JP2012055288A - Stabilized viable bacterial preparation, and method for producing the same - Google Patents
Stabilized viable bacterial preparation, and method for producing the same Download PDFInfo
- Publication number
- JP2012055288A JP2012055288A JP2010204493A JP2010204493A JP2012055288A JP 2012055288 A JP2012055288 A JP 2012055288A JP 2010204493 A JP2010204493 A JP 2010204493A JP 2010204493 A JP2010204493 A JP 2010204493A JP 2012055288 A JP2012055288 A JP 2012055288A
- Authority
- JP
- Japan
- Prior art keywords
- viable
- lactic acid
- preparation
- bacterium
- lactobacillus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
本発明は、保存安定性に優れた生菌製剤および該生菌製剤の製造方法に関する。 The present invention relates to a viable bacterial preparation excellent in storage stability and a method for producing the live bacterial preparation.
乳酸菌や酵母等の微生物は古くより発酵食品などに深く関与してきた有用微生物である。近年、これらの微生物の中には整腸作用をはじめ、感染予防、免疫賦活、ガン予防、アレルギー改善等の生理作用を有することが明らかになり、乳酸菌、酵母等の微生物生菌や死菌、またはその培養物を健康食品や医薬品などの素材として利用するための研究開発が行われている。特に、微生物を生きた状態で腸に到達させることにより、上記生理作用が向上することも見出されており、より多くの生菌を安定的に手軽に摂取できる生菌製剤が求められるようになった。しかしながら、当該生菌製剤は保存中に生菌数が減少してしまうという実用上の課題がある。 Microorganisms such as lactic acid bacteria and yeast are useful microorganisms that have long been deeply involved in fermented foods. In recent years, it has become clear that some of these microorganisms have physiological effects such as intestinal regulation, infection prevention, immune activation, cancer prevention, allergy improvement, microbial bacteria such as lactic acid bacteria and yeast, In addition, research and development are being conducted to use the culture as a material for health foods and pharmaceuticals. In particular, it has also been found that the above-mentioned physiological action is improved by allowing microorganisms to reach the intestine in a living state, so that a viable preparation capable of stably and easily ingesting more viable bacteria is required. became. However, the viable preparation has a practical problem that the viable count decreases during storage.
生菌製剤の保存安定性を向上させる方法として、一般的にシリカゲルや脱脂粉乳を添加する方法が用いられている。また、生菌製剤の製造時にフェニルアラニン、ヒスチジン、クエン酸、コハク酸、酒石酸およびこれらの塩ならびに炭酸アルカリからなる群より選ばれる化合物を添加する方法(特許文献1)、アルギニン、オルニチンもしくはセリン、またはそれらの塩を添加する方法(特許文献2)、凍結乾燥菌末にテアニンを添加する方法(特許文献3)等が挙げられる。しかしながら、これらの方法は生菌製剤の程味の調製を困難にし、また、生菌の保存安定性向上効果も満足しうるものではなく、より保存安定性に優れた生菌製剤が望まれている。 As a method for improving the storage stability of a live bacterial preparation, a method of adding silica gel or skim milk powder is generally used. In addition, a method of adding a compound selected from the group consisting of phenylalanine, histidine, citric acid, succinic acid, tartaric acid and salts thereof and an alkali carbonate (Patent Document 1), arginine, ornithine or serine, or Examples thereof include a method of adding these salts (Patent Document 2) and a method of adding theanine to a lyophilized powder (Patent Document 3). However, these methods make it difficult to prepare a taste of a viable bacterial preparation, and the effect of improving the storage stability of the live bacteria is not satisfactory, and a viable bacterial preparation having more excellent storage stability is desired. Yes.
本発明は、生菌の保存安定性に優れた生菌製剤および該生菌製剤の製造方法を提供することを課題とする。 An object of the present invention is to provide a viable bacterial preparation excellent in storage stability of viable bacteria and a method for producing the viable bacterial preparation.
本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、微生物菌体を乾燥した後、さらに熟成を行うことにより、保存安定性に優れた生菌製剤を得ることができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a microbial cell body excellent in storage stability can be obtained by further aging after drying microbial cells. The present invention has been completed.
即ち、本発明は、微生物菌体を乾燥後、さらに熟成を行うことにより得られた生菌製剤である。また、本発明は、微生物生菌製剤の製造方法であって、乾燥後の菌体を40℃以上に保持する工程を含む製造方法でもある。 That is, the present invention is a viable cell preparation obtained by further aging after drying microbial cells. In addition, the present invention is a method for producing a viable microorganism preparation, which includes a step of keeping the dried cells at 40 ° C. or higher.
本発明により、生菌の保存安定性に優れた生菌製剤および該生菌製剤の製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a viable bacterial preparation excellent in storage stability of viable bacteria and a method for producing the viable bacterial preparation.
以下、本発明につき、さらに詳細に説明する。
本発明は、菌体を培養した後に乾燥し、さらに熟成を行うことにより、保存安定性に優れた生菌製剤を得ることができる。
Hereinafter, the present invention will be described in more detail.
In the present invention, a viable cell preparation excellent in storage stability can be obtained by culturing cells and then drying and further aging.
本発明に用いられる菌体は、通常使用される培地で培養でき、通常用いられる乾燥方法により、乾燥が可能な菌体であれば、特に限定はなく、細菌や酵母などの微生物が挙げられる。 The microbial cells used in the present invention are not particularly limited as long as they can be cultured in a commonly used medium and can be dried by a commonly used drying method, and include microorganisms such as bacteria and yeasts.
