100Myuemu~500myuemu. The aspect ratio represented by the ratio of the 'height H 1 for "pitch P 1 of the semi-elliptic convex strip 17 (H 1' / P 1 ') , for example, 0.4 or more, preferably, 0.5 ~ 0.7.

一方、光拡散板10の他方の主面(背面18)は、凹凸のない平坦面とされている。
また、図4に示すように、背面18から前面16における半楕円凸条17の頂部までの光拡散板10の厚さTは、例えば、1mm〜4mmである。
また、図3Bに示すように、光学フィルム4は、光拡散板10の形状とほぼ同じ四角の板状に形成されている。
On the other hand, the other main surface (back surface 18) of the light diffusing plate 10 is a flat surface having no irregularities.
Moreover, as shown in FIG. 4, thickness T1 of the light diffusing plate 10 from the back surface 18 to the top part of the semi-elliptical protrusion 17 in the front surface 16 is 1 mm-4 mm, for example.
Further, as shown in FIG. 3B, the optical film 4 is formed in a square plate shape that is substantially the same as the shape of the light diffusion plate 10.

光学フィルム4の一方の主面(前面20)には、光学フィルム4の1組の対向周縁間に延びる凸形状21が多数筋状に形成されている。この凸形状21は、たとえば、半楕円形状、プリズム形状などである(図3Bでは半楕円形状)。すなわち、光学フィルム4の前面20には、凸形状21と、隣り合う凸形状21との間の凹溝22とが交互に形成されている。   On one main surface (front surface 20) of the optical film 4, a plurality of convex shapes 21 extending between a pair of opposing peripheral edges of the optical film 4 are formed in a streak shape. The convex shape 21 is, for example, a semi-elliptical shape, a prism shape or the like (a semi-elliptical shape in FIG. 3B). That is, on the front surface 20 of the optical film 4, convex shapes 21 and concave grooves 22 between adjacent convex shapes 21 are alternately formed.

多数の凸形状21は、互いに平行に等しい間隔E(例えば、1μm〜15μm)を空けて配置されている。隣り合う凸形状21の中心同士の距離(ピッチP´)は、例えば、30μm〜500μmである。また、凸形状21の高さ(凹溝22の深さ)H´は、例えば、10μm〜500μmである。また、凸形状21のピッチP´に対する高さH´の比率(H´/P´)で表されるアスペクト比は、例えば、0.3以上、好ましくは、0.4〜0.7である。 A large number of the convex shapes 21 are arranged at an equal interval E 2 (for example, 1 μm to 15 μm) in parallel with each other. The distance (pitch P 2 ′) between the centers of adjacent convex shapes 21 is, for example, 30 μm to 500 μm. The height of the convex shape 21 (the depth of the groove 22) H 2 'is, for example, 10 m to 500 m. The aspect ratio represented by the ratio of 'the height H 2 to' pitch P 2 of the convex 21 (H 2 '/ P 2 ') , for example, 0.3 or more, preferably, 0.4 to 0 .7.

一方、光学フィルム4の他方の主面(背面23)は、凹凸のない平坦面とされている。
また、図4に示すように、背面23から前面20における凸形状21の頂部までの光学フィルム4の厚さTは、例えば、0.1mm〜1mmである。
光拡散板10および光学フィルム4の原料としては、特に制限されず、例えば、非晶性の透光性樹脂あるいは結晶性樹脂を用いることができる。
On the other hand, the other main surface (back surface 23) of the optical film 4 is a flat surface having no irregularities.
Further, as shown in FIG. 4, the thickness T 2 of the optical film 4 from the back 23 to the top of the convex shape 21 on the front 20 is, for example, 0.1 mm to 1 mm.
The raw materials for the light diffusion plate 10 and the optical film 4 are not particularly limited, and for example, an amorphous translucent resin or a crystalline resin can be used.

用いられる非晶性透光性樹脂としては、例えば、アクリル系樹脂、スチレン系樹脂、ポリカーボネート、環状ポリオレフィン、環状オレフィン共重合体、MS樹脂(メタクリル酸メチル−スチレン共重合体樹脂)、ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合体樹脂)、AS樹脂(アクリロニトリル−スチレン共重合体樹脂)などが挙げられる。   As an amorphous translucent resin to be used, for example, acrylic resin, styrene resin, polycarbonate, cyclic polyolefin, cyclic olefin copolymer, MS resin (methyl methacrylate-styrene copolymer resin), ABS resin ( And acrylonitrile-butadiene-styrene copolymer resin) and AS resin (acrylonitrile-styrene copolymer resin).

用いられる結晶性樹脂としては、例えば、プロピレン系樹脂、エチレン系樹脂などが挙げられる。
上記非晶性透光性樹脂および結晶性樹脂は、単独使用または2種以上併用することができる。また、これらのうち、光拡散板10の原料として用いられる場合には、好ましくは、スチレン系樹脂、ポリカーボネートが挙げられ、さらに好ましくは、スチレン系樹脂の単独使用が挙げられる。また、光学フィルム4の原料として用いられる場合には、好ましくは、ポリカーボネート、アクリル樹脂、MS樹脂、AS樹脂が挙げられる。
Examples of the crystalline resin used include propylene-based resins and ethylene-based resins.
The above amorphous translucent resin and crystalline resin can be used alone or in combination of two or more. Of these, when used as a raw material for the light diffusing plate 10, a styrene resin and a polycarbonate are preferable, and a styrene resin is preferably used alone. Moreover, when using as a raw material of the optical film 4, Preferably, a polycarbonate, an acrylic resin, MS resin, and AS resin are mentioned.

また、光拡散板10および光学フィルム4には、必要により光拡散剤(光拡散粒子)を含有することができる。
光拡散剤としては、光拡散板10および光学フィルム4を構成する透光性樹脂と屈折率が異なり、透過光を拡散できる粒子であれば特に制限されず、例えば、無機系の光拡散剤として、炭酸カルシウム、硫酸バリウム、酸化チタン、水酸化アルミニウム、シリカ、硝子、タルク、マイカ、ホワイトカーボン、酸化マグネシウム、酸化亜鉛などが挙げられる。これらは、脂肪酸などで表面処理が施されたものであってもよい。
Moreover, the light diffusing plate 10 and the optical film 4 can contain a light diffusing agent (light diffusing particles) if necessary.
The light diffusing agent is not particularly limited as long as it has a refractive index different from that of the translucent resin constituting the light diffusing plate 10 and the optical film 4 and can diffuse transmitted light. For example, as an inorganic light diffusing agent, , Calcium carbonate, barium sulfate, titanium oxide, aluminum hydroxide, silica, glass, talc, mica, white carbon, magnesium oxide, zinc oxide and the like. These may be subjected to a surface treatment with a fatty acid or the like.

また、例えば、有機系の光拡散剤として、スチレン系重合体粒子、アクリル系重合体粒子、シロキサン系重合体粒子などが挙げられ、好ましくは、重量平均分子量が50万〜500万の高分子量重合体粒子や、アセトンに溶解させたときのゲル分率が10質量%以上である架橋重合体粒子が挙げられる。
上記光拡散剤は、単独使用または2種以上併用することができる。
Examples of the organic light diffusing agent include styrene polymer particles, acrylic polymer particles, and siloxane polymer particles. Preferably, the weight average molecular weight is 500,000 to 5,000,000. Examples include coalescent particles and crosslinked polymer particles having a gel fraction of 10% by mass or more when dissolved in acetone.
The light diffusing agents can be used alone or in combination of two or more.

光拡散板10および光学フィルム4が光拡散剤を含有する場合、光拡散剤の配合割合は、透光性樹脂100重量部に対して、0.001〜1重量部、好ましくは、0.001〜0.01重量部である。また、光拡散剤は、上記透光性樹脂とのマスターバッチとして用いることができる。また、透光性樹脂の屈折率と光拡散剤の屈折率との差の絶対値は、光拡散性の観点から、通常、0.01〜0.20であり、好ましくは、0.02〜0.15である。   When the light diffusing plate 10 and the optical film 4 contain a light diffusing agent, the blending ratio of the light diffusing agent is 0.001 to 1 part by weight, preferably 0.001 with respect to 100 parts by weight of the translucent resin. -0.01 parts by weight. Moreover, a light-diffusion agent can be used as a masterbatch with the said translucent resin. Further, the absolute value of the difference between the refractive index of the translucent resin and the refractive index of the light diffusing agent is usually 0.01 to 0.20, preferably 0.02 to 0.02 from the viewpoint of light diffusibility. 0.15.

また、光拡散板10および光学フィルム4には、必要により、例えば、帯電防止剤、紫外線吸収剤、熱安定剤、酸化防止剤、耐候剤、光安定剤、蛍光増白剤、加工安定剤などの各種添加剤を添加することもできる。
紫外線吸収剤としては、特に制限されず、例えば、サリチル酸フェニルエステル系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤などが挙げられる。紫外線吸収剤を添加する場合には、透光性樹脂100重量部に対して、紫外線吸収剤を0.1〜3重量部添加することが好ましい。上記した範囲であれば、紫外線吸収剤の表面へのブリードを抑制でき、光拡散板10および光学フィルム4の外観を良好に維持することができる。
Further, if necessary, the light diffusion plate 10 and the optical film 4, for example, an antistatic agent, an ultraviolet absorber, a heat stabilizer, an antioxidant, a weathering agent, a light stabilizer, a fluorescent whitening agent, a processing stabilizer, and the like. These various additives can also be added.
The ultraviolet absorber is not particularly limited, and examples thereof include salicylic acid phenyl ester ultraviolet absorbers, benzophenone ultraviolet absorbers, triazine ultraviolet absorbers, and benzotriazole ultraviolet absorbers. When adding an ultraviolet absorber, it is preferable to add 0.1-3 weight part of ultraviolet absorbers with respect to 100 weight part of translucent resin. If it is the above-mentioned range, the bleeding to the surface of an ultraviolet absorber can be suppressed and the external appearance of the light-diffusion plate 10 and the optical film 4 can be maintained favorable.

