JP2012056921A - Probiotic preparation - Google Patents

Probiotic preparation Download PDF

Info

Publication number
JP2012056921A
JP2012056921A JP2010204496A JP2010204496A JP2012056921A JP 2012056921 A JP2012056921 A JP 2012056921A JP 2010204496 A JP2010204496 A JP 2010204496A JP 2010204496 A JP2010204496 A JP 2010204496A JP 2012056921 A JP2012056921 A JP 2012056921A
Authority
JP
Japan
Prior art keywords
drying
cells
viable
lactic acid
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010204496A
Other languages
Japanese (ja)
Inventor
Yoshiro Tategaki
愛郎 立垣
Hozumi Tanaka
穂積 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2010204496A priority Critical patent/JP2012056921A/en
Publication of JP2012056921A publication Critical patent/JP2012056921A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a probiotic preparation having a superior storage stability and a method of selecting bacterial cells used for the probiotic preparation.SOLUTION: The storage-stable probiotic preparation is obtained by conducting at least once a series of steps comprising (1) a step to culture microbial cells, (2) a step to harvest the microbial cells, (3) a step to dry the microbial cells, (4) a step to culture the dried microbial cells in a solid medium, and (5) a step to select large colonies.

Description

本発明は保存安定性に優れた生菌製剤に関する。   The present invention relates to a viable bacterial preparation excellent in storage stability.

乳酸菌や酵母等の微生物は古くより発酵食品などに深く関与してきた有用微生物である。近年、これらの微生物の中には整腸作用をはじめ、感染予防、免疫賦活、ガン予防、アレルギー改善等の生理作用を有することが明らかになり、乳酸菌、ビフィズス菌、酵母等の微生物生菌や死菌、またはそれらの培養物を健康食品や医薬品などの素材として利用するための研究開発が行われている。特に、微生物を生きた状態で腸に到達させることにより、上記生理活性が向上することも見出されており、より多くの生菌を安定的に手軽に摂取できる生菌製剤が求められるようになった。   Microorganisms such as lactic acid bacteria and yeast are useful microorganisms that have long been deeply involved in fermented foods. In recent years, it has been revealed that some of these microorganisms have physiological functions such as intestinal regulation, infection prevention, immunostimulation, cancer prevention, allergy improvement, and microbial bacteria such as lactic acid bacteria, bifidobacteria and yeast. Research and development is being conducted to use killed bacteria or their cultures as materials for health foods and pharmaceuticals. In particular, it has also been found that the above-mentioned physiological activity is improved by allowing microorganisms to reach the intestine in a living state, so that a viable preparation capable of stably and easily ingesting more viable bacteria is required. became.

しかしながら、当該生菌製剤は保存中に生菌数が減少してしまうという実用上の課題がある。   However, the viable preparation has a practical problem that the viable count decreases during storage.

生菌製剤の保存安定性を向上させる方法として、一般的にシリカゲルや脱脂粉乳を添加する方法が用いられている。また、生菌製剤の製造時にフェニルアラニン、ヒスチジン、クエン酸、コハク酸、酒石酸およびこれらの塩ならびに炭酸アルカリからなる群より選ばれる化合物を添加する方法(特許文献1)、アルギニン、オルニチンもしくはセリン、またはそれらの塩を添加する方法(特許文献2)、凍結乾燥菌末にテアニンを添加する方法(特許文献3)等が挙げられる。   As a method for improving the storage stability of a live bacterial preparation, a method of adding silica gel or skim milk powder is generally used. In addition, a method of adding a compound selected from the group consisting of phenylalanine, histidine, citric acid, succinic acid, tartaric acid and salts thereof and an alkali carbonate (Patent Document 1), arginine, ornithine or serine, or Examples thereof include a method of adding these salts (Patent Document 2) and a method of adding theanine to a lyophilized powder (Patent Document 3).

しかしながら、これらの方法は生菌製剤の呈味の改善を必要とし、また、生菌の保存安定性向上効果も満足しうるものではなく、より保存安定性に優れた生菌製剤が望まれている。   However, these methods need to improve the taste of the live bacterial preparation, and are not satisfactory in the storage stability improving effect of the live bacteria, and a live bacteria preparation with better storage stability is desired. Yes.

また、前記生菌製剤は、予め培養した菌体を集菌、乾燥し、適当な賦形剤を加えることによって製造されるが、生菌製剤製造時の乾燥工程において菌体が死滅してしまい生産性が低下するという実用上の課題がある。   In addition, the viable cell preparation is produced by collecting and drying previously cultured cells, and adding an appropriate excipient, but the cells are killed in the drying process during the production of the live cell preparation. There is a practical problem that productivity decreases.

この課題を解決するため、生菌製剤の製造時にグルタミン酸ナトリウム、L−アスコルビン酸、ホエーおよびグルコースを添加する方法(特許文献4)、アスパラギン酸、アルギニン、グルタミン酸、プロリン、リジン、ロイシン、およびメチオニンからなるアミノ酸のうち少なくとも3種のアミノ酸の混合物を添加する方法(特許文献5)などが例示されている。   In order to solve this problem, a method of adding sodium glutamate, L-ascorbic acid, whey and glucose at the time of producing a viable bacterial preparation (Patent Document 4), aspartic acid, arginine, glutamic acid, proline, lysine, leucine, and methionine Examples include a method of adding a mixture of at least three kinds of amino acids (Patent Document 5).

しかしながら、これらの方法を用いても、生菌製剤製造時の乾燥工程における菌体の死滅防止効果は満足するものではなく、生菌製剤製造時の乾燥工程における菌体の死滅を真に防止する方法が望まれている。   However, even if these methods are used, the effect of preventing the killing of the cells in the drying process during the production of the viable preparation is not satisfactory, and the death of the cells in the drying process during the production of the viable preparation is truly prevented. A method is desired.

特開昭61−265085号公報JP-A-61-265085 特開2003−219862号公報JP 2003-219862 A 特開2009−284820号公報JP 2009-284820 A 特開平2−86769号公報JP-A-2-86769 特開平8−205857号公報JP-A-8-205857

本発明は、生菌製剤製造時の乾燥工程において生残率に優れた生菌製剤、また、生菌の保存安定性に優れた生菌製剤および該生菌製剤に用いる菌体の選別方法を提供することを課題とする。   The present invention relates to a viable preparation excellent in survival rate in a drying process during production of a viable preparation, a viable preparation excellent in storage stability of viable bacteria, and a method for selecting a cell used in the viable preparation. The issue is to provide.

