JP2012058951A - Electricity conditioning device, and power supply control system and method therefor - Google Patents

Electricity conditioning device, and power supply control system and method therefor Download PDF

Info

Publication number
JP2012058951A
JP2012058951A JP2010200687A JP2010200687A JP2012058951A JP 2012058951 A JP2012058951 A JP 2012058951A JP 2010200687 A JP2010200687 A JP 2010200687A JP 2010200687 A JP2010200687 A JP 2010200687A JP 2012058951 A JP2012058951 A JP 2012058951A
Authority
JP
Japan
Prior art keywords
signal
time interval
power supply
control signal
trigger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010200687A
Other languages
Japanese (ja)
Inventor
Chin-Yi Lin
進益 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2012058951A publication Critical patent/JP2012058951A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/257Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M5/2573Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit

Abstract

PROBLEM TO BE SOLVED: To provide an electricity conditioning device, and a power supply control system and method therefor.SOLUTION: In a power supply control system including a detector 201, a power conditioning device 202 and a resistance type loading device 202, the detector 201 can receive a feedback signal transmitted from the resistance type loading device 202. The detector 201 outputs a control signal of either voltage or current signal. After the power conditioning device 202 receives the control signal, a drive voltage is output by a proportional method. The proportional method is used to output the full-power drive voltage at intervals of continuous output time and to stop outputting the full-power drive voltage at intervals of discontinuous output time. After the resistance type loading device 203 receives the drive voltage, the feedback signal is output to the detector 201. Formation of power harmonics can be reduced efficiently through the operation of using the proportional method to output the full-power drive voltage at intervals of continuous output time and to stop outputting the full-power drive voltage at intervals of discontinuous output time.

Description

本発明は一種の電気調整装置および電源制御システムと方法に関し、特に一種の高調波低減機能の低い高調波電源品質制御の装置および方法に関する。比例方式により連続出力時間間隔にフルパワーの駆動電圧を出力でき、連続出力のない時間間隔にフルパワーの駆動電圧の出力を中止する。   The present invention relates to a kind of electrical regulator and power supply control system and method, and more particularly to a kind and apparatus and method of harmonic power quality control with a low harmonic reduction function. Proportional method can output full power drive voltage at continuous output time intervals and stop full power drive voltage output at time intervals without continuous output.

電源品質制御システムの大部分は、主に非対称方式により必要なパワーを出力しており、良く使用する方式は、分散型ゼロクロスオーバー制御(distributed zero crossover control)と直線型位相角制御(linearity phase angle control)である。この2種の制御方式は全波単位または半波単位による駆動電圧の出力に関する。図1ないし3を参照する。分散型ゼロクロスオーバー制御を例として、最大駆動電圧の割り込み周波数の状態が駆動電圧の出力パワーの50パーセントのとき(図2を参照)、割り込み周波数は出力交流電気周波数の2分の1である。引き続き図4ないし6を参照する。直線型相位角制御を例として、非フルパワー操作出力のとき、出力駆動電圧は正負半周期のタンジェント位相角の電圧を電圧出力の変化とする。公知の方法のすべては、高調波の過剰発生現象がある。   Most of the power quality control systems output the necessary power mainly by an asymmetrical method, and the commonly used methods are a distributed zero crossover control and a linear phase angle control (linear phase angle control). control). These two types of control methods relate to driving voltage output in full wave units or half wave units. Please refer to FIGS. Taking the distributed zero crossover control as an example, when the interrupt frequency state of the maximum drive voltage is 50% of the output power of the drive voltage (see FIG. 2), the interrupt frequency is half of the output AC electrical frequency. With continued reference to FIGS. Taking the linear phase angle control as an example, in the case of a non-full power operation output, the output drive voltage is a voltage of a positive / negative half-cycle tangent phase angle that changes in voltage output. All of the known methods have the phenomenon of excessive harmonic generation.

しかし、現状の電力調整装置より出力される駆動電圧は、正負半周期のタンジェント位相角の方式による出力または駆動電圧に追随して割り込み出力を絶えずに行う、この種の電気回路に大量な高調波干渉を形成し設備を破損する。よって、電子装置の使用寿命または装置の利用効率面から、至急に解決を要する課題である。   However, the drive voltage output from the current power conditioner is an output of a tangent phase angle method with positive and negative half-cycles or a large number of harmonics in this type of electric circuit that continuously outputs interrupts following the drive voltage. Interference is formed and equipment is damaged. Therefore, it is a problem that requires urgent solution from the viewpoint of the service life of the electronic device or the utilization efficiency of the device.

本発明は前述公知技術の課題を解決するためになされたものであって、高調波に関する問題の解決を図る、電力調整装置およびその電源制御システムと方法を提供することを主な目的とする。   The present invention has been made in order to solve the above-described problems of the known technology, and it is a main object of the present invention to provide a power adjustment apparatus and a power supply control system and method for solving the problems related to harmonics.

本発明の目的に基づいて、抵抗型負荷装置と、検出装置と、電力調整装置とを備えた、一種の電源制御システムを提供する。抵抗型負荷装置は駆動電圧を受信し、対応の操作を行い、操作後は抵抗型負荷装置によって検出された特性に従い、フィードバック信号を生成する。検出可能な特性は、温度、湿度または圧力である。フィードバック信号は抵抗型負荷装置より検出装置に送信され、検出装置よりフィードバック信号をそれぞれ制御信号に変換される。制御信号は検出装置から電力調整装置に送信された後、第1次間間隔で受信された各制御信号の平均値が計算される。前述の平均値に基づいて、第2時間間隔に対応の駆動電圧を出力させる。第2時間間隔に連続出力時間間隔と連続出力しない時間間隔とを含み、制御信号の平均値によって、連続出力時間間隔と連続出力しない時間間隔に占める比率をそれぞれ分配される。連続出力時間間隔にフルパワーの駆動電圧を連続出力し、連続出力しない時間間隔にフルパワーの駆動電圧の出力を中止させる。これにより、電力システム全体で発生する高調波は最小となる。   Based on the object of the present invention, a kind of power supply control system provided with a resistance type load device, a detection device, and a power adjustment device is provided. The resistive load device receives the drive voltage, performs a corresponding operation, and generates a feedback signal according to the characteristics detected by the resistive load device after the operation. The detectable property is temperature, humidity or pressure. The feedback signal is transmitted from the resistive load device to the detection device, and the feedback signal is converted into a control signal by the detection device. After the control signal is transmitted from the detection device to the power adjustment device, an average value of each control signal received at the first inter-interval is calculated. Based on the above average value, a driving voltage corresponding to the second time interval is output. The second time interval includes a continuous output time interval and a non-continuous output time interval, and the ratio of the continuous output time interval and the non-continuous output time interval is distributed according to the average value of the control signals. The full power drive voltage is continuously output at continuous output time intervals, and the output of the full power drive voltage is stopped at non-continuous output time intervals. Thereby, the harmonics generated in the entire power system are minimized.

