JP2012055911A - Method for producing continuously-cast slab - Google Patents

Method for producing continuously-cast slab Download PDF

Info

Publication number
JP2012055911A
JP2012055911A JP2010199746A JP2010199746A JP2012055911A JP 2012055911 A JP2012055911 A JP 2012055911A JP 2010199746 A JP2010199746 A JP 2010199746A JP 2010199746 A JP2010199746 A JP 2010199746A JP 2012055911 A JP2012055911 A JP 2012055911A
Authority
JP
Japan
Prior art keywords
immersion nozzle
electrode
electric circuit
period
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010199746A
Other languages
Japanese (ja)
Other versions
JP5360024B2 (en
Inventor
Shinsuke Watanabe
信輔 渡辺
Michikazu Koga
道和 古賀
Katsuhiro Okubo
勝弘 大久保
Yuichi Tsukaguchi
友一 塚口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2010199746A priority Critical patent/JP5360024B2/en
Publication of JP2012055911A publication Critical patent/JP2012055911A/en
Application granted granted Critical
Publication of JP5360024B2 publication Critical patent/JP5360024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a continuously-cast slab, by which the deposition suppressing effect of oxide on an inner surface of immersion nozzles is obtained stably and equally to each immersion nozzle by using an apparatus of a simple constitution in a steel continuous casting machine having a plurality of strands.SOLUTION: The method for producing the continuously-cast slab is characterized in that: each immersion nozzle corresponding to each strand is used as one electrode, one common electrode as an opposing pole of each of the electrode is immersed in molten steel in a tundish, thus an electric circuit is constituted for each strand and a power source is arranged in each electric circuit; current having a current value of 10-300 A and a cycle length of 6-20 ms, and having a pulse waveform in which the positive and negative signs of the voltage are alternately changed is supplied with the same cycle length, phase and voltage to each electric circuit from each power source; and the period in which the immersion nozzle forms a negative electrode in one period of the pulse waveform is set to be longer than the period in which the immersion nozzle forms a positive electrode.

Description

本発明は、連続鋳造鋳片の製造方法に関し、特に、複数のストランドを有する連続鋳造機に用いられ、各ストランドの鋳型内へ溶鋼を注入する際に使用される浸漬ノズルの内面への酸化物の付着による内孔の閉塞を抑制することが可能な連続鋳造鋳片の製造方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing a continuous cast slab, and in particular, is used for a continuous casting machine having a plurality of strands, and oxides on the inner surface of an immersion nozzle used when pouring molten steel into a mold of each strand. It is related with the manufacturing method of the continuous cast slab which can suppress the obstruction | occlusion of the inner hole by adhesion of.

一般に、鋼の連続鋳造時に溶鋼注入用の浸漬ノズルの内孔閉塞が発生するのは避けがたい問題である。この浸漬ノズルの内孔閉塞は、溶鋼が浸漬ノズルの内部を通過する過程において、浸漬ノズルの内壁を構成する耐火物の表面に、溶鋼中の介在物が溶鋼中から排斥されて付着し、この介在物を起点として溶鋼中の介在物がさらに付着し、堆積することによって発生する(例えば、非特許文献1)。   Generally, it is an unavoidable problem that the inner hole of the immersion nozzle for molten steel injection is blocked during continuous casting of steel. The inner hole blockage of the immersion nozzle is caused by the inclusions in the molten steel being removed from the molten steel and adhering to the surface of the refractory constituting the inner wall of the immersion nozzle in the process of passing the molten steel through the interior of the immersion nozzle. It occurs when inclusions in the molten steel further adhere and deposit starting from the inclusions (for example, Non-Patent Document 1).

ここで、溶鋼中の介在物とは、主にアルミナである。浸漬ノズルの内孔閉塞が発生した場合、鋳型への溶鋼供給量の不足に伴い連続鋳造の中断につながりかねない。また、浸漬ノズルの内面に付着、堆積した介在物が、浸漬ノズルの内面から剥離した場合、剥離した介在物が浸漬ノズルを通過する溶鋼とともに鋳型内へ浸入し、鋳片の内部に残存して製品における介在物による欠陥を引き起こす可能性がある。   Here, inclusions in the molten steel are mainly alumina. When the inner hole of the immersion nozzle is blocked, continuous casting may be interrupted due to the shortage of molten steel supplied to the mold. In addition, when the inclusions adhered and deposited on the inner surface of the immersion nozzle peel off from the inner surface of the immersion nozzle, the peeled inclusions enter the mold together with the molten steel passing through the immersion nozzle and remain inside the slab. May cause defects due to inclusions in the product.