本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、(1)微生物菌体を培養する工程、(2)集菌する工程、(3)乾燥する工程、(4)乾燥した菌体を固体培地で培養する工程、(5)大きなコロニーを選別する工程の一連の工程を少なくとも1回以上繰り返して選別した微生物菌体を用いることにより、生菌製剤製造時の乾燥工程における菌体の死滅を低減でき、また、調製された生菌製剤が優れた保存安定性を有することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have (1) a step of culturing microbial cells, (2) a step of collecting bacteria, (3) a step of drying, and (4) a dried state. Bacteria in the drying process at the time of producing a live cell preparation by using a microbial cell selected by repeating a series of steps of culturing cells in a solid medium and (5) selecting a large colony at least once. It was found that the killing of the body can be reduced, and that the prepared viable bacterial preparation has excellent storage stability, and the present invention has been completed.

即ち、本発明は、(1)微生物菌体を培養する工程、(2)集菌する工程、(3)乾燥する工程、(4)乾燥した菌体を固体培地で培養する工程、(5)大きなコロニーを選別する工程、前記(1)から(5)の工程を含む一連の工程を少なくとも1回以上繰り返して得た微生物から調製される、保存安定性に優れた生菌製剤である。   That is, the present invention includes (1) a step of culturing microbial cells, (2) a step of collecting bacteria, (3) a step of drying, (4) a step of culturing the dried cells in a solid medium, (5) A viable preparation excellent in storage stability, prepared from a microorganism obtained by repeating a series of steps including the steps of selecting large colonies and the steps (1) to (5) at least once.

また、本発明は、必要に応じて賦形剤を加えることによって微生物菌体を乾燥し、調製される微生物生菌製剤の製造方法であって、(1)微生物菌体を培養する工程、(2)集菌する工程、(3)乾燥する工程、(4)乾燥した菌体を固体培地で培養する工程、(5)大きなコロニーを選別する工程、を含む一連の工程を少なくとも1回以上繰り返して得た微生物を用いることを特徴とする方法である。   The present invention also relates to a method for producing a microbial cell preparation which is prepared by drying microbial cells by adding an excipient as necessary. (1) A step of culturing microbial cells, A series of steps including 2) a step of collecting bacteria, (3) a step of drying, (4) a step of culturing dried cells in a solid medium, and (5) a step of selecting large colonies are repeated at least once. The method is characterized in that the microorganism obtained in this way is used.

さらに、本発明は、生菌製剤とした際の保存安定性、及び/又は、生菌製剤調製時の乾燥工程における生残率に優れた微生物菌体の選別方法であって、(1)微生物菌体を培養する工程、(2)集菌する工程、(3)乾燥する工程、(4)乾燥した菌体を固体培地で培養する工程、(5)大きなコロニーを選別する工程を含む一連の工程を少なくとも1回以上繰り返すことを特徴とする方法である。   Furthermore, the present invention is a method for selecting a microbial cell having excellent storage stability and / or survival rate in the drying step when preparing a viable cell preparation, wherein (1) a microorganism A series of steps including a step of culturing cells, (2) a step of collecting cells, (3) a step of drying, (4) a step of culturing dried cells in a solid medium, and (5) a step of selecting large colonies. The method is characterized by repeating the step at least once.

本発明により、生菌製剤製造時の乾燥工程において生残率に優れ、また、生菌の保存安定性に優れた生菌製剤および該生菌製剤に用いる微生物菌体の選別方法を提供することができる。   According to the present invention, there are provided a viable preparation having excellent survival rate in a drying step during production of a viable preparation, and excellent storage stability of the viable microorganism, and a method for selecting microbial cells used in the viable preparation. Can do.

本発明においては、(1)微生物菌体を培養する工程、(2)集菌する工程、(3)乾燥する工程、(4)乾燥した菌体を固体培地で培養する工程、(5)大きなコロニーを選別する工程の一連の工程を少なくとも1回以上繰り返すことにより、保存安定性に優れた微生物菌体を選別する。   In the present invention, (1) a step of culturing microbial cells, (2) a step of collecting bacteria, (3) a step of drying, (4) a step of culturing the dried cells in a solid medium, (5) large By repeating a series of steps of selecting colonies at least once, microbial cells having excellent storage stability are selected.

本発明に用いられる微生物としては、通常の方法により培養および乾燥が可能な微生物であれば、特に制限はなく、細菌や酵母などの微生物が挙げられる。   The microorganism used in the present invention is not particularly limited as long as it can be cultured and dried by a usual method, and includes microorganisms such as bacteria and yeast.

細菌としては、乳酸菌等が挙げられ、例えば、ペディオコッカス・アシディラクティシ(Pediococcus acidilactici)、ペディオコッカス・ペントサセウス(Pediococcus pentosaceus)等のペディオコッカス属に属する乳酸菌;ラクトバチルス・ブレビス(Lactobacillus brevis)、ラクトバチルス・デルブリッキー(Lactobacillus delbrueckii)ラクトバチルス・アシドフィラス(Lactobacillus acidophilus)、ラクトバチルス・カゼイ(Lactobacillus casei)等のラクトバチルス属に属する乳酸菌;エンテロコッカス・フェカリス(Enterococcus faecalis)等のエンテロコッカス属に属する乳酸菌;ビフィドバクテリウム・ロンガム(Bifidobacterium longum)、ビフィドバクテリウム・ビフィダム(Bifidobacterium bifidum)、ビフィドバクテリウム・ラクティス(Bifidobacterium lactis)等のビフィドバクテリウム属に属する乳酸菌等が挙げられる。   Examples of bacteria include lactic acid bacteria and the like. For example, lactic acid bacteria belonging to the genus Pediococcus such as Pediococcus acidilactici and Pediococcus pentosaceus; Lactobacillus brevis (Lactobacillus brevis) brevis), Lactobacillus delbrueckii, Lactobacillus acidophilus, Lactobacillus casei, and other lactic acid bacteria belonging to the genus Lactobacillus; Enterococcus faecalis and other enterococcus faecalis Bifidobacteria such as Bifidobacterium longum, Bifidobacterium bifidum, Bifidobacterium lactis, etc. Lactic acid bacteria belonging to the genus, and the like.

その他の細菌としては、例えば、エシェリヒア・コリ(Escherlchia coli)等のエシェリヒア属に属する細菌、バチルス・サブチルス(Bacillus subtilis)等のバチルス属に属する細菌等があげられる。   Examples of other bacteria include bacteria belonging to the genus Escherichia such as Escherlchia coli, bacteria belonging to the genus Bacillus such as Bacillus subtilis, and the like.