熱安定剤としては、特に制限されず、例えば、マンガン化合物、銅化合物などが挙げられる。熱安定剤を添加する場合には、紫外線吸収剤とともに添加し、透光性樹脂中の紫外線吸収剤1重量部に対して、熱安定剤を2重量部以下の割合で添加することが好ましく、透光性樹脂中の紫外線吸収剤1重量部に対して、熱安定剤を0.01〜1重量部添加することがさらに好ましい。   The heat stabilizer is not particularly limited, and examples thereof include manganese compounds and copper compounds. When adding the heat stabilizer, it is preferably added together with the ultraviolet absorber, and the heat stabilizer is preferably added at a ratio of 2 parts by weight or less with respect to 1 part by weight of the ultraviolet absorber in the translucent resin. More preferably, 0.01 to 1 part by weight of a heat stabilizer is added to 1 part by weight of the ultraviolet absorber in the translucent resin.

また、酸化防止剤としては、特に制限されず、例えば、ヒンダードフェノール化合物、ヒンダードアミン化合物などが挙げられる。酸化防止剤を添加する場合には、透光性樹脂100重量部に対して、酸化防止剤を0.1〜3重量部添加することが好ましい。
そして、光拡散板10は、図4に示すように、ランプボックス7内の線状光源8に対して半楕円凸条17が平行となる位置において、ランプボックス7の側壁6に対して光拡散板10の背面18を当接させて、ランプボックス7に固定されている。これにより、ランプボックス7の開放面9が光拡散板10により塞がれている。また、光学フィルム4は、光拡散板10の前方に配置されている。
<光拡散板(樹脂シート)の製造方法>
上記した光拡散板10および光学フィルム4は、下記の方法により製造された樹脂シートを切断することにより作製することができる。なお、以下では、光拡散板10を製造する場合について説明するが、光学フィルム4も下記の方法に倣って製造することができる。
Moreover, it does not restrict | limit especially as antioxidant, For example, a hindered phenol compound, a hindered amine compound, etc. are mentioned. When adding antioxidant, it is preferable to add 0.1-3 weight part of antioxidant with respect to 100 weight part of translucent resin.
As shown in FIG. 4, the light diffusion plate 10 diffuses light with respect to the side wall 6 of the lamp box 7 at a position where the semi-elliptical ridges 17 are parallel to the linear light source 8 in the lamp box 7. The back surface 18 of the plate 10 is brought into contact with the lamp box 7 and fixed thereto. As a result, the open surface 9 of the lamp box 7 is blocked by the light diffusion plate 10. The optical film 4 is disposed in front of the light diffusing plate 10.
<Method for producing light diffusion plate (resin sheet)>
The light diffusion plate 10 and the optical film 4 described above can be produced by cutting a resin sheet produced by the following method. In addition, below, although the case where the light diffusing plate 10 is manufactured is demonstrated, the optical film 4 can also be manufactured according to the following method.

図5は、本発明の一実施形態に係る樹脂シートの製造方法に使用される製造装置の概略構成図である。図6は、下ロールに取り付けられた凹版転写型の模式断面図である。
シート製造装置51は、原料樹脂をシート状に押し出して成形するシート成形機52と、押し出された樹脂シート53を押圧により成形するための一組の押圧ロール群54と、樹脂シート53を引き取るための一対の引取ロール群55とを備えている。
FIG. 5 is a schematic configuration diagram of a manufacturing apparatus used in the method for manufacturing a resin sheet according to an embodiment of the present invention. FIG. 6 is a schematic cross-sectional view of the intaglio transfer mold attached to the lower roll.
The sheet manufacturing apparatus 51 takes out the resin sheet 53, a sheet molding machine 52 that extrudes the raw material resin into a sheet shape, a set of pressing rolls 54 for molding the extruded resin sheet 53 by pressing. And a pair of take-up roll groups 55.

シート成形機52は、例えば、一軸押出機、二軸押出機など、公知の押出成形機で構成されている。シート成形機52は、樹脂材料を加熱溶融(軟化)させるためのシリンダ56と、シリンダ56内に樹脂材料を投入するためのホッパ57と、シリンダ56内で軟化した樹脂材料を押し出すためのダイ58とを含んでいる。
ダイ58としては、通常の押出成形法に用いられる金属製のTダイなどが用いられる。ダイ58のリップ(ダイリップ59)の幅は、目的とする樹脂シート53の幅に合わせて選択され、例えば、200mm〜3000mmである。
The sheet forming machine 52 is configured by a known extruder such as a single screw extruder or a twin screw extruder. The sheet molding machine 52 includes a cylinder 56 for heating and melting (softening) the resin material, a hopper 57 for feeding the resin material into the cylinder 56, and a die 58 for extruding the softened resin material in the cylinder 56. Including.
As the die 58, a metal T die used for a normal extrusion molding method or the like is used. The width of the lip (die lip 59) of the die 58 is selected according to the width of the target resin sheet 53, and is, for example, 200 mm to 3000 mm.

押圧ロール群54は、樹脂シート53を押圧により成形しながら、樹脂シート53の表裏面75,76に転写型により凹凸を形成する機構として、3つの押圧ロール63〜65を備えている。
なお、樹脂シート53の表面76が、光拡散板10の前面16を形成する面であり、最終的に形状加工が施される形状転写面である。一方、樹脂シート53の裏面75が、光拡散板10の背面18を形成する面であり、最終的に形状加工が施されない面(例えば、この実施形態では、平坦性が維持される平坦面)である。
The press roll group 54 includes three press rolls 63 to 65 as a mechanism for forming irregularities on the front and back surfaces 75 and 76 of the resin sheet 53 by a transfer mold while molding the resin sheet 53 by pressing.
The surface 76 of the resin sheet 53 is a surface that forms the front surface 16 of the light diffusing plate 10, and is a shape transfer surface that is finally subjected to shape processing. On the other hand, the back surface 75 of the resin sheet 53 is a surface that forms the back surface 18 of the light diffusing plate 10, and is a surface that is not finally subjected to shape processing (for example, a flat surface that maintains flatness in this embodiment). It is.

3つの押圧ロール63〜65は、それぞれ円柱状の金属製(例えば、クロム製、銅製、ニッケル製、ステンレス製など、あるいは樹脂製の表面材質である)ロールからなり、その周面の温度(表面温度)を調節する機能を有する冷却ロールである。3つの押圧ロール63〜65は、上から下へ向かって順に上ロール63、中間ロール64、および形状ロールとしての下ロール65として、軸線が相互に平行となるように上下方向に配置されている。   The three pressing rolls 63 to 65 are each made of a cylindrical metal roll (for example, made of chromium, copper, nickel, stainless steel, or a resin surface material), and the temperature of the peripheral surface (surface It is a cooling roll having a function of adjusting (temperature). The three pressing rolls 63 to 65 are arranged in the vertical direction so that the axes are parallel to each other as the upper roll 63, the intermediate roll 64, and the lower roll 65 as the shape roll in order from top to bottom. .

上ロール63の周面66および中間ロール64の周面67は、この実施形態では、例えば、鏡面加工が施されることにより平滑面(鏡面)とされている。
下ロール65の周面68には、樹脂シート53に半楕円凸条17および凹溝19を形成するための凹版転写型69が設けられている。凹版転写型69は、例えば、円柱状の金属製ロールの上に銅メッキを施し、メッキされた金属製ロールを旋盤に設置し、ダイヤモンドバイトを用いて、銅メッキ層を狙いのレンズ形状に彫刻したり、ケミカルエッチングなどで溝を形成したりした後、銅上にクロムメッキ処理を施すことにより作製する。なお、凹版転写型69が設けられていない上ロール63および中間ロール64の表面にも、必要に応じて、例えば、クロムメッキ、銅メッキ、ニッケルメッキ、Ni−Pメッキなどのメッキ処理が施されていてもよい。
In this embodiment, the peripheral surface 66 of the upper roll 63 and the peripheral surface 67 of the intermediate roll 64 are, for example, made smooth surfaces (mirror surfaces) by being mirror-finished.
An intaglio transfer die 69 for forming the semi-elliptical ridges 17 and the concave grooves 19 on the resin sheet 53 is provided on the peripheral surface 68 of the lower roll 65. The intaglio transfer mold 69 is, for example, copper-plated on a cylindrical metal roll, the plated metal roll is placed on a lathe, and a diamond bite is used to engrave the copper-plated layer into a target lens shape Or by forming a groove by chemical etching or the like, and then performing a chrome plating process on copper. Note that the surfaces of the upper roll 63 and the intermediate roll 64 not provided with the intaglio transfer mold 69 are also subjected to plating treatment such as chrome plating, copper plating, nickel plating, Ni-P plating, if necessary. It may be.

