JP2012060174A - Display apparatus - Google Patents

Display apparatus Download PDF

Info

Publication number
JP2012060174A
JP2012060174A JP2011277385A JP2011277385A JP2012060174A JP 2012060174 A JP2012060174 A JP 2012060174A JP 2011277385 A JP2011277385 A JP 2011277385A JP 2011277385 A JP2011277385 A JP 2011277385A JP 2012060174 A JP2012060174 A JP 2012060174A
Authority
JP
Japan
Prior art keywords
layer
green
light emitting
substrate
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011277385A
Other languages
Japanese (ja)
Inventor
Keisuke Matsuo
圭介 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2011277385A priority Critical patent/JP2012060174A/en
Publication of JP2012060174A publication Critical patent/JP2012060174A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a display apparatus including red organic light-emitting devices capable of being formed by a simplified process with the thermal transfer method.SOLUTION: A display apparatus comprises: a red organic light-emitting element having, on a substrate, a first electrode, a red organic layer including a mixed layer containing a red light-emitting material, green light-emitting material, and at least one of a positive hole transporting material, an electron transporting material, and a positive/negative charge transporting material; and a second electrode in the order given; and a green organic light-emitting element having, on the substrate, the first electrode, a green organic layer including a green monochrome layer containing a green light-emitting material, and at least one of a positive hole transporting material, an electron transporting material, and a positive/negative transporting material, and the second electrode in the order given. The green light-emitting material included in the green monochrome layer and the green light-emitting material included in the mixed layer are the same.

Description

本発明は、熱転写法により形成された赤色有機発光素子および表示装置、その製造に用いられるドナー基板および転写方法、表示装置の製造方法、並びに表示装置の製造システムに関する。   The present invention relates to a red organic light-emitting element and a display device formed by a thermal transfer method, a donor substrate and a transfer method used for manufacturing the display device, a display device manufacturing method, and a display device manufacturing system.

有機発光素子の製造方法の一つとして、熱転写を用いたパターン作製法が開示されている(例えば、特許文献1および特許文献2参照。)。従来の熱転写法では、赤色,緑色,青色の三色の有機発光素子を形成するためには、一般的に発光色数と同じく三回の転写が必要である。有機層の一部に共通層を採用する場合(例えば、特許文献3参照。)も同様である。   As one method for manufacturing an organic light-emitting element, a pattern manufacturing method using thermal transfer is disclosed (for example, see Patent Document 1 and Patent Document 2). In the conventional thermal transfer method, in order to form organic light emitting elements of three colors of red, green, and blue, generally three times of transfer are required as with the number of emitted colors. The same applies to the case where a common layer is employed as a part of the organic layer (see, for example, Patent Document 3).

特開平9−167684号公報JP 9-167684 A 特開2002−216957号公報JP 2002-216957 A 特開2005−235742号公報JP 2005-235742 A

しかしながら、転写法では、ドナー基板と転写対象となる基板との合わせ、分離、レーザ照射など、複雑な工程が多数必要で、装置の複雑化および高額化を招き、タクトタイムの短縮も困難であった。また、各色用のドナー基板が必要となるので、ランニングコストも高額となるという問題があった。   However, the transfer method requires a number of complicated processes such as alignment, separation, and laser irradiation of the donor substrate and the substrate to be transferred, leading to complicated and expensive equipment, and shortening the tact time. It was. Further, since a donor substrate for each color is required, there is a problem that the running cost is high.

本発明はかかる問題点に鑑みてなされたもので、その目的は、熱転写法を用いて簡素な工程により形成することができる赤色有機発光素子およびこれを備えた表示装置、その製造に用いられるドナー基板および転写方法、表示装置の製造方法、並びに表示装置の製造システムを提供することにある。   The present invention has been made in view of such a problem, and an object thereof is to provide a red organic light-emitting element that can be formed by a simple process using a thermal transfer method, a display device including the red organic light-emitting element, and a donor used in the manufacture thereof. It is an object to provide a substrate, a transfer method, a display device manufacturing method, and a display device manufacturing system.

本発明による赤色有機発光素子は、基板に、第1電極と、赤色発光材料および緑色発光材料を含む混合層を有する赤色有機層と、第2電極とを順に備えたものである。   The red organic light-emitting device according to the present invention includes, on a substrate, a first electrode, a red organic layer having a mixed layer containing a red light-emitting material and a green light-emitting material, and a second electrode in order.

本発明による表示装置は、上記本発明の赤色有機発光素子を備えたものである。   A display device according to the present invention includes the red organic light-emitting element according to the present invention.

本発明による赤色有機発光素子、または本発明による表示装置では、赤色有機層が、赤色発光材料および緑色発光材料を含む混合層を有しているので、エネルギー準位の低い赤色にエネルギー移動が起こり、赤色発光が支配的になる。   In the red organic light-emitting device according to the present invention or the display device according to the present invention, the red organic layer has a mixed layer containing a red light-emitting material and a green light-emitting material, so that energy transfer occurs in red having a low energy level. , Red emission becomes dominant.

本発明による第1のドナー基板は、基体の表面側の一部に転写層を選択的に形成し、基体の裏面側から輻射線を照射することにより転写層を他の基板に転写するためのものであって、基体の表面側からみて、転写層の形成予定領域には反射層が設けられ、転写層の形成予定領域以外の領域には吸収層が設けられているものである。   In the first donor substrate according to the present invention, a transfer layer is selectively formed on a part of the front surface side of the substrate, and the transfer layer is transferred to another substrate by irradiating radiation from the back surface side of the substrate. As seen from the surface side of the substrate, a reflective layer is provided in a transfer layer formation scheduled region, and an absorption layer is provided in a region other than the transfer layer formation planned region.

本発明による第1の転写方法は、基体の一部に転写層を選択的に形成したドナー基板から転写層を他の基板に転写するものであって、ドナー基板として、基体の表面側からみて、転写層の形成予定領域には反射層が設けられ、転写層の形成予定領域以外の領域には吸収層が設けられたものを用い、基体の表面側全面に転写層を形成する工程と、基体の表面側から輻射線を照射することにより基体の表面側からみて吸収層が形成されている領域の転写層を選択的に除去する工程と、ドナー基板と他の基板とを対向配置し基体の裏面側から輻射線を照射することにより反射層上の前記転写層を他の基板に転写する工程とを含むものである。   A first transfer method according to the present invention is a method in which a transfer layer is transferred from a donor substrate having a transfer layer selectively formed on a part of the substrate to another substrate, and the donor substrate is viewed from the surface side of the substrate. A step of forming a transfer layer on the entire surface side of the substrate using a reflection layer provided in a region where the transfer layer is to be formed and an absorption layer provided in a region other than the region where the transfer layer is to be formed; A step of selectively removing the transfer layer in the region where the absorption layer is formed as seen from the surface side of the substrate by irradiating radiation from the surface side of the substrate, and a substrate in which the donor substrate and another substrate are arranged to face each other And transferring the transfer layer on the reflective layer to another substrate by irradiating radiation from the back side of the substrate.

本発明による第1の転写方法は、本発明の第 1のドナー基板を用いるものであり、基体の表面側全面に転写層が形成されたのち、基体の表面側から輻射線が照射されることにより基体の表面側からみて吸収層が形成されている領域の転写層が選択的に除去され、反射層上のみに転写層が残存する。そののち、ドナー基板と他の基板とが対向配置され、基体の裏面側から輻射線が照射されることにより反射層上の転写層が転写される。   The first transfer method according to the present invention uses the first donor substrate of the present invention, and after the transfer layer is formed on the entire surface side of the substrate, radiation is irradiated from the surface side of the substrate. As a result, the transfer layer in the region where the absorption layer is formed as viewed from the surface side of the substrate is selectively removed, and the transfer layer remains only on the reflective layer. After that, the donor substrate and the other substrate are arranged to face each other, and the transfer layer on the reflective layer is transferred by irradiating radiation from the back side of the substrate.

本発明による第2のドナー基板は、基体の表面側に転写層を形成し、基体の裏面側から輻射線を照射することにより転写層の一部を選択的に他の基板に転写するためのものであって、基体の裏面側からみて、転写層を他の基板に転写させない非転写領域には反射層が設けられ、非転写領域以外の領域には吸収層が設けられているものである。   The second donor substrate according to the present invention is for forming a transfer layer on the surface side of the base and selectively transferring a part of the transfer layer to another substrate by irradiating radiation from the back side of the base. As viewed from the back side of the substrate, a reflection layer is provided in a non-transfer area where the transfer layer is not transferred to another substrate, and an absorption layer is provided in an area other than the non-transfer area. .

本発明による第2の転写方法は、基体に転写層を形成したドナー基板から転写層の一部を選択的に他の基板に転写するものであって、ドナー基板として、基体の裏面側からみて、転写層を他の基板に転写させない非転写領域には反射層が設けられ、非転写領域以外の領域には吸収層が設けられたものを用い、基体の表面側全面に転写層を形成する工程と、ドナー基板と他の基板とを対向配置し基体の裏面側から輻射線を照射することにより転写層のうち非転写領域以外の部分を選択的に他の基板に転写する工程とを含むものである。   In the second transfer method according to the present invention, a part of the transfer layer is selectively transferred from the donor substrate having the transfer layer formed on the substrate to another substrate, and the donor substrate is viewed from the back side of the substrate. The transfer layer is formed on the entire surface side of the substrate using a reflection layer provided in a non-transfer area where the transfer layer is not transferred to another substrate and an absorption layer provided in an area other than the non-transfer area. And a step of selectively transferring a portion of the transfer layer other than the non-transfer region to the other substrate by arranging the donor substrate and the other substrate facing each other and irradiating radiation from the back side of the substrate. It is a waste.

本発明による第2の転写方法は、本発明の第2のドナー基板を用いるものであり、基体の表面側全面に転写層が形成されたのち、ドナー基板と他の基板とが対向配置され基体の裏面側から輻射線が照射されることにより転写層のうち非転写領域以外の部分が選択的に他の基板に転写され、非転写領域の部分は転写されずに基体上に残存する。   The second transfer method according to the present invention uses the second donor substrate of the present invention, and after the transfer layer is formed on the entire surface side of the substrate, the donor substrate and another substrate are arranged to face each other. By irradiating with radiation from the back surface side, a portion of the transfer layer other than the non-transfer region is selectively transferred to another substrate, and the portion of the non-transfer region remains on the substrate without being transferred.

本発明による表示装置の製造方法は、基板に赤色有機発光素子,緑色有機発光素子および青色有機発光素子を備えた表示装置を製造するものであって、基体の表面側からみて、基板における赤色有機発光素子の形成予定領域に対応した赤色転写層形成予定領域には反射層、赤色転写層形成予定領域以外の領域には吸収層を有する一方、基体の裏面側からみて、緑色転写層非転写領域には反射層、緑色転写層非転写領域以外の領域には吸収層を有するドナー基板を用い、基体の表面側全面に赤色発光材料を含む赤色転写層を形成し、基体の表面側から輻射線を照射することにより、基体の表面側からみて吸収層が形成されている領域の赤色転写層を選択的に除去したのち、基体の表面側全面に緑色発光材料を含む緑色転写層を形成する転写層形成工程と、ドナー基板と基板とを対向配置し基体の裏面側から輻射線を照射することにより、赤色転写層と緑色転写層のうち緑色転写層非転写領域以外の部分とを基板に一括転写する一括転写工程とを含むものである。   A manufacturing method of a display device according to the present invention is a method for manufacturing a display device having a red organic light emitting element, a green organic light emitting element, and a blue organic light emitting element on a substrate. The red transfer layer formation planned region corresponding to the light emitting element formation planned region has a reflective layer, and the region other than the red transfer layer formation planned region has an absorption layer, while the green transfer layer non-transfer region is viewed from the back side of the substrate. In this case, a donor substrate having an absorbing layer is used for the region other than the reflective layer and the green transfer layer non-transfer region, a red transfer layer containing a red light emitting material is formed on the entire surface side of the substrate, and radiation is emitted from the surface side of the substrate. Is used to selectively remove the red transfer layer in the region where the absorption layer is formed when viewed from the surface side of the substrate, and then form a green transfer layer containing a green light emitting material on the entire surface side of the substrate. Layered By transferring the process and the donor substrate and the substrate facing each other and irradiating radiation from the back side of the substrate, the red transfer layer and the green transfer layer other than the green transfer layer non-transfer region are collectively transferred to the substrate. And a batch transfer process.