酵母としては、例えば、サッカロマイセス・セルビシエ(Saccharomyces cerevisiae)等のサッカロマイセス属に属する酵母等が挙げられる。   Examples of the yeast include yeast belonging to the genus Saccharomyces such as Saccharomyces cerevisiae.

これら微生物のなかでも、生菌製剤として用いられる細菌や酵母が好ましく、整腸作用などの生理活性を有しているため工業的利用価値が高いことから、乳酸菌が好ましい。乳酸菌のなかでもペディオコッカス(Pediococcus)属またはラクトバシラス(Lactobacillus)属に属する乳酸菌が好ましい。なかでも、ペディオコッカス・アシディラクティシ(Pediococcus acidilactici)、ラクトバチルス・ブレビス(Lactobacillus brevis)、または、ラクトバチルス・デルブリッキー(Lactobacillus delbrueckii)が好ましい。   Among these microorganisms, bacteria and yeasts that are used as viable preparations are preferable, and lactic acid bacteria are preferable because they have physiological activity such as intestinal regulation and have high industrial utility value. Among lactic acid bacteria, lactic acid bacteria belonging to the genus Pediococcus or Lactobacillus are preferable. Among these, Pediococcus acidilactici, Lactobacillus brevis, or Lactobacillus delbrueckii is preferable.

特に、強い中性脂肪低減作用ならびに抗アレルギー作用を有することからペディオコッカス・アシディラクティシ(Pediococcus acidilactici) R037株(BP−900)、強い整腸作用ならびに免疫賦活作用を有することからラクトバチルス・ブレビス(Lactobacillus brevis) kaneka−01株(NITE P−558)または、強い抗血糖作用を有するラクトバチルス・デルブリッキー(Lactobacillus delbrueckii KLAB−4株(NITE BP−394)が好ましい。これらの微生物は、それぞれ上記の受託番号にて独立行政法人製品評価技術基盤機構(日本国千葉県木更津市かずさ鎌足2−5−8)に寄託されている。   In particular, Pediococcus acidilactici R037 strain (BP-900) because of its strong neutral fat reducing action and antiallergic action, and Lactobacillus because of its strong intestinal action and immunostimulatory action -Lactobacillus brevis kaneka-01 strain (NITE P-558) or Lactobacillus delbrueckii KLAB-4 strain (NITE BP-394) having a strong antiglycemic action is preferable. It is deposited with the above-mentioned trust number at the National Institute of Technology and Evaluation (2-5-8 Kazusa Kamashika, Kisarazu City, Chiba Prefecture, Japan).

培養方法としては、所望する菌体が培養可能であれば、培地成分など、特に限定はなく、通常行われる公知の培養方法であれば液体培養でも固体培養でもよいが、菌体を培養し、回収する必要性により固体培養より液体培養が好ましい。以下では液体培養の場合を例として説明する。   The culture method is not particularly limited as long as the desired cells can be cultured, and any known culture method that is usually performed may be liquid culture or solid culture. Liquid culture is preferred over solid culture depending on the need for recovery. Hereinafter, the case of liquid culture will be described as an example.

前記工程(2)の集菌方法としては特に限定はなく、培養後、培養液より菌体を分離できれば、ろ過(フィルタープレス、スクリュープレス等)、遠心分離等公知の方法を適宜選択して分離する。また、培地成分を除去する目的で、菌体を滅菌水等に懸濁させた後、洗浄し再度集菌してもよい。   There is no particular limitation on the method of collecting the bacteria in the step (2). If the cells can be separated from the culture after culturing, a known method such as filtration (filter press, screw press, etc.), centrifugation, etc. is appropriately selected and separated. To do. For the purpose of removing medium components, the cells may be suspended in sterilized water and then washed and collected again.

前記工程(3)の乾燥方法としては特に限定はなく、凍結乾燥、噴霧乾燥、ドラム乾燥、真空乾燥等公知の方法を単独または組み合わせて使用することができる。また、乾燥の際に分散媒を添加しても良い。分散媒とは、集菌した菌体に加えうる物質を示し、特に限定しないが、例えば生理食塩水、リン酸生理食塩水、保護剤を含有した溶液などが挙げられる。前記、保護剤としては特に限定しないが、例えば、トレハロース、ウシ血清アルブミン、脱脂粉乳、グルタミン酸ナトリウム、L−アスコルビン酸、ホエー、グルコース、アスパラギン酸、メチオニン、デンプン、デキストラン、ショ糖、乳糖等が挙げられる。尚、本発明の目的を妨げないものであれば、前記保護剤は、他の物質を適宜含有してもよい。   The drying method in the step (3) is not particularly limited, and known methods such as freeze drying, spray drying, drum drying, and vacuum drying can be used alone or in combination. Further, a dispersion medium may be added during drying. The dispersion medium refers to a substance that can be added to the collected cells, and is not particularly limited. Examples thereof include physiological saline, phosphate physiological saline, and a solution containing a protective agent. The protective agent is not particularly limited, and examples thereof include trehalose, bovine serum albumin, skim milk powder, sodium glutamate, L-ascorbic acid, whey, glucose, aspartic acid, methionine, starch, dextran, sucrose, and lactose. It is done. In addition, as long as the objective of this invention is not prevented, the said protective agent may contain another substance suitably.

乳酸菌の選別に際して行う乾燥方法としては凍結乾燥が好ましく、また、分散剤の非存在下に行うことが好ましい。   As a drying method for selecting lactic acid bacteria, freeze-drying is preferable, and it is preferably performed in the absence of a dispersant.

前記工程(4)の固体培地での培養方法としては、工程(3)で得られた乾燥菌体を生理食塩水等に分散し、寒天プレートなど公知の固体培地に塗布して培養する。所望の菌体が生育可能であれば、培地成分、固化剤など特に限定はしない。   As the culture method in the solid medium in the step (4), the dried cells obtained in the step (3) are dispersed in physiological saline or the like, applied to a known solid medium such as an agar plate and cultured. There are no particular limitations on the medium components, solidifying agents, etc., as long as the desired cells can grow.