そのうち、電力調整装置はトリガー部と、マイクロプロセッサーと、電源部と、入力信号部とを含む。トリガー部はマイクロプロセッサーから出力されたトリガ信号を受信し、トリガ信号に基づいて、電圧信号を駆動電圧として出力する。電源部は、電力調整装置に必要な電源を提供する。入力信号部はそれぞれの制御信号を受信し、それぞれ高低電位の百分比の制御信号に変換した上、マイクロプロセッサーに伝送される。マイクロプロセッサーによって、固定時間の高低信号の百分比の制御信号の平均値が算出され、この平均値に基づいてトリガ信号を生成する。このトリガ信号に、連続出力時間間隔と連続出力しない時間間隔の比例が配分されている。固定時間の連続出力時間間隔にフルパワーのトリガ信号を連続に出力し、連続出力しない時間間隔にフルパワーのトリガ信号の出力を中止する。   Among them, the power adjustment device includes a trigger unit, a microprocessor, a power supply unit, and an input signal unit. The trigger unit receives the trigger signal output from the microprocessor and outputs a voltage signal as a drive voltage based on the trigger signal. The power supply unit provides a power supply necessary for the power adjustment device. The input signal unit receives each control signal, converts it to a control signal having a high / low potential percentage, and transmits it to the microprocessor. The microprocessor calculates an average value of the control signal as a percentage of the high and low signals for a fixed time, and generates a trigger signal based on the average value. The trigger signal is distributed in proportion to the continuous output time interval and the non-continuous output time interval. A full power trigger signal is continuously output at a fixed continuous output time interval, and the output of the full power trigger signal is stopped at a time interval at which continuous output is not performed.

本発明の目的に基づいて、さらに一種の制御方法を提供する。まず、抵抗型負荷装置の特性を利用し、フィードバック信号を生成し、検出装置に送信する。検出装置側は少なくとも一つのフィードバック信号を受信した後、フィードバック信号をそれぞれ制御信号に変換した上、電力調整装置に出力される。電力調整装置は第1時間間隔に各制御信号を受信した後、各制御信号の平均値を算出する。電力調整装置は第2時間間隔に、各制御信号の平均値に基づいた駆動電圧が出力される。第2時間間隔は連続出力時間間隔と連続出力しない時間間隔を含み、各制御信号の平均値に基づいて、連続出力時間間隔と連続出力しない時間間隔の比例を配分し、連続出力時間間隔にフルパワーの駆動電圧を出力し、連続出力しない時間間隔にフルパワーの駆動電圧の出力を中止する。   Based on the object of the present invention, a further kind of control method is provided. First, a feedback signal is generated using the characteristics of the resistive load device and transmitted to the detection device. The detection device side receives at least one feedback signal, converts each feedback signal into a control signal, and outputs the control signal to the power adjustment device. After receiving each control signal at the first time interval, the power adjustment device calculates an average value of each control signal. The power adjustment device outputs a drive voltage based on the average value of each control signal at the second time interval. The second time interval includes a continuous output time interval and a non-continuous output time interval. Based on the average value of each control signal, the proportion of the continuous output time interval and the non-continuous output time interval is allocated, and the continuous output time interval is full. The power drive voltage is output, and the output of the full power drive voltage is stopped at a time interval when the power is not continuously output.

そのうち、電力調整装置はトリガー部と、マイクロプロセッサーと、電源部と、入力信号部とを含む。トリガー部はマイクロプロセッサーから出力されたトリガ信号を受信し、トリガ信号に基づいて、電圧信号を駆動電圧として出力する。電源部は、電力調整装置に必要な電源を提供する。入力信号部はそれぞれの制御信号を受信し、それぞれ高低電位の百分比の制御信号に変換した上、マイクロプロセッサーに伝送される。マイクロプロセッサーによって、固定時間の高低信号の百分比の制御信号の平均値が算出され、この平均値に基づいてトリガ信号を生成する。このトリガ信号に、連続出力時間間隔と連続出力しない時間間隔の比例が配分されている。固定時間の連続出力時間間隔にフルパワーのトリガ信号を連続に出力し、連続出力しない時間間隔にフルパワーのトリガ信号の出力を中止する。   Among them, the power adjustment device includes a trigger unit, a microprocessor, a power supply unit, and an input signal unit. The trigger unit receives the trigger signal output from the microprocessor and outputs a voltage signal as a drive voltage based on the trigger signal. The power supply unit provides a power supply necessary for the power adjustment device. The input signal unit receives each control signal, converts it to a control signal having a high / low potential percentage, and transmits it to the microprocessor. The microprocessor calculates an average value of the control signal as a percentage of the high and low signals for a fixed time, and generates a trigger signal based on the average value. The trigger signal is distributed in proportion to the continuous output time interval and the non-continuous output time interval. A full power trigger signal is continuously output at a fixed continuous output time interval, and the output of the full power trigger signal is stopped at a time interval at which continuous output is not performed.