細菌としては、乳酸菌等の細菌が挙げられ、例えば、ペディオコッカス・アシディラクティシ(Pediococcus acidilactici)、ペディオコッカス・ペントサセウス(Pediococcus pentosaceus)等のペディオコッカス属に属する乳酸菌;ラクトバチルス・ブレビス(Lactobacillus brevis)、ラクトバチルス・デルブリッキー(Lactobacillus delbrueckii)、ラクトバチルス・アシドフィラス(Lactbacillus acidophilus)、ラクトバチルス・カゼイ(Lactobacillus casei)等のラクトバチルス属に属する乳酸菌;エンテロコッカス・フェカリス(Enterococcus faecalis)等のエンテロコッカス属に属する乳酸菌;ビフィドバクテリウム・ロンガム(Bifidobacterium longum)、ビフィドバクテリウム・ビフィダム(Bifidobacterium bifidum)、ビフィドバクテリウム・ラクティス(Bifidobacterium lactis)等のビフィドバクテリウム属に属する乳酸菌等が挙げられる。 Examples of the bacterium include bacteria such as lactic acid bacteria. For example, lactic acid bacteria belonging to the genus Pediococcus such as Pediococcus acidilactici and Pediococcus pentosaceus; Lactobacillus brevis (Lactobacillus brevis), Lactobacillus delbrueckii, Lactobacillus acidophilus, Lactobacillus casei and other lactic acid bacteria belonging to the genus Lactobacillus; Enterococcus faecalis Lactic acid bacteria belonging to the genus; Bifidobacterium longum, Bifidobacterium bifidum, Bifidobacterium lactis, etc. Examples include lactic acid bacteria belonging to the genus Dobacterium.
その他の細菌としては、エシェリヒア・コリ(Escherlchia coli)等のエシェリヒア属に属する細菌、バチルス・サブチルス(Bacillus subtilis)等のバチルス属に属する細菌等が挙げられる。また、酵母としては、例えば、サッカロマイセス・セルビシエ(Saccharomyces cerevisiae)等のサッカロマイセス属に属する酵母等が挙げられる。 Examples of other bacteria include bacteria belonging to the genus Escherichia such as Escherlchia coli, and bacteria belonging to the genus Bacillus such as Bacillus subtilis. Examples of yeast include yeast belonging to the genus Saccharomyces such as Saccharomyces cerevisiae.
これらの微生物のなかでも、整腸作用などの生理活性を有しているため、工業的利用価値が高いことから乳酸菌が好ましい。乳酸菌のなかでもペディオコッカス(Pediococcus)属に属する乳酸菌、特に、強い中性脂肪低減作用ならびに抗アレルギー作用を有するペディオコッカス・アシディラクティシ(Pediococcus acidilactici) R037株(NITE BP−900)が好ましく、また、ラクトバチルス(Lactobacillus)属に属する乳酸菌、特に強い整腸作用ならびに免疫賦活作用を有するラクトバチルス・ブレビス(Lactobacillus brevis) kaneka−01株(NITE P−558)又は強い抗血糖作用を有するラクトバチルス・デルブリッキー(Lactobacillus delbrueckii) KLAB−4株(NITE BP−394)が好ましい。これらの微生物は、それぞれ上記の受託番号にて独立行政法人製品評価技術基盤機構(日本国千葉県木更津市かずさ鎌足2−5−8)に寄託されている。 Among these microorganisms, lactic acid bacteria are preferable because they have physiological activity such as intestinal regulation and have high industrial utility value. Among the lactic acid bacteria, lactic acid bacteria belonging to the genus Pediococcus, particularly Pediococcus acidilactici R037 strain (NITE BP-900) having a strong neutral fat reducing action and an antiallergic action. Lactobacillus belonging to the genus Lactobacillus, particularly Lactobacillus brevis Kaneka-01 strain (NITE P-558) having a strong intestinal and immunostimulatory action or having a strong antiglycemic action Lactobacillus delbrueckii KLAB-4 strain (NITE BP-394) is preferred. These microorganisms are deposited with the independent administrative corporation Product Evaluation Technology Infrastructure (2-5-8, Kazusa Kamashi, Kisarazu City, Chiba Prefecture, Japan) under the above-mentioned deposit numbers.
培養方法としては、所望する菌体が培養可能であれば、培地成分、培養方法など特に限定はなく、通常行われる公知の培地成分および培養方法であれば液体培養でも固体培養でもよいが、菌体を培養し、回収する必要性により固体培養より液体培養が好ましい。以下では、液体培養の場合を例として説明する。 The culture method is not particularly limited as long as the desired cells can be cultured, and there are no particular limitations on medium components, culture methods, etc., and any known medium components and culture methods that are usually performed may be liquid culture or solid culture. Liquid culture is preferred over solid culture due to the need to culture and recover the body. Hereinafter, the case of liquid culture will be described as an example.
培養液より、菌体を回収、洗浄後、蒸留水及び/又は、保護剤等を添加した溶液で菌体分散液を調製する。生菌製剤の保存安定性が向上することから、保護剤を添加した溶液を用いて菌体分散液を調整することが好ましい。 After collecting and washing the cells from the culture solution, a cell dispersion is prepared with a solution to which distilled water and / or a protective agent or the like is added. It is preferable to adjust the cell dispersion using a solution to which a protective agent is added because the storage stability of the viable cell preparation is improved.