前記工程(5)の大きなコロニーを選別する方法としては、工程(4)で培養後生育したコロニーのうち、例えば、生育するコロニー数が100±10個になるように希釈した菌液を90Φ×20mmのプレートに塗布し、培養終期において、プレート上の平均的なコロニーよりも直径の大きなコロニーを選別する。より、具体的には、培養終期(静止期)において生育したコロニーの直径が2mm以上のものをいい、好ましくは3mm以上、より好ましくは4mm以上のもの選別する。   As a method for selecting a large colony in the step (5), among the colonies grown after culturing in the step (4), for example, a bacterial solution diluted so that the number of growing colonies becomes 100 ± 10 is 90Φ × Apply to a 20 mm plate and at the end of the culture, select colonies with a diameter larger than the average colony on the plate. More specifically, a colony having a diameter of 2 mm or more, preferably 3 mm or more, more preferably 4 mm or more is selected.

ここで、培養終期とは、例えば、分散剤非存在下で凍結乾燥処理した乳酸菌を、トリプトン 1重量%、酵母エキス 0.5重量%、グルコース 0.5重量%、ラクトース 0.5重量%、Tween80 0.1重量%、L−システイン塩酸塩 0.02重量%、寒天 2重量%、pH6.2±0.2の組成の固体培地上、37℃で培養する場合、約72時間目を表す。   Here, the term “culture end” refers to, for example, lactic acid bacteria lyophilized in the absence of a dispersant, 1% by weight of tryptone, 0.5% by weight of yeast extract, 0.5% by weight of glucose, 0.5% by weight of lactose, When cultured at 37 ° C. on a solid medium having a composition of Tween 80 0.1% by weight, L-cysteine hydrochloride 0.02% by weight, agar 2% by weight, pH 6.2 ± 0.2, it represents about 72 hours .

工程(1)から工程(5)を含む一連の工程は、少なくとも1回以上繰り返すことが好ましい。上記大きなコロニーから分離した微生物菌体を、直接または一旦寒天斜面等で培養した後、液体培地に接種して、改めて工程(1)からの一連の選別工程に付す。一連の選別工程は、好ましくは3回以上、より好ましくは5回以上、更に好ましくは7回以上、最も好ましくは10回以上繰り返すのがよい。繰り返す回数が多いほど、生菌製剤製造時の乾燥工程において生残率に優れた生菌または生菌製剤、保存安定性に優れた生菌または生菌製剤を得ることが容易い。   The series of steps including step (1) to step (5) is preferably repeated at least once. The microbial cells isolated from the large colonies are directly or once cultured on an agar slope or the like, then inoculated into a liquid medium, and again subjected to a series of selection steps from step (1). The series of sorting steps is preferably repeated 3 times or more, more preferably 5 times or more, still more preferably 7 times or more, and most preferably 10 times or more. The greater the number of repetitions, the easier it is to obtain a viable cell or viable cell preparation excellent in survival rate and a viable cell or viable cell formulation excellent in storage stability in the drying step during production of the viable cell preparation.

尚、生菌製剤の保存安定性は、生残率で表すことができる。ここで言う生残率とは、生菌製剤製造時の生菌数に対する、保存後の生菌製剤中の生菌数の割合を百分率で示したものである。   In addition, the storage stability of a living microbe formulation can be represented by a survival rate. The survival rate referred to here is the percentage of the number of viable bacteria in the viable cell preparation after storage with respect to the viable cell count at the time of producing the viable cell preparation.

当該方法で選別した菌体は、保存安定性に優れた菌体であり、該菌体を公知の方法で培養し、培養液より菌体を集菌し、適当な分散媒等を添加し、乾燥を行い、生菌製剤を得ることができる。尚、前記生菌製剤に賦形剤、風味改良剤、香料、着色料などをさらに添加してもかまわない。   The cells selected by this method are cells excellent in storage stability, and the cells are cultured by a known method, the cells are collected from the culture solution, and an appropriate dispersion medium is added, Drying can be performed to obtain a viable bacterial preparation. In addition, you may add an excipient | filler, a flavor improving agent, a fragrance | flavor, a coloring agent, etc. to the said living microbe formulation.

本発明によって得られた生菌製剤は、そのまま、または加工して食品、健康食品、栄養補助食品、栄養機能食品、特定保健用食品、医薬品、医薬部外品、飼料、ペットフード等として使用できる。また、その加工形態としては、錠剤、散剤、チュアブル錠、丸剤、ハードカプセル剤、ソフトカプセル剤等があげられる。生菌の保存安定性に優れた発酵乳や発酵豆乳など食品の調製を目的として、得られた生菌製剤をスターターとして用いることも可能である。   The viable preparation obtained by the present invention can be used as it is or after being processed as a food, health food, nutritional supplement, functional nutrition food, food for specified health use, pharmaceutical, quasi-drug, feed, pet food, etc. . Examples of the processing form include tablets, powders, chewable tablets, pills, hard capsules, soft capsules and the like. For the purpose of preparing foods such as fermented milk and fermented soy milk having excellent storage stability of live bacteria, it is possible to use the obtained live bacteria preparation as a starter.

以下、本発明を実施例により詳しく説明するが、本発明はこれらの実施例により何ら制限を受けるものではない。尚、実施例、比較例で用いた工程(1)から工程(5)の操作方法、生菌製剤の製造方法および生菌製剤の生残率の測定方法を以下に示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention does not receive a restriction | limiting at all by these Examples. In addition, the operation method of the process (1) to the process (5) used by the Example and the comparative example, the manufacturing method of a viable preparation, and the measurement method of the survival rate of a viable preparation are shown below.

工程(1)菌体を培養する工程
菌体をトリプトンが1重量%、酵母エキスが0.5重量%、グルコースが0.5重量%、ラクトースが0.5重量%、Tween80が0.1重量%、L−システイン塩酸塩が0.02重量%を含有する滅菌済み液体培地50mlに植菌し、37℃、20時間静置培養を行い、培養液を得た。
Step (1) Step of culturing cells The cells are 1% by weight of tryptone, 0.5% by weight of yeast extract, 0.5% by weight of glucose, 0.5% by weight of lactose, and 0.1% by weight of Tween 80. %, L-cysteine hydrochloride was inoculated into 50 ml of a sterilized liquid medium containing 0.02% by weight, and static culture was performed at 37 ° C. for 20 hours to obtain a culture solution.

工程(2)集菌する工程
前記工程(1)で得られた培養液を5000rpm、10分、4℃で遠心分離して得られた菌体を、25mlの滅菌水で2回洗浄し、遠心分離後5mlの菌体濃縮液を得た。
Step (2) Collecting the cells The cells obtained by centrifuging the culture solution obtained in the above step (1) at 5000 rpm for 10 minutes at 4 ° C. were washed twice with 25 ml of sterilized water and centrifuged. After separation, 5 ml of a bacterial cell concentrate was obtained.