より精密な形状を再現よく形成するため、旋盤−ダイヤモンドバイトの組み合わせが好ましく、銅上に施すクロムメッキ厚は、好ましくは5μm以下、さらに好ましくは2μm以下である。
この凹版転写型69には、図6に示すように、半楕円凸条17とは反対型の半楕円凹溝70が、下ロール65の周方向に沿って多数筋状に形成されている。すなわち、凹版転写型69には、半楕円凹溝70と、隣り合う半楕円凹溝70との間の凸条71(この凸条71は凹溝19とは反対型であり、凹版転写型69の表面という場合には、この凸条71の表面のことをいう。)とが下ロール65の軸方向に沿って交互に配置されている。
In order to form a more precise shape with good reproducibility, a lathe-diamond bit combination is preferred, and the chromium plating thickness applied on copper is preferably 5 μm or less, more preferably 2 μm or less.
In the intaglio transfer mold 69, as shown in FIG. 6, a number of semi-elliptical concave grooves 70 opposite to the semi-elliptical ridges 17 are formed in a stripe shape along the circumferential direction of the lower roll 65. That is, the intaglio transfer mold 69 includes a convex strip 71 between the semi-elliptical concave groove 70 and the adjacent semi-elliptical concave groove 70 (this convex stripe 71 is opposite to the concave groove 19, and the intaglio transfer mold 69. And the surface of the ridges 71 are alternately arranged along the axial direction of the lower roll 65.

半楕円凹溝70の深さHは、半楕円凸条17の高さH´よりもやや大きく、例えば、10μm〜500μm、好ましくは、20μm〜300μm以下である。深さHが過剰に大きすぎると、半楕円凹溝70の先端にまで樹脂を入り込ませることが難しくなる。 また、隣り合う半楕円凹溝70の中心同士の距離(ピッチP)は、半楕円凸条17の形状に応じて適宜定められるが、例えば、30μm〜500μm、好ましくは、40μm〜450μmである。ピッチPが30μm未満の場合、樹脂が下ロール65に接触してすぐに固化するおそれがあり、その結果、樹脂が半楕円凹溝70の先端にまで入り込まず、目標とする転写形状を得ることができないおそれがある。一方、ピッチPが500μmを超えている場合、ピッチの筋が肉眼でも観察されたり、液晶パネル3や光学フィルム4などとのモアレ模様が現れたりするおそれがある。 The depth H 1 of the semi-elliptical concave groove 70 is slightly larger than the height H 1 ′ of the semi-elliptical ridge 17 and is, for example, 10 μm to 500 μm, preferably 20 μm to 300 μm or less. If the depth H 1 is excessively large, it becomes difficult to allow the resin to enter the tip of the semi-elliptical concave groove 70. Moreover, although the distance (pitch P 1 ) between the centers of the adjacent semi-elliptical grooves 70 is appropriately determined according to the shape of the semi-elliptical ridges 17, for example, 30 μm to 500 μm, preferably 40 μm to 450 μm. . If the pitch P 1 is less than 30 [mu] m, there is a possibility that the resin solidifies immediately in contact with the lower roll 65, to obtain a result, the resin does not penetrate to the tip of the semi-elliptical groove 70, the imprint profile to target There is a risk that it will not be possible. On the other hand, if the pitch P 1 is greater than 500 [mu] m, or also observed in muscle pitch gross moire patterns with a liquid crystal panel 3 and the optical film 4 is likely to be or appear.

また、半楕円凹溝70のピッチPに対する高さHの比率(H/P)で表されるアスペクト比は、例えば、0.3以上、好ましくは、0.4〜0.7である。
なお、半楕円凸条17の高さH´と半楕円凹溝70の深さHとの差は、凹版転写型69が樹脂シート53に転写されて半楕円凸条17が形成される際の転写率(H´/H)(%)に起因するものである。
The aspect ratio represented by the height H 1 of the ratio of the pitch P 1 of the semi-elliptical groove 70 (H 1 / P 1) is, for example, 0.3 or more, preferably, 0.4 to 0.7 It is.
The difference between the height H 1 ′ of the semi-elliptical ridge 17 and the depth H 1 of the semi-elliptical groove 70 is that the intaglio transfer mold 69 is transferred to the resin sheet 53 to form the semi-elliptical ridge 17. This is due to the transfer rate (H 1 ′ / H 1 ) (%).

このような形状の凹版転写型69の表面(樹脂シート53との接触面)には、有機ポリシロキサン処理が施されている。
有機ポリシロキサン処理とは、この実施形態では、下ロール65にクロムメッキを施した際に生じた微細な孔(マイクロクラック)を有機ポリシロキサンで埋める処理(封孔処理)のことをいい、例えば、有機ポリシロキサン溶液を凹版転写型69の表面に塗布し、乾燥させる方法、有機シロキサンを凹版転写型69の表面で重合させる方法、有機ポリシロキサンを凹版転写型69の材質(例えば、クロムメッキ)と化学的に反応させて結合させる方法により行うことができる。
The surface of the intaglio transfer mold 69 having such a shape (contact surface with the resin sheet 53) is subjected to organic polysiloxane treatment.
In this embodiment, the organic polysiloxane treatment refers to a treatment (sealing treatment) in which fine holes (microcracks) generated when chromium plating is applied to the lower roll 65 are filled with organic polysiloxane. A method of applying an organic polysiloxane solution to the surface of the intaglio transfer mold 69 and drying, a method of polymerizing the organic siloxane on the surface of the intaglio transfer mold 69, and a material of the intaglio transfer mold 69 (for example, chromium plating). It can carry out by the method of making it react chemically and combining.

有機ポリシロキサンは、例えば、二官能シロキサン単位、三官能シロキサン単位および四官能シロキサン単位の骨格からなる。
シロキサン骨格を結合する官能基としては、例えば、炭素数1〜10の炭化水素基、好ましくは、炭素数1〜6の炭化水素基が挙げられる。具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基などのアルキル基、例えば、シクロヘキシル基などのシクロアルキル基本、例えば、フェニル基、トリル基、キシリル基、ナフチル基などのアリール基、例えば、ベンジル基、フェニルエチル基、フェニルプロピル基などのアラルキル基、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、オクテニル基などのアルケニル基、例えば、シクロヘキセニル基などのシクロアルケニル基、およびこれらの炭化水素基の水素原子の一部または全部をフッ素、臭素、塩素などのハロゲン原子、シアノ基などで置換したもの、具体的には、例えば、クロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基などのハロゲン置換アルキル基、例えば、シアノエチル基などが挙げられる。
The organic polysiloxane includes, for example, a skeleton of a bifunctional siloxane unit, a trifunctional siloxane unit, and a tetrafunctional siloxane unit.
As a functional group which couple | bonds a siloxane skeleton, a C1-C10 hydrocarbon group, Preferably, a C1-C6 hydrocarbon group is mentioned, for example. Specifically, for example, alkyl such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, octyl group, nonyl group, decyl group, etc. A group, for example, a cycloalkyl group such as a cyclohexyl group, for example, an aryl group such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, for example, an aralkyl group such as a benzyl group, a phenylethyl group, a phenylpropyl group, for example, vinyl Group, allyl group, propenyl group, isopropenyl group, butenyl group, pentenyl group, hexenyl group, octenyl group and other alkenyl groups, for example, cycloalkenyl groups such as cyclohexenyl group, and one of hydrogen atoms of these hydrocarbon groups Part or all of the halogen source such as fluorine, bromine and chlorine , Those substituted with a cyano group, specifically, for example, chloromethyl group, chloropropyl group, bromoethyl group, a halogen-substituted alkyl groups such as trifluoropropyl group, for example, such as cyanoethyl group.

また、有機ポリシロキサン処理後、凹版転写型69の表面を洗浄することにより、凹版転写型69の表面に残存する余分な有機ポリシロキサンを取り除くこともできる。これにより、有機ポリシロキサン処理が残存して凹版転写型69の表面に微細な凹凸が生じていても、その粗くなった表面を均すことができる。
この凹版転写型69の洗浄は、例えば、有機ポリシロキサン処理後の凹版転写型69の表面を、繊維(例えば、コットン、シルクなど)で拭く方法により行うことができる。
Further, after the organic polysiloxane treatment, the surplus organic polysiloxane remaining on the surface of the intaglio transfer mold 69 can be removed by washing the surface of the intaglio transfer mold 69. Thereby, even if the organic polysiloxane treatment remains and fine irregularities are generated on the surface of the intaglio transfer mold 69, the roughened surface can be leveled.
The intaglio transfer mold 69 can be cleaned by, for example, a method of wiping the surface of the intaglio transfer mold 69 after the organic polysiloxane treatment with fibers (for example, cotton, silk, etc.).

上記のような有機ポリシロキサン処理が施されることにより、凹版転写型69の表面のJIS K 6768に準拠して測定される濡れ張力は、35mN/m以下とされている。凹版転写型69の表面の濡れ張力は、好ましくは、5mN/m〜30mN/mである。
また、押圧ロール63〜65の回転軸にはそれぞれモータ(図示せず)が接続されていて、上ロール63および下ロール65が反時計回りに回転可能であり、中間ロール64が時計回りに回転可能である。すなわち、押圧ロール63〜65は、上から順に「反時計回りに回転可能」、「時計回りに回転可能」、「反時計回りに回転可能」である。これにより、全てのロール63〜65が樹脂シート53を挟みこんだ状態で同期回転することができる。また、押圧ロール63〜65の回転速度を適宜調節することにより、樹脂シート53の搬送速度を調整することができる。
By performing the organic polysiloxane treatment as described above, the wetting tension measured in accordance with JIS K 6768 on the surface of the intaglio transfer mold 69 is set to 35 mN / m or less. The surface tension of the intaglio transfer mold 69 is preferably 5 mN / m to 30 mN / m.
Further, motors (not shown) are connected to the rotation shafts of the pressing rolls 63 to 65, respectively, so that the upper roll 63 and the lower roll 65 can rotate counterclockwise, and the intermediate roll 64 rotates clockwise. Is possible. That is, the pressing rolls 63 to 65 are “rotatable counterclockwise”, “rotatable clockwise”, and “rotatable counterclockwise” in order from the top. Thereby, all the rolls 63 to 65 can be rotated synchronously with the resin sheet 53 sandwiched therebetween. Moreover, the conveyance speed of the resin sheet 53 can be adjusted by adjusting the rotational speed of the press rolls 63-65 suitably.

