JP2012057788A - High pressure gas supply system - Google Patents

High pressure gas supply system Download PDF

Info

Publication number
JP2012057788A
JP2012057788A JP2010204881A JP2010204881A JP2012057788A JP 2012057788 A JP2012057788 A JP 2012057788A JP 2010204881 A JP2010204881 A JP 2010204881A JP 2010204881 A JP2010204881 A JP 2010204881A JP 2012057788 A JP2012057788 A JP 2012057788A
Authority
JP
Japan
Prior art keywords
valve
pressure gas
fuel
supply system
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010204881A
Other languages
Japanese (ja)
Inventor
Eiji Okawachi
栄治 大川内
Toshikatsu Kubo
利賀剛 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010204881A priority Critical patent/JP2012057788A/en
Publication of JP2012057788A publication Critical patent/JP2012057788A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high pressure gas supply system having simple structure which prevents a backflow of a fuel gas.SOLUTION: In the high pressure gas supply system for supplying a fuel gas from a plurality of high pressure gas tanks to a fuel cell, capacities of the high pressure gas tanks are different, a check valve and an overflow preventing valve are provided in a fuel supply channel connected to a high pressure gas tank having low capacity, and a valve element of the check valve and a valve element of the overflow preventing valve are integrally gathered to slide in opening and closing directions by a single elastic body.

Description

本発明は、高圧ガスタンクに貯蔵された燃料ガスを燃料電池へ供給する高圧ガス供給システムに関する。   The present invention relates to a high-pressure gas supply system that supplies fuel gas stored in a high-pressure gas tank to a fuel cell.

近年、空気等の酸化ガスと水素等の燃料ガスとの電気化学反応により発電する燃料電池を搭載した燃料電池車両の開発が進められている。燃料電池車両において、水素ガスなどの燃料ガスは、例えば複数の高圧ガスタンクに充填して車両に搭載され、この複数の高圧ガスタンクから燃料電池に供給される。   2. Description of the Related Art In recent years, fuel cell vehicles equipped with a fuel cell that generates electricity by an electrochemical reaction between an oxidizing gas such as air and a fuel gas such as hydrogen have been developed. In a fuel cell vehicle, for example, a fuel gas such as hydrogen gas is filled in a plurality of high pressure gas tanks and mounted on the vehicle, and is supplied to the fuel cell from the plurality of high pressure gas tanks.

この時、高圧ガスタンク各々に接続される複数の供給配管の間に差圧が生じる可能性があり、高圧側の供給配管から低圧側の供給配管へ燃料ガスが流入し、低圧側の供給配管にて燃料ガスの逆流が発生する。これにより高圧ガスタンクに組付けられるバルブに対して逆圧が印加され、バルブの劣化やかじりつきを引き起こすおそれがある。そのため、高圧ガスタンクに接続された供給配管において、燃料ガスの逆流を防ぐことが望まれる。   At this time, there is a possibility that differential pressure may occur between the multiple supply pipes connected to each of the high-pressure gas tanks, so that the fuel gas flows from the high-pressure side supply pipe into the low-pressure side supply pipe and enters the low-pressure side supply pipe. As a result, a backflow of fuel gas occurs. As a result, a reverse pressure is applied to the valve assembled in the high-pressure gas tank, which may cause deterioration or galling of the valve. Therefore, it is desired to prevent the backflow of fuel gas in the supply pipe connected to the high pressure gas tank.

特許文献1には、等しい容量の高圧ガスタンクを複数有する高圧ガス供給システムにおいて、高圧ガスタンクから燃料を供給する供給配管を各々の高圧ガスタンクに接続し、該供給配管には逆止弁を配置する構成が開示されている。   In Patent Document 1, in a high-pressure gas supply system having a plurality of high-pressure gas tanks having the same capacity, a supply pipe for supplying fuel from the high-pressure gas tank is connected to each high-pressure gas tank, and a check valve is arranged in the supply pipe. Is disclosed.

特開2002−206696JP 2002-206696

上記特許文献1の構成によれば、複数の高圧ガスタンクに接続される供給配管の各々に逆止弁を設置することにより、燃料ガスの逆流を防止している。しかしながら、複数の高圧ガスタンク各々に接続された供給配管うち、何れの供給配管において燃料ガスが逆流するか予測できず、全ての供給配管に逆止弁を設置する必要がある。また、通常の高圧ガス供給システムでは高圧ガスタンクの開閉を制御する開閉弁や流量制御装置なども設けられることから、逆止弁を配設することでさらに構造が複雑となり、部品点数の増加、装置の複雑化、製造コストの増加などの問題が生じる。   According to the configuration of Patent Document 1, the check valve is provided in each of the supply pipes connected to the plurality of high-pressure gas tanks, thereby preventing the back flow of the fuel gas. However, it is impossible to predict which of the supply pipes connected to each of the plurality of high-pressure gas tanks will cause the fuel gas to flow backward, and it is necessary to install check valves in all the supply pipes. In addition, since a normal high-pressure gas supply system is also provided with an on-off valve and a flow rate control device that control the opening and closing of the high-pressure gas tank, the construction of the check valve further complicates the structure and increases the number of parts. Problems such as increased complexity and manufacturing costs.