工程(3)乾燥する工程
前記工程(2)で得られた菌体濃縮液の全量を10mL容のガラス製バイアル瓶に移し、凍結乾燥機(VirTis Advantage Plus)を用いて−25℃で20時間凍結した後、真空度5Pa、棚温25℃で48時間凍結乾燥し、乾燥物を得た。
Step (3) Drying Step Transfer the entire amount of the bacterial cell concentrate obtained in the above step (2) to a 10 mL glass vial and use a freeze dryer (VirTis Advantage Plus) for 20 hours at −25 ° C. After freezing, it was freeze-dried for 48 hours at a vacuum degree of 5 Pa and a shelf temperature of 25 ° C. to obtain a dried product.

工程(4)乾燥した菌体を固体培地で培養する工程
上記液体培地に寒天を加えた滅菌済み固体培地(90Φ×20mmのプレートに培地を20ml加えたプレート)に、前記工程(3)で得られた凍結乾燥物の一定量を生理食塩水に分散した菌体分散液を、コロニー数が100±10個となるように塗布し、37℃で72時間培養した。
Step (4) Step of culturing dried cells in a solid medium Obtained in Step (3) above on a sterilized solid medium (a plate obtained by adding 20 ml of a medium to a 90Φ × 20 mm plate) to the liquid medium. A bacterial cell dispersion obtained by dispersing a certain amount of the lyophilized product in physiological saline was applied so that the number of colonies was 100 ± 10, and cultured at 37 ° C. for 72 hours.

工程(5)大きなコロニーを選別する工程
前記工程(4)で得られた寒天プレートより、コロニーの大きさが3mm以上の菌体を1つ選別した。
Step (5) Step of selecting large colonies One bacterial cell having a colony size of 3 mm or more was selected from the agar plate obtained in the step (4).

分散媒非存在下で凍結乾燥した際の生残率の測定
菌体を上記液体培地で培養、集菌した菌体濃縮液中の生菌数を常法により測定し、菌体濃縮液中の総生菌数を求めた。また該菌体濃縮液を分散媒非存在下で凍結乾燥して得られた凍結乾燥物中の生菌数を常法により測定し、該凍結乾燥物中の総生菌数を求め、乾燥した際の生残率を次式より算出した。
Measurement of the survival rate when lyophilized in the absence of a dispersion medium The number of viable cells in the concentrated cell culture liquid obtained by culturing and collecting the cells in the above liquid medium was measured by a conventional method. The total viable count in the concentrate was determined. In addition, the number of viable cells in a lyophilized product obtained by lyophilizing the bacterial cell concentrate in the absence of a dispersion medium was measured by a conventional method, and the total number of viable cells in the lyophilized material was determined and dried. The survival rate at that time was calculated from the following equation.

分散媒非存在下で凍結乾燥した際の生残率(%)=(凍結乾燥物の総生菌数/菌体濃縮液の総生菌数)×100。   Survival rate (%) when freeze-dried in the absence of a dispersion medium = (total viable count of freeze-dried product / total viable count of cell concentrate) × 100.

生菌製剤の製造方法
菌体を上記液体培地1Lに植菌し、37℃、20時間静置培養を行った。培養後、培養液を5000rpm、10分、4℃で遠心分離して得られた菌体を500mlの滅菌水で2回洗浄し、遠心分離後20mlの菌体濃縮液を得た。当該菌体濃縮液に、ショ糖が0.4重量%、トレハロースが0.2重量%、グルタミン酸ナトリウムが0.2重量%、ヒスチジンが0.2重量%、りんご酸が0.2重量%からなる分散媒を2ml加えて凍結乾燥し、凍結乾燥物を得た。該凍結乾燥物を生菌数が1.0×1010cfu/gになるようにデキストリンに分散し、生菌製剤を得た。
Production method of viable cell preparation The bacterial cells were inoculated into 1 L of the above liquid medium, followed by stationary culture at 37 ° C for 20 hours. After culturing, the cells obtained by centrifuging the culture solution at 5000 rpm for 10 minutes at 4 ° C. were washed twice with 500 ml of sterilized water, and after centrifugation, 20 ml of microbial cell concentrate was obtained. The bacterial cell concentrate contains 0.4% by weight of sucrose, 0.2% by weight of trehalose, 0.2% by weight of sodium glutamate, 0.2% by weight of histidine, and 0.2% by weight of malic acid. 2 ml of the resulting dispersion medium was added and freeze-dried to obtain a freeze-dried product. The lyophilized product was dispersed in dextrin so that the viable cell count was 1.0 × 10 10 cfu / g to obtain a viable cell preparation.

生菌製剤製造時の生残率の測定
前記菌体濃縮液中の総生菌数、並びに前記凍結乾燥物中の総菌数を常法により求め、生菌製剤製造時の生残率を次式より算出した。
生菌製剤製造時の生残率(%)=(凍結乾燥物中の総菌数/菌体濃縮液の総菌数)×100。
Measurement of survival rate during production of viable cell preparations Obtain the total viable cell count in the bacterial cell concentrate and the total cell count in the lyophilized product by a conventional method. Calculated from the formula.
Survival rate (%) at the time of production of a viable cell preparation = (total number of bacteria in lyophilized product / total number of cells in cell concentrate) × 100.

生菌製剤の保存安定性
生菌製剤の保存安定性は保存後の生残率により求めた。
生菌製剤を10gずつチャック付きポリエチレン袋(製品名ユニパック B−8、株式会社セイニチ社製)に分注したものを、シリカゲル1g(富士シリシア化学株式会社製)を入れたアルミパウチ(製品名ラミジップ、株式会社セイニチ社製)に梱包し、ヒートシールにより密閉したものを保存サンプルとした。25℃、1ヶ月、3ヶ月、6ヶ月保存後の生菌製剤1gあたりの生菌数を常法により測定し、生残率を次式より求めた。
生残率(%)=(保存後の生菌製剤1gあたりの生菌数/1.0×1010)×100。
Storage stability of live bacterial preparations The storage stability of live bacterial preparations was determined by the survival rate after storage.
Aluminum pouch (product name: Lamidip) containing 1 g of silica gel (manufactured by Fuji Silysia Chemical Co., Ltd.) dispensed with 10 g of live bacteria preparation in a polyethylene bag with a chuck (product name Unipack B-8, manufactured by Seinichi Co., Ltd.) , Manufactured by Seinichi Co., Ltd.) and sealed by heat sealing was used as a storage sample. The number of viable bacteria per 1 g of viable bacterial preparation after storage at 25 ° C., 1 month, 3 months and 6 months was measured by a conventional method, and the survival rate was determined from the following formula.
Survival rate (%) = (Number of viable bacteria per 1 g of viable bacterial preparation after storage / 1.0 × 10 10 ) × 100.