本発明の目的に基づいて、さらに一種の電源部と、入力信号部と、マイクロプロセッサーと、トリガー部とを備えた電力調整装置を提供する。電源部は、電力調整装置に必要な電源を提供する。入力信号部は少なくとも一つの制御信号を受信し、それぞれ高低電位の百分比の制御信号に変換する。マイクロプロセッサーは電源部と、入力信号部に接続され、各高低電位の百分比の制御信号を受信し、第1時間間隔に各高低電位の百分比の制御信号の平均値を算出し、第2時間間隔に各高低電位の百分比の制御信号に基づいてトリガ信号を生成する。トリガ信号は各高低電位の百分比の制御信号の平均値に基づいて、第2時間間隔に連続出力時間間隔と連続出力しない時間間隔の比例をそれぞれ配分し、連続出力時間間隔にフルパワーのトリガ信号を出力し、連続出力しない時間間隔にフルパワーのトリガ信号の出力を中止する。トリガー部はマイクロプロセッサーに接続され、トリガ信号を受信し、トリガ信号に基づいて電圧信号を出力し駆動電圧とする。   In accordance with the object of the present invention, there is provided a power adjustment device further comprising a power supply unit, an input signal unit, a microprocessor, and a trigger unit. The power supply unit provides a power supply necessary for the power adjustment device. The input signal unit receives at least one control signal and converts it into a control signal having a high / low potential percentage. The microprocessor is connected to the power supply unit and the input signal unit, receives the control signal of each high / low potential percentage, calculates the average value of the control signal of each high / low potential percentage in the first time interval, and the second time interval In addition, a trigger signal is generated based on the control signal of the percentage of each high and low potential. The trigger signal is based on the average value of the control signals of the high and low potential percentages, and the proportional ratio between the continuous output time interval and the non-continuous output time interval is allocated to the second time interval, and the full power trigger signal is allocated to the continuous output time interval. Is output, and the output of the full power trigger signal is stopped at time intervals where continuous output is not performed. The trigger unit is connected to the microprocessor, receives the trigger signal, outputs a voltage signal based on the trigger signal, and uses it as a drive voltage.

前述の通り、本発明による電気調整装置およびその電源制御システムと方法は以下の長所を有する。   As described above, the electrical regulator according to the present invention and its power supply control system and method have the following advantages.

本発明による電気調整装置およびその電源制御システムと方法は比例方式により、連続出力時間間隔にフルパワーの駆動電圧を出力し、連続出力しない時間間隔にフルパワーの駆動電圧の出力を中止させ、高調波の発生を低減する。   The electric regulator according to the present invention and its power supply control system and method output a full power drive voltage at a continuous output time interval in a proportional manner, and stop outputting the full power drive voltage at a time interval at which continuous output is not performed. Reduce the generation of waves.

公知技術の分散型ゼロクロスオーバー制御の駆動電圧の波形を示し、駆動電圧10%のときを示す。The waveform of the drive voltage of the distributed zero crossover control of a well-known technique is shown, and when the drive voltage is 10%. 公知技術の分散型ゼロクロスオーバー制御の駆動電圧の波形を示し、駆動電圧50%のときを示す。The waveform of the drive voltage of the distributed zero crossover control of a well-known technique is shown, and the drive voltage is 50%. 公知技術の分散型ゼロクロスオーバー制御の駆動電圧の波形を示し、駆動電圧90%のときを示す。The waveform of the drive voltage of the distributed zero crossover control of a well-known technique is shown, and the drive voltage is 90%. 公知技術の直線型相位角制御の駆動電圧の波形を示し、駆動電圧10%のときを示す。The waveform of the drive voltage of linear phase angle control of a well-known technique is shown, and the drive voltage is 10%. 公知技術の直線型相位角制御の駆動電圧の波形を示し、駆動電圧50%のときを示す。The waveform of the drive voltage of linear phase angle control of a well-known technique is shown, and the drive voltage is 50%. 公知技術の直線型相位角制御の駆動電圧の波形を示し、駆動電圧90%のときを示す。The waveform of the drive voltage of linear phase angle control of a well-known technique is shown, and the drive voltage is 90%. 本発明による電源制御システムのブロック図である。It is a block diagram of the power supply control system by this invention. 本考案による電源制御システムの三相電力調整装置のブロック図である。1 is a block diagram of a three-phase power adjustment device of a power supply control system according to the present invention. 本考案による電源制御システムの単相電力調整装置のブロック図である。1 is a block diagram of a single-phase power adjustment device of a power supply control system according to the present invention. 本考案による駆動電圧が10%、第2時間間隔が100周期の態様図である。FIG. 5 is a diagram illustrating a driving voltage of 10% according to the present invention and a second time interval of 100 periods. 本考案による駆動電圧が50%、第2時間間隔が100周期の態様図である。FIG. 5 is a diagram showing a driving voltage of 50% and a second time interval of 100 periods according to the present invention. 本考案による駆動電圧が90%、第2時間間隔が100周期の態様図である。FIG. 5 is a diagram illustrating a driving voltage of 90% according to the present invention and a second time interval of 100 periods. 本発明による電源制御方法の実施ステップフロー図である。It is an implementation step flow figure of the power supply control method by this invention.

図7、本発明による電源制御システムのブロック図を参照する。この図において、電源制御システムは検出装置201と、電力調整装置202と抵抗型負荷装置203とを含む。検出装置201は抵抗型負荷装置203のフィードバック信号を受信し、制御信号を電力調整装置202に出力する。電力調整装置202は制御信号に基づいて、様々なパワーを抵抗型負荷装置203に出力する。引き続き、抵抗型負荷装置203よりフィードバックデータを検出装置201に伝送する。   Referring to FIG. 7, a block diagram of a power control system according to the present invention. In this figure, the power supply control system includes a detection device 201, a power adjustment device 202, and a resistive load device 203. The detection device 201 receives a feedback signal from the resistive load device 203 and outputs a control signal to the power adjustment device 202. The power adjustment device 202 outputs various powers to the resistive load device 203 based on the control signal. Subsequently, feedback data is transmitted from the resistive load device 203 to the detection device 201.