各押圧ロール63〜65の直径は、例えば、100mm〜500mmである。また、押圧ロール63〜65として金属製ロールが用いられる場合、その表面に、例えば、クロムメッキ、銅メッキ、ニッケルメッキ、Ni−Pメッキなどのメッキ処理が施されていてもよい。
また、中間ロール64の近くには、中間ロール64上を搬送される樹脂シート53の表面76(転写される側の表面)を加熱するためのヒータ72が設置されている。
The diameter of each pressing roll 63-65 is 100 mm-500 mm, for example. Moreover, when a metal roll is used as the pressing rolls 63 to 65, the surface thereof may be subjected to plating treatment such as chromium plating, copper plating, nickel plating, Ni-P plating, or the like.
In addition, a heater 72 for heating the surface 76 (the surface on the transfer side) of the resin sheet 53 conveyed on the intermediate roll 64 is installed near the intermediate roll 64.

ヒータ72は、中間ロール64の周面67に対して離間するように対向配置されていて、搬送される樹脂シート53を表面76側から加熱する。ヒータ72としては、例えば、赤外ヒータなど、公知のヒータを用いることができる。また、ヒータ72は、樹脂シート53が搬送されるラインに設置するインラインタイプのものであってもよいし、作業者が手に持って測定できるハンディタイプのものであってもよい。   The heater 72 is disposed so as to be separated from the peripheral surface 67 of the intermediate roll 64, and heats the resin sheet 53 being conveyed from the surface 76 side. As the heater 72, for example, a known heater such as an infrared heater can be used. The heater 72 may be an in-line type installed in a line where the resin sheet 53 is conveyed, or may be a handy type that can be measured by an operator.

一対の引取ロール群55は、樹脂シート53を厚さ方向両側から挟み込む一対の引取ロール85,86を含んでいる。
引取ロール85,86は、それぞれ円柱状のロール(通常、表面が樹脂製のロール)からなり、下側の引取ロール85の上端が下ロール65の下端と同じ高さ位置となるように対向設置されている。これにより、下ロール65から送出される樹脂シート53を、送出直後の高さで支持したまま水平搬送できるので、搬送抵抗を小さくすることができる。
The pair of take-up roll groups 55 includes a pair of take-up rolls 85 and 86 that sandwich the resin sheet 53 from both sides in the thickness direction.
The take-up rolls 85 and 86 are each made of a cylindrical roll (usually a roll made of resin), and are opposed to each other so that the upper end of the lower take-up roll 85 is at the same height as the lower end of the lower roll 65. Has been. Thereby, since the resin sheet 53 delivered from the lower roll 65 can be horizontally conveyed while being supported at the height immediately after the delivery, the conveyance resistance can be reduced.

次いで、上記した製造装置を用いた樹脂シート53の製造方法を説明する。
(1)押出工程
まず、シート成形機52のホッパ57に原料樹脂が投入され、シリンダ56で溶融混練された後、フィードブロック(図示せず)に供給される。シリンダ56温度は、樹脂シート53が中間ロール64と接する前の表面75の中間ロール64入口温度T(R2前)が、例えば、200℃〜290℃の範囲となるように適宜調節する。具体的には、190℃〜250℃に設定される。
Next, a method for manufacturing the resin sheet 53 using the above-described manufacturing apparatus will be described.
(1) Extrusion Step First, the raw material resin is charged into the hopper 57 of the sheet forming machine 52, melted and kneaded by the cylinder 56, and then supplied to a feed block (not shown). The temperature of the cylinder 56 is appropriately adjusted so that the intermediate roll 64 inlet temperature T (before R2) of the surface 75 before the resin sheet 53 comes into contact with the intermediate roll 64 is in a range of 200 ° C. to 290 ° C., for example. Specifically, it is set to 190 ° C to 250 ° C.

次いで、フィードブロック(図示せず)内の樹脂が、ダイ58から押し出されることにより、連続的に樹脂シート53として押し出される。
(2)第1押圧工程および第1搬送工程
ダイ58から押し出された樹脂シート53は、まず、上ロール63と中間ロール64との間(ギャップ)に送り込まれ(この際、必要に応じてメルトバンクが形成される。)、上ロール63と中間ロール64とで挟み込まれて押圧される。その後、中間ロール64の周面67に裏面75(背面18)が密着して搬送される。搬送の際、樹脂シート53は中間ロール64により冷却されつつ、表面76側からヒータ72で加熱される。上ロール63および中間ロール64の表面温度としては、樹脂シート53の押出温度よりも低いことが好ましく、例えば、上ロール63の表面温度が40℃〜160℃であり、中間ロール64の表面温度が50℃〜200℃である。
Next, the resin in the feed block (not shown) is continuously extruded as the resin sheet 53 by being extruded from the die 58.
(2) First Pressing Step and First Conveying Step The resin sheet 53 extruded from the die 58 is first fed into the gap (gap) between the upper roll 63 and the intermediate roll 64 (in this case, melted as necessary) A bank is formed), and is sandwiched and pressed between the upper roll 63 and the intermediate roll 64. Thereafter, the back surface 75 (back surface 18) is brought into close contact with the peripheral surface 67 of the intermediate roll 64 and conveyed. During conveyance, the resin sheet 53 is heated by the heater 72 from the surface 76 side while being cooled by the intermediate roll 64. The surface temperature of the upper roll 63 and the intermediate roll 64 is preferably lower than the extrusion temperature of the resin sheet 53. For example, the surface temperature of the upper roll 63 is 40 ° C to 160 ° C, and the surface temperature of the intermediate roll 64 is 50 ° C to 200 ° C.

一方、ヒータ72の出力は、樹脂シート53が下ロール65と接する前の表面76の下ロール65入口温度T(R3前)が、例えば、原料樹脂のガラス転移温度をTgとしたとき、Tg+50℃≦T(R3前)≦Tg+160℃の範囲、好ましくは、Tg+70℃≦T(R3前)≦Tg+140℃の範囲となるように適宜調節する。これにより、適切な流動性を保持した状態の樹脂シート53を中間ロール64と下ロール65との間に突入させることができる。そのため、凹版転写型69の半楕円凹溝70の先端まで良好に樹脂を入り込ませることができる。
(3)第2押圧工程および第2搬送工程
その後、搬送される樹脂シート53は、中間ロール64と下ロール65との間(ギャップ)に入り込み、中間ロール64と下ロール65とで挟み込まれて押圧される。そして、中間ロール64と下ロール65との押圧の際、樹脂シート53の表面76(前面16)には、凹版転写型69の表面形状が転写されることによりシートの流れ方向(送出方向)に平行な筋状の半楕円凸条17が多数本形成される。
On the other hand, the output of the heater 72 is Tg + 50 ° C. when the lower roll 65 inlet temperature T (before R3) of the surface 76 before the resin sheet 53 contacts the lower roll 65 is, for example, the glass transition temperature of the raw material resin is Tg. ≦ T (before R3) ≦ Tg + 160 ° C., preferably Tg + 70 ° C. ≦ T (before R3) ≦ Tg + 140 ° C. Thereby, the resin sheet 53 in a state in which appropriate fluidity is maintained can be plunged between the intermediate roll 64 and the lower roll 65. Therefore, the resin can be satisfactorily introduced to the tip of the semi-elliptical concave groove 70 of the intaglio transfer mold 69.
(3) Second Pressing Step and Second Conveying Step Thereafter, the resin sheet 53 to be conveyed enters (gap) between the intermediate roll 64 and the lower roll 65 and is sandwiched between the intermediate roll 64 and the lower roll 65. Pressed. Then, when the intermediate roll 64 and the lower roll 65 are pressed, the surface shape of the intaglio transfer mold 69 is transferred to the surface 76 (front surface 16) of the resin sheet 53 in the sheet flow direction (feeding direction). A large number of parallel stripe-like semi-elliptical ridges 17 are formed.

その後、樹脂シート53は、下ロール65の周面68に表面76が密着して搬送される。樹脂シート53の押圧および搬送の際、下ロール65の表面温度T(R3)は、原料樹脂のガラス転移温度をTgしたとき、Tg−30℃≦T(R3)≦Tg+50℃の範囲、好ましくは、Tg−20℃≦T(R3)≦Tg+40℃の範囲に調節される。例えば、ガラス転移温度Tgが102℃のポリスチレン樹脂を使用する場合には、下ロール65の表面温度T(R3)の下限を72℃とし、上限を152℃となるように調節される。   Thereafter, the resin sheet 53 is conveyed with the surface 76 in close contact with the peripheral surface 68 of the lower roll 65. When the resin sheet 53 is pressed and conveyed, the surface temperature T (R3) of the lower roll 65 is Tg−30 ° C. ≦ T (R3) ≦ Tg + 50 ° C. when the glass transition temperature of the raw material resin is Tg, preferably , Tg−20 ° C. ≦ T (R3) ≦ Tg + 40 ° C. For example, when a polystyrene resin having a glass transition temperature Tg of 102 ° C. is used, the lower limit of the surface temperature T (R3) of the lower roll 65 is set to 72 ° C., and the upper limit is adjusted to 152 ° C.