(実施例1)
乳酸菌ペディオコッカス・アシドラクシ(Pediococcus acidilactici) R037株を用いて、前記(1)から(5)の工程を3回繰り返し、R037株由来の選別菌体を得た。該選別菌体を用いて、生菌数が1.0×1010cfu/gの生菌製剤を得た。
Example 1
Using the lactic acid bacteria Pediococcus acidilactici R037 strain, the steps (1) to (5) were repeated three times to obtain selected cells derived from the R037 strain. Using the selected cells, a viable cell preparation having a viable cell count of 1.0 × 10 10 cfu / g was obtained.

(比較例1)
乳酸菌ペディオコッカス・アシドラクシ(Pediococcus acidilactici) R037株を用いて、前記(1)から(3)の工程を3回繰り返しR037株由来の未選別菌体を得た。該未選別菌体を用いて、生菌数が1.0×1010cfu/gの生菌製剤を得た。
(Comparative Example 1)
Using the lactic acid bacterium Pediococcus acidilactici R037 strain, the steps (1) to (3) were repeated three times to obtain unselected cells derived from the R037 strain. Using the unselected cells, a viable cell preparation having a viable cell count of 1.0 × 10 10 cfu / g was obtained.

(実施例2)
乳酸菌ラクトバシラス・ブレビス(Lactobacillus brevis) kaneka−01株を用いて、前記(1)から(5)の工程を3回繰り返し、kaneka−01由来の選別菌体を得た。該選別菌体を用いて、生菌数が1.0×1010cfu/gの生菌製剤を得た。
(Example 2)
Using the lactic acid bacterium Lactobacillus brevis kaneka-01 strain, the steps (1) to (5) were repeated three times to obtain selected cells derived from kaneka-01. Using the selected cells, a viable cell preparation having a viable cell count of 1.0 × 10 10 cfu / g was obtained.

(比較例2)
乳酸菌ラクトバシラス・ブレビス(Lactobacillus brevis) kaneka−01株を用いて、前記(1)から(3)の工程を3回繰り返し、kaneka−01由来の未選別菌体を得た。該未選別菌体を用いて、生菌数が1.0×1010cfu/gの生菌製剤を得た。
(Comparative Example 2)
Using the lactic acid bacterium Lactobacillus brevis kaneka-01, the steps (1) to (3) were repeated three times to obtain an unselected cell derived from kaneka-01. Using the unselected cells, a viable cell preparation having a viable cell count of 1.0 × 10 10 cfu / g was obtained.

(実施例3)
乳酸菌ラクトバシラス・デルブリッキー(Lactobacillus delbrueckii) KLAB−4株を用いて、前記(1)から(5)の工程を3回繰り返し、KLAB−4由来の選別菌体を得た。該選別菌体を用いて、生菌数が1.0×1010cfu/gの生菌製剤を得た。
Example 3
Using the lactic acid bacterium Lactobacillus delbrueckii KLAB-4 strain, the steps (1) to (5) were repeated three times to obtain KLAB-4-derived selected cells. Using the selected cells, a viable cell preparation having a viable cell count of 1.0 × 10 10 cfu / g was obtained.

(比較例3)
乳酸菌ラクトバシラス・デルブリッキー(Lactobacillus delbrueckii) KLAB−4株を用いて、前記(1)から(3)の工程を3回繰り返し、KLAB−4由来の未選別菌体を得た。該未選別菌体を用いて、生菌数が1.0×1010cfu/gの生菌製剤を得た。
(Comparative Example 3)
Using the lactic acid bacterium Lactobacillus delbrueckii KLAB-4 strain, the steps (1) to (3) were repeated three times to obtain an unselected microbial cell derived from KLAB-4. Using the unselected cells, a viable cell preparation having a viable cell count of 1.0 × 10 10 cfu / g was obtained.

実施例1〜3の選別株および比較例1〜3の非選別株それぞれついて、分散媒非存在下で凍結乾燥した際の生残率、生菌製剤製造時の生残率を求め、結果を表1、表2に示した。また、各生菌製剤の25℃1ヶ月、3ヶ月、6ヶ月後の保存安定性を測定し表3に示した。なお、実施例1〜3および比較例1〜3の操作は3度行い、表1〜表3は、各々3つの選別株および非選別株の結果の平均値として示した。   For each of the selected strains of Examples 1 to 3 and the non-selected strains of Comparative Examples 1 to 3, the survival rate when freeze-dried in the absence of a dispersion medium and the survival rate at the time of manufacturing a viable preparation were determined. The results are shown in Tables 1 and 2. In addition, the storage stability of each viable bacterial preparation after 1 month, 3 months and 6 months at 25 ° C. was measured and shown in Table 3. In addition, operation of Examples 1-3 and Comparative Examples 1-3 was performed 3 times, and Table 1-Table 3 were shown as an average value of the result of three selection stocks and a non-selection stock, respectively.

Figure 2012056921
Figure 2012056921

Figure 2012056921
Figure 2012056921

Figure 2012056921
Figure 2012056921

表1に示す通り、工程(1)〜(5)の一連の工程を3回繰り返すことにより得られた選別菌体を分散媒非存在下、前述の工程(3)と同様の条件で凍結乾燥した際の生残率は40%以上であった。一方、上記(1)から(3)の工程を3回繰り返す事により得られた未選別菌体を分散媒非存在下で凍結乾燥した際の生残率のは、菌株によっても異なるが10%から20%であった。また、表2に示す通り、生菌製剤製造時の凍結乾燥した際の生残率においても未選別菌体と比べて、選別菌体の方が優れていた。 As shown in Table 1, the selected cells obtained by repeating the series of steps (1) to (5) three times were lyophilized under the same conditions as in step (3) in the absence of a dispersion medium. The survival rate was 40% or more. On the other hand, the survival rate when the unselected cells obtained by repeating the steps (1) to (3) three times is lyophilized in the absence of a dispersion medium varies depending on the strain, but is 10%. To 20%. In addition, as shown in Table 2, the selected cells were superior to the unselected cells in the survival rate when freeze-dried at the time of producing the viable cell preparation.