図8A、本発明による電源制御システムの三相電力調整装置のブロック図を参照する。この図において、電力調整装置は電源部301と、入力信号部302と零位相検出装置303と、温度超過検出装置304と、マイクロプロセッサー305と、トリガー部306とを含む。トリガー部306に複数組の整流器を備え、各組の整流器に2つの逆方向に接続(backward parallel)されたシリコン制御整流器を含まれている。マイクロプロセッサー305は電源部301と、入力信号部302と、零位相検出装置303と、温度超過検出装置304と、トリガー部306にそれぞれ接続する。電源部301は、電力調整装置に必要な電源を提供する。入力信号部302は電圧または電流の制御信号を受信でき、電圧信号はたとえば、0V〜5V、1V〜5V、0V〜10V、2V〜10V、電流信号は0mA〜20mAまたは4mA〜20mAなどである。制御信号が電流の場合、入力信号部302は電流信号を電圧信号に置き換えて出力される。入力信号部302によって、制御信号を置き換えた上、高低電位の百分比の制御信号をマイクロプロセッサー305に出力され、この高低電位の百分比の制御信号に電流から電圧信号に置き換えられた制御信号と、従来が電圧信号の制御信号を含まれている。   Reference is made to FIG. 8A, a block diagram of a three-phase power regulator of a power control system according to the present invention. In this figure, the power adjustment device includes a power supply unit 301, an input signal unit 302, a zero phase detection device 303, an over temperature detection device 304, a microprocessor 305, and a trigger unit 306. The trigger unit 306 includes a plurality of sets of rectifiers, and includes two silicon-controlled rectifiers connected to each set of rectifiers in the reverse direction. The microprocessor 305 is connected to the power supply unit 301, the input signal unit 302, the zero phase detection device 303, the over-temperature detection device 304, and the trigger unit 306, respectively. The power supply unit 301 provides a power supply necessary for the power adjustment apparatus. The input signal unit 302 can receive a voltage or current control signal. The voltage signal is, for example, 0 V to 5 V, 1 V to 5 V, 0 V to 10 V, 2 V to 10 V, and the current signal is 0 mA to 20 mA or 4 mA to 20 mA. When the control signal is a current, the input signal unit 302 outputs the current signal by replacing the current signal with a voltage signal. After the control signal is replaced by the input signal unit 302, the control signal of the high / low potential percentage is output to the microprocessor 305, and the control signal in which the high / low potential percentage control signal is replaced from the current to the voltage signal, Includes a control signal for the voltage signal.

温度超過検出装置304は、電力調整装置の内部温度が設定値を超過しているかを検出し、設定値を超過しているときに、温度超過制御信号をマイクロプロセッサー305に送信し、マイクロプロセッサー305よりファンを起動させ、このファンは電源制御システムの一端に設けられている。トリガー部306は、マイクロプロセッサー305によって送信されたトリガ信号を受信し、トリガ信号に基づいて、複数組の整流器をトリガした上、多相の電圧信号を導通し、多相の電圧信号を駆動電圧として出力される。複数組の整流器のうち、各組の整流器に2つの逆方向に並列接続されたシリコン制御整流器を含まれている。零位相検出装置303は、多相の電圧信号の零点位置を検出し、マイクロプロセッサー305に出力される。マイクロプロセッサー305は高低電位の百分比の制御信号を受信したとき、時間間隔で受信されたすべての高低電位の百分比の制御信号の平均値に基づいて、トリガ信号を送信される。   The over-temperature detection device 304 detects whether the internal temperature of the power adjustment device exceeds the set value, and when it exceeds the set value, transmits an over-temperature control signal to the microprocessor 305. The fan is activated, and this fan is provided at one end of the power supply control system. The trigger unit 306 receives the trigger signal transmitted by the microprocessor 305, triggers a plurality of sets of rectifiers based on the trigger signal, conducts the multi-phase voltage signal, and drives the multi-phase voltage signal to the driving voltage. Is output as Of the plurality of sets of rectifiers, each set of rectifiers includes two silicon controlled rectifiers connected in parallel in opposite directions. The zero phase detection device 303 detects the zero point position of the multiphase voltage signal and outputs it to the microprocessor 305. When the microprocessor 305 receives a high and low potential percentage control signal, a trigger signal is transmitted based on the average value of all the high and low potential percentage control signals received in the time interval.

図8B、本発明による電源制御システムの単相電力調整装置のブロック図を参照する。この図において、単相電力調整装置と三向電力調整装置はほぼ同じである。両者の異なる点は、トリガー部306に一組の整流器を有し、トリガー部306がマイクロプロセッサー305より送信されたトリガ信号を受信し、トリガー部に基づいて一組の整流器をトリガし単相の電圧信号を導通した上、単相の電圧信号を駆動電圧として出力される。この一組の整流器に、2つの逆方向に接続されたシリコン制御整流器を含まれている。零位相検出装置303は、単相の電圧信号の零点位置を検出し、マイクロプロセッサー305に出力される。マイクロプロセッサー305は高低電位の百分比の制御信号を受信したとき、時間間隔で受信されたすべての高低電位の百分比の制御信号の平均値に基づいて、トリガ信号を送信される。   Reference is made to FIG. 8B, a block diagram of a single-phase power regulator of a power supply control system according to the present invention. In this figure, the single-phase power adjustment device and the three-way power adjustment device are substantially the same. The difference between the two is that the trigger unit 306 has a set of rectifiers, the trigger unit 306 receives a trigger signal transmitted from the microprocessor 305, triggers the set of rectifiers based on the trigger unit, and has a single phase. In addition to conducting the voltage signal, a single-phase voltage signal is output as a drive voltage. This set of rectifiers includes two oppositely connected silicon controlled rectifiers. The zero phase detection device 303 detects the zero point position of the single phase voltage signal and outputs it to the microprocessor 305. When the microprocessor 305 receives a high and low potential percentage control signal, a trigger signal is transmitted based on the average value of all the high and low potential percentage control signals received in the time interval.