そこで、本発明では、簡易な構成で効率的に逆流を防止することが可能な高圧ガス供給システムを提供することを目的とする。   Therefore, an object of the present invention is to provide a high-pressure gas supply system that can efficiently prevent backflow with a simple configuration.

本発明の高圧ガス供給システムは、複数の高圧ガスタンクから同時に高圧ガスを供給する高圧ガス供給システムにおいて、容量の異なる複数の高圧ガスタンクと、高圧ガスタンクの開閉を制御する開閉弁と、各々の高圧ガスタンクから高圧ガスを供給する複数の燃料供給路と、複数の燃料供給路の合流部と、を備え、低容量の高圧ガスタンクに接続される燃料供給路は開閉弁下流に逆止弁及び過流防止弁を有し、逆止弁と過流防止弁の弁体は背合わせに一体化されることを特徴とする。また、逆止弁の弁座は開閉弁に押圧固定されることが好ましい。   The high-pressure gas supply system of the present invention is a high-pressure gas supply system that supplies high-pressure gas simultaneously from a plurality of high-pressure gas tanks, a plurality of high-pressure gas tanks having different capacities, an on-off valve that controls opening and closing of the high-pressure gas tank, and each high-pressure gas tank The fuel supply path connected to the low-capacity high-pressure gas tank is provided with a plurality of fuel supply paths for supplying high-pressure gas from and a junction of the plurality of fuel supply paths. It has a valve, and the check valve and the valve body of the overflow prevention valve are integrated back to back. Moreover, it is preferable that the valve seat of the check valve is pressed and fixed to the on-off valve.

上記構成の高圧ガス供給システムによれば、逆止弁と過流防止弁の弁体を背合わせに一体化させることにより弁体を集約し、一つの弁体によって逆流防止効果と過流防止効果の双方が得られるため、部品点数の削減、装置の簡素化が可能である。また、逆止弁の弁座を開閉弁に押圧固定することにより逆止弁の弁座と開閉弁との間に面圧が発生するため、逆止弁の弁座が開閉弁におけるシール部材の役割も担い、これによっても部品点数の削減、装置の簡素化が可能となる。さらに、高圧ガスタンクの容量が異なることから、各種空間の容積に応じて配置出来、燃料電池車両への搭載空間自由度が増大する。   According to the high pressure gas supply system having the above configuration, the valve bodies are integrated by integrating the check valve and the overflow prevention valve back to back, and the backflow prevention effect and the overflow prevention effect are achieved by one valve body. Therefore, the number of parts can be reduced and the apparatus can be simplified. Further, by pressing and fixing the valve seat of the check valve to the opening / closing valve, a surface pressure is generated between the valve seat of the check valve and the opening / closing valve. This also plays a role, and this also makes it possible to reduce the number of parts and simplify the apparatus. Furthermore, since the capacities of the high-pressure gas tanks are different, the high-pressure gas tanks can be arranged according to the volumes of various spaces, and the degree of freedom of mounting space on the fuel cell vehicle increases.

また、一体化された逆止弁と過流防止弁の弁体は単一の弾性体により開閉方向に付勢される。弾性体には圧縮バネが用いられ、圧縮バネの最低使用高さはバネの密着高さより大きいことが好ましい。   Further, the integrated check valve and overflow prevention valve body are biased in the opening and closing direction by a single elastic body. A compression spring is used as the elastic body, and the minimum use height of the compression spring is preferably larger than the contact height of the spring.

上記構成の高圧ガス供給システムによれば、逆止弁を付勢する弾性体と過流防止弁を付勢する弾性体とを集約し、一つの弾性体で逆止弁及び過流防止弁を開閉方向に摺動することができるため、部品点数の削減、装置の簡素化が可能である。また、弾性付勢により過流防止弁と逆止弁に加わる圧力の向きと大きさに応じて流量を調整することが可能であるため、通常供給状態、逆流状態、過流状態の全ての状態において、適切かつ効率的に流量調整が可能となる。具体的には、燃料ガスの逆流時など、高圧ガスタンク側の圧力が供給路合流部側よりも小さい場合においては、その圧力差に応じて弾性部材が伸張し、開閉弁などの高圧ガスタンク部品へ逆圧が印加されることを防止できる。一方で、通常の燃料供給時や配管の破損時など、高圧ガスタンク側の圧力が供給路合流部側よりも大きい場合においては、その圧力差に応じて弾性部材が収縮し、高圧ガスタンクから流出する燃料ガスの量を絞ることができる。   According to the high pressure gas supply system having the above configuration, the elastic body that urges the check valve and the elastic body that urges the overflow prevention valve are integrated, and the check valve and the overflow prevention valve are combined with one elastic body. Since it can slide in the opening and closing direction, the number of parts can be reduced and the apparatus can be simplified. In addition, since the flow rate can be adjusted according to the direction and magnitude of the pressure applied to the overflow prevention valve and check valve by elastic biasing, all the states of normal supply state, backflow state, and overflow state Therefore, the flow rate can be adjusted appropriately and efficiently. Specifically, when the pressure on the high-pressure gas tank side is smaller than that on the supply path merging part side, such as when the fuel gas is flowing backward, the elastic member expands according to the pressure difference, leading to high-pressure gas tank components such as on-off valves. It is possible to prevent reverse pressure from being applied. On the other hand, when the pressure on the high-pressure gas tank side is larger than the supply path merging portion side, such as when normal fuel is supplied or when the piping is broken, the elastic member contracts according to the pressure difference and flows out of the high-pressure gas tank. The amount of fuel gas can be reduced.