本発明による表示装置の製造システムは、基板に赤色有機発光素子,緑色有機発光素子および青色有機発光素子を備えた表示装置を製造するものであって、基体の表面側からみて、基板における赤色有機発光素子の形成予定領域に対応した赤色転写層形成予定領域には反射層、赤色転写層形成予定領域以外の領域には吸収層を有する一方、基体の裏面側からみて、緑色転写層非転写領域には反射層、緑色転写層非転写領域以外の領域には吸収層を有するドナー基板を用い、基体の表面側全面に赤色発光材料を含む赤色転写層を形成する赤色転写層形成部、基体の表面側から輻射線を照射することにより、基体の表面側からみて吸収層が形成されている領域の赤色転写層を選択的に除去する転写層選択的除去部、および、基体の表面側全面に緑色発光材料を含む緑色転写層を形成する緑色転写層形成部を含む転写層形成部と、ドナー基板と基板とを対向配置し基体の裏面側から輻射線を照射することにより、赤色転写層と緑色転写層のうち緑色転写層非転写領域以外の部分とを基板に一括転写する一括転写部とを備えたものである。   A display device manufacturing system according to the present invention manufactures a display device having a red organic light-emitting element, a green organic light-emitting element, and a blue organic light-emitting element on a substrate. The red transfer layer formation planned region corresponding to the light emitting element formation planned region has a reflective layer, and the region other than the red transfer layer formation planned region has an absorption layer, while the green transfer layer non-transfer region is viewed from the back side of the substrate. A donor layer having an absorbing layer in a region other than the reflective layer and the green transfer layer non-transfer region, a red transfer layer forming portion for forming a red transfer layer containing a red light emitting material on the entire surface side of the substrate, A transfer layer selective removal portion that selectively removes the red transfer layer in the region where the absorption layer is formed as viewed from the surface side of the substrate by irradiating radiation from the surface side, and the entire surface side of the substrate Green A red transfer layer and a green color are formed by irradiating radiation from the back side of the substrate by arranging a transfer layer forming unit including a green transfer layer forming unit that forms a green transfer layer containing a luminescent material, and a donor substrate and a substrate facing each other. The transfer layer includes a batch transfer portion that batch-transfers a portion other than the green transfer layer non-transfer region to the substrate.

本発明の赤色有機発光素子、または本発明の表示装置によれば、赤色有機層が、赤色発光材料と緑色発光材料とを含む混合層を有するようにしたので、熱転写法によりドナー基板から赤色発光材料を含む赤色転写層と緑色発光材料を含む緑色転写層とを一括転写するという簡素な工程で混合層を形成することができる。   According to the red organic light-emitting element of the present invention or the display device of the present invention, the red organic layer has a mixed layer containing a red light-emitting material and a green light-emitting material. The mixed layer can be formed by a simple process of batch transferring the red transfer layer containing the material and the green transfer layer containing the green light emitting material.

本発明の第1の転写方法によれば、本発明の第1のドナー基板を用いるので、基体の表面側全面に転写層を形成したのち、基体の表面側から輻射線を照射することにより転写層を選択的に除去し、反射層上のみに転写層を残存させることができる。   According to the first transfer method of the present invention, since the first donor substrate of the present invention is used, the transfer layer is formed on the entire surface side of the substrate, and then transferred by irradiation with radiation from the surface side of the substrate. The layer can be selectively removed, leaving the transfer layer only on the reflective layer.

本発明の第2の転写方法によれば、本発明の第2のドナー基板を用いるので、基体の表面側全面に転写層を形成したのち、ドナー基板と基板とを対向配置し基体の裏面側から輻射線を照射することにより転写層のうち非転写領域以外の部分を選択的に基板に転写し、非転写領域の部分を転写させずに基体上に残存させることができる。   According to the second transfer method of the present invention, since the second donor substrate of the present invention is used, after forming the transfer layer on the entire surface side of the substrate, the donor substrate and the substrate are arranged to face each other and the back surface side of the substrate. The portion of the transfer layer other than the non-transfer region can be selectively transferred to the substrate by irradiating with radiation from the substrate, and the portion of the non-transfer region can be left on the substrate without being transferred.

本発明の表示装置の製造方法、または本発明の表示装置の製造システムによれば、本発明のドナー基板を用い、このドナー基板に赤色転写層および緑色転写層を形成して基板に一括転写するようにしたので、赤色有機発光素子および緑色有機発光素子を形成するための転写を一回で行うことができ、簡素な工程により製造することができる。   According to the display device manufacturing method of the present invention or the display device manufacturing system of the present invention, the donor substrate of the present invention is used, and a red transfer layer and a green transfer layer are formed on the donor substrate and collectively transferred to the substrate. Since it did in this way, the transfer for forming a red organic light emitting element and a green organic light emitting element can be performed at once, and it can manufacture by a simple process.

本発明の一実施の形態に係る表示装置の構成を表す断面図である。It is sectional drawing showing the structure of the display apparatus which concerns on one embodiment of this invention. 図1に示した表示装置の製造方法の流れを表す流れ図である。It is a flowchart showing the flow of the manufacturing method of the display apparatus shown in FIG. 図2に示した製造方法を工程順に表す断面図である。It is sectional drawing showing the manufacturing method shown in FIG. 2 in order of a process. 図2に示した製造方法において用いるドナー基板の構成を表す断面図である。It is sectional drawing showing the structure of the donor substrate used in the manufacturing method shown in FIG. 図4に示したドナー基板の変形例を表す断面図である。FIG. 5 is a cross-sectional view illustrating a modified example of the donor substrate illustrated in FIG. 4. 図3に続く工程を表す断面図である。FIG. 4 is a cross-sectional view illustrating a process following FIG. 3. 図6に続く工程を表す断面図である。FIG. 7 is a cross-sectional view illustrating a process following FIG. 6. 図7に続く工程を表す断面図である。FIG. 8 is a cross-sectional diagram illustrating a process following the process in FIG. 7. 図8に続く工程を表す断面図である。FIG. 9 is a cross-sectional diagram illustrating a process following the process in FIG. 8. ドナー基板の作製兼再生の過程を工程順に表す断面図である。It is sectional drawing showing the process of preparation and reproduction | regeneration of a donor substrate in order of a process. 図9に続く工程を表す断面図である。FIG. 10 is a cross-sectional diagram illustrating a process following the process in FIG. 9. 図2に示した表示装置の製造方法による表示装置の製造システムの一例を概略的に表す図である。It is a figure which represents roughly an example of the manufacturing system of the display apparatus by the manufacturing method of the display apparatus shown in FIG. 本発明の変形例に係るドナー基板の構成を表す断面図である。It is sectional drawing showing the structure of the donor substrate which concerns on the modification of this invention. 図13に示したドナー基板の変形例を表す断面図である。FIG. 14 is a cross-sectional view illustrating a modified example of the donor substrate illustrated in FIG. 13. 図13に示したドナー基板の他の変形例を表す断面図である。FIG. 14 is a cross-sectional view illustrating another modification of the donor substrate illustrated in FIG. 13.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態に係る赤色有機発光素子を用いた表示装置の断面構造を表すものである。この表示装置は、極薄型の有機発光カラーディスプレイ装置などとして用いられるものであり、例えば、ガラスなどよりなる基板11の上に、赤色の光を発生する赤色有機発光素子10Rと、緑色の光を発生する緑色有機発光素子10Gと、青色の光を発生する青色有機発光素子10Bとが、順に全体としてマトリクス状に形成されている。なお、赤色有機発光素子10R,緑色有機発光素子10Gおよび青色有機発光素子10Bは短冊形の平面形状を有し、隣り合う赤色有機発光素子10R,緑色有機発光素子10Gおよび青色有機発光素子10Bの組み合わせが一つの画素を構成している。画素ピッチは例えば300μmである。   FIG. 1 shows a cross-sectional structure of a display device using a red organic light emitting element according to an embodiment of the present invention. This display device is used as an ultra-thin organic light emitting color display device. For example, on a substrate 11 made of glass or the like, a red organic light emitting element 10R that generates red light and green light are emitted. The generated green organic light emitting element 10G and the blue organic light emitting element 10B generating blue light are sequentially formed in a matrix as a whole. The red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic light emitting element 10B have a rectangular planar shape, and are a combination of the adjacent red organic light emitting element 10R, green organic light emitting element 10G, and blue organic light emitting element 10B. Constitutes one pixel. The pixel pitch is, for example, 300 μm.

赤色有機発光素子10Rは、基板11の側から、陽極としての第1電極12、絶縁膜13、後述する混合層14RCを含む赤色有機層14R、および陰極としての第2電極15がこの順に積層された構成を有している。緑色有機発光素子10Gは、基板11の側から、第1電極12、絶縁膜13、後述する緑色単色層14GCを含む緑色有機層14G、および第2電極15がこの順に積層された構成を有している。青色有機発光素子10Bは、基板11の側から、第1電極12、絶縁膜13,後述する青色単色層14Dを含む青色有機層14B、および第2電極15がこの順に積層された構成を有している。   In the red organic light emitting element 10R, a first electrode 12 as an anode, an insulating film 13, a red organic layer 14R including a mixed layer 14RC described later, and a second electrode 15 as a cathode are stacked in this order from the substrate 11 side. It has a configuration. The green organic light emitting element 10G has a configuration in which a first electrode 12, an insulating film 13, a green organic layer 14G including a green monochrome layer 14GC described later, and a second electrode 15 are stacked in this order from the substrate 11 side. ing. The blue organic light emitting element 10B has a configuration in which a first electrode 12, an insulating film 13, a blue organic layer 14B including a blue monochrome layer 14D described later, and a second electrode 15 are stacked in this order from the substrate 11 side. ing.

このような赤色有機発光素子10R,緑色有機発光素子10Gおよび青色有機発光素子10Bは、保護膜16により被覆され、更にこの保護膜16上に接着層20を間にしてガラスなどよりなる封止用基板30が全面にわたって貼り合わされることにより封止されている。   The red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic light emitting element 10B are covered with a protective film 16, and are further sealed with an adhesive layer 20 on the protective film 16 and made of glass or the like. The substrate 30 is sealed by being bonded over the entire surface.

第1電極12は、例えば、ITO(インジウム・スズ複合酸化物)により構成されている。なお、第1電極12は、アクティブマトリクス駆動を可能とするため、基板11上に形成されたTFT(薄膜トランジスタ)およびこれを覆う平坦化絶縁膜(いずれも図示せず)の上に設けられていてもよい。その場合、第1電極12は、平坦化絶縁膜に設けられたコンタクトホールを介してTFTに電気的に接続されている。   The first electrode 12 is made of, for example, ITO (indium / tin composite oxide). The first electrode 12 is provided on a TFT (thin film transistor) formed on the substrate 11 and a planarization insulating film (none of which is shown) covering the TFT 11 to enable active matrix driving. Also good. In that case, the first electrode 12 is electrically connected to the TFT through a contact hole provided in the planarization insulating film.

絶縁膜13は、第1電極12と第2電極15との絶縁性を確保するとともに発光領域を正確に所望の形状にするためのものであり、例えばポリイミドなどの感光性樹脂により構成されている。絶縁膜13には、発光領域に対応して開口部が設けられている。   The insulating film 13 is used to ensure insulation between the first electrode 12 and the second electrode 15 and to accurately form the light emitting region in a desired shape. For example, the insulating film 13 is made of a photosensitive resin such as polyimide. . The insulating film 13 has an opening corresponding to the light emitting region.