図9ないし11、本発明による駆動電圧出力図を参照する。様々な駆動電圧における波形が示されている。図において、フルパワーの駆動電圧出力は黒色の波形で示され、フルパワーの駆動電圧の出力を中止したときは中空の波形で示されている。図9を例として、各時間間隔に100の周期が存在されているとき、出力パワーが10%のときは、10の周期にフルパワーの駆動電圧を視認でき、残り90の周期はフルパワーの駆動電圧の出力が中止されていることを視認できる。図10の例において、出力パワーが50%のとき、まず50の周期のフルパワーの駆動電圧が現れる。残り50の周期はフルパワーの駆動電圧の出力が中止されている。図11の例において、出力パワーが90%のとき、まず90の周期のフルパワーの駆動電圧が現れる。残り10の周期はフルパワーの駆動電圧の出力が中止されている。これにより、それぞれの単位時間に、一つのみのフルパワーの駆動電圧からフルパワーの駆動電圧の出力を中止する変化を観測できる。本発明によるコントローラーは、連続出力時間間隔と連続出力しない時間間隔の設定に対して、複数組の単位時間が選択に提供されている。   Reference is made to FIGS. 9 through 11 and drive voltage output diagrams according to the present invention. Waveforms at various drive voltages are shown. In the figure, the full power drive voltage output is shown as a black waveform, and when the output of the full power drive voltage is stopped, it is shown as a hollow waveform. Using FIG. 9 as an example, when there are 100 periods in each time interval, when the output power is 10%, a full power drive voltage can be visually recognized in 10 periods, and the remaining 90 periods are full power. It can be visually confirmed that the output of the drive voltage is stopped. In the example of FIG. 10, when the output power is 50%, a full power drive voltage with a period of 50 appears first. In the remaining 50 cycles, the output of the full power drive voltage is stopped. In the example of FIG. 11, when the output power is 90%, a full power drive voltage with a period of 90 appears first. In the remaining 10 cycles, the output of the full power drive voltage is stopped. Accordingly, it is possible to observe a change in which the output of the full power drive voltage is stopped from only one full power drive voltage in each unit time. In the controller according to the present invention, a plurality of sets of unit times are provided for selection for setting a continuous output time interval and a non-continuous output time interval.

図12、本発明による電源制御方法の実施ステップフロー図を参照する。電源制御方法は、以下のステップを含む。   Reference is made to FIG. 12, an implementation step flow diagram of the power supply control method according to the present invention. The power supply control method includes the following steps.

ステップS10、検出装置によって少なくとも一つのフィードバック信号を受信し、各フィードバック信号を制御信号に変換する。   Step S10: At least one feedback signal is received by the detection device, and each feedback signal is converted into a control signal.

ステップS20、電力調整装置によって、第1時間間隔に各制御信号を受信した後、各制御信号の平均値を算出する。   Step S20: After receiving each control signal at the first time interval by the power adjustment device, the average value of each control signal is calculated.

ステップS30、電力調整装置によって、第2時間間隔に平均値に基づいた駆動電圧を出力させ、平均値により連続出力時間間隔と連続出力しない時間間隔の比例を配分し、連続出力時間間隔にフルパワーの駆動電圧を出力させ、連続出力しない時間間隔にフルパワーの駆動電圧を中止させる。   Step S30, the power adjustment device outputs a driving voltage based on the average value in the second time interval, and distributes the proportionality between the continuous output time interval and the non-continuous output time interval according to the average value, so that the full power is output to the continuous output time interval. The driving voltage of the full power is stopped at a time interval when the driving voltage is not continuously output.

ステップS40、抵抗型負荷装置によって駆動信号を受信し、相応の操作を行い、抵抗型負荷装置の特性に従い、フィードバック信号を生成する。   In step S40, the drive signal is received by the resistive load device, the corresponding operation is performed, and a feedback signal is generated according to the characteristics of the resistive load device.

表1、比例方式により連続出力時間間隔にフルパワーの駆動電圧が出力され、連続出力しない時間間隔にフルパワーの駆動電圧を中止されたときの高調波の二乗平均値(Root Mean Square, RMS)と基本波の比例を参照する。百分の30の駆動電圧で稼働したとき、二乗平均に占める全高調波歪みは2.91%であり、基本波の百分比の全高調波歪みは2.92%である。百分の50の駆動電圧で稼働したとき、二乗平均に占める全高調波歪みは3.24%であり、基本波の百分比の全高調波歪みは3.24%である。表2、分散型ゼロクロスオーバー制御(distributed crossover)における高調波が二乗平均と基本波に占める比例を示す。百分の30の駆動電圧で稼働したとき、二乗平均に占める全高調波歪みは18.81%であり、基本波の百分比の全高調波歪みは18.36%である。百分の50の駆動電圧で稼働したとき、二乗平均に占める全高調波歪みは18.74%であり、基本波の百分比の全高調波歪みは18.37%である。前記2つの表のデータから、比例方式により連続出力時間間隔にフルパワーの駆動電圧を出力させ、一方、連続出力しない時間間隔にフルパワーの駆動電圧の出力を中止させた場合の高調波が大幅に低減されていることは、実験と理論が一致していることを裏付けている。   Table 1, root mean square value of harmonics when full power drive voltage is output at continuous output time intervals by the proportional method, and full power drive voltage is stopped at time intervals when continuous output is not performed (Root Mean Square, RMS) And the proportionality of the fundamental wave. When operating at a drive voltage of 30%, the total harmonic distortion occupying the mean square is 2.91%, and the total harmonic distortion as a percentage of the fundamental wave is 2.92%. When operating at a drive voltage of 50%, the total harmonic distortion occupying the root mean square is 3.24%, and the total harmonic distortion as a percentage of the fundamental wave is 3.24%. Table 2 shows the proportion of harmonics in the root mean square and the fundamental wave in the distributed zero crossover control (distributed crossover). When operating at a drive voltage of 30%, the total harmonic distortion occupying the mean square is 18.81%, and the total harmonic distortion as a percentage of the fundamental wave is 18.36%. When operating at a drive voltage of 50%, the total harmonic distortion occupying the mean square is 18.74%, and the total harmonic distortion as a percentage of the fundamental wave is 18.37%. From the data in the above two tables, the harmonics when the full power drive voltage is output at the continuous output time interval by the proportional method and the output of the full power drive voltage is stopped at the time interval not continuously output are greatly increased. The fact that it has been reduced to 1 shows that the theory agrees with the experiment.