また、上記構成の高圧ガス供給システムにおいて、高圧ガスタンクは開口部に各々バルブアッセンブリを備え、開閉弁、逆止弁及び過流防止弁はバルブアッセンブリに配設されることが好ましい。   In the high-pressure gas supply system having the above-described configuration, it is preferable that the high-pressure gas tank includes a valve assembly at each opening, and the on-off valve, the check valve, and the overflow prevention valve are disposed in the valve assembly.

上記構成の高圧ガス供給システムによれば、簡易な構成で、効率的に燃料ガスの逆流を防ぐことが出来、これにより部品点数の削減、装置の簡素化、製造コストの削減、車両への搭載自由度の増大が可能となる。   According to the high pressure gas supply system having the above configuration, the back flow of the fuel gas can be efficiently prevented with a simple configuration, thereby reducing the number of parts, simplifying the device, reducing the manufacturing cost, and mounting on the vehicle. The degree of freedom can be increased.

本発明の実施の形態における高圧ガス供給システムを示す図である。It is a figure which shows the high pressure gas supply system in embodiment of this invention. 本発明の実施の形態における供給流路7aのバルブ構造を示す図である。It is a figure which shows the valve structure of the supply flow path 7a in embodiment of this invention. 本発明の実施の形態における供給流路7bのバルブ構造を示す図である。It is a figure which shows the valve structure of the supply flow path 7b in embodiment of this invention. 本発明の実施の形態における電磁弁の開閉動作を示す図である。It is a figure which shows the opening / closing operation | movement of the solenoid valve in embodiment of this invention. 本発明の実施の形態における逆止弁12及び過流防止弁14bの開閉動作を示す図である。It is a figure which shows the opening / closing operation | movement of the non-return valve 12 and the overflow prevention valve 14b in embodiment of this invention.

以下、本発明の実施形態における高圧ガス供給システムについて添付図面を参照しながら説明する。また、高圧ガスタンクに充填されるガスは水素ガスとして説明するが、水素ガスに限定されず、その他の高圧ガスであってもよい。   Hereinafter, a high-pressure gas supply system according to an embodiment of the present invention will be described with reference to the accompanying drawings. Moreover, although the gas with which a high pressure gas tank is filled is demonstrated as hydrogen gas, it is not limited to hydrogen gas, Other high pressure gas may be sufficient.

図1は、本発明の実施形態における高圧ガス供給システム1を示す図である。図1に示すように、高圧ガス供給システム1は、高圧ガスタンク2a,2bと、バルブアッセンブリ4a,4bと、燃料充填配管16a,16bと、燃料供給配管6a,6bと、配管合流部8,18と、を備え、バルブアッセンブリ4a,4bは電磁弁10a,10bと、逆止弁12と、過流防止弁14a,14bとを含んで構成される。   FIG. 1 is a diagram showing a high-pressure gas supply system 1 according to an embodiment of the present invention. As shown in FIG. 1, the high-pressure gas supply system 1 includes high-pressure gas tanks 2a and 2b, valve assemblies 4a and 4b, fuel filling pipes 16a and 16b, fuel supply pipes 6a and 6b, and pipe junctions 8 and 18. The valve assemblies 4a and 4b include electromagnetic valves 10a and 10b, a check valve 12, and overflow prevention valves 14a and 14b.

高圧ガスタンク2a,2bは、内部に高圧の燃料ガス(例えば35〜70MPaの水素ガス)を充填貯留するための密閉容器であり、好ましくはFRP層などの繊維強化樹脂層により強度を有する。また、高圧ガスタンク2aの容量は高圧ガスタンク2bの容量より大きく構成され、高圧ガスタンク2a,2bそれぞれの開口部には、高圧ガスタンク2a,2bの内部と外部を連通するようにバルブアッセンブリ4a,4bが設けられる。   The high-pressure gas tanks 2a and 2b are sealed containers for filling and storing high-pressure fuel gas (for example, hydrogen gas of 35 to 70 MPa) inside, and preferably have strength by a fiber reinforced resin layer such as an FRP layer. The capacity of the high-pressure gas tank 2a is larger than the capacity of the high-pressure gas tank 2b, and valve assemblies 4a and 4b are provided in the openings of the high-pressure gas tanks 2a and 2b so as to communicate the inside and outside of the high-pressure gas tanks 2a and 2b. Provided.