以上の結果より、本発明の選別方法で得られた選別株は、生菌製剤製造時の乾燥工程における生残率に優れ、当該微生物菌体を用いることで、生菌製剤の生産効率を高めることができる。   From the above results, the selected strain obtained by the selection method of the present invention has an excellent survival rate in the drying step during the production of the viable bacterial preparation, and increases the production efficiency of the viable bacterial preparation by using the microbial cells. be able to.

また、表3に示す結果より、工程(1)から(5)の一連の工程を繰り返すことにより得られた選別菌体を用いて製造した生菌製剤の、25℃保存での生残率は、6ヶ月時点で、90%以上であった。一方、上記(1)から(3)の工程を3回繰り返す事によって得られた未選別菌体を用いて製造した生菌製剤の25℃保存での生残率は、6ヶ月の時点で、60%から70%であった。以上の結果から本発明の生菌製剤は優れた保存安定性を有することがわかる。   In addition, from the results shown in Table 3, the survival rate of the viable preparation prepared using the selected cells obtained by repeating the series of steps (1) to (5) at 25 ° C. is At 6 months, it was over 90%. On the other hand, the survival rate of the viable preparation prepared by using the unselected cells obtained by repeating the steps (1) to (3) three times at 25 ° C. is 6 months. 60% to 70%. From the above results, it can be seen that the viable bacterial preparation of the present invention has excellent storage stability.

Claims (15)

(1)微生物菌体を培養する工程、(2)集菌する工程、(3)乾燥する工程、(4)乾燥した菌体を固体培地で培養する工程、(5)大きなコロニーを選別する工程、前記(1)から(5)の工程を含む一連の工程を少なくとも1回以上繰り返して得た微生物を用いて調製される、保存安定性に優れた生菌製剤。 (1) Step of culturing microbial cells, (2) Step of collecting bacteria, (3) Step of drying, (4) Step of culturing dried cells in solid medium, (5) Step of selecting large colonies A viable preparation excellent in storage stability, prepared using a microorganism obtained by repeating a series of steps including the steps (1) to (5) at least once. 前記(3)の乾燥が凍結乾燥である請求項1記載の生菌製剤。 The viable preparation according to claim 1, wherein the drying in (3) is freeze-drying. 前記(3)の乾燥が分散媒非存在下で行われる請求項1または2記載の生菌製剤。 The viable preparation according to claim 1 or 2, wherein the drying of (3) is performed in the absence of a dispersion medium. 分散剤非存在下に凍結乾燥を行った際に、40%以上の生残率を示す菌体を用いてなる生菌製剤。 A viable cell preparation using cells showing a survival rate of 40% or more when lyophilized in the absence of a dispersant. 前記凍結乾燥は、菌体濃縮液5mLを10mL容のバイアル瓶にいれ、凍結乾燥機を用いて、−25℃で20時間凍結した後、真空度5Pa、棚温25℃で48時間凍結乾燥する条件で行われる、請求項4記載の生菌製剤。 In the freeze-drying, 5 mL of the bacterial cell concentrate is placed in a 10 mL vial, frozen at −25 ° C. for 20 hours using a freeze dryer, and then freeze-dried at a vacuum degree of 5 Pa and a shelf temperature of 25 ° C. for 48 hours. The viable microbe preparation according to claim 4, which is performed under conditions. 前記微生物が、乳酸菌である請求項1〜5のいずれかに記載の生菌製剤。 The live microorganism preparation according to any one of claims 1 to 5, wherein the microorganism is a lactic acid bacterium. 前記乳酸菌がペディオコッカス(Pediococcus)属またはラクトバシラス(Lactobacillus)属に属する乳酸菌である請求項6記載の生菌製剤。 The viable preparation according to claim 6, wherein the lactic acid bacterium is a lactic acid bacterium belonging to the genus Pediococcus or Lactobacillus. 前記乳酸菌がペディオコッカス・アシディラクティシ(Pediococcus acidilactici)、ラクトバチルス・ブレビス(Lactobacillus brevis)、または、ラクトバチルス・デルブリッキー(Lactobacillus delbrueckii)である請求項6記載の生菌製剤。 The live bacterium preparation according to claim 6, wherein the lactic acid bacterium is Pediococcus acidilactici, Lactobacillus brevis, or Lactobacillus delbrueckii. 微生物菌体を乾燥し、必要に応じて賦形剤を加えることによって調製される微生物生菌製剤の製造方法であって、(1)微生物菌体を培養する工程、(2)集菌する工程、(3)乾燥する工程、(4)乾燥した菌体を固体培地で培養する工程、(5)大きなコロニーを選別する工程、を含む一連の工程を少なくとも1回以上繰り返して得た微生物を用いることを特徴とする方法。 A method for producing a microbial cell preparation prepared by drying microbial cells and adding an excipient as necessary, wherein (1) a step of culturing the microbial cells, and (2) a step of collecting the cells A microorganism obtained by repeating at least once a series of steps including (3) a step of drying, (4) a step of culturing dried cells in a solid medium, and (5) a step of selecting large colonies. A method characterized by that. 生菌製剤とした際の保存安定性、及び/又は、生菌製剤調製時の乾燥工程における生残率に優れた微生物菌体の選別方法であって、(1)微生物菌体を培養する工程、(2)集菌する工程、(3)乾燥する工程、(4)乾燥した菌体を固体培地にて培養する工程、(5)大きなコロニーを選別する工程を含む一連の工程を少なくとも1回以上繰り返すことを特徴とする方法。 A method for screening microbial cells having excellent storage stability and / or survival rate in the drying step when preparing the microbial cells, wherein (1) culturing microbial cells , (2) a step of collecting bacteria, (3) a step of drying, (4) a step of culturing dried cells in a solid medium, and (5) a series of steps including a step of selecting large colonies at least once. A method characterized by repeating the above. 前記(3)の乾燥が凍結乾燥である請求項9または10記載の方法。 The method according to claim 9 or 10, wherein the drying in (3) is lyophilization. 前記(3)の乾燥が分散媒非存在下で行われる請求項9〜11のいずれかに記載の方法。 The method according to any one of claims 9 to 11, wherein the drying of (3) is performed in the absence of a dispersion medium. 前記微生物が、乳酸菌である請求項9〜12のいずれかに記載の方法。 The method according to any one of claims 9 to 12, wherein the microorganism is a lactic acid bacterium. 前記乳酸菌がペディオコッカス(Pediococcus)属またはラクトバシラス(Lactobacillus)属に属する乳酸菌である請求項13記載の方法。 The method according to claim 13, wherein the lactic acid bacterium is a lactic acid bacterium belonging to the genus Pediococcus or Lactobacillus. 前記乳酸菌がペディオコッカス・アシディラクティシ(Pediococcus acidilactici)、ラクトバチルス・ブレビス(Lactobacillus brevis)、または、ラクトバチルス・デルブリッキー(Lactobacillus delbrueckii)である請求項14記載の方法。 The method according to claim 14, wherein the lactic acid bacterium is Pediococcus acidilactici, Lactobacillus brevis, or Lactobacillus delbrueckii.
JP2010204496A 2010-09-13 2010-09-13 Probiotic preparation Pending JP2012056921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010204496A JP2012056921A (en) 2010-09-13 2010-09-13 Probiotic preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010204496A JP2012056921A (en) 2010-09-13 2010-09-13 Probiotic preparation