前記保護剤としては、特に限定されないが、例えば、トレハロース、ウシ血清アルブミン、脱脂粉乳、グルタミン酸ナトリウム、L−アスコルビン酸、ホエー、グルコース、アスパラギン酸、メチオニン、デンプン、デキストラン、ショ糖、乳糖等が挙げられる。 The protective agent is not particularly limited, and examples thereof include trehalose, bovine serum albumin, skim milk powder, sodium glutamate, L-ascorbic acid, whey, glucose, aspartic acid, methionine, starch, dextran, sucrose, and lactose. It is done.
また、生菌製剤の保存安定性が向上することから、菌体分散液のpHが酸性である場合には、水酸化ナトリウム、炭酸ナトリウム、水酸化カリウム等のpH調整剤により、pH6〜8、望ましくはほぼ中性にpHを調整することが好ましい。なお、本発明の目的を妨げないものであれば、前記保護剤は他の物質を含有してもかまわない。 In addition, since the storage stability of the viable bacterial preparation is improved, when the pH of the bacterial cell dispersion is acidic, a pH adjuster such as sodium hydroxide, sodium carbonate, potassium hydroxide or the like is used. Desirably, it is preferable to adjust the pH to be almost neutral. In addition, as long as the objective of this invention is not prevented, the said protective agent may contain another substance.
前記菌体分散液を乾燥する方法としては、特に限定はなく、凍結乾燥、噴霧乾燥、ドラム乾燥、真空乾燥等公知の方法を単独または組み合わせて使用することができる。これら公知の方法を用いて、菌体乾燥物が得られる。乾燥時の菌体の死滅を極力抑える観点からは、通常は40℃以下で乾燥を行うことが好ましく、凍結乾燥が特に好ましい。ただし、高温にさらされる時間が短い場合や、予備的な乾燥等により水分含量が減じられた菌体を乾燥する場合等、乾燥方法や条件に応じて、40℃以上でも乾燥し得ることはいうまでもない。 The method for drying the bacterial cell dispersion is not particularly limited, and known methods such as freeze drying, spray drying, drum drying, and vacuum drying can be used alone or in combination. Using these known methods, dried bacterial cells can be obtained. From the viewpoint of minimizing the killing of cells during drying, it is usually preferable to perform drying at 40 ° C. or less, and freeze drying is particularly preferable. However, it can be dried at 40 ° C. or higher depending on the drying method and conditions, such as when the time of exposure to high temperature is short, or when the cells whose moisture content has been reduced by preliminary drying or the like are dried. Not too long.
本発明の保存安定性に優れた生菌製剤は、例えば、上記菌体乾燥物を熟成することにより製造することができる。本発明の熟成とは、上記菌体乾燥物を40℃以上の温度条件下に一定時間保持することをいう。 The viable cell preparation excellent in storage stability of the present invention can be produced, for example, by aging the above-mentioned dried cell body. The aging of the present invention refers to holding the dried microbial cell product for a certain period of time under a temperature condition of 40 ° C. or higher.
熟成温度の上限は70℃以下、好ましくは60℃以下である。熟成温度が70℃を超えた場合、菌体自体が損傷、死滅するため適していない。 The upper limit of the aging temperature is 70 ° C. or lower, preferably 60 ° C. or lower. When the aging temperature exceeds 70 ° C., the cells themselves are not suitable because they are damaged and killed.
上記熟成に要する時間は、微生物の種類や熟成温度に応じて適宜設定することができ特に限定されないが、熟成温度が高くなるほど、所要時間は短くなる傾向にある。 The time required for the aging can be appropriately set according to the type of microorganism and the aging temperature, and is not particularly limited. However, the higher the aging temperature, the shorter the required time.
例えば乳酸菌の場合、熟成温度が40℃の場合、熟成時間の下限は6時間以上、好ましくは12時間以上、より好ましくは24時間以上で実施できる。熟成時間が6時間未満であると、熟成が進まず保存安定性に優れた生菌製剤が得難い。また、熟成時間の上限は90日以下、好ましくは60日以下、より好ましくは30日以下で実施できる。熟成時間が90日を越えてもそれ以上保存安定性に優れた生菌製剤が得られず、生産性の面からも好ましくない。 For example, in the case of lactic acid bacteria, when the aging temperature is 40 ° C., the lower limit of the aging time is 6 hours or more, preferably 12 hours or more, more preferably 24 hours or more. When the aging time is less than 6 hours, aging does not proceed and it is difficult to obtain a viable bacterial preparation excellent in storage stability. The upper limit of the aging time can be 90 days or less, preferably 60 days or less, more preferably 30 days or less. Even if the aging time exceeds 90 days, a viable bacterial preparation excellent in storage stability cannot be obtained any more, which is not preferable from the viewpoint of productivity.
熟成温度が50℃の場合、熟成時間の下限は3時間以上、好ましくは6時間以上、より好ましくは12時間以上で実施できる。熟成時間が3時間未満であると、熟成が進まず保存安定性に優れた生菌製剤が得難い。また、熟成時間の上限は60日以下、好ましくは30日以下、より好ましくは15日以下で実施できる。熟成時間が60日を越えてもそれ以上保存安定性に優れた生菌製剤は得られない。 When the aging temperature is 50 ° C., the lower limit of the aging time is 3 hours or more, preferably 6 hours or more, more preferably 12 hours or more. If the aging time is less than 3 hours, aging does not proceed and it is difficult to obtain a viable bacterial preparation excellent in storage stability. The upper limit of the aging time is 60 days or less, preferably 30 days or less, more preferably 15 days or less. Even if the aging time exceeds 60 days, a viable microbe preparation excellent in storage stability cannot be obtained.