バルブアッセンブリ4a,4bは、例えばステンレスなどの金属に複数のバルブや継手等の配管要素を一体的に組み込んで構成される。バルブアッセンブリ4aは内部に充填流路17aと供給流路7aを有しており、充填流路17aは外部から燃料ガスタンク2aへ燃料ガスを流入し、供給流路7aは燃料ガスタンク2aから外部へ燃料ガスを流出する。充填流路17aには上流側(外部側)にオリフィス20a、下流側(高圧ガスタンク2a側)には逆止弁22aが設けられ、外部から高圧ガスタンク2aへ流入する燃料ガスの流量をオリフィス20aにより調整すると共に、充填した燃料ガスの逆流を逆止弁22aにより防止する。そして、供給流路7aには上流側(高圧ガスタンク2a側)に電磁弁10a、下流側(外部側)には過流防止弁14aが設けられ、高圧ガスタンク2aの開閉制御を電磁弁10aにより行い、外部へ流出する燃料ガスの流量を過流防止弁14aにより調整する。   The valve assemblies 4a and 4b are configured by integrally incorporating a plurality of piping elements such as valves and joints into a metal such as stainless steel. The valve assembly 4a has a filling flow path 17a and a supply flow path 7a inside. The filling flow path 17a flows fuel gas from the outside to the fuel gas tank 2a, and the supply flow path 7a is fueled from the fuel gas tank 2a to the outside. The gas flows out. The filling channel 17a is provided with an orifice 20a on the upstream side (external side) and a check valve 22a on the downstream side (high pressure gas tank 2a side), and the flow rate of the fuel gas flowing from the outside into the high pressure gas tank 2a is controlled by the orifice 20a. While adjusting, the backflow of the filled fuel gas is prevented by the check valve 22a. The supply flow path 7a is provided with an electromagnetic valve 10a on the upstream side (high pressure gas tank 2a side) and an overflow prevention valve 14a on the downstream side (external side), and the opening and closing control of the high pressure gas tank 2a is performed by the electromagnetic valve 10a. The flow rate of the fuel gas flowing out to the outside is adjusted by the overflow prevention valve 14a.

同様に、バルブアッセンブリ4bは内部に充填流路17bと供給流路7bを有しており、充填流路17bは外部から燃料ガスタンク2bへ燃料ガスを流入し、供給流路7aは燃料ガスタンク2bから外部へ燃料ガスを流出する。また、充填流路17bには上流側(外部側)にオリフィス20b、下流側(高圧ガスタンク2b側)に逆止弁22bが設けられる。そして、供給流路7bは、バルブアッセンブリ4aにおける供給流路7aと異なり、上流側(高圧ガスタンク2b側)に電磁弁10bが設けられ、下流側(外部側)へ順に逆止弁12と過流防止弁14bが設けられる。   Similarly, the valve assembly 4b has a filling flow path 17b and a supply flow path 7b inside, and the filling flow path 17b flows fuel gas into the fuel gas tank 2b from the outside, and the supply flow path 7a extends from the fuel gas tank 2b. The fuel gas flows out to the outside. The filling channel 17b is provided with an orifice 20b on the upstream side (external side) and a check valve 22b on the downstream side (high pressure gas tank 2b side). Unlike the supply flow path 7a in the valve assembly 4a, the supply flow path 7b is provided with an electromagnetic valve 10b on the upstream side (high-pressure gas tank 2b side), and flows into the downstream side (external side) with the check valve 12 in order. A prevention valve 14b is provided.

燃料充填配管16a,16bは、一方の端部をバルブアッセンブリ4a,4bの充填流路17a,17bにそれぞれ接続され、他方の端部は配管合流部18にて合流される。配管合流部18は燃料充填配管16a,16bを連通するとともに、レセプタクル24を介して外部の水素供給設備、例えば水素ステーション(図示省略)に接続される。従って、水素ステーションから供給された燃料ガスは、レセプタクル24、配管合流部18を経由して燃料充填配管16a,16bより高圧ガスタンク2a,2bに充填される。   One end of each of the fuel filling pipes 16 a and 16 b is connected to the filling passages 17 a and 17 b of the valve assemblies 4 a and 4 b, and the other end is joined at the pipe joining part 18. The pipe junction 18 communicates with the fuel filling pipes 16 a and 16 b and is connected to an external hydrogen supply facility, for example, a hydrogen station (not shown) through the receptacle 24. Therefore, the fuel gas supplied from the hydrogen station is filled into the high-pressure gas tanks 2a and 2b from the fuel filling pipes 16a and 16b via the receptacle 24 and the pipe junction 18.

燃料供給配管6a,6bは、一方の端部をバルブアッセンブリ4a,4bの供給流路7a,7bにそれぞれ接続され、他方の端部は配管合流部8にて合流される。配管合流部8は、燃料供給配管6a,6bを連通するとともに、燃料電池に接続されており、高圧ガスタンク2a,2b内に貯留された燃料ガスは、燃料供給配管6a,6bを通過した後、配管合流部8を経由して燃料電池26に供給される。なお、電磁弁10a,10b、逆止弁12、過流防止弁14a,14bは、高圧バルブ4a,4bに組み込まれる構成に限られず、燃料供給配管6a,6bに配設されてもよい。   One end of each of the fuel supply pipes 6 a and 6 b is connected to the supply flow paths 7 a and 7 b of the valve assemblies 4 a and 4 b, respectively, and the other end is joined at the pipe junction 8. The pipe junction 8 communicates with the fuel supply pipes 6a and 6b and is connected to the fuel cell. After the fuel gas stored in the high-pressure gas tanks 2a and 2b passes through the fuel supply pipes 6a and 6b, The fuel cell 26 is supplied via the pipe junction 8. The solenoid valves 10a and 10b, the check valve 12, and the overflow prevention valves 14a and 14b are not limited to the configuration incorporated in the high pressure valves 4a and 4b, and may be disposed in the fuel supply pipes 6a and 6b.