赤色有機層14Rは、例えば、第1電極12の側から順に、正孔注入層14A1,正孔輸送層14A2,混合層14RC,青色単色層14Dおよび電子輸送層14Eを積層した構成を有する。緑色有機層14Gは、例えば、第1電極12の側から順に、正孔注入層14A1,正孔輸送層14A2,緑色単色層14GC,青色単色層14Dおよび電子輸送層14Eを積層した構成を有する。青色有機層14Bは、例えば、第1電極12の側から順に、正孔注入層14A1,正孔輸送層14A2,青色単色層14Dおよび電子輸送層14Eを積層した構成を有する。これらのうち正孔注入層14A1,正孔輸送層14A2,青色単色層14Dおよび電子輸送層14Eは、赤色有機発光素子10R,緑色有機発光素子10Gおよび青色有機発光素子10Bの共通層である。正孔注入層14A1は、正孔注入効率を高めるためのものであると共に、リークを防止するためのバッファ層である。正孔輸送層14A2は、発光層である混合層14RC,緑色単色層14GCおよび青色単色層14Dへの正孔輸送効率を高めるためのものである。混合層14RC,緑色単色層14GCおよび青色単色層14Dは、電界をかけることにより電子と正孔との再結合が起こり、光を発生するものである。電子輸送層14Eは、混合層14RC,緑色単色層14GCおよび青色単色層14Dへの電子輸送効率を高めるためのものである。なお、正孔注入層14A1,正孔輸送層14A2および電子輸送層14Eは、必要に応じて設ければよく、発光色によりそれぞれ構成が異なっていてもよい。電子輸送層14Dと第2電極15との間には、LiF,Li2 Oなどよりなる電子注入層(図示せず)を設けてもよい。   The red organic layer 14R has, for example, a configuration in which a hole injection layer 14A1, a hole transport layer 14A2, a mixed layer 14RC, a blue monochromatic layer 14D, and an electron transport layer 14E are stacked in this order from the first electrode 12 side. For example, the green organic layer 14G has a configuration in which a hole injection layer 14A1, a hole transport layer 14A2, a green monochrome layer 14GC, a blue monochrome layer 14D, and an electron transport layer 14E are stacked in this order from the first electrode 12 side. For example, the blue organic layer 14B has a configuration in which a hole injection layer 14A1, a hole transport layer 14A2, a blue monochromatic layer 14D, and an electron transport layer 14E are stacked in this order from the first electrode 12 side. Among these, the hole injection layer 14A1, the hole transport layer 14A2, the blue monochromatic layer 14D, and the electron transport layer 14E are common layers of the red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic light emitting element 10B. The hole injection layer 14A1 is a buffer layer for improving hole injection efficiency and preventing leakage. The hole transport layer 14A2 is for increasing the hole transport efficiency to the mixed layer 14RC, the green monochromatic layer 14GC, and the blue monochromatic layer 14D, which are light emitting layers. The mixed layer 14RC, the green monochromatic layer 14GC, and the blue monochromatic layer 14D generate light by recombination of electrons and holes when an electric field is applied. The electron transport layer 14E is for increasing the efficiency of electron transport to the mixed layer 14RC, the green monochrome layer 14GC, and the blue monochrome layer 14D. Note that the hole injection layer 14A1, the hole transport layer 14A2, and the electron transport layer 14E may be provided as necessary, and may have different configurations depending on the emission color. An electron injection layer (not shown) made of LiF, Li2O, or the like may be provided between the electron transport layer 14D and the second electrode 15.

正孔注入層14A1は、例えば、厚みが5nm以上300nm以下、例えば25nmであり、4,4’,4”−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン(m−MTDATA)あるいは4,4’,4”−トリス(2−ナフチルフェニルアミノ)トリフェニルアミン(2−TNATA)により構成されている。正孔輸送層14A2は、例えば、厚みが5nm以上300nm以下、例えば30nmであり、4,4’−ビス(N−1−ナフチル−N−フェニルアミノ)ビフェニル(α−NPD)により構成されている。   The hole injection layer 14A1 has, for example, a thickness of 5 nm to 300 nm, for example 25 nm, and 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine (m-MTDATA) or 4,4 It is composed of ', 4 "-tris (2-naphthylphenylamino) triphenylamine (2-TNATA). The hole transport layer 14A2 has, for example, a thickness of 5 nm to 300 nm, for example, 30 nm, and is composed of 4,4′-bis (N-1-naphthyl-N-phenylamino) biphenyl (α-NPD). .

混合層14RCは、赤色発光材料と、正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種とを含んでいる。赤色発光材料は蛍光性のものでも燐光性のものでもよい。混合層14RCは、例えば、厚みが10nm以上100nm以下、例えば15nmであり、ADN(ジ(2−ナフチル)アントラセン)に赤色発光材料として2,6−ビス[(4’−メトキシジフェニルアミノ)スチリル]−1,5−ジシアノナフタレン(BSN)を30重量%混合したものにより構成されている。   The mixed layer 14RC includes a red light emitting material and at least one of a hole transporting material, an electron transporting material, and both charge transporting materials. The red light emitting material may be fluorescent or phosphorescent. The mixed layer 14RC has, for example, a thickness of 10 nm to 100 nm, for example, 15 nm, and 2,6-bis [(4′-methoxydiphenylamino) styryl] as a red light emitting material in ADN (di (2-naphthyl) anthracene). It is composed of 30% by weight of -1,5-dicyanonaphthalene (BSN).

緑色単色層14GCは、緑色発光材料と、正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種とを含んでいる。緑色発光材料は蛍光性のものでも燐光性のものでもよい。緑色単色層14GCは、例えば、厚みが10nm以上100nm以下、例えば15nmであり、ADNに緑色発光材料としてクマリン6(Coumarin6)を5重量%混合したものにより構成されている。   The green monochromatic layer 14GC includes a green light emitting material and at least one of a hole transporting material, an electron transporting material, and a charge transporting material. The green light emitting material may be fluorescent or phosphorescent. The green monochromatic layer 14GC has, for example, a thickness of 10 nm to 100 nm, for example, 15 nm, and is composed of ADN mixed with 5 wt% of coumarin 6 as a green light emitting material.

青色単色層14Dは、青色発光材料と、正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種とを含んでいる。青色発光材料は蛍光性のものでも燐光性のものでもよい。青色単色層14Dは、例えば、厚みが10nm以上100nm以下、例えば15nmであり、ADNに青色発光材料として4,4’−ビス[2−{4−(N,N−ジフェニルアミノ)フェニル}ビニル]ビフェニル(DPAVBi)を2.5重量%混合したものにより構成されている。   The blue monochromatic layer 14D includes a blue light emitting material and at least one of a hole transporting material, an electron transporting material, and a charge transporting material. The blue light emitting material may be fluorescent or phosphorescent. The blue monochromatic layer 14D has, for example, a thickness of 10 nm to 100 nm, for example, 15 nm, and 4,4′-bis [2- {4- (N, N-diphenylamino) phenyl} vinyl] as a blue light emitting material for ADN. It is composed of a mixture of 2.5% by weight of biphenyl (DPAVBi).

電子輸送層14Eは、例えば、厚みが5nm以上300nm以下、例えば20nmであり、8−ヒドロキシキノリンアルミニウム(Alq3 )により構成されている。   The electron transport layer 14E has, for example, a thickness of 5 nm to 300 nm, for example, 20 nm, and is made of 8-hydroxyquinoline aluminum (Alq3).

第2電極15は、透明電極または半透過性電極により構成されており、混合層14RC,緑色単色層14GCおよび青色単色層14Cで発生した光は第2電極15側から取り出されるようになっている。第2電極15は、例えば、厚みが5nm以上50nm以下であり、アルミニウム(Al),マグネシウム(Mg),カルシウム(Ca),ナトリウム(Na)などの金属元素の単体または合金により構成されている。中でも、マグネシウムと銀との合金(MgAg合金)が好ましい。   The second electrode 15 is composed of a transparent electrode or a semi-transmissive electrode, and light generated in the mixed layer 14RC, the green monochrome layer 14GC, and the blue monochrome layer 14C is extracted from the second electrode 15 side. . For example, the second electrode 15 has a thickness of 5 nm or more and 50 nm or less, and is made of a simple substance or an alloy of a metal element such as aluminum (Al), magnesium (Mg), calcium (Ca), or sodium (Na). Among these, an alloy of magnesium and silver (MgAg alloy) is preferable.

保護膜16は、赤色有機層14R,緑色有機層14Gおよび青色有機層14Bに水分などが侵入することを防止するためのものであり、透過水性および吸水性の低い材料により構成されると共に十分な厚みを有している。また、保護膜16は、混合層14RC,緑色単色層14GCおよび青色単色層14Cで発生した光に対する透過性が高く、例えば80%以上の透過率を有する材料により構成されている。このような保護膜16は、例えば、厚みが2μmないし3μm程度であり、無機アモルファス性の絶縁性材料により構成されている。具体的には、アモルファスシリコン(α−Si),アモルファス炭化シリコン(α−SiC),アモルファス窒化シリコン(α−Si1−x Nx )およびアモルファスカーボン(α−C)が好ましい。これらの無機アモルファス性の絶縁性材料は、グレインを構成しないので透水性が低く、良好な保護膜16となる。また、保護膜16は、ITOのような透明導電材料により構成されていてもよい。   The protective film 16 is for preventing moisture and the like from entering the red organic layer 14R, the green organic layer 14G, and the blue organic layer 14B. It has a thickness. Further, the protective film 16 is made of a material having high transmittance with respect to light generated in the mixed layer 14RC, the green monochrome layer 14GC, and the blue monochrome layer 14C, and having a transmittance of 80% or more, for example. Such a protective film 16 has, for example, a thickness of about 2 μm to 3 μm and is made of an inorganic amorphous insulating material. Specifically, amorphous silicon (α-Si), amorphous silicon carbide (α-SiC), amorphous silicon nitride (α-Si1-xNx), and amorphous carbon (α-C) are preferable. Since these inorganic amorphous insulating materials do not constitute grains, the water permeability is low and a good protective film 16 is obtained. Further, the protective film 16 may be made of a transparent conductive material such as ITO.

接着層20は、例えば熱硬化型樹脂または紫外線硬化型樹脂により構成されている。   The adhesive layer 20 is made of, for example, a thermosetting resin or an ultraviolet curable resin.

封止用基板30は、赤色有機発光素子10R、緑色有機発光素子10Gおよび青色有機発光素子10Bの第2電極15の側に位置しており、接着層20と共に赤色有機発光素子10R、緑色有機発光素子10Gおよび青色有機発光素子10Bを封止するものである。また、封止用基板30は、混合層14RC,緑色単色層14GCおよび青色単色層14Cで発生した光を第2電極15側から取り出すため、赤色有機発光素子10R、緑色有機発光素子10Gおよび青色有機発光素子10Bで発生した光に対して透明なガラスなどの材料により構成されている。   The sealing substrate 30 is located on the second electrode 15 side of the red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic light emitting element 10B, and together with the adhesive layer 20, the red organic light emitting element 10R and the green organic light emitting element. The element 10G and the blue organic light emitting element 10B are sealed. Further, the sealing substrate 30 takes out the light generated in the mixed layer 14RC, the green monochromatic layer 14GC, and the blue monochromatic layer 14C from the second electrode 15 side. Therefore, the red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic It is made of a material such as glass that is transparent to the light generated by the light emitting element 10B.

この表示装置は、例えば次のようにして製造することができる。   This display device can be manufactured, for example, as follows.

図2はこの表示装置の製造方法の流れを表す流れ図であり、図3ないし図11は、図2に示した製造方法を工程順に表すものである。   FIG. 2 is a flowchart showing the flow of the manufacturing method of the display device, and FIGS. 3 to 11 show the manufacturing method shown in FIG. 2 in the order of steps.

まず、図3(A)に示したように、上述した材料よりなる基板11の上に、例えばスパッタ法により、上述した材料よりなる第1電極12を形成し、例えばドライエッチングにより所定の形状に成形する(ステップS101)。なお、基板11の所定の位置には、後述する一括転写工程においてドナー基板との位置合わせに使用するアライメントマークが形成されている。   First, as shown in FIG. 3A, the first electrode 12 made of the above-described material is formed on the substrate 11 made of the above-described material by, for example, sputtering, and is formed into a predetermined shape by, for example, dry etching. Molding is performed (step S101). Note that an alignment mark used for alignment with the donor substrate in a batch transfer process described later is formed at a predetermined position of the substrate 11.