熟成温度が60℃の場合、熟成時間の下限は1時間以上、好ましくは3時間以上、より好ましくは6時間以上で実施できる。熟成時間が1時間未満であると、熟成が進まず保存安定性に優れた生菌製剤が得難い。また、熟成時間の上限は30日以下、好ましくは15日以下、より好ましくは7日以下で実施できる。熟成時間が30日を越えてもそれ以上保存安定性に優れた生菌製剤は得られない。 When the aging temperature is 60 ° C., the lower limit of the aging time is 1 hour or longer, preferably 3 hours or longer, more preferably 6 hours or longer. When the aging time is less than 1 hour, aging does not proceed and it is difficult to obtain a viable bacterial preparation excellent in storage stability. The upper limit of the aging time can be 30 days or less, preferably 15 days or less, more preferably 7 days or less. Even if the aging time exceeds 30 days, a viable bacterial preparation excellent in storage stability cannot be obtained.
熟成温度が70℃の場合、熟成時間の下限は0.3時間以上、好ましくは1時間以上、より好ましくは3時間以上で実施できる。熟成時間が0.3時間未満であると、熟成が進まず保存安定性に優れた生菌製剤が得難い。また、熟成時間の上限は15日以下、好ましくは7日以下、より好ましくは3日以下で実施できる。熟成時間が15日を越えると菌体自体が損傷を受け保存安定性に優れた生菌製剤を得られない場合がある。 When the aging temperature is 70 ° C., the lower limit of the aging time is 0.3 hours or more, preferably 1 hour or more, more preferably 3 hours or more. When the aging time is less than 0.3 hours, aging does not progress and it is difficult to obtain a viable preparation having excellent storage stability. The upper limit of the aging time is 15 days or less, preferably 7 days or less, more preferably 3 days or less. If the aging time exceeds 15 days, the microbial cells themselves may be damaged and a viable bacterial preparation excellent in storage stability may not be obtained.
熟成時の圧力は、常圧でもよいし、陰圧状態でもよいし、加圧状態でもよい。言うまでもなく、乾燥と熟成を一連/一体の操作として行うことができる。例えば、凍結乾燥後、チャンバー内の圧力を引き続き維持してもよいし、装置内を常圧に戻して熟成させてもよい。この場合、乾燥を40℃以下で行い、乾燥終了後に温度を40℃以上としても良いし、乾燥を40℃以上で実施し、乾燥終了後(水分量が所望の値まで低下した後)も40℃以上の温度に維持し、引き続き熟成を行ってもよい。乾燥は40℃以下で実施し、その後40℃以上で熟成するのが好ましく、特には、40℃以下で凍結乾燥あるいは真空乾燥した菌体を、40℃以上で熟成することが好ましい。 The pressure at the time of aging may be a normal pressure, a negative pressure state, or a pressurized state. Needless to say, drying and aging can be performed as a series / integrated operation. For example, after freeze-drying, the pressure in the chamber may be continuously maintained, or the inside of the apparatus may be returned to normal pressure and aged. In this case, the drying may be performed at 40 ° C. or lower, and the temperature may be 40 ° C. or higher after the drying is completed. The drying may be performed at 40 ° C. or higher, and after the drying is finished (after the water content is reduced to a desired value). It may be maintained at a temperature of not lower than ° C. and subsequently ripened. Drying is preferably carried out at 40 ° C. or lower, and then aged at 40 ° C. or higher. In particular, it is preferable to ripen lyophilized or vacuum-dried cells at 40 ° C. or lower at 40 ° C. or higher.
また、本発明における熟成は、菌体乾燥物をガラス製、プラスチック製及び/又は金属製の素材にて包装、梱包し、外部環境から遮断された環境下で行うこともできる。 The aging in the present invention can also be performed in an environment in which the dried bacterial cell product is packaged and packed with a glass, plastic and / or metal material and is shielded from the external environment.
ガラス製の素材とは、例えば、軟質ガラス、硬質ガラス等を挙げることができる。 Examples of the glass material include soft glass and hard glass.
プラスチック製の素材としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ナイロン等を挙げることができる。言うまでもなく、上記プラスチック製の素材を積層したフィルム、アルミラミネート等のプラスチック製の素材にアルミ等の金属を積層したフィルム、亜プラスチック製の素材に、アルミナ、シリカ等を蒸着させたフィルム(アルミナ蒸着フィルムやシリカ蒸着フィルム)もプラスチック製の素材に含まれる。 Examples of the plastic material include high density polyethylene, medium density polyethylene, low density polyethylene, polypropylene, polyethylene terephthalate, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, and nylon. Needless to say, a film in which the plastic material is laminated, a film in which a metal such as aluminum is laminated on a plastic material such as aluminum laminate, and a film in which alumina, silica, etc. are vapor-deposited on a sub-plastic material (alumina vapor deposition) Film and silica vapor deposition film) are also included in the plastic material.
金属製の素材としては、例えば、鉄、アルミニウム、亜鉛、ニッケル、コバルト、銅、すず、チタン、クロムあるいはこれらの合金(ステンレス、真鍮等)を挙げることができる。 Examples of the metal material include iron, aluminum, zinc, nickel, cobalt, copper, tin, titanium, chromium, and alloys thereof (stainless steel, brass, etc.).