以下に、バルブアッセンブリ4a,4b内の供給流路7a,7bにおけるバルブの詳細な構造、及び動作について説明する。図2は供給流路7aにおける電磁弁10a及び過流防止14aを示し、図3は供給流路7bにおける電磁弁10b、逆止弁12、及び過流防止14bを示す図である。また、図4は電磁弁10a,10bの開閉動作を示す図であり、図5は逆止弁12及び過流防止弁14bの開閉動作を示す図である。   The detailed structure and operation of the valves in the supply flow paths 7a and 7b in the valve assemblies 4a and 4b will be described below. FIG. 2 shows the electromagnetic valve 10a and the overflow prevention 14a in the supply flow path 7a, and FIG. 3 shows the electromagnetic valve 10b, the check valve 12 and the overflow prevention 14b in the supply flow path 7b. 4 is a diagram showing the opening / closing operation of the electromagnetic valves 10a, 10b, and FIG. 5 is a diagram showing the opening / closing operation of the check valve 12 and the overflow prevention valve 14b.

図2に示すように、供給流路7aは、上流側(高圧タンク2a側)から電磁弁10a、過流防止弁14aが設けられており、過流防止弁14aは下流側(外部側)へ流れる燃料ガスの流量を制御する。また、図3に示すように、供給流路7bは、上流側(高圧タンク2b側)から電磁弁10b、逆止弁12、過流防止弁14bが設けられている。逆止弁12の弁体30と過流防止弁14bの弁体36bは背あわせに一体化されており、一体化された弁体30と弁体36bは、バネ(圧縮バネ)34のバネ力により電磁弁10b方向へ付勢される。電磁弁10bから高圧ガスが流出する場合には、ガス圧力によりバネ34が圧縮されて、一体化された弁体30及び弁体36bは燃料供給配管6b方向へ移動する。これにより、逆止弁12は上流側(高圧タンク2b側)へ燃料ガスが流入することを防ぎ、過流防止弁14bは下流側(外部側)へ流れる燃料ガスの流量を制御する。さらに、逆止弁12の弁座32は樹脂若しくはゴムから構成されており、隣接する電磁弁10bの弁座50に当接される。電磁弁10bの弁座50が逆止弁12方向に押しつけられ、その押力に抗してバルブ本体52が弁座50の反対側から支持することによって、両者の間に配設された逆止弁12の弁座32は押圧固定される。これにより、弁座32と電磁弁10bとの間に面圧が発生して弁座32がシール部材として働くため、流路を通過せずに電磁弁10bの間隙から逆止弁へ燃料ガスが流入することを防止するシール部材、例えばOリングなどを削減することが出来る。   As shown in FIG. 2, the supply flow path 7a is provided with an electromagnetic valve 10a and an overflow prevention valve 14a from the upstream side (high pressure tank 2a side), and the overflow prevention valve 14a goes downstream (outside). Control the flow rate of flowing fuel gas. As shown in FIG. 3, the supply flow path 7b is provided with a solenoid valve 10b, a check valve 12, and an overflow prevention valve 14b from the upstream side (the high-pressure tank 2b side). The valve body 30 of the check valve 12 and the valve body 36 b of the overflow prevention valve 14 b are integrated back to back, and the integrated valve body 30 and valve body 36 b are spring force of a spring (compression spring) 34. Is biased toward the electromagnetic valve 10b. When high pressure gas flows out from the solenoid valve 10b, the spring 34 is compressed by the gas pressure, and the integrated valve body 30 and valve body 36b move toward the fuel supply pipe 6b. Thereby, the check valve 12 prevents the fuel gas from flowing into the upstream side (the high-pressure tank 2b side), and the overflow prevention valve 14b controls the flow rate of the fuel gas flowing to the downstream side (external side). Further, the valve seat 32 of the check valve 12 is made of resin or rubber and abuts on the valve seat 50 of the adjacent electromagnetic valve 10b. The valve seat 50 of the solenoid valve 10b is pressed in the direction of the check valve 12, and the valve main body 52 is supported from the opposite side of the valve seat 50 against the pressing force. The valve seat 32 of the valve 12 is pressed and fixed. As a result, a surface pressure is generated between the valve seat 32 and the electromagnetic valve 10b, and the valve seat 32 functions as a seal member. Therefore, the fuel gas flows from the gap of the electromagnetic valve 10b to the check valve without passing through the flow path. It is possible to reduce a sealing member that prevents inflow, such as an O-ring.