下ロール65の表面温度T(R3)が、上記した範囲であれば、凹版転写型69に樹脂シート53が貼り付く「トラレ現象」の発生を防止しつつ、凹版転写型69の半楕円凹溝70の先端まで良好に樹脂を入り込ませることができる。
搬送後、樹脂シート53は、下ロール65の下端において下ロール65から剥離して、引取ロール群55へと水平方向に送出される。その後、一対の引取ロール85,86により引き取られて樹脂シート53が製造される。そして、樹脂シート53がさらに冷却された後、適当な大きさで切断されることにより、上記光拡散板10を得ることができる。
If the surface temperature T (R3) of the lower roll 65 is in the above range, the semi-elliptical concave groove of the intaglio transfer mold 69 is prevented while preventing the occurrence of the “trailing phenomenon” in which the resin sheet 53 sticks to the intaglio transfer mold 69. The resin can be satisfactorily introduced to the tip of 70.
After the conveyance, the resin sheet 53 is peeled off from the lower roll 65 at the lower end of the lower roll 65 and sent out to the take-up roll group 55 in the horizontal direction. Thereafter, the resin sheet 53 is manufactured by being taken up by the pair of take-up rolls 85 and 86. Then, after the resin sheet 53 is further cooled, the light diffusion plate 10 can be obtained by cutting the resin sheet 53 with an appropriate size.

なお、樹脂シート53の搬送速度(製造ラインの速度)Vは、樹脂シート53(光拡散板10)の厚さTを用いて、例えば、0.2/T(m/min)≦V≦50/T(m/min)の範囲、好ましくは、0.3/T(m/min)≦V≦40/T(m/min)の範囲となるように調節される。搬送速度Vが上記範囲であれば、凹版転写型69に樹脂シート53が貼り付く「トラレ現象」の発生を防止しつつ、比較的短いサイクルタイムで樹脂シート53を生産できるので、生産性がよい。
(4)作用効果
以上のように、本実施形態によれば、下ロール65の凹版転写型69の表面が、有機ポリシロキサン処理されている。これにより、下ロール65にクロムメッキを施した際に生じた微細な孔(マイクロクラック)を有機ポリシロキサンで埋めることができる。これにより、下ロール65の凹版転写型69の表面の濡れ張力は、35mN/m以下となっている。そのため、下ロール65の表面温度T(R3)が高くなっても、凹版転写型69に樹脂シート53が貼り付く「トラレ現象」の発生を防止することができる。その結果、とりわけ、樹脂シート53の下ロール65入口温度T(R3前)をTg+50℃≦T(R3前)≦Tg+160℃とし、下ロール65の表面温度T(R3)をTg−30℃≦T(R3)≦Tg+50℃とし、樹脂シート53の搬送速度Vを0.2/T(m/min)≦V≦50/T(m/min)とすることにより、凹版転写型69の半楕円凹溝70の先端まで樹脂を良好に入り込ませることができる。また、得られる樹脂シート53におけるタックマークの発生を防止することができる。
In addition, the conveyance speed (speed of the production line) V of the resin sheet 53 is, for example, 0.2 / T 1 (m / min) ≦ V using the thickness T 1 of the resin sheet 53 (light diffusion plate 10). ≦ 50 / T 1 (m / min), preferably 0.3 / T 1 (m / min) ≦ V ≦ 40 / T 1 (m / min). If the conveyance speed V is in the above range, the resin sheet 53 can be produced in a relatively short cycle time while preventing the occurrence of the “trailing phenomenon” in which the resin sheet 53 adheres to the intaglio transfer mold 69, so that productivity is good. .
(4) Effects As described above, according to the present embodiment, the surface of the intaglio transfer mold 69 of the lower roll 65 is treated with organic polysiloxane. Thereby, the fine hole (micro crack) produced when the lower roll 65 is plated with chromium can be filled with the organic polysiloxane. Thereby, the wetting tension of the surface of the intaglio transfer mold 69 of the lower roll 65 is 35 mN / m or less. Therefore, even if the surface temperature T (R3) of the lower roll 65 is increased, it is possible to prevent the occurrence of the “trailing phenomenon” in which the resin sheet 53 adheres to the intaglio transfer mold 69. As a result, the lower roll 65 inlet temperature T (before R3) of the resin sheet 53 is Tg + 50 ° C. ≦ T (before R3) ≦ Tg + 160 ° C., and the surface temperature T (R3) of the lower roll 65 is Tg−30 ° C. ≦ T (R3) ≦ Tg + 50 ° C., and the conveyance speed V of the resin sheet 53 is 0.2 / T 1 (m / min) ≦ V ≦ 50 / T 1 (m / min). The resin can be satisfactorily penetrated to the tip of the elliptical groove 70. In addition, it is possible to prevent the occurrence of tack marks in the obtained resin sheet 53.

よって、本実施形態によれば、光学設計により最適化された凹版転写型69の形状を、樹脂シート53の半楕円凸条17として良好に再現することができる。したがって、この樹脂シート53からなる光拡散板10は、優れた光学特性を発現することができる。また、上記の方法に倣って光学フィルム4を製造すれば、その光学フィルム4は、優れた光学特性を発現することができる。   Therefore, according to the present embodiment, the shape of the intaglio transfer mold 69 optimized by the optical design can be reproduced well as the semi-elliptical ridge 17 of the resin sheet 53. Therefore, the light diffusing plate 10 made of the resin sheet 53 can exhibit excellent optical characteristics. Moreover, if the optical film 4 is manufactured according to said method, the optical film 4 can express the outstanding optical characteristic.

すなわち、この実施形態で開示された製造手法を用いることにより、従来の製造手法では転写困難であった難易度の高いプリズム形状や、高H´/P´比(0.5以上)、狭ピッチ形状(30μm以下)についても、転写率を精度よく向上させることができる。
以上、本発明の一実施形態について説明したが、この発明はさらに他の実施形態で実施することもできる。
That is, by using the manufacturing method disclosed in this embodiment, a highly difficult prism shape, which is difficult to transfer by the conventional manufacturing method, a high H 1 ′ / P 1 ′ ratio (0.5 or more), Even with a narrow pitch shape (30 μm or less), the transfer rate can be improved with high accuracy.
As mentioned above, although one Embodiment of this invention was described, this invention can also be implemented in other embodiment.

例えば、下ロール65の周面68には、凹版転写型69に代えて、図7に示す、略半円形状(シリンドリカルレンズ形状)の半円凹溝78を有する凹版転写型77や、図8に示す、略プリズム形状(例えば、頂点角度θが60°〜120°)のプリズム凹溝80を有する凹版転写型79を設けることもできる。
また、前述の実施形態では、凹版転写型69が設けられた形状ロールは、下ロール65として配置されていたが、図9に示すように、中間ロール64として配置されていてもよい。この場合、中間ロール64入口温度T(R2前)が、例えば、原料樹脂のガラス転移温度をTgとしたとき、Tg+50℃≦T(R2前)≦Tg+160℃の範囲、好ましくは、Tg+70℃≦T(R2前)≦Tg+140℃の範囲となるように適宜調節する。中間ロール64入口温度T(R2前)の調節は、ヒータ72を、ダイ58から押し出された樹脂シート53の裏面75(転写される側の表面)を加熱できるように設置し、そのヒータ72の出力を調節したり、シリンダ56の温度を調節したりすることにより行うことができる。
For example, instead of the intaglio transfer mold 69, an intaglio transfer mold 77 having a semicircular groove 78 having a substantially semicircular shape (cylindrical lens shape) shown in FIG. It is also possible to provide an intaglio transfer mold 79 having prism grooves 80 having a substantially prism shape (for example, apex angle θ is 60 ° to 120 °).
In the above-described embodiment, the shape roll provided with the intaglio transfer mold 69 is disposed as the lower roll 65, but may be disposed as the intermediate roll 64 as shown in FIG. In this case, the intermediate roll 64 inlet temperature T (before R2) is, for example, Tg + 50 ° C. ≦ T (before R2) ≦ Tg + 160 ° C., preferably Tg + 70 ° C. ≦ T, where Tg is the glass transition temperature of the raw material resin. (Before R2) It adjusts suitably so that it may become the range of <= Tg + 140 degreeC. The adjustment of the intermediate roll 64 inlet temperature T (before R2) is performed by setting the heater 72 so that the back surface 75 (the surface on the transfer side) of the resin sheet 53 extruded from the die 58 can be heated. This can be done by adjusting the output or adjusting the temperature of the cylinder 56.

また、前述の実施形態では、光拡散板10の背面18および光学フィルム4の背面23は、凹凸のない平坦面であるとしたが、例えば、エンボス加工などが施されて微細な凹凸を有するマット面であってもよい。その場合、樹脂シート53の裏面75をエンボス加工などすればよい。樹脂シート53の裏面75をエンボス加工するには、例えば、樹脂シート53の製造装置51において、中間ロール64の周面67にエンボス形状の転写型を設け、当該転写型を転写すればよい。   In the above-described embodiment, the back surface 18 of the light diffusing plate 10 and the back surface 23 of the optical film 4 are flat surfaces without unevenness. For example, the mat has fine unevenness after being embossed or the like. It may be a surface. In that case, the back surface 75 of the resin sheet 53 may be embossed. In order to emboss the back surface 75 of the resin sheet 53, for example, in the manufacturing apparatus 51 for the resin sheet 53, an embossed transfer mold may be provided on the peripheral surface 67 of the intermediate roll 64, and the transfer mold may be transferred.