Figure 2012058951
Figure 2012058951

表1 電力調整装置が比例方式により連続出力時間間隔にフルパワーの駆動電圧を出力させ、連続出力しない時間間隔にフルパワーの駆動電圧の出力を中止させたときの高調波の形成状況   Table 1 Harmonic formation when the power conditioner outputs full power drive voltage at continuous output time intervals in a proportional manner and stops output of full power drive voltage at non-continuous output time intervals

Figure 2012058951
Figure 2012058951

表2 電力調整装置が分散型ゼロクロスオーバー制御のときの高調波の形成状況   Table 2 Harmonic formation when power conditioner is distributed zero crossover control

以上に説明したものは、本発明の好ましい実施例であり、本発明実施の範疇に制限を加えるものではない。本発明の精神と範疇を逸脱しない限り、同等の効果を有する要素の置き換え、若しくは本発明の特許請求の範囲による変更又は修整とも本発明の特許範疇に含まれる。   What has been described above is a preferred embodiment of the present invention and does not limit the scope of the present invention. Unless departing from the spirit and scope of the present invention, replacement of elements having equivalent effects, or changes or modifications according to the claims of the present invention are also included in the patent scope of the present invention.

201 検出装置
202 電力調整装置
203 抵抗型負荷
301 電源部
302 入力信号部
303 零位相検出部
304 温度超過検出部
305 マイクロプロセッサー
306 トリガー部
S10〜S40 ステップ
201 Detection Device 202 Power Conditioning Device 203 Resistive Load 301 Power Supply Unit 302 Input Signal Unit 303 Zero Phase Detection Unit 304 Over Temperature Detection Unit 305 Microprocessor 306 Trigger Unit S10 to S40 Steps

Claims (9)