浸漬ノズル内面への介在物の付着を抑制する方法として、溶鋼流量制御機構(スライディングノズル)および上ノズルからアルゴンガスを吹き込む方法や、浸漬ノズル内を通過する溶鋼中に不活性ガスを吹き込む方法が、例えば特許文献1および特許文献2に開示されている。特許文献1に開示された方法は、浸漬ノズル内を通過する溶鋼量に応じて溶鋼中に吹き込む不活性ガスの量を調整する方法である。特許文献2に開示された方法は、浸漬ノズルの内壁に設けられた気体吹込み用の多孔質耐火物と溶鋼との間に、交流または直流電流を通電しつつ、溶鋼中にガスを吹き込む方法である。   As a method of suppressing the adhesion of inclusions to the inner surface of the immersion nozzle, there are a method of blowing argon gas from the molten steel flow control mechanism (sliding nozzle) and the upper nozzle, and a method of blowing inert gas into the molten steel passing through the immersion nozzle. For example, it is disclosed in Patent Document 1 and Patent Document 2. The method disclosed in Patent Document 1 is a method of adjusting the amount of inert gas blown into molten steel according to the amount of molten steel passing through the immersion nozzle. The method disclosed in Patent Document 2 is a method in which a gas is blown into molten steel while an alternating current or a direct current is passed between a porous refractory for gas blowing provided on the inner wall of the immersion nozzle and the molten steel. It is.

これらの方法では、不活性ガスを浸漬ノズルの内面から溶鋼中に吹き込むことにより、介在物が浸漬ノズルの内面に付着することを防止している。また、特許文献2では、気体吹込み用の多孔質耐火物の溶鋼との間に通電すると、溶鋼に電磁力が発生し、この電磁力によって発生する気泡の直径が定まるので、多孔質の孔径が吹込み時間の経過とともに増大しても発生する気泡の直径が大きくならず、鋳型内の凝固殻に捕捉される気泡性の欠陥が少なく、製品に表面欠陥等が発生しにくいとされている。   In these methods, the inclusion of the inclusions on the inner surface of the immersion nozzle is prevented by blowing an inert gas from the inner surface of the immersion nozzle into the molten steel. Moreover, in patent document 2, when energizing between the molten steel of the porous refractory for gas blowing, since the electromagnetic force will generate | occur | produce in molten steel and the diameter of the bubble produced | generated by this electromagnetic force will be decided, porous pore diameter The diameter of the generated bubbles does not increase even if the flow increases with the passage of time, and there are few bubble defects trapped by the solidified shell in the mold, and it is said that surface defects and the like are unlikely to occur in the product. .

このように、上記いずれの方法も、浸漬ノズル等から不活性ガスを吹き込むことを必須としているが、不活性ガスの吹込み量が不足した場合には、浸漬ノズルの内面等への溶鋼中の介在物の付着を十分に抑制することができないという問題がある。   As described above, in any of the above methods, it is essential to blow inert gas from an immersion nozzle or the like, but when the amount of inert gas blown is insufficient, the inner surface of the immersion nozzle or the like in the molten steel There is a problem that adhesion of inclusions cannot be sufficiently suppressed.

一方、不活性ガスの吹込み量が過剰な場合には、不活性ガスの気泡が鋳型内の凝固殻に捕捉され、鋳片の表層部に気泡系の欠陥が発生し、この鋳片を素材とする製品に表面欠陥が発生するという問題がある。   On the other hand, if the amount of inert gas blown is excessive, bubbles in the inert gas are trapped by the solidified shell in the mold, and bubble-type defects are generated in the surface layer of the slab. There is a problem that surface defects occur in the product.

しかも、特許文献2に開示された方法では、気体吹込み用の多孔質耐火物と溶鋼との間に100Aまたは200Aの直流電流または交流電流を連続して通電するため、電流密度が大きくなり、これに起因して、通常の緻密質耐火物と比較して脆弱な多孔質耐火物への電気的および熱的負荷が大きく、長時間の鋳造に耐えられないという問題がある。   Moreover, in the method disclosed in Patent Document 2, since a 100 A or 200 A direct current or alternating current is continuously passed between the porous refractory for gas blowing and the molten steel, the current density increases, As a result, the electrical and thermal loads on the brittle porous refractory are larger than those of a normal dense refractory, and there is a problem that it cannot withstand long-time casting.