次いで、同じく図3(A)に示したように、基板11の全面にわたり感光性樹脂を塗布し、例えばフォトリソグラフィ法により成形して第1電極12に対応する部分に開口部を設け、焼成して、絶縁膜13を形成する(ステップS102)。   Next, similarly as shown in FIG. 3A, a photosensitive resin is applied over the entire surface of the substrate 11, formed by, for example, photolithography, an opening is provided in a portion corresponding to the first electrode 12, and firing is performed. Then, the insulating film 13 is formed (step S102).

続いて、図3(B)に示したように、例えば蒸着法により、上述した厚みおよび材料よりなる正孔注入層14A1および正孔輸送層14A2を順次成膜する(ステップS103)。   Subsequently, as shown in FIG. 3B, the hole injection layer 14A1 and the hole transport layer 14A2 made of the above-described thickness and material are sequentially formed by, eg, vapor deposition (step S103).

そののち、正孔輸送層14A2の上に、ドナー基板を用いた熱転写法により、赤色有機発光素子10Rの形成予定領域10R1に混合層14RCを形成すると共に、緑色有機発光素子10Gの形成予定領域10G1に緑色単色層14GCを形成する。この工程は、転写層形成工程と、一括転写工程とを含む。   After that, the mixed layer 14RC is formed on the formation region 10R1 of the red organic light emitting element 10R on the hole transport layer 14A2 by a thermal transfer method using a donor substrate, and the formation region 10G1 of the green organic light emitting element 10G is formed. The green monochrome layer 14GC is formed on the substrate. This step includes a transfer layer forming step and a batch transfer step.

(ドナー基板の構成)
図4は、この工程に用いられるドナー基板の構成を、転写層を形成しない未使用の状態で表したものである。ドナー基板100は、基体110の表面側、すなわち基板11と対向する側に、反射層120および吸収層130を有している。基体110は、基板11との位置合わせが可能な堅固さを有すると共に、レーザ光に対する透過性の高い材料、例えばガラスまたはアクリル等の樹脂により構成されている。反射層120は、例えば銀(Ag)または銀(Ag)を含む合金など反射率の高い金属材料により構成されている。このほか、長波長域に限れば、反射層120の構成材料は、金(Au),銅(Cu)あるいはこれらを含む合金でもよい。吸収層130は、例えば、クロム(Cr),モリブデン(Mo),チタン(Ti)あるいはこれらを含む合金など吸収率の高い金属材料により構成されている。吸収層130は、炭素(C)または黒色顔料により構成されていてもよい。
(Configuration of donor substrate)
FIG. 4 shows the configuration of the donor substrate used in this step in an unused state where no transfer layer is formed. The donor substrate 100 has a reflective layer 120 and an absorption layer 130 on the surface side of the base 110, that is, on the side facing the substrate 11. The base 110 is made of a material that can be aligned with the substrate 11 and has high transparency to the laser light, for example, a resin such as glass or acrylic. The reflective layer 120 is made of a metal material having a high reflectance such as silver (Ag) or an alloy containing silver (Ag). In addition, as long as it is limited to the long wavelength region, the constituent material of the reflective layer 120 may be gold (Au), copper (Cu), or an alloy containing these. The absorption layer 130 is made of a metal material having a high absorption rate such as chromium (Cr), molybdenum (Mo), titanium (Ti), or an alloy containing these. The absorption layer 130 may be made of carbon (C) or a black pigment.

このドナー基板100は、基体110の表面側からみて、基板11における赤色有機発光素子10Rの形成予定領域に対応した赤色転写層形成予定領域100R1には反射層120、それ以外の領域には吸収層130を有している。これにより、このドナー基板100では、赤色転写層を反射層120上にのみ選択的に形成することができるようになっている。   The donor substrate 100 includes a reflective layer 120 in the red transfer layer formation scheduled region 100R1 corresponding to the planned formation region of the red organic light emitting element 10R on the substrate 11 and an absorption layer in the other regions when viewed from the surface side of the substrate 110. 130. Thereby, in this donor substrate 100, the red transfer layer can be selectively formed only on the reflective layer 120.

また、ドナー基板100は、基体110の裏面側からみて、緑色転写層非転写領域(以下、単に「非転写領域」という。)100NPには反射層120、それ以外の領域には吸収層130を有している。これにより、このドナー基板100では、非転写領域100NPの緑色転写層を基板11に転写させずに基体110上に残存させることができるようになっている。この非転写領域100NPは、基板11における青色有機発光素子10Bの形成予定領域10B1に対応している。   In addition, the donor substrate 100 has a green transfer layer non-transfer region (hereinafter simply referred to as “non-transfer region”) 100NP as viewed from the back side of the base 110, and a reflective layer 120 in the other regions, and an absorption layer 130 in other regions. Have. Thereby, in this donor substrate 100, the green transfer layer in the non-transfer region 100NP can be left on the substrate 110 without being transferred to the substrate 11. The non-transfer area 100NP corresponds to the formation planned area 10B1 of the blue organic light emitting element 10B on the substrate 11.

赤色転写層形成予定領域100R1には、基体110の側から順に、吸収層130および反射層120が形成されている。このように反射層120と基体110との間に吸収層130を設けることにより、基体110の裏面側からレーザ光を照射して赤色転写層を基板11に転写することができる。   In the red transfer layer formation planned region 100R1, an absorption layer 130 and a reflection layer 120 are formed in this order from the base 110 side. Thus, by providing the absorption layer 130 between the reflective layer 120 and the base 110, the red transfer layer can be transferred to the substrate 11 by irradiating the laser beam from the back side of the base 110.

なお、基体110上の反射層120および吸収層130の積層構成は、上述した条件を満たす限り、図4に示したものに限らず他の積層構成としてもよい。例えば、図4では、基体110の表面側全面に吸収層130、部分的に反射層120を設けるようにした構成を表しているが、図5に示したように、基体110の表面側全面に反射層130、部分的に吸収層130を設けるようにしてもよい。   Note that the laminated structure of the reflective layer 120 and the absorbing layer 130 on the substrate 110 is not limited to the one shown in FIG. 4 as long as the above-described conditions are satisfied, and may be another laminated structure. For example, FIG. 4 shows a configuration in which the absorption layer 130 and the reflective layer 120 are partially provided on the entire surface side of the base 110, but as shown in FIG. The reflective layer 130 and the absorbing layer 130 may be partially provided.

(転写層形成工程)
このドナー基板100に対して、まず、図6(A)に示したように、基体110の表面側全面に、例えば真空蒸着により、上述した赤色発光材料を含む赤色転写層200Rを形成する(ステップS201)。
(Transfer layer formation process)
For this donor substrate 100, first, as shown in FIG. 6A, a red transfer layer 200R containing the above-described red light emitting material is formed on the entire surface of the base 110 by, for example, vacuum deposition (step). S201).

次いで、図6(B)に示したように、真空中において、除去物回収用の透明基板300をドナー基板100に近接または密着させ、この透明基板300を介して、基体110の表面側からレーザ光LB1を照射する。レーザ光LB1は吸収層130で光熱変換されるので、基体110の表面側からみて吸収層130が形成されている領域の赤色転写層200Rは選択的に除去される(ステップS202)。これにより、赤色転写層形成予定領域100R1のみに赤色転写層200Rが形成される。このとき、赤色転写層形成領域100R1に反射層120を設けたので、従来のようにレーザ光のスポット形状を成形して所定領域のみ選択的に照射するという複雑な工程は不要となり、レーザ光LB1を成形せずに全面照射しつつ反射層120上の赤色転写層200Rのみを除去せずに残存させることができる。レーザ光LB1としては例えば波長800nmの半導体レーザ光を用い、照射条件としては例えば0.3mW/μm2 、スキャン速度50mm/sとすることができる。 Next, as shown in FIG. 6B, in a vacuum, the transparent substrate 300 for collecting the removed substance is brought close to or in close contact with the donor substrate 100, and the laser is emitted from the surface side of the base 110 through the transparent substrate 300. Irradiate light LB1. Since the laser beam LB1 is photothermally converted by the absorption layer 130, the red transfer layer 200R in the region where the absorption layer 130 is formed as viewed from the surface side of the substrate 110 is selectively removed (step S202). As a result, the red transfer layer 200R is formed only in the red transfer layer formation planned region 100R1. At this time, since the reflective layer 120 is provided in the red transfer layer forming region 100R1, a complicated process of shaping the spot shape of the laser beam and selectively irradiating only the predetermined region as in the prior art becomes unnecessary, and the laser beam LB1. Can be left without removing only the red transfer layer 200R on the reflective layer 120. The use of a semiconductor laser beam having a wavelength of 800nm, for example, as a laser beam LB1, as the irradiation conditions for example 0.3mW / μm 2, it is possible to scan speed 50 mm / s.

続いて、図7に示したように、基体110の表面側全面に、例えば真空蒸着により、上述した緑色発光材料を含む緑色転写層200Gを形成する(ステップS203)。以上により、基体110の表面側の一部に赤色転写層200R、表面側全面に緑色転写層200Gを形成したドナー基板100を形成する。   Subsequently, as shown in FIG. 7, the green transfer layer 200G containing the above-described green light emitting material is formed on the entire surface of the base 110 by, for example, vacuum deposition (step S203). As described above, the donor substrate 100 in which the red transfer layer 200R is formed on a part of the surface side of the substrate 110 and the green transfer layer 200G is formed on the entire surface side is formed.

(一括転写工程)
そののち、図8に示したように、ドナー基板100と基板11とを対向配置し、基体110の裏面側からレーザ光LB2を照射することにより、赤色転写層200Rと、緑色転写層200Gのうち非転写領域100NP以外の部分とを基板11に一括転写する(ステップS300)。これにより、図9に示したように、赤色有機発光素子10Rの形成予定領域10R1には混合層14RCが形成されると同時に、緑色有機発光素子10Gの形成予定領域10G1には緑色単色層14GCが形成される。このとき、非転写領域100NPに反射層120を設けたので、従来のようにレーザ光のスポット形状を成形して所定領域に選択的に照射するという複雑な工程は不要となり、レーザ光LB2を成形せずに全面照射しつつ非転写領域100NPの緑色転写層200Gのみを転写せずに残存させることができる。レーザ光LB2としては例えば波長800nmの半導体レーザ光を用い、照射条件としては例えば0.3mW/μm2 、スキャン速度50mm/sとすることができる。
(Batch transfer process)
After that, as shown in FIG. 8, the donor substrate 100 and the substrate 11 are arranged to face each other, and the laser beam LB2 is irradiated from the back surface side of the base 110, whereby the red transfer layer 200R and the green transfer layer 200G. A portion other than the non-transfer area 100NP is collectively transferred to the substrate 11 (step S300). As a result, as shown in FIG. 9, the mixed layer 14RC is formed in the planned formation region 10R1 of the red organic light emitting element 10R, and at the same time, the green monochromatic layer 14GC is formed in the planned formation region 10G1 of the green organic light emitting element 10G. It is formed. At this time, since the reflection layer 120 is provided in the non-transfer area 100NP, the complicated process of forming the spot shape of the laser light and selectively irradiating the predetermined area as in the prior art becomes unnecessary, and the laser light LB2 is formed. Without being transferred, only the green transfer layer 200G in the non-transfer area 100NP can be left without being transferred. The use of a semiconductor laser beam having a wavelength of 800nm, for example, as a laser light LB2, as the irradiation conditions for example 0.3mW / μm 2, it is possible to scan speed 50 mm / s.