ここで、「背合わせ」について述べる。過流防止弁14aのニードル弁先端部と反対側の端部を後端部とし、同様に逆止弁12のニードル弁先端部と反対側の端部を後端部とした場合に過流防止弁14aの後端部と、逆止弁12の後端部とが互いに対向し、両弁の後端部同士が互いに接合されることで両端が一体化される。この結果、過流防止弁14aのニードル弁先端部と逆止弁12のニードル弁先端部は、供給流路内において互いに逆向きに配置され、過流防止弁14aのニードル弁先端部は燃料電池26側を向いて配置され、逆止弁12のニードル弁先端部は低圧タンク2b側を向いて配置される。本実施形態において、このように両弁の後端部同士を対向させ接合する状態を、簡易的に「背合わせ」状態と定義する。   Here, “back to back” will be described. When the end of the overflow prevention valve 14a opposite to the tip of the needle valve is the rear end, and similarly, the end of the check valve 12 opposite to the tip of the needle valve is the rear end, preventing overflow. The rear end portion of the valve 14a and the rear end portion of the check valve 12 face each other, and the rear end portions of both valves are joined to each other so that both ends are integrated. As a result, the needle valve tip portion of the overflow prevention valve 14a and the needle valve tip portion of the check valve 12 are disposed in opposite directions in the supply flow path, and the needle valve tip portion of the overflow prevention valve 14a is the fuel cell. The needle valve tip portion of the check valve 12 is arranged facing the low-pressure tank 2b side. In the present embodiment, the state in which the rear end portions of both valves are opposed to each other in this manner is simply defined as a “back-to-back” state.

電磁弁10aは、燃料ガス流路を切り替えることで高圧ガスタンク2aから燃料供給配管6aへ流れる燃料ガス量を制御する。具体的には、図4に示すように、コイル40の電磁力によりストッパー42にプランジャ44を引き寄せてパイロット弁46を開弁し、パイロット弁46の上下流の差圧が小さくなった後にメイン弁48の弁体を開閉方向に摺動させて開弁する。燃料ガスは白抜き矢印にて示される流路を通過して高圧ガスタンク2aから燃料供給配管へ流動する。電磁弁10bについても、電磁弁10aと同様の構造、開閉動作を有する。   The solenoid valve 10a controls the amount of fuel gas flowing from the high-pressure gas tank 2a to the fuel supply pipe 6a by switching the fuel gas flow path. Specifically, as shown in FIG. 4, the plunger 44 is attracted to the stopper 42 by the electromagnetic force of the coil 40 to open the pilot valve 46, and after the differential pressure upstream and downstream of the pilot valve 46 becomes small, the main valve 48 valve bodies are opened by sliding in the opening and closing direction. The fuel gas passes through the flow path indicated by the white arrow and flows from the high-pressure gas tank 2a to the fuel supply pipe. The solenoid valve 10b also has the same structure and opening / closing operation as the solenoid valve 10a.

過流防止弁14aは、針状に形成されたニードル弁の弁体36aと弁座38aから構成されており、電磁弁10aから高圧ガスが流出した場合に、ガス圧力によりバネ(圧縮バネ)34が圧縮されて、弁体36aは燃料供給配管6b方向へ移動する。また過流防止弁14aは、高圧ガスタンク2aと燃料供給配管6aとの圧力差によってバネの弾性変形量が変化し、これに応じて燃料供給配管6aへ供給される燃料ガス量が調整される。そして、バネの最低使用高さはバネの密着高さより大きく設定されており、上流側(高圧ガスタンク2a側)の圧力が下流側(供給配管6a側)の圧力より規定値を越えて大きい場合には弁体36aと弁座38aが当接して燃料ガスが急激に流出することを抑制する。過流防止弁14bは、弁体36bの背面に逆止弁12が配設されることを除いて、過流防止弁14aと同様の構造、摺動動作を有する。   The overflow prevention valve 14a includes a needle valve body 36a formed in a needle shape and a valve seat 38a. When high pressure gas flows out from the electromagnetic valve 10a, a spring (compression spring) 34 is generated by gas pressure. Is compressed, and the valve body 36a moves toward the fuel supply pipe 6b. Further, the amount of elastic deformation of the spring of the overflow prevention valve 14a is changed by the pressure difference between the high pressure gas tank 2a and the fuel supply pipe 6a, and the amount of fuel gas supplied to the fuel supply pipe 6a is adjusted accordingly. The minimum use height of the spring is set to be larger than the contact height of the spring, and the pressure on the upstream side (high-pressure gas tank 2a side) is larger than the pressure on the downstream side (supply pipe 6a side) exceeding the specified value. The valve body 36a and the valve seat 38a come into contact with each other, and the fuel gas is prevented from suddenly flowing out. The overflow prevention valve 14b has the same structure and sliding operation as the overflow prevention valve 14a except that the check valve 12 is disposed on the back surface of the valve body 36b.

逆止弁12は、針状に形成されたニードル弁からなり、弁体30は過流防止弁14bの弁体36bと背合わせに一体化され、弁体36bと共にバネ(圧縮バネ)34のバネ力により電磁弁10b方向へ付勢される。供給配管6bから燃料ガスの逆流した場合には弁体30が高圧ガスタンク2b側に押圧移動し、弁体30と弁座32が当接することにより燃料ガスが逆流を防ぐ。   The check valve 12 is a needle valve formed in a needle shape, and the valve body 30 is integrated back-to-back with the valve body 36b of the overflow prevention valve 14b, and a spring of a spring (compression spring) 34 together with the valve body 36b. The force is biased toward the electromagnetic valve 10b. When the fuel gas flows backward from the supply pipe 6b, the valve body 30 is pressed and moved toward the high-pressure gas tank 2b, and the valve body 30 and the valve seat 32 come into contact with each other to prevent the fuel gas from flowing back.