Publications (1)

Publication Number Publication Date
JP2012056921A true JP2012056921A (en) 2012-03-22

Family

ID=46054444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204496A Pending JP2012056921A (en) 2010-09-13 2010-09-13 Probiotic preparation

Country Status (1)

Country Link
JP (1) JP2012056921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201459A (en) * 2021-06-17 2021-08-03 浙江海洋大学 Method for quick freeze-drying preservation of microorganisms
WO2022102753A1 (en) * 2020-11-13 2022-05-19 味の素株式会社 Viable microbial agent containing lactococcus lactis, microorganism belonging to genus lactobacillus or mixture thereof, and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013534A (en) * 2006-07-07 2008-01-24 Health Vision:Kk Probiotics product for pet animal
WO2009066681A1 (en) * 2007-11-19 2009-05-28 Kaneka Corporation Lactic acid bacterium-containing preparation
JP2009142266A (en) * 2007-11-19 2009-07-02 Kaneka Corp New strain of lactobacillus
JP2010004787A (en) * 2008-06-26 2010-01-14 Kaneka Corp Method for culturing lactobacillus brevis
WO2010023222A1 (en) * 2008-08-27 2010-03-04 Ellen Ab Administration unit comprising lactic acid bacteria
JP2010150206A (en) * 2008-12-26 2010-07-08 Kaneka Corp Enteral nutrient having mucous membrane immuno-stimulation action and immuno-balance modulation action

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013534A (en) * 2006-07-07 2008-01-24 Health Vision:Kk Probiotics product for pet animal
WO2009066681A1 (en) * 2007-11-19 2009-05-28 Kaneka Corporation Lactic acid bacterium-containing preparation
JP2009142266A (en) * 2007-11-19 2009-07-02 Kaneka Corp New strain of lactobacillus
JP2010004787A (en) * 2008-06-26 2010-01-14 Kaneka Corp Method for culturing lactobacillus brevis
WO2010023222A1 (en) * 2008-08-27 2010-03-04 Ellen Ab Administration unit comprising lactic acid bacteria
JP2010150206A (en) * 2008-12-26 2010-07-08 Kaneka Corp Enteral nutrient having mucous membrane immuno-stimulation action and immuno-balance modulation action

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPL. ENVIRON. MICROBIOL., vol. 66, no. 9, JPN6014034724, 2000, pages 3756 - 3763, ISSN: 0002878235 *
JOURNAL OF DAIRY SCIENCE, vol. 86, no. 10, JPN6014034722, 2003, pages 3048 - 3053, ISSN: 0002878234 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102753A1 (en) * 2020-11-13 2022-05-19 味の素株式会社 Viable microbial agent containing lactococcus lactis, microorganism belonging to genus lactobacillus or mixture thereof, and method for producing same
CN113201459A (en) * 2021-06-17 2021-08-03 浙江海洋大学 Method for quick freeze-drying preservation of microorganisms
CN113201459B (en) * 2021-06-17 2023-06-16 浙江海洋大学 Method for quick-freezing, drying and preserving microorganisms

Similar Documents

Publication Publication Date Title
RU2732480C2 (en) Composition suitable for protecting microorganisms
US10954486B2 (en) Method for freeze drying a bacteria-containing concentrate
KR101604633B1 (en) Medium composition for culturing lactic acid bacteria and producing method of powder of lactic acid bacteria using the same
JP6483653B2 (en) Survivability improver for lactic acid bacteria and / or bifidobacteria
JP6921465B2 (en) Method for producing dried microbial cells
KR101349692B1 (en) The Alcohol resistant strain of lactic acid bacteria, Pediococcus acidilactici and its use
JP7444949B2 (en) Medium for lactic acid bacteria
TW201300526A (en) Method for manufacturing culture medium, and culture medium manufactured by method
EP3287518A1 (en) Method for freeze drying a bacteria-containing concentrate
Abdel-Rahman et al. Incorporation of microencapsulated Lactobacillus rhamnosus into infant-foods inhibit proliferation of toxicogenic Bacillus cereus strains
JP2020022392A (en) Method for producing freeze-dried lactic acid bacteria cells
KR101951893B1 (en) Method for producing high concentration of probiotic active Lactobacillus paracasei SRCM102343 strain derived from traditional fermented food
JP2012056921A (en) Probiotic preparation
JP2012055288A (en) Stabilized viable bacterial preparation, and method for producing the same
JP2012518394A (en) Method for producing lactic acid bacteria composition
Urbański et al. Influence of whey on viability of Lactobacillus gasseri during freeze-drying process
Lavanya et al. Isolation and characterization of probiotic bacteria from the soil samples of the coastal areas of (Gudur division, Nellore Dt.) for utilization in Shrimp farming
JP2017012163A (en) Lactobacillus plantarum llp5193 with high acid- and bile-resistance and high cell attaching ability and products containing it as the effective ingredient
JP2003219862A (en) Method for improving storage stability of freeze-dried bacterium
CN105753170B (en) Application of the lactobacillus plantarum on inhibiting Microcystin
JP2020150793A (en) Agents for enhancing growth and organic acid production of useful enteric bacteria
TWI810246B (en) Production method of dried microbial cells with high survivability
JP7248878B2 (en) Immunomodulator
EA046292B1 (en) METHOD FOR OBTAINING HIGHLY VITAL DRIED MICROBIAL CELLS
Kumar et al. Impact of culture conditions on the production of curvacin a by Lactobacillus curvatus LC05

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141216