また、押圧ロール群54は、前述の実施形態では、上ロール63、中間ロール64および下ロール65が鉛直方向に並べて配置される形態であったが、例えば、3つの押圧ロールが水平方向や斜め方向に並べて配置される形態であってもよい。
また、例えば、搬送または樹脂シート53と押圧ロール63〜65との密着を補助する転写技術上無関係なロールであれば、樹脂シート53および凹版転写型69に接するロール(タッチロール)が設けられていてもよい。
Further, in the above-described embodiment, the press roll group 54 is configured such that the upper roll 63, the intermediate roll 64, and the lower roll 65 are arranged side by side in the vertical direction. The form arrange | positioned along with a direction may be sufficient.
Further, for example, a roll (touch roll) in contact with the resin sheet 53 and the intaglio transfer mold 69 is provided as long as the roll is irrelevant in terms of transfer technology for assisting conveyance or adhesion between the resin sheet 53 and the pressing rolls 63 to 65. May be.

また、例えば、光拡散板(樹脂シート)は、光拡散板10のような単層樹脂板に限定されるものではなく、例えば、2層樹脂板、3層樹脂板、4層以上の層からなる複数層の樹脂板であってもよい。
また、光拡散板10は、バックライト用の光拡散板として好適に用いられるが、特にこのような用途に限定されるものではない。
Further, for example, the light diffusing plate (resin sheet) is not limited to a single layer resin plate like the light diffusing plate 10, for example, from a two-layer resin plate, a three-layer resin plate, four or more layers It may be a multi-layer resin plate.
Moreover, although the light diffusing plate 10 is used suitably as a light diffusing plate for backlights, it is not particularly limited to such an application.

また、バックライトシステム2は、液晶表示装置用の面光源装置として好適に用いられるが、特にこのような用途に限定されるものではない。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
The backlight system 2 is preferably used as a surface light source device for a liquid crystal display device, but is not particularly limited to such an application.
In addition, various design changes can be made within the scope of matters described in the claims.

次に、本発明を実施例および比較例に基づいて説明するが、本発明は下記の実施例によって限定されるものではない。
<実施例1>
図1に示す樹脂シート製造装置と同様の構成を有する装置を用いた。押圧ロールは、上ロールおよび中間ロールとして、表面にクロムメッキが施された鏡面冷却ロールを用いた。また、下ロールとして、表面材質がクロムからなり、当該表面の全域にロール回転方向と平行に凹型レンズ形状(凹溝)が形成され、有機ポリシロキサン処理が施された形状ロールを用いた。凹型レンズ形状を有する凹版転写型のピッチPは353μm、深さHは223.7μmであった。
Next, although this invention is demonstrated based on an Example and a comparative example, this invention is not limited by the following Example.
<Example 1>
The apparatus which has the structure similar to the resin sheet manufacturing apparatus shown in FIG. 1 was used. As the pressing roll, a mirror surface cooling roll having a surface plated with chromium was used as an upper roll and an intermediate roll. Further, as the lower roll, a shape roll in which the surface material is made of chrome, a concave lens shape (concave groove) is formed in the entire area of the surface in parallel with the roll rotation direction, and an organic polysiloxane treatment is performed. The pitch P 1 of the intaglio transfer mold having a concave lens shape was 353 μm, and the depth H 1 was 223.7 μm.

樹脂シートの製造に際しては、まず、スチレン樹脂(東洋スチレン株式会社製「HRM40」 Tg102℃)を、スクリュー径40mmの押出機に供給し、シリンダ温度210℃〜260℃で溶融混練した後、フィードブロックに供給した。
次いで、フィードブロック内の樹脂を、幅250mmのTダイを経由させて、Tダイ温度250℃〜260℃でシート状に押し出した。
In the production of the resin sheet, first, a styrene resin (“HRM40” manufactured by Toyo Styrene Co., Ltd., Tg 102 ° C.) is supplied to an extruder having a screw diameter of 40 mm and melt-kneaded at a cylinder temperature of 210 ° C. to 260 ° C. Supplied to.
Next, the resin in the feed block was extruded into a sheet shape at a T die temperature of 250 ° C. to 260 ° C. via a T die having a width of 250 mm.

その後、押し出された樹脂シートを、上ロール(鏡面冷却ロール)と中間ロール(鏡面冷却ロール)で挟み込み、中間ロールの表面に巻きつけた状態で搬送し、中間ロールと下ロール(転写型装着ロール)とで挟み込み、下ロールの表面に巻きつけた状態で搬送し、下ロールから剥離した樹脂シートを引き取りロールで引き取った。これにより、表面(上面)に凹形状が転写された、厚さTが2mmの表面形状転写樹脂シートを得た。なお、シートの搬送速度(ライン速度)は、0.65m/min(0.2/T〜50/T)であった。また、下ロールに接する前の樹脂シートの温度(下ロール入口温度T(R3前))は、ヒータにより調節した。 After that, the extruded resin sheet is sandwiched between an upper roll (mirror cooling roll) and an intermediate roll (mirror cooling roll) and conveyed while being wound around the surface of the intermediate roll, and an intermediate roll and a lower roll (transfer type mounting roll) And the resin sheet peeled off from the lower roll was taken up by the take-up roll. Accordingly, concave shape on a surface (upper surface) is transferred, the thickness T 1 is to obtain a surface profile transfer resin sheet 2 mm. The sheet conveyance speed (line speed) was 0.65 m / min (0.2 / T 1 to 50 / T 1 ). Further, the temperature of the resin sheet before coming into contact with the lower roll (lower roll inlet temperature T (before R3)) was adjusted by a heater.

そして、下ロール入口温度T(R3前)および下ロールの表面温度T(R3)を変化させ、各条件下の製造工程におけるトラレ現象の発生の有無を確認した。また、得られた樹脂シートの断面を顕微鏡で観察し、凸条の高さH´を測定することにより形状転写率Tを求めた。
形状転写率T(%)=樹脂シートの凸条の高さH´/下ロールの凹溝の深さH×100
また、下ロールの凹版転写型の表面の濡れ張力を、JIS K 6768に準拠して以下の方法により測定したところ、23mN/mであった。
Then, the lower roll inlet temperature T (before R3) and the lower roll surface temperature T (R3) were changed, and the presence or absence of occurrence of a trail phenomenon in the production process under each condition was confirmed. Moreover, the cross section of the obtained resin sheet was observed with a microscope, and the shape transfer rate T was determined by measuring the height H 1 ′ of the ridges.
Shape transfer rate T (%) = height of the ridge of the resin sheet H 1 ′ / depth of the groove of the lower roll H 1 × 100
Further, the wetting tension of the surface of the intaglio transfer mold of the lower roll was measured by the following method in accordance with JIS K 6768 and found to be 23 mN / m.

具体的には、和光純薬工業株式会社製「濡れ張力試験用混合液」(以下、単に薬品とする。)を用いて試験を行った。まず、凹版転写型(ワーク)の温度を23℃付近で安定させた。次に、凹版転写型の表面を、エタノールを浸み込ませたウエスで拭いた。次に、薬品に綿棒を浸し、綿棒に付着した薬品を、流れないように凹版転写型の真上に1滴載せた。そして、液を載せた3〜5秒後に判定した。判定は、載せられた液を目視で観察することにより、「(1)液を弾いている」か「(2)液が濡れている」のどちらかを判断した。液が盛り上がり、大きさも変化しない場合を(1)と判断し、液が平らで、徐々に広がる場合を(2)と判断した。   Specifically, the test was conducted using “mixture for wetting tension test” (hereinafter, simply referred to as a chemical) manufactured by Wako Pure Chemical Industries, Ltd. First, the temperature of the intaglio transfer mold (work) was stabilized at around 23 ° C. Next, the surface of the intaglio transfer mold was wiped with a cloth soaked with ethanol. Next, a cotton swab was immersed in the chemical, and one drop of the chemical adhering to the cotton swab was placed on the intaglio transfer mold so as not to flow. And it determined 3 to 5 seconds after mounting a liquid. The determination was made by visually observing the placed liquid to determine whether “(1) the liquid is playing” or “(2) the liquid is wet”. The case where the liquid swelled and the size did not change was determined as (1), and the case where the liquid was flat and gradually spread was determined as (2).

判定後、結果が(1)なら、より数値(濡れ張力)の小さな薬品に進み、結果が(2)なら、より数値(濡れ張力)の大きな薬品に進んだ。この操作を繰り返し、凹版転写型の表面を正確に濡らすことができる濡れ張力の薬品を絞り込み、その薬品の濡れ張力を測定結果とした。
<実施例2>
下ロール(形状ロール)として、実施例1の有機ポリシロキサン処理後、凹版転写型の表面をコットン布で拭くことにより、当該表面が洗浄されたロールを用いたこと以外は、実施例1と同様の方法・条件により、樹脂シートを作製した。
After the determination, if the result is (1), the process proceeds to a chemical having a smaller numerical value (wetting tension), and if the result is (2), the process proceeds to a chemical having a larger numerical value (wetting tension). This operation was repeated to narrow down the wetting tension chemicals that can accurately wet the surface of the intaglio transfer mold, and the wetting tension of the chemicals was taken as the measurement result.
<Example 2>
As the lower roll (shape roll), the same process as in Example 1 was used except that the surface of the intaglio transfer mold was wiped with a cotton cloth after the organopolysiloxane treatment of Example 1 and the surface was washed. A resin sheet was prepared according to the methods and conditions described above.