本発明者らは、特許文献3および特許文献4に、浸漬ノズルを用いてタンディッシュから鋳型内に溶鋼を供給する連続鋳造方法において、浸漬ノズル本体を導電性耐火物で構成し、浸漬ノズル本体を介して、浸漬ノズルの内孔を通過する溶鋼に電流を流し、浸漬ノズル内面への介在物の付着を抑制することで、浸漬ノズル内孔の閉塞の防止を可能とする鋼の連続鋳造方法を開示した。   In the continuous casting method for supplying molten steel from a tundish into a mold using an immersion nozzle, the present inventors have disclosed that the immersion nozzle body is made of an electrically conductive refractory. The continuous casting method of steel which enables prevention of obstruction | occlusion of an immersion nozzle inner hole by sending an electric current to the molten steel which passes the inner hole of an immersion nozzle through this, and suppressing adhesion of the inclusion to the inner surface of an immersion nozzle Disclosed.

特許文献3および特許文献4に開示された方法は、浸漬ノズルの内面と浸漬ノズルの内部を通過する溶鋼との間に通電しながらタンディッシュ内の溶鋼を鋳型に供給する方法であるため、特許文献2に開示された方法に類似しているが、浸漬ノズル内面への介在物の付着防止方法およびその思想が相違している。   The method disclosed in Patent Document 3 and Patent Document 4 is a method for supplying molten steel in a tundish to a mold while energizing between the inner surface of the immersion nozzle and the molten steel passing through the interior of the immersion nozzle. Although it is similar to the method disclosed in Document 2, the method for preventing the adhesion of inclusions to the inner surface of the immersion nozzle and its idea are different.

すなわち、特許文献2に開示された方法では、電磁力を利用して不活性ガスの気泡の拡大を防止することによって浸漬ノズル内面への介在物の付着防止を実現している。一方、特許文献3および特許文献4に開示された方法は、これとは異なり、通電によって溶鋼と浸漬ノズルの界面近傍に集積する酸化物が分極し、界面張力が変化するとともに、酸化物の生成源の発生が抑制されることを利用して、浸漬ノズル内面への介在物の付着抑制を実現している。   That is, in the method disclosed in Patent Document 2, the adhesion of inclusions to the inner surface of the immersion nozzle is realized by preventing the expansion of bubbles of the inert gas by using electromagnetic force. On the other hand, the methods disclosed in Patent Document 3 and Patent Document 4 are different from the above, in which the oxide accumulated near the interface between the molten steel and the immersion nozzle is polarized by energization, the interfacial tension changes, and the generation of the oxide By suppressing the generation of the source, the adhesion of inclusions to the inner surface of the immersion nozzle is suppressed.

なお、浸漬ノズルと溶鋼との間に電位差を付与し、直流電流を流す場合には、浸漬ノズル側を負極にすると浸漬ノズル内孔の閉塞防止効果が一層安定する。これは、浸漬ノズルが負極側の場合と正極側の場合とで浸漬ノズル内孔閉塞防止機構に相違があることに起因する。   In addition, when a potential difference is applied between the immersion nozzle and the molten steel and a direct current is applied, the effect of preventing the immersion nozzle inner hole from being blocked is further stabilized by using the immersion nozzle side as a negative electrode. This is due to the difference in the immersion nozzle inner hole blocking prevention mechanism between the case where the immersion nozzle is on the negative electrode side and the case on the positive electrode side.

浸漬ノズルが負極側である場合と正極側である場合とでの浸漬ノズル内孔閉塞防止機構の相違は、下記の通りと考えられる。   The difference in the immersion nozzle inner hole blocking prevention mechanism between the case where the immersion nozzle is on the negative electrode side and the case where it is on the positive electrode side is considered as follows.

浸漬ノズルが負極側の場合、耐火物の溶損速度が減少し、Al3+等の陽イオンの溶出が抑制されるため、浸漬ノズルの内面近傍の溶鋼中におけるAl23の生成量が減少する。さらに、耐火物からの溶出成分による浸漬ノズル内面近傍の溶鋼と介在物との間の界面張力の低下も抑制されるため、鋼中の介在物に作用する界面張力勾配による力が減少し、鋼中の介在物の浸漬ノズルへの吸着も抑制される。 When the immersion nozzle is on the negative electrode side, the melting rate of the refractory is reduced and the elution of cations such as Al 3+ is suppressed, so the amount of Al 2 O 3 produced in the molten steel near the inner surface of the immersion nozzle is reduced. Decrease. Furthermore, since the decrease in the interfacial tension between the molten steel and the inclusions near the inner surface of the immersion nozzle due to the elution component from the refractory is also suppressed, the force due to the interfacial tension gradient acting on the inclusions in the steel decreases, and the steel Adsorption of inclusions on the immersion nozzle is also suppressed.