一体化された過流防止弁14bと逆止弁12の開閉動作について図5を参照しながら説明する。図5において、(a)は通常時の開閉状態、(b)は過流時の開閉状態、(c)逆流時の開閉状態である。(a)の通常時は、逆止弁12の弁座32と過流防止弁14bの弁座38bの両方ともに当接せず、高圧ガスタンク2aから流出した燃料ガスは燃料供給配管6bに供給される。また、圧力に応じてバネ34bの弾性変形量が変化し、流れる燃料ガスの流量が調整される。(b)の過流時は、上流側(電磁弁10b側)の圧力が下流側(燃料供給配管6b側)の圧力より大きく、その圧力差が所定値以上である場合、例えば下流側にて燃料供給配管6bに破損が生じた場合などを示す。過流時には、バネ34bが収縮して過流防止弁14bの弁体36bと弁座38bが当接し、燃料ガスが燃料供給配管6bへ急激に流出することを抑制する。(c)の逆流時は、燃料ガスが逆流して燃料供給配管6bから電磁弁10bへ流入する場合であり、例えば燃料供給配管6a、6bの間に差圧が生じた場合などを示す。逆流時には、バネ34bが伸張して逆止弁12の弁体30が弁座32へ当接し、電磁弁10bへ流入することを抑制する。   The opening / closing operation of the integrated overflow prevention valve 14b and the check valve 12 will be described with reference to FIG. In FIG. 5, (a) is a normal open / close state, (b) is an open / close state during overflow, and (c) is an open / close state during reverse flow. In the normal state of (a), both the valve seat 32 of the check valve 12 and the valve seat 38b of the overflow prevention valve 14b do not contact each other, and the fuel gas flowing out from the high-pressure gas tank 2a is supplied to the fuel supply pipe 6b. The Further, the elastic deformation amount of the spring 34b changes according to the pressure, and the flow rate of the flowing fuel gas is adjusted. At the time of overflow of (b), when the pressure on the upstream side (solenoid valve 10b side) is larger than the pressure on the downstream side (fuel supply piping 6b side) and the pressure difference is a predetermined value or more, for example, on the downstream side A case where the fuel supply pipe 6b is damaged is shown. At the time of overflow, the spring 34b contracts, the valve body 36b of the overflow prevention valve 14b and the valve seat 38b come into contact with each other, and the fuel gas is prevented from suddenly flowing out to the fuel supply pipe 6b. The reverse flow of (c) is a case where the fuel gas flows backward and flows into the electromagnetic valve 10b from the fuel supply pipe 6b, for example, when a differential pressure is generated between the fuel supply pipes 6a and 6b. At the time of reverse flow, the spring 34b extends to prevent the valve body 30 of the check valve 12 from coming into contact with the valve seat 32 and to flow into the electromagnetic valve 10b.

以上に述べた本実施形態の高圧ガス供給システムによれば、燃料ガスの通常流動時、逆流時、過流時の全ての状態において燃料ガスの流量を適切に調節できる。また、簡易な構成で効率的な流量制御を可能とするため、部品点数の削減、装置の簡素化、製造コストの削減も可能である。さらに、複数の高圧ガスタンクを各種空間の容積に応じて配置出来、燃料電池車両への搭載空間自由度が増大する。   According to the high pressure gas supply system of the present embodiment described above, the flow rate of the fuel gas can be appropriately adjusted in all the states of the normal flow, the back flow, and the overflow of the fuel gas. In addition, since the flow rate can be efficiently controlled with a simple configuration, the number of parts can be reduced, the apparatus can be simplified, and the manufacturing cost can be reduced. Furthermore, a plurality of high-pressure gas tanks can be arranged according to the volume of various spaces, and the degree of freedom for mounting space on the fuel cell vehicle increases.

1 高圧ガス供給システム、2a,2b 高圧ガスタンク、6a,6a 燃料供給配管、8 配管合流部、10a,10b 電磁弁、12 逆止弁、14a,14b 過流防止弁、16a,16b 燃料充填配管、18 配管合流部、24 レセプタクル、26 燃料電池。   DESCRIPTION OF SYMBOLS 1 High pressure gas supply system, 2a, 2b High pressure gas tank, 6a, 6a Fuel supply piping, 8 Piping junction, 10a, 10b Solenoid valve, 12 Check valve, 14a, 14b Overflow prevention valve, 16a, 16b Fuel filling piping, 18 piping junction, 24 receptacle, 26 fuel cell.

Claims (4)