上記した素材は、ボトル、袋、缶、ドラム、箱等に成型し、乾燥物を包装、梱包するのが好ましい。また、ポリエチレン等の比較的ガス流通性が高い素材を用いた場合には、2重以上の包装、梱包することが好ましく、このとき、アルミラミネートやアルミナ、シリカ等の蒸着フィルム、ガラス、金属等の比較的ガスバリア性、防湿性の高い素材を使用するのが特に好ましい。 The above-mentioned material is preferably molded into bottles, bags, cans, drums, boxes, etc., and dried products are packed and packed. In addition, when a material having a relatively high gas flow property such as polyethylene is used, it is preferable to pack or pack two or more layers. At this time, a vapor deposition film such as aluminum laminate, alumina, or silica, glass, metal, etc. It is particularly preferable to use a material having a relatively high gas barrier property and moisture resistance.
上記包装、梱包においては、乾燥剤や脱酸素剤を併用してもよく、特に乾燥剤を併用することが好ましい。乾燥剤としては、シリカゲル、塩化カルシウム、合成ゼオライト等を挙げることができる。 In the packaging and packaging, a desiccant or oxygen scavenger may be used in combination, and it is particularly preferable to use a desiccant in combination. Examples of the desiccant include silica gel, calcium chloride, and synthetic zeolite.
本発明では、菌体乾燥物に賦形剤等を加えたものを熟成してもよい。ここでいう賦形剤とは、特に限定しないが、例えば、乳糖、デンプン、デキストリン、ショ糖等が挙げられる。 In this invention, you may age | ripen what added the excipient | filler etc. to the microbial cell dried material. The excipient herein is not particularly limited, and examples thereof include lactose, starch, dextrin, and sucrose.
本発明では、上記熟成方法により得られた菌体乾燥物および該菌体乾燥物に賦形剤、風味改良剤、香料、着色料などを更に添加した場合も本発明では生菌製剤とする。 In the present invention, even when an excipient, a flavor improver, a fragrance, a coloring agent, or the like is further added to the dried microbial cell product obtained by the above aging method and the dried microbial cell product, a viable cell preparation is used in the present invention.
本発明によって得られた生菌製剤は、そのまま、または加工して食品、健康食品、栄養補助食品、栄養機能性食品、特定保健用食品、医薬品、医薬部外品、飼料、ペットフード等に使用できる。また、その加工形態としては、錠剤、散剤、チュアブル錠、丸剤、ハードカプセル剤、ソフトカプセル剤等が挙げられる。また、得られた生菌製剤を発酵乳や発酵豆乳などのスターターとして用いることができる。 The viable bacterial preparation obtained by the present invention is used as it is or after being processed for food, health food, nutritional supplement, nutritional functional food, food for specified health use, pharmaceutical, quasi-drug, feed, pet food, etc. it can. Examples of the processing form include tablets, powders, chewable tablets, pills, hard capsules, soft capsules and the like. Moreover, the obtained living microbe formulation can be used as starters, such as fermented milk and fermented soymilk.
以下、本発明を実施例により詳しく説明するが、本発明はこれらの実施例により何ら制限を受けるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention does not receive a restriction | limiting at all by these Examples.
(菌体分散液の調製)
菌体をトリプトンが1重量%、酵母エキスが0.5重量%、グルコースが0.5重量%、ラクトースが0.5重量%、Tween80が0.1重量%、L−システイン塩酸塩が0.02重量%を含有する滅菌済み液体培地1Lに植菌し、37℃、20時間静置培養を行った。培養後、培養液を5000rpm、10分、4℃で遠心分離して得られた菌体を、500mlの蒸留水で2回洗浄し、20mlの蒸留水に分散させた後、ショ糖が0.4重量%、トレハロースが0.2重量%、グルタミン酸ナトリウムが0.2重量%、ヒスチジンが0.2重量%、リンゴ酸が0.2重量%からなる水溶液2mlを加え、菌体分散液を調製した。
(Preparation of bacterial cell dispersion)
The cell body was 1% by weight of tryptone, 0.5% by weight of yeast extract, 0.5% by weight of glucose, 0.5% by weight of lactose, 0.1% by weight of Tween 80, and 0.1% of L-cysteine hydrochloride. Inoculated into 1 L of a sterilized liquid medium containing 02% by weight, followed by stationary culture at 37 ° C. for 20 hours. After culturing, the bacterial cells obtained by centrifuging the culture solution at 5000 rpm for 10 minutes at 4 ° C. were washed twice with 500 ml of distilled water and dispersed in 20 ml of distilled water. Add 2 ml of an aqueous solution containing 4% by weight, trehalose 0.2% by weight, sodium glutamate 0.2% by weight, histidine 0.2% by weight and malic acid 0.2% by weight to prepare a cell dispersion. did.
(乾燥)
上記菌体分散液を−25℃で凍結しその後真空乾燥した。
(Dry)
The cell dispersion was frozen at −25 ° C. and then vacuum dried.
(保存時の生残率の測定方法)
上記菌体乾燥物もしくは上記菌体乾燥物に賦形剤を加えた菌体乾燥物および、菌体乾燥物を熟成することで得られた生菌製剤、および保存後の生菌製剤中の生菌数を乗法に従い測定し、生残率を次式より求めた。
保存時の生残率(%)=(保存後のサンプル1g中の生菌数/保存前のサンプル1g中の生菌数)×100
(Method for measuring survival rate during storage)
A dried bacterial cell product or a dried bacterial cell product obtained by adding an excipient to the dried bacterial cell product, a live bacterial product obtained by aging the dried bacterial cell product, and a live bacterial product after storage The number of bacteria was measured according to the multiplication method, and the survival rate was determined from the following equation.