ここで、界面張力勾配とは、溶鋼と介在物との間の界面張力の、溶鋼から浸漬ノズルへ向かう方向の勾配を意味し、この値の絶対値が減少すると、介在物粒子が耐火物側に引き寄せられる力、またはその速度が低下し、浸漬ノズルへの鋼中介在物の付着量が減少する。   Here, the interfacial tension gradient means the gradient of the interfacial tension between the molten steel and the inclusions in the direction from the molten steel to the immersion nozzle. When the absolute value of this value decreases, the inclusion particles are moved to the refractory side. The force attracted to or the speed of the steel is reduced, and the amount of inclusions in the steel on the immersion nozzle is reduced.

これに対して、浸漬ノズルが正極側の場合は、耐火物組成中の陽イオンの溶出が促進されるため、耐火物の溶損速度が増加し、溶損速度が介在物付着速度を上回る結果、見かけ上、浸漬ノズル内孔の閉塞頻度が減少する。しかし、上述した負極側の場合とは逆に、陽イオンの溶出の増加によりAl23の生成量も増加するので、潜在的に介在物の付着傾向も強まる。したがって、浸漬ノズル内の溶鋼のスループット(通過流量)が少ない等、耐火物の溶損速度が小さい条件下にある場合や、鋼中介在物濃度が高い等、介在物の付着速度が大きくなる条件下においては、かえって浸漬ノズル内孔の閉塞頻度が増加することがある。 In contrast, when the immersion nozzle is on the positive electrode side, elution of cations in the refractory composition is promoted, resulting in an increase in the refractory erosion rate and the erosion rate exceeding the inclusion deposition rate. Apparently, the frequency of blockage of the inner diameter of the immersion nozzle is reduced. However, contrary to the case of the negative electrode described above, the amount of Al 2 O 3 generated increases due to the increase in cation elution, so that the tendency of adhesion of inclusions is also increased. Therefore, when the molten steel in the immersion nozzle has a low throughput (passage flow rate), the refractory has a low erosion rate, or the inclusion has a high inclusion rate, such as a high inclusion concentration in the steel. Below, the frequency of blockage of the inner diameter of the immersion nozzle may increase.

特開平4−319055号公報JP-A-4-319055 特開平6−182513号公報JP-A-6-182513 特許第4089556号公報Japanese Patent No. 4089556 特開2004−243385号公報JP 2004-243385 A

金子、外2名、「(267)スラブ連続鋳造におけるイマージョンノズル閉塞機構」、鉄と鋼、社団法人日本鉄鋼協会 第66年(1980)第11号、S868Kaneko and two others, “(267) Immersion nozzle clogging mechanism in slab continuous casting”, Iron and Steel, Japan Iron and Steel Institute 66th (1980) No. 11, S868

特許文献3に記載の浸漬ノズル内面への酸化物の付着抑制技術は、タンディッシュ内の電極1個を一方の電極とし、浸漬ノズル1本をこれに対応する他方の電極として、一方の電極と他方の電極との間に、正の電圧と負の電圧が時間差をおいて交互に現れる波形の電圧を印加することによって、浸漬ノズルの内孔の閉塞を抑制する効果を得る方法である。しかし、特許文献3では、複数のストランドを有する鋼の連続鋳造機のように、複数の浸漬ノズルを有する装置への対応については言及されていなかった。   The technology for suppressing the adhesion of oxide to the inner surface of the immersion nozzle described in Patent Document 3 uses one electrode in the tundish as one electrode, and one immersion nozzle as the other electrode corresponding thereto, This is a method for obtaining an effect of suppressing the clogging of the inner hole of the immersion nozzle by applying a voltage having a waveform in which a positive voltage and a negative voltage appear alternately with a time difference between the other electrode. However, Patent Document 3 does not mention the correspondence to an apparatus having a plurality of immersion nozzles, such as a continuous casting machine of steel having a plurality of strands.