一括転写工程を行ったのち、ドナー基板100については、上述した転写層形成工程(ステップS201,S202,S203)を順に再び行うことにより赤色転写層200Rおよび緑色転写層200Gを再形成し、別の基板11に対して一括転写工程を行う。図10は、このようなドナー基板100の作製兼再生の過程を表すものである。図10(A)に示した未使用の状態のドナー基板100に対して、図10(B)に示したように基体110の表面側全面に赤色転写層200Rを形成し(ステップS201)、図10(C)に示したようにレーザ光LB1の照射により赤色転写層200Rを選択的に除去したのち(ステップS202)、図10(D)に示したように基体110の表面側全面に緑色転写層200Gを形成する(ステップS203)。次いで、図10(E)に示したように一括転写工程を行う(ステップS300)。このとき、ドナー基板100の非転写領域100NPには緑色転写層200Gが残存する。続いて、図10(F)に示したように、非転写領域100NPに緑色転写層200Gを残存させたまま、基体110の表面側に赤色転写層200Rを形成し(ステップS201)、図10(C)に示したようにレーザ光LB1を照射すると、赤色転写層200Rを選択的に除去すると同時に、非転写領域100NPに残存する緑色転写層200Gも除去することができる(ステップS202)。そののち、図10Dに示したように、基体110の表面側全面に緑色転写層200Gを形成する(ステップS203)。このようにして、図10(C)〜図10(F)に示した工程の閉ループを構成することができ、一括転写後のドナー基板100を洗浄して再利用するための工程や装置は不要となり、かつ、ドナー基板を一回使用しただけで廃棄することなく繰り返し使用することが可能となる。   After performing the batch transfer process, the donor substrate 100 is subjected to the transfer layer forming process (steps S201, S202, S203) described above again in order to re-form the red transfer layer 200R and the green transfer layer 200G. A batch transfer process is performed on the substrate 11. FIG. 10 shows a process of producing and regenerating such a donor substrate 100. On the unused donor substrate 100 shown in FIG. 10A, a red transfer layer 200R is formed on the entire surface side of the substrate 110 as shown in FIG. 10B (step S201). After selectively removing the red transfer layer 200R by irradiation with the laser beam LB1 as shown in FIG. 10C (step S202), the green transfer is performed on the entire surface side of the substrate 110 as shown in FIG. The layer 200G is formed (step S203). Next, a batch transfer process is performed as shown in FIG. 10E (step S300). At this time, the green transfer layer 200G remains in the non-transfer region 100NP of the donor substrate 100. Subsequently, as shown in FIG. 10F, a red transfer layer 200R is formed on the surface side of the substrate 110 while the green transfer layer 200G remains in the non-transfer region 100NP (step S201), and FIG. When the laser beam LB1 is irradiated as shown in C), the red transfer layer 200R can be selectively removed, and at the same time, the green transfer layer 200G remaining in the non-transfer region 100NP can be removed (step S202). After that, as shown in FIG. 10D, a green transfer layer 200G is formed on the entire surface side of the substrate 110 (step S203). In this manner, a closed loop of the steps shown in FIGS. 10C to 10F can be configured, and a process or apparatus for cleaning and reusing the donor substrate 100 after batch transfer is unnecessary. In addition, the donor substrate can be used repeatedly without being discarded after being used once.

(青色単色層形成工程)
一方、一括転写工程を行った後の基板11については、図11に示したように、例えば蒸着により、上述した青色発光材料を含む青色単色層14Dを全面成膜する(ステップS401)。これにより、従来のように発光色数と同じく三回の転写を行う必要はなくなり、転写回数は一回に減らすことができる。
(Blue monochromatic layer formation process)
On the other hand, as shown in FIG. 11, the blue monochromatic layer 14D containing the above-described blue light-emitting material is formed on the entire surface of the substrate 11 after the batch transfer process as shown in FIG. 11 (step S401). As a result, it is not necessary to perform the transfer three times as in the conventional case, and the number of transfers can be reduced to one.

更に、青色単色層14Dに続いて、例えば蒸着により電子輸送層14Eおよび第2電極15も全面成膜する(ステップS402)。このようにして、赤色有機発光素子10R,緑色有機発光素子10Gおよび青色有機発光素子10Bを形成する。   Further, following the blue monochrome layer 14D, the electron transport layer 14E and the second electrode 15 are also formed on the entire surface by, for example, vapor deposition (step S402). In this manner, the red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic light emitting element 10B are formed.

赤色有機発光素子10R,緑色有機発光素子10Gおよび青色有機発光素子10Bを形成したのち、これらの上に上述した材料よりなる保護膜16を形成する(ステップS403)。保護膜16の形成方法は、下地に対して影響を及ぼすことのない程度に、成膜粒子のエネルギーが小さい成膜方法、例えば蒸着法またはCVD法が好ましい。また、保護膜16は、第2電極15を大気に暴露することなく、第2電極15の形成と連続して行うことが望ましい。大気中の水分や酸素により赤色有機層14R,緑色有機層14Gおよび青色有機層14Bが劣化してしまうのを抑制することができるからである。更に、赤色有機層14R,緑色有機層14Gおよび青色有機層14Bの劣化による輝度の低下を防止するため、保護膜16の成膜温度は常温に設定すると共に、保護膜16の剥がれを防止するために膜のストレスが最小になる条件で成膜することが望ましい。   After forming the red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic light emitting element 10B, the protective film 16 made of the above-described material is formed thereon (step S403). As a method for forming the protective film 16, a film forming method in which the energy of the film forming particles is small to such an extent that the protective film 16 is not affected, for example, a vapor deposition method or a CVD method is preferable. Further, it is desirable that the protective film 16 be performed continuously with the formation of the second electrode 15 without exposing the second electrode 15 to the atmosphere. This is because the red organic layer 14R, the green organic layer 14G, and the blue organic layer 14B can be prevented from being deteriorated by moisture and oxygen in the atmosphere. Further, in order to prevent a decrease in luminance due to deterioration of the red organic layer 14R, the green organic layer 14G, and the blue organic layer 14B, the film forming temperature of the protective film 16 is set to room temperature, and the protective film 16 is prevented from peeling off. Further, it is desirable to form the film under conditions that minimize the film stress.

そののち、保護膜16の上に、接着層20を形成し、この接着層20を間にして封止用基板30を貼り合わせる(ステップS404)。以上により、図1に示した表示装置が完成する。   After that, the adhesive layer 20 is formed on the protective film 16, and the sealing substrate 30 is bonded with the adhesive layer 20 in between (step S404). Thus, the display device shown in FIG. 1 is completed.

図12は、図2に示した製造方法による表示装置の製造システムの一例を概略的に表したものである。この製造システム400は、例えば、第1電極12および絶縁膜13を形成した基板11に正孔注入層14A1および正孔輸送層14A2を形成する正孔注入層・正孔輸送層形成部410と、一括転写工程を行う一括転写部420と、青色単色層14D,電子輸送層14Eおよび第2電極15を形成する青色単色層・電子輸送層・第2電極形成部430と、保護膜16を形成する保護膜形成部440とがライン状に配置されている。一括転写部420には、上述した転写層形成工程を行う転写層形成部450が接続されている。転写層形成部450は、基体110の表面側全面に赤色転写層200Rを形成する赤色転写層形成部451と、基体110の表面側からレーザ光LB1を照射することにより赤色転写層200Rを選択的に除去する転写層選択的除去部452と、基体110の表面側全面に緑色転写層200Gを形成する緑色転写層形成部453とがライン状に配置されている。なお、各部の配置は必ずしもライン状に限らず、放射状など他の配置でもよい。   FIG. 12 schematically shows an example of a display device manufacturing system according to the manufacturing method shown in FIG. The manufacturing system 400 includes, for example, a hole injection layer / hole transport layer forming unit 410 that forms the hole injection layer 14A1 and the hole transport layer 14A2 on the substrate 11 on which the first electrode 12 and the insulating film 13 are formed, A batch transfer portion 420 that performs a batch transfer step, a blue monochrome layer / electron transport layer / second electrode forming portion 430 that forms the blue monochrome layer 14D, the electron transport layer 14E, and the second electrode 15, and a protective film 16 are formed. The protective film forming part 440 is arranged in a line. A transfer layer forming unit 450 that performs the transfer layer forming process described above is connected to the batch transfer unit 420. The transfer layer forming unit 450 selectively irradiates the red transfer layer 200R by irradiating the laser beam LB1 from the surface side of the base 110 and the red transfer layer forming unit 451 that forms the red transfer layer 200R on the entire surface side of the base 110. The transfer layer selective removing portion 452 to be removed and the green transfer layer forming portion 453 for forming the green transfer layer 200G on the entire surface side of the substrate 110 are arranged in a line. The arrangement of each part is not necessarily limited to a line shape, but may be another arrangement such as a radial shape.

この表示装置では、第1電極12と第2電極15との間に所定の電圧が印加されることにより、混合層14RC,緑色単色層14GCおよび青色単色層14Dに電流が注入され、正孔と電子とが再結合して発光が起こる。この光は、第2電極15,保護膜16および封止用基板30を透過して取り出される。このとき、赤色有機発光素子10Rでは、赤色有機層14Rが、赤色発光材料および緑色発光材料を含む混合層14CRと、青色発光材
料を含む青色単色層14Dとを有するが、最もエネルギー準位の低い赤色にエネルギー移動が起こり、赤色発光が支配的となる。緑色有機発光素子10Gでは、緑色有機層14Gが、緑色発光材料を含む緑色単色層14GCと、青色発光材料を含む青色単色層14Dとを有するが、よりエネルギー準位の低い緑色にエネルギー移動が起こり、緑色発光が支配的となる。青色発光素子10Bでは、青色有機層14Bが、青色発光材料を含む青色単色層14Dのみを有するので、青色発光が生じる。
In this display device, when a predetermined voltage is applied between the first electrode 12 and the second electrode 15, current is injected into the mixed layer 14RC, the green monochrome layer 14GC, and the blue monochrome layer 14D, and holes and Light emission occurs due to recombination with electrons. This light passes through the second electrode 15, the protective film 16 and the sealing substrate 30 and is extracted. At this time, in the red organic light emitting element 10R, the red organic layer 14R includes the mixed layer 14CR including the red light emitting material and the green light emitting material and the blue monochromatic layer 14D including the blue light emitting material, but has the lowest energy level. Energy transfer occurs in red, and red emission becomes dominant. In the green organic light emitting element 10G, the green organic layer 14G has a green monochromatic layer 14GC containing a green light emitting material and a blue monochromatic layer 14D containing a blue light emitting material, but energy transfer occurs in green having a lower energy level. The green light emission becomes dominant. In the blue light emitting element 10B, since the blue organic layer 14B has only the blue monochromatic layer 14D containing the blue light emitting material, blue light emission occurs.

このように本実施の形態では、赤色有機層14Rが、赤色発光材料と緑色発光材料とを含む混合層14RCを有するようにしたので、熱転写法によりドナー基板100から赤色転写層200Rと緑色転写層200Gとを一括転写するという簡素な工程で混合層14RCを形成することができる。   Thus, in this embodiment, since the red organic layer 14R has the mixed layer 14RC including the red light emitting material and the green light emitting material, the red transfer layer 200R and the green transfer layer are formed from the donor substrate 100 by the thermal transfer method. The mixed layer 14RC can be formed by a simple process of batch-transferring 200G.

また、ドナー基板100には、基体110の表面側からみて赤色転写層形成予定領域100R1に反射層120を設けるようにしたので、基体100の表面側全面に赤色転写層200Rを形成したのち、ドナー基板100と基板11とを対向配置し基体110の表面側からレーザ光LB1を照射することにより赤色転写層200Rを選択的に除去し、反射層120上のみに赤色転写層200Rを残存させることができる。   In addition, since the reflective layer 120 is provided on the donor substrate 100 in the region 100R1 where the red transfer layer is to be formed as viewed from the surface of the substrate 110, the donor substrate 100 is formed with the red transfer layer 200R on the entire surface of the substrate 100, and then the donor substrate 100 is formed. The red transfer layer 200R is selectively removed by arranging the substrate 100 and the substrate 11 so as to face each other and irradiating the laser beam LB1 from the surface side of the base 110, and the red transfer layer 200R remains only on the reflective layer 120. it can.