そして、下ロール入口温度T(R3前)および下ロールの表面温度T(R3)を変化させ、各条件下の製造工程におけるトラレ現象の発生の有無を確認した。また、得られた樹脂シートの断面を顕微鏡で観察し、凸条の高さH´を測定することにより形状転写率Tを求めた。
また、下ロールの凹版転写型の表面の濡れ張力を、実施例1と同様の方法により測定したところ、23mN/mであった。
<比較例1>
下ロール(形状ロール)として、有機ポリシロキサン処理が施されていないロールを用いたこと以外は、実施例1と同様の方法・条件により、樹脂シートを作製した。
Then, the lower roll inlet temperature T (before R3) and the lower roll surface temperature T (R3) were changed, and the presence or absence of occurrence of a trail phenomenon in the production process under each condition was confirmed. Moreover, the cross section of the obtained resin sheet was observed with a microscope, and the shape transfer rate T was determined by measuring the height H 1 ′ of the ridges.
Further, the wetting tension of the surface of the intaglio transfer mold of the lower roll was measured by the same method as in Example 1 and found to be 23 mN / m.
<Comparative Example 1>
A resin sheet was produced by the same method and conditions as in Example 1 except that a roll not subjected to organic polysiloxane treatment was used as the lower roll (shape roll).

そして、下ロール入口温度T(R3前)および下ロールの表面温度T(R3)を変化させ、各条件下の製造工程におけるトラレ現象の発生の有無を確認した。また、得られた樹脂シートの断面を顕微鏡で観察し、凸条の高さH´を測定することにより形状転写率Tを求めた。
また、下ロールの凹版転写型の表面の濡れ張力を、実施例1と同様の方法により測定したところ、42mN/mであった。
<実施例3>
図9に示す樹脂シート製造装置と同様の構成を有する装置を用いた。押圧ロールは、上ロールおよび下ロールとして、表面にクロムメッキが施された鏡面冷却ロールを用いた。また、中間ロールとして、表面材質がクロムからなり、当該表面の全域にロール回転方向と平行に凹型レンズ形状(凹溝)が形成され、有機ポリシロキサン処理が施された形状ロールを用いた。凹型レンズ形状を有する凹版転写型のピッチPは353μm、深さHは223.7μmであった。
Then, the lower roll inlet temperature T (before R3) and the lower roll surface temperature T (R3) were changed, and the presence or absence of occurrence of a trail phenomenon in the production process under each condition was confirmed. Moreover, the cross section of the obtained resin sheet was observed with a microscope, and the shape transfer rate T was determined by measuring the height H 1 ′ of the ridges.
Further, the wetting tension of the surface of the intaglio transfer mold of the lower roll was measured by the same method as in Example 1, and it was 42 mN / m.
<Example 3>
The apparatus which has the structure similar to the resin sheet manufacturing apparatus shown in FIG. 9 was used. As the pressing roll, a mirror surface cooling roll having a surface plated with chromium was used as the upper roll and the lower roll. Further, as the intermediate roll, a shape roll in which the surface material is made of chrome, a concave lens shape (concave groove) is formed in the entire area of the surface in parallel to the roll rotation direction, and an organic polysiloxane treatment is performed. The pitch P 1 of the intaglio transfer mold having a concave lens shape was 353 μm, and the depth H 1 was 223.7 μm.

樹脂シートの製造に際しては、まず、ポリカーボネート樹脂(住友ダウ株式会社製「カリバー200−30」、JIS7212−1987に準拠して測定されたガラス転移温度Tg:147℃)を、スクリュー径40mmの押出機に供給し、シリンダ温度210℃〜260℃で溶融混練した後、フィードブロックに供給した。
次いで、フィードブロック内の樹脂を、幅250mmのTダイを経由させて、Tダイ温度250℃〜260℃でシート状に押し出した。
In the production of the resin sheet, first, a polycarbonate resin (“Caliber 200-30” manufactured by Sumitomo Dow Co., Ltd., glass transition temperature Tg measured in accordance with JIS 7212-1987, Tg: 147 ° C.) is used as an extruder having a screw diameter of 40 mm. The mixture was melt-kneaded at a cylinder temperature of 210 ° C. to 260 ° C. and then supplied to the feed block.
Next, the resin in the feed block was extruded into a sheet shape at a T die temperature of 250 ° C. to 260 ° C. via a T die having a width of 250 mm.

その後、押し出された樹脂シートを、上ロール(鏡面冷却ロール)と中間ロール(転写型装着ロール)で挟み込み、中間ロールの表面に巻きつけた状態で搬送し、中間ロールと下ロール(鏡面冷却ロール)とで挟み込み、下ロールの表面に巻きつけた状態で搬送し、下ロールから剥離した樹脂シートを引き取りロールで引き取った。これにより、表面(下面)に凹形状が転写された、厚さTが1.2mmの表面形状転写樹脂シートを得た。なお、シートの搬送速度(ライン速度)は、0.90m/min(0.2/T〜50/T)であった。 After that, the extruded resin sheet is sandwiched between an upper roll (mirror cooling roll) and an intermediate roll (transfer mold mounting roll) and conveyed while being wound around the surface of the intermediate roll, and an intermediate roll and a lower roll (mirror cooling roll). And the resin sheet peeled off from the lower roll was taken up by the take-up roll. Accordingly, concave shape on a surface (lower surface) has been transferred, the thickness T 1 is to obtain a surface profile transfer resin sheet 1.2 mm. The sheet conveyance speed (line speed) was 0.90 m / min (0.2 / T 1 to 50 / T 1 ).

そして、中間ロール入口温度T(R2前)を変化させ、各条件下の製造工程におけるトラレ現象の発生の有無を確認した。また、得られた樹脂シートの断面を顕微鏡で観察し、凸条の高さH´を測定することにより形状転写率Tを求めた。
また、中間ロールの凹版転写型の表面の濡れ張力を、実施例1と同様の方法により測定したところ、23mN/mであった。
<比較例2>
中間ロール(形状ロール)として、有機ポリシロキサン処理が施されていないロールを用いたこと以外は、実施例3と同様の方法・条件により、樹脂シートを作製した。
And the intermediate roll inlet_port | entrance temperature T (before R2) was changed, and the presence or absence of generation | occurrence | production of the tray phenomenon in the manufacturing process of each condition was confirmed. Moreover, the cross section of the obtained resin sheet was observed with a microscope, and the shape transfer rate T was determined by measuring the height H 1 ′ of the ridges.
Further, the wetting tension of the surface of the intaglio transfer mold of the intermediate roll was measured by the same method as in Example 1, and found to be 23 mN / m.
<Comparative example 2>
A resin sheet was produced by the same method and conditions as in Example 3 except that a roll not subjected to organic polysiloxane treatment was used as an intermediate roll (shape roll).

製造の際、当該製造工程におけるトラレ現象の発生の有無を確認した。また、得られた樹脂シートの断面を顕微鏡で観察し、凸条の高さH´を測定することにより形状転写率Tを求めた。
また、下ロールの凹版転写型の表面の濡れ張力を、実施例1と同様の方法により測定したところ、42mN/mであった。
<評価>
(1)形状転写率Tおよびトラレ現象評価
実施例1〜2および比較例1により得られた形状転写率Tおよびトラレ現象評価の結果を下記表1に示す。
At the time of manufacture, the presence or absence of occurrence of a trail phenomenon in the manufacturing process was confirmed. Moreover, the cross section of the obtained resin sheet was observed with a microscope, and the shape transfer rate T was determined by measuring the height H 1 ′ of the ridges.
Further, the wetting tension of the surface of the intaglio transfer mold of the lower roll was measured by the same method as in Example 1, and it was 42 mN / m.
<Evaluation>
(1) Shape transfer rate T and evaluation of the trail phenomenon The results of the shape transfer rate T and the trail phenomenon evaluation obtained in Examples 1 and 2 and Comparative Example 1 are shown in Table 1 below.

Figure 2012061836
Figure 2012061836

実施例3および比較例2により得られた形状転写率Tおよびトラレ現象評価の結果を下記表2に示す。   Table 2 below shows the shape transfer rate T obtained in Example 3 and Comparative Example 2 and the results of evaluation of the trail phenomenon.