Survival rate during storage (%) = (Number of viable bacteria in 1 g of sample after storage / Number of viable bacteria in 1 g of sample before storage) × 100
(実施例1)
ペディオコッカス・アシディラクティシ(Pediococcus acidilactici) R037の菌体分散液を凍結乾燥した後、凍結乾燥機の庫内温度を40℃に上昇させ、24時間熟成させることにより、生菌製剤を得た。該生菌製剤の40℃、1ヶ月保存後の生残率を測定し表1に示した。
Example 1
After freeze-drying the cell suspension of Pediococcus acidilactici R037, the internal temperature of the freeze-dryer is raised to 40 ° C. and aged for 24 hours to obtain a viable cell preparation It was. The survival rate of the viable preparation after storage at 40 ° C. for 1 month was measured and shown in Table 1.
(比較例1)
ペディオコッカス・アシディラクティシ(Pediococcus acidilactici) R037からなる菌体分散液を凍結乾燥し菌体乾燥物を得た。該菌体乾燥物の40℃、1ヶ月保存後の生残率を測定し表1に示した。
(Comparative Example 1)
A bacterial cell dispersion composed of Pediococcus acidilactici R037 was freeze-dried to obtain a dried bacterial cell product. The survival rate of the dried microbial cell product after storage at 40 ° C. for 1 month was measured and shown in Table 1.
表1に示したように、比較例1の熟成をさせていない菌体乾燥物の40℃、1ヶ月保存後の生残率は、58%であるのに対して、凍結乾燥機の庫内温度を40℃に上昇させ、24時間熟成させた生菌製剤の40℃、1ヶ月保存後の生残率は、実施例1に示すとおり、83%と熟成により保存安定性が向上していた。 As shown in Table 1, the survival rate after storage at 40 ° C. for 1 month of the dried microbial cell product of Comparative Example 1 was 58%, whereas the inside of the freeze dryer was As shown in Example 1, the survival rate after storage at 40 ° C. for one month of the viable bacterial preparation aged at 24 ° C. by raising the temperature to 40 ° C. was 83%, and the storage stability was improved by aging. .
(実施例2)
乳酸菌ペディオコッカス・アシディラクティシ(Pediococcus acidilactici) R037の凍結乾燥物10gに90gのデンプンを加え、菌体乾燥物を得た。該菌体乾燥物10gをチャック付きポリエチレン袋に分注したものを、シリカゲル1gを入れたアルミパウチに梱包し、ヒートシールにより密閉、40℃の温度下で1ヶ月、2ヶ月、3ヶ月熟成させた生菌製剤を得た。
(Example 2)
90 g of starch was added to 10 g of lyophilized product of lactic acid bacterium Pediococcus acidilactici R037 to obtain a dried microbial cell product. Dispensing 10 g of the dried bacterial cells into a polyethylene bag with a chuck is packed in an aluminum pouch containing 1 g of silica gel, sealed by heat sealing, and aged at 40 ° C for 1 month, 2 months, or 3 months. A viable bacterial preparation was obtained.
(比較例2)
乳酸菌ペディオコッカス・アシディラクティシ(Pediococcus acidilactici) R037の凍結乾燥物10gに90gのデンプンを加え熟成させていない菌体乾燥物を得た。
(Comparative Example 2)
90 g of starch was added to 10 g of the lyophilized product of lactic acid bacterium Pediococcus acidilactici R037 to obtain an unripened microbial cell product.
(実施例3)
実施例2の乳酸菌をラクトバチルス・ブレビス(Lactobacillus brevis) kaneka−01に代えた以外は同様に処理し、熟成させた生菌製剤を得た。
Example 3
A lactic acid bacterium of Example 2 was treated in the same manner except that the lactic acid bacterium was replaced with Lactobacillus brevis kaneka-01 to obtain a matured bacterium preparation.
(比較例3)
比較例2の乳酸菌をラクトバチルス・ブレビス(Lactobacillus brevis) kaneka−01に代えた以外は同様に処理し、熟成させていない菌体乾燥物を得た。
(Comparative Example 3)
The lactic acid bacteria of the comparative example 2 were processed similarly except having replaced with the Lactobacillus brevis (Lactobacillus brevis) kaneka-01, and the microbial cell dried material which was not matured was obtained.
(実施例4)
実施例2の乳酸菌をラクトバチルス・デルブリッキー(Lactobacillus delbrueckii) KLAB−4に代えた以外は同様に処理し、熟成させた生菌製剤を得た。
Example 4
A lactic acid bacterium of Example 2 was treated in the same manner except that the lactic acid bacterium was replaced with Lactobacillus delbrueckii KLAB-4 to obtain a matured bacterium preparation.
(比較例4)
比較例2の乳酸菌をラクトバチルス・デルブリッキー(Lactobacillus delbrueckii) KLAB−4に代えた以外は同様に処理し、熟成させていない菌体乾燥物を得た。
(Comparative Example 4)
The lactic acid bacteria of the comparative example 2 were processed similarly except having replaced with the Lactobacillus delbrueckii (Lactobacillus delbrueckii) KLAB-4, and the microbial cell dried material which was not matured was obtained.