検出装置と、電力調整装置と、抵抗型負荷とを備えた電源制御システムであって、
前記検出装置は、少なくとも一つのフィードバック信号を受信し、各フィードバック信号をそれぞれ制御信号に置き換え、
前記電力調整装置は、前記検出装置に接続され、各制御信号を受信し、第1時間間隔に各制御信号の平均値を受信すると共に、第2時間間隔に前記平均値に基づいた駆動電圧を出力し、前記第2時間間隔は連続出力時間間隔と連続出力しない時間間隔とを含み、各制御信号の平均値に基づいて、連続出力時間間隔と連続出力しない時間間隔との比例を配分した上、連続出力時間間隔にフルパワーの駆動電圧を出力させ、連続出力しない時間間隔にフルパワーの駆動電圧の出力を中止させ、
前記抵抗型負荷装置は、前記検出装置と前記電力調整装置に接続され、前記電力調整装置より出力された駆動電圧を出力して対応の操作を行い、前記抵抗型負荷装置が検出された特性に従い、フィードバック信号を生成する。
A power supply control system including a detection device, a power adjustment device, and a resistive load,
The detection apparatus receives at least one feedback signal, and replaces each feedback signal with a control signal,
The power adjustment device is connected to the detection device, receives each control signal, receives an average value of each control signal in a first time interval, and applies a driving voltage based on the average value in a second time interval. The second time interval includes a continuous output time interval and a non-continuous output time interval, and the proportionality between the continuous output time interval and the non-continuous output time interval is allocated based on the average value of each control signal. , Output full power drive voltage at continuous output time intervals, stop full power drive voltage output at non-continuous output time intervals,
The resistance load device is connected to the detection device and the power adjustment device, outputs a drive voltage output from the power adjustment device, performs a corresponding operation, and according to the characteristics detected by the resistance load device Generate a feedback signal.
前記制御信号の電圧値はたとえば、0〜5ボルト、0〜10ボルト、1〜5ボルトまたは2〜10ボルトの間であり、前記制御信号の電流値は0〜20ミリアンペア、または4〜20ミリアンペアの間であることを特徴とする請求項1記載の電源制御システム。   The voltage value of the control signal is, for example, between 0 to 5 volts, 0 to 10 volts, 1 to 5 volts, or 2 to 10 volts, and the current value of the control signal is 0 to 20 mA, or 4 to 20 mA. The power supply control system according to claim 1, wherein the power supply control system is between. 電源部と、入力信号部と、マイクロプロセッサーと、トリガー部とを備えた電力調整装置であって、
前記電源部は、前記電力調整装置に必要な電源が提供され、
前記入力信号部は少なくとも一つの制御信号を受信し、それぞれ高低電位の百分比の制御信号に変換され、
前記マイクロプロセッサーは前記電源部と、前記入力信号部に接続され、各高低電位の百分比の制御信号の平均値を算出し、各高低電位の百分比の制御信号を受信し、各高低電位の百分比の制御信号に基づいてトリガ信号を生成し、前記トリガ信号は各高低電位の百分比の制御信号の百分比の制御信号の平均値に基づいて、連続出力時間間隔と連続出力しない時間間隔の比例を配分し、連続出力時間間隔にフルパワーのトリガ信号を出力し、連続出力しない時間間隔にフルパワーのトリガ信号の出力を中止させ、
前記トリガー部は前記マイクロプロセッサーに接続され、前記トリガ信号を受信し、前記トリガ信号に基づいて電圧信号を出力し駆動電圧とすることを特徴とする請求項1記載の電源制御システム。
A power adjustment device including a power supply unit, an input signal unit, a microprocessor, and a trigger unit,
The power supply unit is provided with a power supply necessary for the power adjustment device,
The input signal unit receives at least one control signal and is converted into a control signal having a high / low potential percentage,
The microprocessor is connected to the power supply unit and the input signal unit, calculates an average value of the control signal of each high-low potential percentage, receives the control signal of each high-low potential percentage, and receives the control signal of each high-low potential percentage. A trigger signal is generated based on the control signal, and the trigger signal distributes a proportional ratio between the continuous output time interval and the non-continuous output time interval based on the average value of the control signal of the percentage control signal of each high and low potential. , Output full power trigger signal at continuous output time interval, stop full power trigger signal output at non-continuous output time interval,
The power supply control system according to claim 1, wherein the trigger unit is connected to the microprocessor, receives the trigger signal, outputs a voltage signal based on the trigger signal, and generates a drive voltage.
前記トリガー部はさらに一組の整流器を含み、前記整流器は前記電圧信号の数に対応され、一組の前記整流器は逆方向に並列接続された2つのシリコン制御整流器を含み、前記トリガ信号のトリガによって導通され、前記駆動電圧を出力することを特徴とする請求項3記載の電源制御システム。   The trigger unit further includes a set of rectifiers, the rectifiers corresponding to the number of the voltage signals, and the set of rectifiers includes two silicon-controlled rectifiers connected in parallel in opposite directions, and triggering the trigger signal The power supply control system according to claim 3, wherein the power supply control system outputs the drive voltage. 前記検出装置は、少なくとも一つのフィードバック信号を受信し、各フィードバック信号をそれぞれ制御信号に置き換え、
前記電力調整装置によって、第1時間間隔に各制御信号を受信した後、各制御信号の平均値を算出し、
前記電力調整装置より、第2時間間隔に平均値に基づいた前記駆動電圧を出力させ、前記第2時間間隔に連続出力時間間隔と連続出力しない時間間隔とを含み、前記平均値に基づいて、連続出力時間間隔と連続出力しない時間間隔の比例を配分した上、連続出力時間間隔にフルパワーの駆動電圧を出力させ、連続出力しない時間間隔にフルパワーの駆動電圧を中止させ、
前記抵抗型負荷装置によって、前記駆動電圧を受信し対応の操作を行い、前記抵抗型負荷装置の特性に従い、前記フィードバック信号を生成するステップを備えた電源制御方法。
The detection apparatus receives at least one feedback signal, and replaces each feedback signal with a control signal,
After receiving each control signal at the first time interval by the power adjustment device, calculate an average value of each control signal,
From the power adjustment device, the drive voltage based on an average value is output in a second time interval, the second time interval includes a continuous output time interval and a time interval in which continuous output is not performed, and based on the average value, After distributing the proportionality between the continuous output time interval and the non-continuous output time interval, the full power drive voltage is output during the continuous output time interval, and the full power drive voltage is stopped during the non-continuous output time interval.
A power supply control method comprising: a step of receiving the drive voltage by the resistive load device, performing a corresponding operation, and generating the feedback signal according to characteristics of the resistive load device.
電源部と、入力信号部と、マイクロプロセッサーと、トリガー部とを備えた電力調整装置であって、
前記電源部は、前記電力調整装置に必要な電源が提供され、
前記入力信号部は少なくとも一つの制御信号を受信し、それぞれ高低電位の百分比の制御信号に変換され、
前記マイクロプロセッサーは前記電源部と、前記入力信号部に接続され、各高低電位の百分比の制御信号の平均値を算出し、各高低電位の百分比の制御信号を受信し、各高低電位の百分比の制御信号に基づいてトリガ信号を生成し、前記トリガ信号は各高低電位の百分比の制御信号の百分比の制御信号の平均値に基づいて、連続出力時間間隔と連続出力しない時間間隔の比例を配分し、連続出力時間間隔にフルパワーのトリガ信号を出力し、連続出力しない時間間隔にフルパワーのトリガ信号の出力を中止させ、
前記トリガー部は前記マイクロプロセッサーに接続され、前記トリガ信号を受信し、前記トリガ信号に基づいて電圧信号を出力し駆動電圧とすることを特徴とする請求項5記載の電源制御システム。
A power adjustment device including a power supply unit, an input signal unit, a microprocessor, and a trigger unit,
The power supply unit is provided with a power supply necessary for the power adjustment device,
The input signal unit receives at least one control signal and is converted into a control signal having a high / low potential percentage,
The microprocessor is connected to the power supply unit and the input signal unit, calculates an average value of the control signal of each high / low potential percentage, receives the control signal of each high / low potential percentage, and A trigger signal is generated based on the control signal, and the trigger signal distributes a proportional ratio between the continuous output time interval and the non-continuous output time interval based on the average value of the control signal of the percentage control signal of each high and low potential. , Output full power trigger signal at continuous output time interval, stop full power trigger signal output at non-continuous output time interval,
6. The power supply control system according to claim 5, wherein the trigger unit is connected to the microprocessor, receives the trigger signal, outputs a voltage signal based on the trigger signal, and generates a drive voltage.
前記トリガー部はさらに一組の整流器を含み、前記整流器は前記電圧信号の数に対応され、一組の前記整流器は逆方向に並列接続された2つのシリコン制御整流器を含み、前記トリガ信号のトリガによって導通され、前記駆動電圧を出力することを特徴とする請求項6記載の電源制御システム。   The trigger unit further includes a set of rectifiers, the rectifiers corresponding to the number of the voltage signals, and the set of rectifiers includes two silicon-controlled rectifiers connected in parallel in opposite directions, and triggering the trigger signal The power supply control system according to claim 6, wherein the power supply control system outputs the drive voltage. 電源部と、入力信号部と、マイクロプロセッサーと、トリガー部とを備えた電力調整装置であって、
前記電源部は、前記電力調整装置に必要な電源が提供され、
前記入力信号部は少なくとも一つの前記制御信号を受信し、それぞれ高低電位の百分比の制御信号に置き換えられ、
前記マイクロプロセッサーは前記電源部と、前記入力信号部に接続され、各高低電位の百分比の制御信号を受信し、第1時間間隔に各高低電位の百分比の制御信号の平均値を算出すると共に、第2時間間隔に各高低電位の百分比の制御信号に基づいてトリガ信号を生成し、前記トリガ信号は各高低電位の百分比の制御信号の平均値に基づいて、第2時間間隔に連続出力時間間隔と連続出力しない時間間隔の比例をそれぞれ配分し、連続出力時間間隔にフルパワーのトリガ信号を出力し、連続出力しない時間間隔にフルパワーのトリガ信号の出力を中止させ、
前記トリガー部は前記マイクロプロセッサーに接続され、前記トリガ信号を受信し、前記トリガ信号に基づいて電圧信号を出力し駆動電圧とする。
A power adjustment device including a power supply unit, an input signal unit, a microprocessor, and a trigger unit,
The power supply unit is provided with a power supply necessary for the power adjustment device,
The input signal unit receives at least one of the control signals and is replaced with a control signal having a high / low potential percentage,
The microprocessor is connected to the power supply unit and the input signal unit, receives a control signal of each high / low potential percentage, calculates an average value of the control signal of each high / low potential percentage in a first time interval, and A trigger signal is generated based on a control signal of each high / low potential percentage at a second time interval, and the trigger signal is continuously output at a second time interval based on an average value of the control signals of each high / low potential percentage. And proportionally proportional to the time interval that does not output continuously, outputs a full power trigger signal during the continuous output time interval, stops output of the full power trigger signal during the time interval that does not output continuously,
The trigger unit is connected to the microprocessor, receives the trigger signal, outputs a voltage signal based on the trigger signal, and generates a driving voltage.
前記トリガー部はさらに一組の整流器を含み、前記整流器は前記電圧信号の数に対応され、一組の前記整流器は逆方向に並列接続された2つのシリコン制御整流器を含み、前記トリガ信号のトリガによって導通され、前記駆動電圧を出力することを特徴とする請求項7記載の電力調整装置。   The trigger unit further includes a set of rectifiers, the rectifiers corresponding to the number of the voltage signals, and the set of rectifiers includes two silicon-controlled rectifiers connected in parallel in opposite directions, and triggering the trigger signal The power adjustment device according to claim 7, wherein the power adjustment device outputs the drive voltage.
JP2010200687A 2010-02-06 2010-09-08 Electricity conditioning device, and power supply control system and method therefor Pending JP2012058951A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99103695A TWI394341B (en) 2010-02-06 2010-02-06 Power control system and method thereof