Figure 2012061836
Figure 2012061836

(2)IR(Infrared Spectroscopy)分析
実施例1〜2および比較例1で使用された下ロール(形状ロール)の転写型表面の赤外吸収スペクトルを、ATR反射法にて測定した。得られたIRスペクトルを、図10に示す。
図10に示すように、実施例1の転写型表面には、有機ポリシロキサンのスペクトルと同じ波数の位置にピークが見られたが、実施例2および比較例1の転写型表面にはピークが見られなかった。実施例2にピークが見られなかったのは、コットン布で転写型表面を拭いたので、これにより、クロムメッキの微細な孔に入りきらなかった有機ポリシロキサンが取り除かれたためであると考えられる。
(3)TOF−SIMS(Time-of-Flight Secondary Ion Mass Spectrometry)分析
実施例1〜2および比較例1で使用された下ロール(形状ロール)の転写型表面の一部を、TOF−SIMS装置(Physical Electronics社製)により分析した。測定条件は以下のとおりとした。また、測定結果を下記表3に示す。なお、表3では、トータルのPositiveイオンマススペクトルが1になるように、各Positiveイオンマススペクトルの強度を規格化した結果を示している。
・照射した一次イオン:69Ga
・測定面積: 約80×80μm
・検出した二次イオン:Positive(C5H15Si2OおよびC7H21Si4O4
・検出質量範囲: 0.5〜2000a.m.u
(2) IR (Infrared Spectroscopy) Analysis The infrared absorption spectrum of the transfer mold surface of the lower roll (shape roll) used in Examples 1-2 and Comparative Example 1 was measured by the ATR reflection method. The obtained IR spectrum is shown in FIG.
As shown in FIG. 10, the transfer mold surface of Example 1 showed a peak at the same wave number as the spectrum of the organopolysiloxane, but the transfer mold surface of Example 2 and Comparative Example 1 showed a peak. I couldn't see it. The reason why the peak was not observed in Example 2 is considered to be that the transfer mold surface was wiped with a cotton cloth, and this removed organic polysiloxane that could not fit into the fine holes of the chrome plating. .
(3) TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry) Analysis A portion of the transfer mold surface of the lower roll (shape roll) used in Examples 1-2 and Comparative Example 1 was subjected to a TOF-SIMS apparatus. (Analyzed by Physical Electronics). The measurement conditions were as follows. The measurement results are shown in Table 3 below. Table 3 shows the result of normalizing the intensity of each positive ion mass spectrum so that the total positive ion mass spectrum is 1.
Irradiated primary ions: 69 Ga +
・ Measurement area: about 80 × 80μm 2
· The detected secondary ions: Positive (C 5 H 15 Si 2 O + and C 7 H 21 Si 4 O 4 +)
-Detection mass range: 0.5-2000a. m. u

Figure 2012061836
Figure 2012061836

表3に示すように、実施例1の転写型表面には、実施例2および比較例1に比べて、有機ポリシロキサン由来のPositiveイオン(C5H15Si2OおよびC7H21Si4O4 )が多く検出された。実施例2に検出されなかったのは、コットン布で転写型表面を拭いたので、これにより、クロムメッキの微細な孔に入りきらなかった有機ポリシロキサンが取り除かれたためであると考えられる。 As shown in Table 3, compared to Example 2 and Comparative Example 1, the transfer type surface of Example 1 has positive ions (C 5 H 15 Si 2 O + and C 7 H 21 Si derived from organic polysiloxane). 4 O 4 + ) was detected in large numbers. The reason why it was not detected in Example 2 is considered to be that the surface of the transfer mold was wiped with a cotton cloth, thereby removing the organic polysiloxane that could not fit into the fine holes of the chrome plating.

53 樹脂シート
58 ダイ
65 下ロール
64 中間ロール
69 凹版転写型
76 (樹脂シートの)表面
77 凹版転写型
79 凹版転写型
53 Resin sheet 58 Die 65 Lower roll 64 Intermediate roll 69 Intaglio transfer mold 76 (Resin sheet) surface 77 Intaglio transfer mold 79 Intaglio transfer mold

Claims (4)

樹脂を加熱溶融状態でダイから連続的に押し出して連続樹脂シートを形成する工程と、
JIS K 6768に準拠して測定される濡れ張力が35mN/m以下の表面を有する転写型を有する形状ロールを用いて、当該連続樹脂シートの表面に前記転写型の前記表面を押し当てることにより、前記転写型の形状を転写する工程とを含むことを特徴とする、表面形状転写樹脂シートの製造方法。
A process of continuously extruding the resin from the die in a heated and melted state to form a continuous resin sheet;
By pressing the surface of the transfer mold against the surface of the continuous resin sheet using a shape roll having a transfer mold having a surface with a wetting tension of 35 mN / m or less measured according to JIS K 6768, And a step of transferring the shape of the transfer mold. A method for producing a surface shape transfer resin sheet.
前記形状ロールとして、前記表面に対して有機ポリシロキサン処理が施されている転写型を有する形状ロールを用いることを特徴とする、請求項1に記載の表面形状転写樹脂シートの製造方法。   The method for producing a surface shape transfer resin sheet according to claim 1, wherein a shape roll having a transfer mold in which an organic polysiloxane treatment is applied to the surface is used as the shape roll. 前記形状ロールとして、前記有機ポリシロキサン処理後、前記表面が洗浄された転写型を有する形状ロールを用いることを特徴とする、請求項2に記載の表面形状転写樹脂シートの製造方法。   The method for producing a surface shape transfer resin sheet according to claim 2, wherein a shape roll having a transfer mold whose surface is washed after the treatment with the organic polysiloxane is used as the shape roll. 前記樹脂のガラス転移温度をTg(℃)、転写後の前記連続樹脂シートの厚さをT(mm)として表したときに、
前記形状ロールの表面温度がTg−30(℃)〜Tg+50(℃)であり、前記連続樹脂シートの搬送速度が0.2/T(m/min)〜50/T(m/min)であり、前記形状ロールに接触する前の前記連続樹脂シートの表面温度がTg+50(℃)〜Tg+160(℃)であることを特徴とする、請求項1〜3のいずれか一項に記載の表面形状転写樹脂シートの製造方法。
When the glass transition temperature of the resin is expressed as Tg (° C.) and the thickness of the continuous resin sheet after transfer is expressed as T (mm),
The surface temperature of the shape roll is Tg-30 (° C.) to Tg + 50 (° C.), and the conveying speed of the continuous resin sheet is 0.2 / T (m / min) to 50 / T (m / min). The surface shape transfer according to any one of claims 1 to 3, wherein the surface temperature of the continuous resin sheet before contacting the shape roll is Tg + 50 (° C) to Tg + 160 (° C). Manufacturing method of resin sheet.
JP2010258091A 2010-08-20 2010-11-18 Method of manufacturing surface shape transfer resin sheet Pending JP2012061836A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010258091A JP2012061836A (en) 2010-08-20 2010-11-18 Method of manufacturing surface shape transfer resin sheet
PCT/JP2011/067980 WO2012023447A1 (en) 2010-08-20 2011-08-05 Surface shape transfer resin sheet manufacturing method
TW100128945A TW201210796A (en) 2010-08-20 2011-08-12 Surface shape transfer resin sheet manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010185264 2010-08-20
JP2010185264 2010-08-20
JP2010258091A JP2012061836A (en) 2010-08-20 2010-11-18 Method of manufacturing surface shape transfer resin sheet

Publications (1)

Publication Number Publication Date
JP2012061836A true JP2012061836A (en) 2012-03-29

Family

ID=45605103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010258091A Pending JP2012061836A (en) 2010-08-20 2010-11-18 Method of manufacturing surface shape transfer resin sheet

Country Status (3)

Country Link
JP (1) JP2012061836A (en)
TW (1) TW201210796A (en)
WO (1) WO2012023447A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220096774A (en) * 2020-12-31 2022-07-07 (주)이녹스첨단소재 Low-dielectric heat dissipation sheet and manufacturing method thereof
JP7208277B2 (en) * 2021-01-27 2023-01-18 プライムプラネットエナジー&ソリューションズ株式会社 Electrode manufacturing device and electrode manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0659531T3 (en) * 1993-12-24 2000-08-07 Roehm Gmbh Process for Extrusion of Plastic Sheets and Fresnel Lenses Made Therefrom
JP2925069B2 (en) * 1994-10-25 1999-07-26 五洋紙工株式会社 Continuous sheet with optical function
JPH1149954A (en) * 1997-07-31 1999-02-23 Toray Dow Corning Silicone Co Ltd Mold release
JP2000158533A (en) * 1998-11-30 2000-06-13 Sekisui Chem Co Ltd Embossed roll
JP4602777B2 (en) * 2004-01-26 2010-12-22 日本合成化学工業株式会社 Method for producing polyvinyl alcohol film
JP4506733B2 (en) * 2005-09-05 2010-07-21 ソニー株式会社 Manufacturing method of optical film

Also Published As

Publication number Publication date
WO2012023447A1 (en) 2012-02-23
TW201210796A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
JP6080771B2 (en) System, method and apparatus for direct embossing of polymer melt sheets
KR100886206B1 (en) Optical sheet and optical sheet manufacturing method
WO2006137459A1 (en) Light diffusing plate and lighting device using it
CN101219578A (en) Production process of embossed resin sheet material
WO2005116090A1 (en) Thermoplastic transparent resin
TW200841046A (en) Light diffuser plate, surface emission light source apparatus and liquid crystal display
TWI411850B (en) Optical sheet and its manufacturing method
JP2012061836A (en) Method of manufacturing surface shape transfer resin sheet
JP2011107689A (en) Light diffusion plate, surface light source device, liquid crystal display device and method of producing surface shape transfer resin sheet
TWI574823B (en) And a resin sheet for forming a resin sheet
WO2011115111A1 (en) Method for manufacturing optical sheet
CN110879431A (en) Brightening composite diffuser plate and manufacturing process thereof
TW201708851A (en) White reflective film
JP4578075B2 (en) Light reflector
JP4560890B2 (en) Method for producing laminated light diffusing film
JP4049659B2 (en) Light reflector
TWI484225B (en) Resin sheet and liquid crystal display device
JP2009109596A (en) Reflection sheet
TWI488953B (en) Resin sheet
JP2012030590A (en) Method of manufacturing surface shape-transferred resin sheet
JP2012111108A (en) Method of manufacturing surface shape transfer resin sheet
WO2010035746A1 (en) Method for producing optical sheet, optical sheet, and light source unit including optical sheet, display unit
JP2012030584A (en) Method of manufacturing surface shape-transferred resin sheet
CN114919147B (en) Preparation process of thin shading reflecting sheet for backlight module
WO2011152196A1 (en) Antistatic resin sheet