実施例2から4の生菌製剤および比較例2から4の菌体乾燥物の40℃、1ヶ月保存後の生残率を測定し表2に示した。
The survival rate of the viable cell preparations of Examples 2 to 4 and the dried cell product of Comparative Examples 2 to 4 after storage at 40 ° C. for 1 month was measured and shown in Table 2.
表2に示したように、40℃の温度下で1ヶ月、2ヶ月、3ヶ月熟成させた生菌製剤の40℃、1ヶ月保存後の生残率は、いずれの実施例においても、熟成していない各比較例と比べて保存安定性が向上することが明らかとなった。 As shown in Table 2, the survival rate after storage at 40 ° C. for 1 month for a viable bacterial preparation aged at 40 ° C. for 1 month, 2 months, and 3 months was aged in any of the examples. It was revealed that the storage stability was improved as compared with each comparative example that was not.
(実施例5)
乳酸菌ラクトバチルス・ブレビス(Lactobacillus brevis) kaneka−01の凍結乾燥物10gに90gのデンプンを加え、菌体乾燥物を得た。該菌体乾燥物10gをチャック付きポリエチレン袋に分注したものを、シリカゲル1gを入れたアルミパウチに梱包し、ヒートシールにより密閉、50℃の温度下で0.5日、1日、7日、14日、30日、60日、熟成させ生菌製剤を得た。該生菌製剤の40℃、1ヶ月保存後の生残率を測定し表3に示した。
(Example 5)
90 g of starch was added to 10 g of a lyophilized product of Lactobacillus brevis kaneka-01 to obtain a dried product of the cells. Dispensing 10 g of the dried bacterial cells into a polyethylene bag with a chuck is packed in an aluminum pouch containing 1 g of silica gel, sealed by heat sealing, 0.5 days, 1 day, 7 days at a temperature of 50 ° C. , 14 days, 30 days, 60 days, and aged to obtain a viable bacterial preparation. The survival rate of the viable preparation after storage at 40 ° C. for 1 month was measured and shown in Table 3.
(比較例5)
乳酸菌ラクトバチルス・ブレビス(Lactobacillus brevis) kaneka−01の凍結乾燥物10gに90gのデンプンを加え熟成していない菌体乾燥物を得た。該菌体乾燥物の40℃、1ヶ月保存後の生残率を測定し表3に示した。
(Comparative Example 5)
Lactobacillus brevis (Lactobacillus brevis) Kaneka-01 freeze-dried product was added with 90 g of starch to obtain an unripened microbial cell product. The survival rate of the dried microbial cells after storage at 40 ° C. for 1 month was measured and shown in Table 3.
表3に示したように、50℃の温度下で熟成させた生菌製剤の40℃、1ヶ月保存後の生残率は、いずれの熟成時間において熟成させていない比較例5の生残率よりも高く、熟成により保存安定性が向上していることが明らかとなった。 As shown in Table 3, the survival rate after storage at 40 ° C. for 1 month of the viable bacterial preparation aged at a temperature of 50 ° C. is the survival rate of Comparative Example 5 that was not aged at any aging time It was revealed that the storage stability was improved by aging.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010204493A JP2012055288A (en) | 2010-09-13 | 2010-09-13 | Stabilized viable bacterial preparation, and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010204493A JP2012055288A (en) | 2010-09-13 | 2010-09-13 | Stabilized viable bacterial preparation, and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012055288A true JP2012055288A (en) | 2012-03-22 |
Family
ID=46053142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010204493A Pending JP2012055288A (en) | 2010-09-13 | 2010-09-13 | Stabilized viable bacterial preparation, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012055288A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016140268A (en) * | 2015-01-30 | 2016-08-08 | 株式会社熊谷組 | Method for elongating survival period of microorganism, microorganism preparation, manufacturing method of microorganism preparation |
WO2019193841A1 (en) * | 2018-04-05 | 2019-10-10 | 株式会社ヤクルト本社 | Method for producing highly viable dried microbial cells |
CN114317274A (en) * | 2022-01-11 | 2022-04-12 | 广东量子天健医疗科技有限公司 | Viable bacteria preservation solution and preparation method and application thereof |
CN115491309A (en) * | 2022-09-19 | 2022-12-20 | 江西省科学院微生物研究所(江西省流域生态研究所) | Lactic acid bacteria fermentation stabilizer and preparation method and application method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6410981A (en) * | 1987-07-01 | 1989-01-13 | Yukijirushi Shiyubiyou Kk | Preparation of powdery lactic acid bacteria pharmaceutical for adding to silage |
JPH11322622A (en) * | 1998-05-15 | 1999-11-24 | Kao Corp | Improver for dermatosis |
JP2003093019A (en) * | 2001-09-25 | 2003-04-02 | Suntory Ltd | Composition for ingestion in which bifidobacterium longum and xylo-oligosacharide are formulated |
JP2003517831A (en) * | 1999-12-22 | 2003-06-03 | バルケム コーポレイション | Sensitive substance encapsulation |
WO2009081833A1 (en) * | 2007-12-20 | 2009-07-02 | Kaneka Corporation | Dried microorganism cell or microorganism extract containing stabilized (ss)-s-adenosyl-l-methionine, and method for production of the dried microorganism cell or microorganism extract |
JP2010100597A (en) * | 2008-10-21 | 2010-05-06 | Hinode Sangyo Kk | Bacteriostatic composition and odor controlling probiotic agent comprising spore-forming bacteria |
WO2010101175A1 (en) * | 2009-03-04 | 2010-09-10 | 明治乳業株式会社 | Freeze-dried microbial cell powder and method for producing same |
-
2010
- 2010-09-13 JP JP2010204493A patent/JP2012055288A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6410981A (en) * | 1987-07-01 | 1989-01-13 | Yukijirushi Shiyubiyou Kk | Preparation of powdery lactic acid bacteria pharmaceutical for adding to silage |