更に、このドナー基板100には、基体110の裏面側からみて非転写領域100NPに反射層120を設けるようにしたので、基体110の表面側全面に緑色転写層200Gを形成したのち、ドナー基板100と基板11とを対向配置し基体110の裏面側からレーザ光LB2を照射することにより緑色転写層200Gのうち非転写領域100NP以外の部分を選択的に基板11に転写し、非転写領域100NPの部分を転写させずに基体110上に残存させることができる。   Further, since the donor substrate 100 is provided with the reflective layer 120 in the non-transfer region 100NP as viewed from the back surface side of the base 110, the green transfer layer 200G is formed on the entire surface side of the base 110, and then the donor substrate 100 is formed. And the substrate 11 are opposed to each other, and the portion of the green transfer layer 200G other than the non-transfer region 100NP is selectively transferred to the substrate 11 by irradiating the laser beam LB2 from the back side of the base 110, and the non-transfer region 100NP. The portion can be left on the substrate 110 without being transferred.

加えて、本実施の形態の表示装置の製造方法または製造システムによれば、このようなドナー基板100に赤色転写層200Rおよび緑色転写層200Gを形成して基板11に一括転写するようにしたので、赤色有機発光素子10Rおよび緑色有機発光素子10Gを形成するための転写を一回で行うことができ、簡素な工程により製造することができる。   In addition, according to the manufacturing method or the manufacturing system of the display device of the present embodiment, the red transfer layer 200R and the green transfer layer 200G are formed on the donor substrate 100 and transferred onto the substrate 11 at once. The transfer for forming the red organic light emitting element 10R and the green organic light emitting element 10G can be performed at a time, and can be manufactured by a simple process.

更にまた、ドナー基板100と基板11との合わせ、分離、レーザ照射などの複雑な工程が少なくなり、装置構成を簡素化して装置コストを低減することができ、タクトタイムを短縮して生産性を向上させることができる。更に、転写回数を減らすことができるので、転写に起因する不良も低減することができると共に、各色用のドナー基板100を必要としないのでランニングコスト削減も可能となる。   Furthermore, complicated steps such as the alignment, separation, and laser irradiation of the donor substrate 100 and the substrate 11 are reduced, the device configuration can be simplified, the device cost can be reduced, the tact time can be shortened, and the productivity can be reduced. Can be improved. Furthermore, since the number of times of transfer can be reduced, defects due to transfer can be reduced, and the donor substrate 100 for each color is not required, so that running costs can be reduced.

加えてまた、一括転写工程を行ったのちのドナー基板100に対して転写層形成工程を再び行うことにより赤色転写層200Rおよび緑色転写層200Gを再形成し、別の基板11に対して一括転写工程を行うようにすれば、一括転写後のドナー基板100を洗浄して再利用するための工程や装置は不要となり、かつ、ドナー基板100を一回使用しただけで廃棄することなく繰り返し使用することができる。よって、装置構成を簡略化し、装置コストおよびドナー基板のコストを更に下げることができる。   In addition, the red transfer layer 200R and the green transfer layer 200G are re-formed by performing the transfer layer forming process again on the donor substrate 100 after the collective transfer process, and the collective transfer to another substrate 11 is performed. If the process is performed, a process and an apparatus for cleaning and reusing the donor substrate 100 after collective transfer become unnecessary, and the donor substrate 100 is used repeatedly without being discarded only once. be able to. Therefore, the apparatus configuration can be simplified, and the apparatus cost and the cost of the donor substrate can be further reduced.

更にまた、一括転写工程を行ったのちに、赤色有機発光素子10R,緑色有機発光素子10G,青色有機発光素子10Bに共通の青色単色層14Dを蒸着法などにより形成するようにすれば、従来のように発光色数と同じく三回の転写を行う必要がなく、転写回数を一回に減らすことができる。   Furthermore, if the blue monochromatic layer 14D common to the red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic light emitting element 10B is formed by a vapor deposition method after performing the collective transfer process, a conventional method is possible. Thus, it is not necessary to transfer three times as in the case of the number of emitted colors, and the number of times of transfer can be reduced to one.

(変形例)
図13は、本発明の変形例に係るドナー基板の構成を未使用の状態で表したものである。このドナー基板100は、非転写領域100NPが、基板11における赤色有機発光素子10Rと緑色有機発光素子10Gとの境界領域に対応している。これにより、このドナー基板100では、一括転写工程において混合層14RCと緑色単色層14GCとの境界を明確に形成することができ、混色を確実に抑制することができるようになっている。なお、図13では、図4に示したような基体110の表面側全面に吸収層130を形成し、部分的に反射層120を設けたドナー基板100において、境界領域に対応して吸収層130と基体11との間に反射層120を追加的に形成した場合を表している。
(Modification)
FIG. 13 shows the configuration of the donor substrate according to the modification of the present invention in an unused state. In the donor substrate 100, the non-transfer region 100NP corresponds to a boundary region between the red organic light emitting element 10R and the green organic light emitting element 10G in the substrate 11. Thereby, in this donor substrate 100, the boundary between the mixed layer 14RC and the green monochromatic layer 14GC can be clearly formed in the collective transfer step, and the color mixture can be reliably suppressed. 13, in the donor substrate 100 in which the absorption layer 130 is formed on the entire surface side of the substrate 110 as shown in FIG. 4 and the reflection layer 120 is partially provided, the absorption layer 130 corresponding to the boundary region. In this example, a reflective layer 120 is additionally formed between the substrate 11 and the substrate 11.

なお、境界領域に非転写領域NPを設けるための反射層120および吸収層130の積層構成は、基体110の裏面側からみて境界領域に対応して反射層120が形成されている限り、図13に示したものに限らず、他の積層構成でもよい。例えば、図14に示したように、境界領域10Mに対応して吸収層130の一部を除去し、その領域を反射層120で被覆するようにしてもよい。また、図5に示したような基体110の表面側全面に反射層130を形成し、部分的に吸収層130を設けたドナー基板100では、図15に示したように、反射層120と基体110との間の吸収層130の一部を境界領域に対応して除去するようにしてもよい。   Note that the laminated structure of the reflective layer 120 and the absorbing layer 130 for providing the non-transfer region NP in the boundary region is as long as the reflective layer 120 is formed corresponding to the boundary region when viewed from the back side of the substrate 110. The laminated structure is not limited to those shown in FIG. For example, as shown in FIG. 14, a part of the absorption layer 130 may be removed corresponding to the boundary region 10 </ b> M and the region may be covered with the reflective layer 120. Further, in the donor substrate 100 in which the reflection layer 130 is formed on the entire surface side of the base 110 as shown in FIG. 5 and the absorption layer 130 is partially provided, the reflection layer 120 and the base are provided as shown in FIG. A part of the absorption layer 130 between 110 may be removed corresponding to the boundary region.

以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態では、転写層形成工程および一括転写工程でレーザ光を照射する場合について説明したが、例えばランプなど他の輻射線を照射するようにしてもよい。   While the present invention has been described with reference to the embodiment, the present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above embodiment, the case of irradiating laser light in the transfer layer forming step and the batch transfer step has been described. However, for example, other radiation such as a lamp may be irradiated.

また、上記実施の形態では、基体110の基板11に対向する側に反射層120および吸収層130を形成した場合について説明したが、反射層120および吸収層130は、上述した積層構成の条件を満たす限り、基体110の基板11とは反対側に設けられていてもよい。ただし、基体110の基板11に対向する側に設けるほうが、赤色転写層200Rおよび緑色転写層200Gの形成位置や転写位置の精度が高くなりやすく望ましい。   In the above embodiment, the case where the reflective layer 120 and the absorption layer 130 are formed on the side of the base 110 facing the substrate 11 has been described. However, the reflection layer 120 and the absorption layer 130 satisfy the above-described conditions for the stacked configuration. As long as it is satisfied, the base 110 may be provided on the opposite side of the substrate 11. However, it is desirable to provide the base 110 on the side facing the substrate 11 because the accuracy of the formation position and transfer position of the red transfer layer 200R and the green transfer layer 200G is likely to increase.

更に、例えば、上記実施の形態において説明した各層の材料および厚み、または成膜方法,成膜条件およびレーザ光LB1,LB2の照射条件などは限定されるものではなく、他の材料および厚みとしてもよく、または他の成膜方法,成膜条件および照射条件としてもよい。例えば、第1電極12は、ITOのほか、IZO(インジウム・亜鉛複合酸化物)により構成されていてもよい。また、第1電極12は、反射電極により構成してもよい。その場合、第1電極12は、例えば、厚みが100nm以上1000nm以下であり、できるだけ高い反射率を有するようにすることが発光効率を高める上で望ましい。例えば、第1電極12を構成する材料としては、クロム(Cr),金(Au),白金(Pt),ニッケル(Ni),銅(Cu),タングステン(W)あるいは銀(Ag)などの金属元素の単体または合金が挙げられる。更に、例えば第1電極12は、誘電体多層膜を有するようにすることもできる。   Further, for example, the material and thickness of each layer described in the above embodiment, or the film forming method, the film forming conditions, and the irradiation conditions of the laser beams LB1 and LB2 are not limited, and other materials and thicknesses may be used. Alternatively, other film forming methods, film forming conditions, and irradiation conditions may be used. For example, the first electrode 12 may be made of IZO (indium / zinc composite oxide) in addition to ITO. Moreover, you may comprise the 1st electrode 12 with a reflective electrode. In that case, the first electrode 12 has a thickness of, for example, 100 nm or more and 1000 nm or less, and it is desirable that the first electrode 12 has a reflectance as high as possible in order to increase the light emission efficiency. For example, the material constituting the first electrode 12 is a metal such as chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), tungsten (W), or silver (Ag). An elemental element or an alloy is mentioned. Further, for example, the first electrode 12 may have a dielectric multilayer film.

加えて、例えば、上記実施の形態においては、基板11の上に、第1電極12,有機層14および第2電極15を基板11の側から順に積層し、封止用基板30の側から光を取り出すようにした場合について説明したが、積層順序を逆にして、基板11の上に、第2電極15,有機層14および第1電極12を基板11の側から順に積層し、基板11の側から光を取り出すようにすることもできる。   In addition, for example, in the above embodiment, the first electrode 12, the organic layer 14, and the second electrode 15 are stacked on the substrate 11 in order from the substrate 11 side, and light is emitted from the sealing substrate 30 side. However, the second electrode 15, the organic layer 14, and the first electrode 12 are sequentially stacked on the substrate 11 from the substrate 11 side. It is also possible to extract light from the side.

更にまた、例えば、上記実施の形態では、第1電極12を陽極、第2電極15を陰極とする場合について説明したが、陽極および陰極を逆にして、第1電極12を陰極、第2電極15を陽極としてもよい。さらに、第1電極12を陰極、第2電極15を陽極とすると共に、基板11の上に、第2電極15,有機層14および第1電極12を基板11の側から順に積層し、基板11の側から光を取り出すようにすることもできる。   Furthermore, for example, in the above embodiment, the case where the first electrode 12 is an anode and the second electrode 15 is a cathode has been described. However, the anode and the cathode are reversed, and the first electrode 12 is the cathode and the second electrode. 15 may be an anode. Further, the first electrode 12 is a cathode, the second electrode 15 is an anode, and the second electrode 15, the organic layer 14, and the first electrode 12 are sequentially stacked on the substrate 11 from the substrate 11 side. It is also possible to extract light from the side.

加えてまた、上記実施の形態では、赤色有機発光素子10R,緑色有機発光素子10Gおよび青色有機発光素子10Bの構成を具体的に挙げて説明したが、全ての層を備える必要はなく、また、他の層を更に備えていてもよい。例えば、第1電極12と有機層14との間に、酸化クロム(III)(Cr2 O3 ),ITO(Indium-Tin Oxide:インジウム(In)およびスズ(Sn)の酸化物混合膜)などからなる正孔注入用薄膜層を備えていてもよい。   In addition, in the above-described embodiment, the configurations of the red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic light emitting element 10B are specifically described. However, it is not necessary to include all the layers, Another layer may be further provided. For example, the first electrode 12 and the organic layer 14 are made of chromium oxide (III) (Cr2O3), ITO (Indium-Tin Oxide: indium (In) and tin (Sn) oxide mixed film), or the like. A thin film layer for hole injection may be provided.