高圧ガスを供給する高圧ガス供給システムにおいて、
容量の異なる複数の高圧ガスタンクと、
高圧ガスタンクの開閉を制御する開閉弁と、
各々の高圧ガスタンクから高圧ガスを供給する複数の燃料供給路と、
複数の燃料供給路の合流部と、
を備え、
低容量の高圧ガスタンクに接続される燃料供給路は開閉弁下流に逆止弁及び過流防止弁を有し、
逆止弁と過流防止弁の弁体は背合わせに一体化されることを特徴とする燃料電池の高圧ガス供給システム。
In a high-pressure gas supply system that supplies high-pressure gas,
Multiple high pressure gas tanks with different capacities,
An on-off valve that controls the opening and closing of the high-pressure gas tank;
A plurality of fuel supply passages for supplying high-pressure gas from each high-pressure gas tank;
A junction of a plurality of fuel supply paths;
With
The fuel supply path connected to the low-capacity high-pressure gas tank has a check valve and an overflow prevention valve downstream of the on-off valve,
A high-pressure gas supply system for a fuel cell, wherein the check valve and the overflow prevention valve are integrated back to back.
請求項1に記載の高圧ガス供給システムにおいて、
一体化された逆止弁と過流防止弁の弁体は単一の弾性部材により開閉方向に付勢される高圧ガス供給システム。
The high-pressure gas supply system according to claim 1,
A high pressure gas supply system in which the valve body of the integrated check valve and overflow prevention valve is urged in the opening and closing direction by a single elastic member.
請求項1、2のいずれか一つに記載の高圧ガス供給システムにおいて、
前記逆止弁の前記弁体が移動して当接する弁座は、前記開閉弁により押圧固定されることを特徴とする高圧ガス供給システム。
The high-pressure gas supply system according to any one of claims 1 and 2,
The valve seat on which the valve body of the check valve moves and contacts is pressed and fixed by the on-off valve.
請求項1から3のいずれか一つに記載の高圧ガス供給システムにおいて、
前記高圧ガスタンクは開口部に各々バルブアッセンブリを備え、
前記開閉弁、前記逆止弁及び前記過流防止弁はバルブアッセンブリに配設されることを特徴とする高圧ガス供給システム。
The high-pressure gas supply system according to any one of claims 1 to 3,
The high-pressure gas tank is provided with a valve assembly at each opening,
The high-pressure gas supply system, wherein the on-off valve, the check valve, and the overflow prevention valve are disposed in a valve assembly.
JP2010204881A 2010-09-13 2010-09-13 High pressure gas supply system Withdrawn JP2012057788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010204881A JP2012057788A (en) 2010-09-13 2010-09-13 High pressure gas supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010204881A JP2012057788A (en) 2010-09-13 2010-09-13 High pressure gas supply system

Publications (1)

Publication Number Publication Date
JP2012057788A true JP2012057788A (en) 2012-03-22

Family

ID=46055116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204881A Withdrawn JP2012057788A (en) 2010-09-13 2010-09-13 High pressure gas supply system

Country Status (1)

Country Link
JP (1) JP2012057788A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199956A (en) * 2012-03-23 2013-10-03 Toyota Motor Corp Multi-tank type gas supply device
JP2018170087A (en) * 2017-03-29 2018-11-01 東邦液化ガス株式会社 Gas pressure regulator for fuel cell system
JP2019116929A (en) * 2017-12-27 2019-07-18 トヨタ自動車株式会社 High-pressure gas tank system of fuel battery vehicle
CN112047440A (en) * 2020-08-27 2020-12-08 盐城工学院 Variable frequency power supply magnetizing device
CN113446515A (en) * 2020-03-24 2021-09-28 Kc股份有限公司 Gas supply device equipped with alignment function

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199956A (en) * 2012-03-23 2013-10-03 Toyota Motor Corp Multi-tank type gas supply device
JP2018170087A (en) * 2017-03-29 2018-11-01 東邦液化ガス株式会社 Gas pressure regulator for fuel cell system
JP2019116929A (en) * 2017-12-27 2019-07-18 トヨタ自動車株式会社 High-pressure gas tank system of fuel battery vehicle
CN113446515A (en) * 2020-03-24 2021-09-28 Kc股份有限公司 Gas supply device equipped with alignment function
CN113446515B (en) * 2020-03-24 2023-02-17 Kc股份有限公司 Gas supply device equipped with alignment function
CN112047440A (en) * 2020-08-27 2020-12-08 盐城工学院 Variable frequency power supply magnetizing device
CN112047440B (en) * 2020-08-27 2022-08-02 盐城工学院 Variable frequency power supply magnetizing device

Similar Documents

Publication Publication Date Title
JP2012057788A (en) High pressure gas supply system
US8960221B2 (en) Gas pressure regulating valve
JP4342266B2 (en) Decompressor
US9371913B2 (en) Valve apparatus for high pressure gas containers
KR101423012B1 (en) Fuel gas supply system for gas engine
ATE543038T1 (en) FUEL LINE CHECK VALVE
CN103109069A (en) Fuel gas supplying/filling system
US9599232B2 (en) Single coil dual solenoid valve
KR102191059B1 (en) High pressure valve
JP2020526725A (en) Proportional valve for controlling gaseous media
US20130075644A1 (en) Valve seat body and valve device
JP7275682B2 (en) valve device
CA2806513A1 (en) Gas pressure regulating valve
CN111640966A (en) Fuel cell system
JP2018077796A (en) High pressure fluid control valve and fuel cell system
JP5802185B2 (en) Overflow check valve
JP2014214804A (en) Valve device with excess flow check function
JP2006214491A (en) Gas storing device, valve device and gas supply system
JP2007162763A (en) Valve device
CN110799784B (en) Proportional valve for controlling a gaseous medium
JP2008176693A (en) Pressure reducing valve
CN114341763A (en) Pressure regulating valve and pressure regulator
JP4375046B2 (en) Servo piston mechanism and flow control valve
JP7400652B2 (en) fuel supply device
JP5790786B2 (en) Valve, fuel cell system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131203