JPH11322622A (en) * | 1998-05-15 | 1999-11-24 | Kao Corp | Improver for dermatosis |
JP2003517831A (en) * | 1999-12-22 | 2003-06-03 | バルケム コーポレイション | Sensitive substance encapsulation |
JP2003093019A (en) * | 2001-09-25 | 2003-04-02 | Suntory Ltd | Composition for ingestion in which bifidobacterium longum and xylo-oligosacharide are formulated |
WO2009081833A1 (en) * | 2007-12-20 | 2009-07-02 | Kaneka Corporation | Dried microorganism cell or microorganism extract containing stabilized (ss)-s-adenosyl-l-methionine, and method for production of the dried microorganism cell or microorganism extract |
JP2010100597A (en) * | 2008-10-21 | 2010-05-06 | Hinode Sangyo Kk | Bacteriostatic composition and odor controlling probiotic agent comprising spore-forming bacteria |
WO2010101175A1 (en) * | 2009-03-04 | 2010-09-10 | 明治乳業株式会社 | Freeze-dried microbial cell powder and method for producing same |
Non-Patent Citations (1)
Title |
---|
JPN6014041667; International Dairy Journal 14, 2004, 835-847 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016140268A (en) * | 2015-01-30 | 2016-08-08 | 株式会社熊谷組 | Method for elongating survival period of microorganism, microorganism preparation, manufacturing method of microorganism preparation |
WO2019193841A1 (en) * | 2018-04-05 | 2019-10-10 | 株式会社ヤクルト本社 | Method for producing highly viable dried microbial cells |
CN111954711A (en) * | 2018-04-05 | 2020-11-17 | 株式会社益力多本社 | Method for producing high-viability dried microbial cell |
JPWO2019193841A1 (en) * | 2018-04-05 | 2021-04-08 | 株式会社ヤクルト本社 | Method for producing highly viable dried microbial cells |
TWI810246B (en) * | 2018-04-05 | 2023-08-01 | 日商養樂多本社股份有限公司 | Production method of dried microbial cells with high survivability |
CN114317274A (en) * | 2022-01-11 | 2022-04-12 | 广东量子天健医疗科技有限公司 | Viable bacteria preservation solution and preparation method and application thereof |
CN115491309A (en) * | 2022-09-19 | 2022-12-20 | 江西省科学院微生物研究所(江西省流域生态研究所) | Lactic acid bacteria fermentation stabilizer and preparation method and application method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rodrigues et al. | Influence of L-cysteine, oxygen and relative humidity upon survival throughout storage of probiotic bacteria in whey protein-based microcapsules | |
Guerrero Sanchez et al. | Ligilactobacillus salivarius functionalities, applications, and manufacturing challenges | |
JP6483653B2 (en) | Survivability improver for lactic acid bacteria and / or bifidobacteria | |
CN101486986B (en) | Preparation of freeze-dried Lactobacillus acidophilus powder | |
Soomro et al. | Role of lactic acid bacteria (LAB) in food preservation and human health-a review | |
EP3369805B1 (en) | Method for producing dried microbial cells | |
KR20200001543A (en) | Composition for cryoprotecting lactic acid bacteria containing citrate | |
CA3135622A1 (en) | Method of producing bacterially derived indole-3-propionic acid and compositions comprising same | |
JP2012055288A (en) | Stabilized viable bacterial preparation, and method for producing the same | |
JP7178203B2 (en) | Method for producing freeze-dried lactic acid bacteria | |
AU2019369917C1 (en) | Use of cysteine or salt thereof for cryoprotecting lactic acid bacteria | |
CN110184191B (en) | Freeze-drying protective agent for improving normal-temperature storage and pressure resistance of lactobacillus bulgaricus and application thereof | |
TWI810246B (en) | Production method of dried microbial cells with high survivability | |
JP2012056921A (en) | Probiotic preparation | |
KR101332420B1 (en) | Novel Leuconostoc citreum BS14 producing class II bacteriocin isolated from kimchi and use of the same | |
CN105494625B (en) | A kind of antibacterial protective agent and preparation method and application | |
JP2003219862A (en) | Method for improving storage stability of freeze-dried bacterium | |
Park et al. | Antipathogenic activity of Lactobacillus plantarum isolated from pickled mulberry leaf | |
Ouwehand et al. | Probiotics: from strain to product | |
Chaipojjana et al. | Survival of four probiotic strains in acid, bile salt and after spray drying | |
EA046292B1 (en) | METHOD FOR OBTAINING HIGHLY VITAL DRIED MICROBIAL CELLS | |
TANEJA | Maximising viability of Lactobacillus paracasei ssp. paracasei L. casei 431 during processing and ambient storage | |
JP2004242563A (en) | Shiitake (mushroom) fruit body highly containing eritadenine and method for producing the same | |
Taneja | Maximizing viability of Lactobacillus paracasei subsp. paracasei L. casei 431 during processing and ambient storage: a thesis presented in partial fulfillment of the requirements for the degree of Master of Technology in Food Technology, Massey University, Palmerston North, New Zealand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140930 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150324 |