更にまた、上記実施の形態では、第2電極15が半透過性電極により構成され、混合層14RC,緑色単色層14GCおよび青色単色層14Dで発生した光を第2電極15の側から取り出す場合について説明したが、発生した光を第1電極12の側から取り出すようにしてもよい。この場合、第2電極15はできるだけ高い反射率を有するようにすることが発光効率を高める上で望ましい。   Furthermore, in the above embodiment, the second electrode 15 is constituted by a semi-transmissive electrode, and the light generated in the mixed layer 14RC, the green monochrome layer 14GC, and the blue monochrome layer 14D is extracted from the second electrode 15 side. As described above, the generated light may be extracted from the first electrode 12 side. In this case, it is desirable to increase the luminous efficiency so that the second electrode 15 has a reflectance as high as possible.

10R…赤色有機発光素子、10G…緑色有機発光素子、10B…青色有機発光素子、11…基板、12…第1電極、13…絶縁膜、14R…赤色有機層、14G…緑色有機層、14B…青色有機層、14A1…正孔注入層、14A2…正孔輸送層、14RC…混合層、14GC…緑色単色層、14D…青色単色層、14E…電子輸送層、15…第2電極、16…保護膜、20…接着層、30…封止用基板、100…ドナー基板、100R1…赤色転写層形成予定領域、100NP…緑色転写層非転写領域(非転写領域)、110…基体、120…反射層、130…吸収層、200R…赤色転写層、200G…緑色転写層、300…透明基板、400…製造システム   DESCRIPTION OF SYMBOLS 10R ... Red organic light emitting element, 10G ... Green organic light emitting element, 10B ... Blue organic light emitting element, 11 ... Substrate, 12 ... 1st electrode, 13 ... Insulating film, 14R ... Red organic layer, 14G ... Green organic layer, 14B ... Blue organic layer, 14A1 ... hole injection layer, 14A2 ... hole transport layer, 14RC ... mixed layer, 14GC ... green monochromatic layer, 14D ... blue monochromatic layer, 14E ... electron transport layer, 15 ... second electrode, 16 ... protection Membrane, 20 ... Adhesive layer, 30 ... Substrate for sealing, 100 ... Donor substrate, 100R1 ... Red transfer layer formation planned area, 100NP ... Green transfer layer non-transfer area (non-transfer area), 110 ... Base, 120 ... Reflective layer 130 ... Absorbing layer, 200R ... Red transfer layer, 200G ... Green transfer layer, 300 ... Transparent substrate, 400 ... Manufacturing system

本発明は、熱転写法により形成された赤色有機発光素子を備えた表示装置に関する。 The present invention relates to a display equipment which includes a red organic light emitting element formed by thermal transfer method.

本発明はかかる問題点に鑑みてなされたもので、その目的は、熱転写法を用いて簡素な工程により形成することができる赤色有機発光素子を備えた表示装置を提供することにある。 The present invention has been made in view of the above problems, its object is to provide a display equipment which includes a red organic light emitting element which can be formed by a simple process using a thermal transfer method.

本発明による表示装置は、基板に、第1電極と、赤色発光材料および緑色発光材料と正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種とを含む混合層を有する赤色有機層と、第2電極とを順に有する赤色有機発光素子と、基板に、第1電極と、緑色発光材料と正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種とを含む緑色単色層を有する緑色有機層と、第2電極とを順に有する緑色有機発光素子とを備え、緑色単色層に含まれる緑色発光材料と、混合層に含まれる緑色発光材料とは、同一材料であるものである。 In the display device according to the present invention , a mixed layer including a first electrode, a red light emitting material, a green light emitting material, a hole transporting material, an electron transporting material, and a charge transporting material is provided on a substrate. A red organic light emitting device having a red organic layer having a second electrode in order, a substrate, a first electrode, a green light emitting material, a hole transporting material, an electron transporting material, and a charge transporting material at least A green organic light emitting element including a green organic layer having a green monochromatic layer including one kind and a second electrode in order, a green light emitting material included in the green monochromatic layer, and a green light emitting material included in the mixed layer Are the same material .

発明による表示装置では、赤色有機層が、赤色発光材料および緑色発光材料を含む混合層を有しているので、エネルギー準位の低い赤色にエネルギー移動が起こり、赤色発光が支配的になる。 In the display device according to the present invention, since the red organic layer has a mixed layer containing a red light emitting material and a green light emitting material, energy transfer occurs in red having a low energy level, and red light emission becomes dominant.

発明の表示装置によれば、赤色有機層が、赤色発光材料と緑色発光材料とを含む混合層を有するようにしたので、熱転写法によりドナー基板から赤色発光材料を含む赤色転写層と緑色発光材料を含む緑色転写層とを一括転写するという簡素な工程で混合層を形成することができる。 According to the display device of the present invention, since the red organic layer has the mixed layer containing the red light emitting material and the green light emitting material, the red transfer layer containing the red light emitting material and the green light emission from the donor substrate by the thermal transfer method. The mixed layer can be formed by a simple process of batch transferring the green transfer layer containing the material.

赤色有機層14Rは、例えば、第1電極12の側から順に、正孔注入層14A1,正孔輸送層14A2,混合層14RC,青色単色層14Dおよび電子輸送層14Eを積層した構成を有する。緑色有機層14Gは、例えば、第1電極12の側から順に、正孔注入層14A1,正孔輸送層14A2,緑色単色層14GC,青色単色層14Dおよび電子輸送層14Eを積層した構成を有する。青色有機層14Bは、例えば、第1電極12の側から順に、正孔注入層14A1,正孔輸送層14A2,青色単色層14Dおよび電子輸送層14Eを積層した構成を有する。これらのうち正孔注入層14A1,正孔輸送層14A2,青色単色層14Dおよび電子輸送層14Eは、赤色有機発光素子10R,緑色有機発光素子10Gおよび青色有機発光素子10Bの共通層である。正孔注入層14A1は、正孔注入効率を高めるためのものであると共に、リークを防止するためのバッファ層である。正孔輸送層14A2は、発光層である混合層14RC,緑色単色層14GCおよび青色単色層14Dへの正孔輸送効率を高めるためのものである。混合層14RC,緑色単色層14GCおよび青色単色層14Dは、電界をかけることにより電子と正孔との再結合が起こり、光を発生するものである。電子輸送層14Eは、混合層14RC,緑色単色層14GCおよび青色単色層14Dへの電子輸送効率を高めるためのものである。なお、正孔注入層14A1,正孔輸送層14A2および電子輸送層14Eは、必要に応じて設ければよく、発光色によりそれぞれ構成が異なっていてもよい。電子輸送層14と第2電極15との間には、LiF,Li2 Oなどよりなる電子注入層(図示せず)を設けてもよい。 The red organic layer 14R has, for example, a configuration in which a hole injection layer 14A1, a hole transport layer 14A2, a mixed layer 14RC, a blue monochromatic layer 14D, and an electron transport layer 14E are stacked in this order from the first electrode 12 side. For example, the green organic layer 14G has a configuration in which a hole injection layer 14A1, a hole transport layer 14A2, a green monochrome layer 14GC, a blue monochrome layer 14D, and an electron transport layer 14E are stacked in this order from the first electrode 12 side. For example, the blue organic layer 14B has a configuration in which a hole injection layer 14A1, a hole transport layer 14A2, a blue monochromatic layer 14D, and an electron transport layer 14E are stacked in this order from the first electrode 12 side. Among these, the hole injection layer 14A1, the hole transport layer 14A2, the blue monochromatic layer 14D, and the electron transport layer 14E are common layers of the red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic light emitting element 10B. The hole injection layer 14A1 is a buffer layer for improving hole injection efficiency and preventing leakage. The hole transport layer 14A2 is for increasing the hole transport efficiency to the mixed layer 14RC, the green monochromatic layer 14GC, and the blue monochromatic layer 14D, which are light emitting layers. The mixed layer 14RC, the green monochromatic layer 14GC, and the blue monochromatic layer 14D generate light by recombination of electrons and holes when an electric field is applied. The electron transport layer 14E is for increasing the efficiency of electron transport to the mixed layer 14RC, the green monochrome layer 14GC, and the blue monochrome layer 14D. Note that the hole injection layer 14A1, the hole transport layer 14A2, and the electron transport layer 14E may be provided as necessary, and may have different configurations depending on the emission color. An electron injection layer (not shown) made of LiF, Li2O, or the like may be provided between the electron transport layer 14E and the second electrode 15.

第2電極15は、透明電極または半透過性電極により構成されており、混合層14RC,緑色単色層14GCおよび青色単色層14で発生した光は第2電極15側から取り出されるようになっている。第2電極15は、例えば、厚みが5nm以上50nm以下であり、アルミニウム(Al),マグネシウム(Mg),カルシウム(Ca),ナトリウム(Na)などの金属元素の単体または合金により構成されている。中でも、マグネシウムと銀との合金(MgAg合金)が好ましい。 The second electrode 15 is composed of a transparent electrode or a semitransparent electrode, a mixed layer 14RC, the light generated by the green monochromatic layer 14GC, and the blue monochromatic layer 14 D so as to taken out from the second electrode 15 side Yes. For example, the second electrode 15 has a thickness of 5 nm or more and 50 nm or less, and is made of a simple substance or an alloy of a metal element such as aluminum (Al), magnesium (Mg), calcium (Ca), or sodium (Na). Among these, an alloy of magnesium and silver (MgAg alloy) is preferable.

封止用基板30は、赤色有機発光素子10R、緑色有機発光素子10Gおよび青色有機発光素子10Bの第2電極15の側に位置しており、接着層20と共に赤色有機発光素子10R、緑色有機発光素子10Gおよび青色有機発光素子10Bを封止するものである。また、封止用基板30は、混合層14RC,緑色単色層14GCおよび青色単色層14で発生した光を第2電極15側から取り出すため、赤色有機発光素子10R、緑色有機発光素子10Gおよび青色有機発光素子10Bで発生した光に対して透明なガラスなどの材料により構成されている。 The sealing substrate 30 is located on the second electrode 15 side of the red organic light emitting element 10R, the green organic light emitting element 10G, and the blue organic light emitting element 10B, and together with the adhesive layer 20, the red organic light emitting element 10R and the green organic light emitting element. The element 10G and the blue organic light emitting element 10B are sealed. Further, the sealing substrate 30, the mixed layer 14RC, for taking out the light generated in the green monochromatic layer 14GC, and the blue monochromatic layer 14 D from the second electrode 15 side, the red organic light emitting element 10R, the green organic light emitting element 10G, and a blue It is made of a material such as glass that is transparent to the light generated in the organic light emitting device 10B.

なお、基体110上の反射層120および吸収層130の積層構成は、上述した条件を満たす限り、図4に示したものに限らず他の積層構成としてもよい。例えば、図4では、基体110の表面側全面に吸収層130、部分的に反射層120を設けるようにした構成を表しているが、図5に示したように、基体110の表面側全面に反射層120、部分的に吸収層130を設けるようにしてもよい。 Note that the laminated structure of the reflective layer 120 and the absorbing layer 130 on the substrate 110 is not limited to the one shown in FIG. 4 as long as the above-described conditions are satisfied, and may be another laminated structure. For example, FIG. 4 shows a configuration in which the absorption layer 130 and the reflective layer 120 are partially provided on the entire surface side of the base 110, but as shown in FIG. The reflection layer 120 may be partially provided with the absorption layer 130.