Publications (1)

Publication Number Publication Date
JP2012058951A true JP2012058951A (en) 2012-03-22

Family

ID=45025435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200687A Pending JP2012058951A (en) 2010-02-06 2010-09-08 Electricity conditioning device, and power supply control system and method therefor

Country Status (3)

Country Link
JP (1) JP2012058951A (en)
DE (1) DE102010045621A1 (en)
TW (1) TWI394341B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011118365A1 (en) 2011-11-14 2013-05-16 Ipgate Ag Electronically controllable brake confirmation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884315A (en) * 1981-10-30 1983-05-20 レイセオン カンパニ− Output stabilization method and apparatus
JPS63273921A (en) * 1987-05-06 1988-11-11 Mitsubishi Electric Corp Constant power control system for ac power supply

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315151B2 (en) * 1995-01-11 2008-01-01 Microplanet Inc. Method and apparatus for electronic power control
US6982547B2 (en) * 2002-07-20 2006-01-03 Richard Haas Power factor controlled regulator with variable output voltage feedback
CN1706089A (en) * 2002-10-21 2005-12-07 先进电力技术公司 AC-DC power converter having high input power factor and low harmonic distortion
TW200529543A (en) * 2004-02-17 2005-09-01 Spi Electronic Co Ltd Power supply system with power factor correction (PFC)
TWI236792B (en) * 2004-08-30 2005-07-21 Uis Abler Electronics Co Ltd Active equipment for harmonic suppression
TWI330441B (en) * 2007-04-13 2010-09-11 Ablerex Electronics Co Ltd Active power conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884315A (en) * 1981-10-30 1983-05-20 レイセオン カンパニ− Output stabilization method and apparatus
JPS63273921A (en) * 1987-05-06 1988-11-11 Mitsubishi Electric Corp Constant power control system for ac power supply

Also Published As

Publication number Publication date
DE102010045621A1 (en) 2012-03-22
TWI394341B (en) 2013-04-21
TW201128897A (en) 2011-08-16

Similar Documents

Publication Publication Date Title
US9667178B2 (en) Variable frequency speed control system and method of the same
TWI440872B (en) A load test system for an inverter
EP2692047B1 (en) System and method for off-line ups
JP5765287B2 (en) Converter control device and air conditioner equipped with converter control device
JP2013531961A (en) Reactive power management
JP2013539347A (en) System and method for managing power usage
WO2014049779A1 (en) Power conversion device
KR20100033655A (en) Device for power factor correction in three phase power supply and control method thereof
JPWO2012169013A1 (en) Operation control device for photovoltaic power generation system
US10333343B2 (en) Uninterruptible power system, control apparatus of the same and method of controlling the same
JP2012058951A (en) Electricity conditioning device, and power supply control system and method therefor
JP2010172148A (en) Uninterruptible power supply apparatus
KR101604672B1 (en) Regenerative Electronics Load
CN116073706A (en) Method, circuit and motor driving system for adaptively changing PWM duty ratio
CN105703607A (en) Device and method for setting switching frequency of switch tube
WO2013026220A1 (en) Inverter system control method and device, and inverter system
JP2023517420A (en) Method and apparatus for detecting grid islanding
JP2016111764A (en) Unbalance correction device, unbalance correction method and program
JP2015033178A (en) Power supply
CN204290348U (en) A kind of blower fan combining inverter of setting power curve
JP2003235166A (en) System link and method, apparatus, program, and recording medium for controlling power supply in system interconnection
WO2018049074A1 (en) Efficient induction motor control
JP2018110466A (en) Active filter, control method and program
JP6343434B2 (en) Power conversion device and power conversion method
CN202475364U (en) Stepless speed adjusting device of alternating current motor driven by single-phase power supply

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625