一括転写工程を行ったのち、ドナー基板100については、上述した転写層形成工程(ステップS201,S202,S203)を順に再び行うことにより赤色転写層200Rおよび緑色転写層200Gを再形成し、別の基板11に対して一括転写工程を行う。図10は、このようなドナー基板100の作製兼再生の過程を表すものである。図10(A)に示した未使用の状態のドナー基板100に対して、図10(B)に示したように基体110の表面側全面に赤色転写層200Rを形成し(ステップS201)、図10(C)に示したようにレーザ光LB1の照射により赤色転写層200Rを選択的に除去したのち(ステップS202)、図10(D)に示したように基体110の表面側全面に緑色転写層200Gを形成する(ステップS203)。次いで、図10(E)に示したように一括転写工程を行う(ステップS300)。このとき、ドナー基板100の非転写領域100NPには緑色転写層200Gが残存する。続いて、図10(F)に示したように、非転写領域100NPに緑色転写層200Gを残存させたまま、基体110の表面側に赤色転写層200Rを形成し(ステップS201)、図10(C)に示したようにレーザ光LB1を照射すると、赤色転写層200Rを選択的に除去すると同時に、非転写領域100NPに残存する緑色転写層200Gも除去することができる(ステップS202)。そののち、図10に示したように、基体110の表面側全面に緑色転写層200Gを形成する(ステップS203)。このようにして、図10(C)〜図10(F)に示した工程の閉ループを構成することができ、一括転写後のドナー基板100を洗浄して再利用するための工程や装置は不要となり、かつ、ドナー基板を一回使用しただけで廃棄することなく繰り返し使用することが可能となる。 After performing the batch transfer process, the donor substrate 100 is subjected to the transfer layer forming process (steps S201, S202, S203) described above again in order to re-form the red transfer layer 200R and the green transfer layer 200G. A batch transfer process is performed on the substrate 11. FIG. 10 shows a process of producing and regenerating such a donor substrate 100. On the unused donor substrate 100 shown in FIG. 10A, a red transfer layer 200R is formed on the entire surface side of the substrate 110 as shown in FIG. 10B (step S201). After selectively removing the red transfer layer 200R by irradiation with the laser beam LB1 as shown in FIG. 10C (step S202), the green transfer is performed on the entire surface side of the substrate 110 as shown in FIG. The layer 200G is formed (step S203). Next, a batch transfer process is performed as shown in FIG. 10E (step S300). At this time, the green transfer layer 200G remains in the non-transfer region 100NP of the donor substrate 100. Subsequently, as shown in FIG. 10F, a red transfer layer 200R is formed on the surface side of the substrate 110 while the green transfer layer 200G remains in the non-transfer region 100NP (step S201), and FIG. When the laser beam LB1 is irradiated as shown in C), the red transfer layer 200R can be selectively removed, and at the same time, the green transfer layer 200G remaining in the non-transfer region 100NP can be removed (step S202). After that, as shown in FIG. 10 (D), to form the green transfer layer 200G on the whole front surface of the substrate 110 (step S203). In this manner, a closed loop of the steps shown in FIGS. 10C to 10F can be configured, and a process or apparatus for cleaning and reusing the donor substrate 100 after batch transfer is unnecessary. In addition, the donor substrate can be used repeatedly without being discarded after being used once.

(変形例)
図13は、本発明の変形例に係るドナー基板の構成を未使用の状態で表したものである。このドナー基板100は、非転写領域100NPが、基板11における赤色有機発光素子10Rと緑色有機発光素子10Gとの境界領域に対応している。これにより、このドナー基板100では、一括転写工程において混合層14RCと緑色単色層14GCとの境界を明確に形成することができ、混色を確実に抑制することができるようになっている。なお、図13では、図4に示したような基体110の表面側全面に吸収層130を形成し、部分的に反射層120を設けたドナー基板100において、境界領域に対応して吸収層130と基体110との間に反射層120を追加的に形成した場合を表している。
(Modification)
FIG. 13 shows the configuration of the donor substrate according to the modification of the present invention in an unused state. In the donor substrate 100, the non-transfer region 100NP corresponds to a boundary region between the red organic light emitting element 10R and the green organic light emitting element 10G in the substrate 11. Thereby, in this donor substrate 100, the boundary between the mixed layer 14RC and the green monochromatic layer 14GC can be clearly formed in the collective transfer step, and the color mixture can be reliably suppressed. 13, in the donor substrate 100 in which the absorption layer 130 is formed on the entire surface side of the substrate 110 as shown in FIG. 4 and the reflection layer 120 is partially provided, the absorption layer 130 corresponding to the boundary region. In this example, a reflective layer 120 is additionally formed between the substrate 110 and the substrate 110 .

Claims (6)

基板に、第1電極と、赤色発光材料および緑色発光材料と正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種とを含む混合層を有する赤色有機層と、第2電極とを順に有する赤色有機発光素子と、
前記基板に、前記第1電極と、緑色発光材料と正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種とを含む緑色単色層を有する緑色有機層と、前記第2電極とを順に有する緑色有機発光素子とを備え、
前記緑色単色層に含まれる緑色発光材料と、前記混合層に含まれる緑色発光材料とは、同一材料である
表示装置。
A red organic layer having a mixed layer including a first electrode, a red light emitting material and a green light emitting material, a hole transporting material, an electron transporting material, and a charge transporting material; A red organic light emitting device having two electrodes in order;
A green organic layer having a green monochromatic layer including at least one of the first electrode, a green light emitting material, a hole transporting material, an electron transporting material, and a charge transporting material; A green organic light emitting device having two electrodes in order,
The green light-emitting material contained in the green monochromatic layer and the green light-emitting material contained in the mixed layer are the same material.
前記緑色単色層に含まれる緑色発光材料と、前記混合層に含まれる緑色発光材料とは、同一量である
請求項1記載の表示装置。
The display device according to claim 1, wherein the green light emitting material included in the green monochromatic layer and the green light emitting material included in the mixed layer have the same amount.
前記赤色発光材料は、2,6−ビス[(4’−メトキシジフェニルアミノ)スチリル]−1,5−ジシアノナフタレン(BSN)である
請求項1または2記載の表示装置。
The display device according to claim 1, wherein the red light emitting material is 2,6-bis [(4′-methoxydiphenylamino) styryl] -1,5-dicyanonaphthalene (BSN).
前記赤色発光材料は、2,6−ビス[(4’−メトキシジフェニルアミノ)スチリル]−1,5−ジシアノナフタレン(BSN)であり、
前記緑色発光材料は、クマリン6(Coumarin6)であり、
前記正孔輸送性材料,前記電子輸送性材料および両電荷輸送性材料のうち少なくとも1種は、ADN(ジ(2−ナフチル)アントラセン)である
請求項1ないし3のいずれか1項に記載の表示装置。
The red light emitting material is 2,6-bis [(4′-methoxydiphenylamino) styryl] -1,5-dicyanonaphthalene (BSN),
The green light emitting material is Coumarin 6;
The at least 1 sort (s) among the said hole transport material, the said electron transport material, and both charge transport material is ADN (di (2-naphthyl) anthracene). Display device.
前記基板に、前記第1電極と、青色発光材料と正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種とを含む青色単色層を有する青色有機層と、前記第2電極とを順に有する青色有機発光素子を備え、
前記赤色有機層は、前記混合層の前記第2電極側に前記青色単色層を有し、
前記緑色有機層は、前記緑色単色層の前記第2電極側に前記青色単色層を有する
請求項1ないし4のいずれか1項に記載の表示装置。
A blue organic layer having a blue monochromatic layer including the first electrode, a blue light emitting material, a hole transporting material, an electron transporting material and at least one of both charge transporting materials on the substrate; A blue organic light emitting device having two electrodes in order,
The red organic layer has the blue monochromatic layer on the second electrode side of the mixed layer,
The display device according to claim 1, wherein the green organic layer has the blue monochrome layer on the second electrode side of the green monochrome layer.
前記青色発光材料は、4,4’−ビス[2−{4−(N,N−ジフェニルアミノ)フェニル}ビニル]ビフェニル(DPAVBi)である
請求項5記載の表示装置。
The display device according to claim 5, wherein the blue light emitting material is 4,4′-bis [2- {4- (N, N-diphenylamino) phenyl} vinyl] biphenyl (DPAVBi).
JP2011277385A 2011-12-19 2011-12-19 Display apparatus Pending JP2012060174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011277385A JP2012060174A (en) 2011-12-19 2011-12-19 Display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011277385A JP2012060174A (en) 2011-12-19 2011-12-19 Display apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006104991A Division JP5013048B2 (en) 2006-04-06 2006-04-06 Red organic light emitting device and display device including the same

Publications (1)

Publication Number Publication Date
JP2012060174A true JP2012060174A (en) 2012-03-22

Family

ID=46056807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277385A Pending JP2012060174A (en) 2011-12-19 2011-12-19 Display apparatus

Country Status (1)

Country Link
JP (1) JP2012060174A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225436A (en) * 2012-04-23 2013-10-31 Sony Corp Organic electroluminescent device, method for manufacturing the same, and electronic apparatus
JP2013229278A (en) * 2012-04-24 2013-11-07 Samsung Display Co Ltd Organic light emitting display device and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208254A (en) * 1999-01-11 2000-07-28 Seiko Epson Corp Manufacture of organic el element and organic el display unit
JP2003133071A (en) * 2001-08-13 2003-05-09 Victor Co Of Japan Ltd Organic electroluminescent element and its manufacturing method
JP2003178879A (en) * 2001-12-12 2003-06-27 Sony Corp Organic electroluminescent display
WO2005097939A1 (en) * 2004-03-30 2005-10-20 Idemitsu Kosan Co., Ltd. Fluorescent conversion medium and color light emitting device
JP2005294188A (en) * 2004-04-05 2005-10-20 Sony Corp Display element
JP2006041395A (en) * 2004-07-29 2006-02-09 Sanyo Electric Co Ltd Organic electroluminescent element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208254A (en) * 1999-01-11 2000-07-28 Seiko Epson Corp Manufacture of organic el element and organic el display unit
JP2003133071A (en) * 2001-08-13 2003-05-09 Victor Co Of Japan Ltd Organic electroluminescent element and its manufacturing method
JP2003178879A (en) * 2001-12-12 2003-06-27 Sony Corp Organic electroluminescent display
WO2005097939A1 (en) * 2004-03-30 2005-10-20 Idemitsu Kosan Co., Ltd. Fluorescent conversion medium and color light emitting device
JP2005294188A (en) * 2004-04-05 2005-10-20 Sony Corp Display element
JP2006041395A (en) * 2004-07-29 2006-02-09 Sanyo Electric Co Ltd Organic electroluminescent element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225436A (en) * 2012-04-23 2013-10-31 Sony Corp Organic electroluminescent device, method for manufacturing the same, and electronic apparatus
JP2013229278A (en) * 2012-04-24 2013-11-07 Samsung Display Co Ltd Organic light emitting display device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5013048B2 (en) Red organic light emitting device and display device including the same
US7691783B2 (en) Transfer substrate, method for fabricating display device, and display device
US6716662B2 (en) Production method for organic electroluminescent device
JP2006286493A (en) Display element, display device, and manufacturing method of display element
KR101361017B1 (en) Method for manufacturing a display device
KR20060109840A (en) Display device and a method of manufacturing the same
JP2007173145A (en) Substrate for transfer, transfer method and manufacturing method for organic electroluminescent element
US10135019B2 (en) Lighting apparatus using organic light-emitting diode and method of fabricating the same
US7993806B2 (en) Transfer substrate, and fabrication process of organic electroluminescent devices
JP4396864B2 (en) Display device and manufacturing method thereof
JP2012084371A (en) Method of manufacturing organic el device, organic el device, and electronic apparatus
US9281492B2 (en) Electro-optic device and method for manufacturing same
JP2008311103A (en) Manufacturing method of display device, and the display device
JP2010027210A (en) Manufacturing method of light-emitting element, and light-emitting element
KR20180065362A (en) Lighting apparatus using organic light emitting diode and method of fabricating the same
JP2012060174A (en) Display apparatus
JP2008270271A (en) Donor substrate and method of fabricating the same
JP2006309955A (en) Manufacturing method for organic electroluminescent element, and organic electroluminescent element
JP5093392B2 (en) Donor substrate, transfer method using the same, display device manufacturing method, and display device manufacturing system
JP2011023119A (en) Method of manufacturing display device, method of manufacturing organic light-emitting element and transfer method
JP5729749B2 (en) Method for manufacturing organic electroluminescence element
WO2012017486A1 (en) Method for producing light-emitting elements
US9061534B2 (en) Donor substrate, method of manufacturing donor substrate, and method of manufacturing organic light-emitting display device
JP2008288017A (en) Manufacturing method of organic electroluminescent display device
JP2010262891A (en) Donor substrate in transcription method using energy beam, and manufacturing method of display element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130410