また、特許文献4に記載の技術では、複数の浸漬ノズル間で通電する場合には、どちらか一方の浸漬ノズルは正極、もう一方の浸漬ノズルは負極となるため、全ての浸漬ノズルに対して内面への酸化物の付着を抑制する効果を均一に得ることが困難であった。   In the technique described in Patent Document 4, when energizing between a plurality of immersion nozzles, one of the immersion nozzles is a positive electrode and the other immersion nozzle is a negative electrode. It has been difficult to uniformly obtain the effect of suppressing the adhesion of oxide to the inner surface.

しかし、実際に用いられている鋼の連続鋳造機においては、2つ以上のストランドを有しているのが一般的である。複数のストランドを有する鋼の連続鋳造機において、鋳造中における浸漬ノズル内面への酸化物の付着抑制効果を得るには、従来の手法では、ストランドの数だけ設けた浸漬ノズルを一方の電極とし、これに対して同数の電源装置および他方の電極(対極)をタンディッシュ内に設置することが必要であった。   However, in actual steel continuous casting machines, it is common to have two or more strands. In the continuous casting machine of steel having a plurality of strands, in order to obtain the effect of suppressing the adhesion of oxide to the inner surface of the immersion nozzle during casting, the conventional method uses one immersion electrode provided as many strands as one electrode, On the other hand, it is necessary to install the same number of power supply devices and the other electrode (counter electrode) in the tundish.

これは、一方の電極である複数の浸漬ノズルに対して、1つの電源装置を用い、タンディッシュ内に対極を1つだけ配置した場合には、各浸漬ノズルに対応して形成された電気回路の電気抵抗値が異なるため、各電気回路の通電電流値に有意差が発生し、この有意差によって、ストランドごとに浸漬ノズル内面への酸化物の付着抑制効果の差が生じるおそれがあるからである。   This is because when a single power supply is used for a plurality of immersion nozzles as one electrode and only one counter electrode is arranged in the tundish, an electric circuit formed corresponding to each immersion nozzle Because of the difference in the electrical resistance value, there is a significant difference in the energization current value of each electrical circuit, and this significant difference may cause a difference in the effect of suppressing the adhesion of oxide to the inner surface of the immersion nozzle for each strand. is there.

この従来の手法には、タンディッシュ内への対極のセッティング作業の負荷が非常に大きく、しかも対極を構成するための耐火物のコストが増加するという問題がある。   This conventional method has a problem that the load for setting the counter electrode in the tundish is very large, and the cost of the refractory for forming the counter electrode increases.

本発明は、以上の課題に鑑みてなされたものであり、その目的は、複数のストランドを用いた鋼の連続鋳造に際して、浸漬ノズル内面への酸化物の付着抑制効果を、簡単な構成の装置を用いて各ストランドで同等かつ安定に得ることが可能な連続鋳造鋳片の製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and its object is to provide an apparatus having a simple structure for suppressing the adhesion of oxide to the inner surface of an immersion nozzle during continuous casting of steel using a plurality of strands. It is providing the manufacturing method of the continuous cast slab which can be obtained equally and stably by each strand using.

本発明者らは、上記課題を解決するため、タンディッシュ内に対極として1つの耐火物(以下「対極耐火物」という。)を配置し、この対極耐火物から各ストランドの浸漬ノズル保持装置に通電ケーブルを接続し、電源装置を介してこの対極耐火物に接続するという、並列電気回路を構成した場合について検討した。   In order to solve the above-mentioned problems, the present inventors have arranged one refractory as a counter electrode (hereinafter referred to as “counter electrode refractory”) in the tundish, and from this counter refractory to the immersion nozzle holding device of each strand. We examined the case where a parallel electric circuit was constructed in which an energized cable was connected and connected to the counter refractory via a power supply device.

その結果、並列電気回路を構成する複数の電気回路に対して電源装置を1つしか配置しなかった場合、各電気回路の電気抵抗が必ずしも等値ではないために、電気抵抗が小さい電気回路に優先して通電されることが判明した。本発明者らは、この場合、電気回路ごとに通電状態が異なることにより、それぞれの浸漬ノズル内面への酸化物の付着抑制効果が異なるという現象が発生することを知見した。   As a result, when only one power supply device is arranged for a plurality of electric circuits constituting the parallel electric circuit, the electric resistance of each electric circuit is not necessarily equal, so that the electric circuit having a small electric resistance is obtained. It has been found that power is given priority. In this case, the present inventors have found that the phenomenon that the effect of suppressing the adhesion of oxides to the inner surface of each immersion nozzle is different due to the difference in the energization state for each electric circuit.

本発明者らは、この問題に対して更なる検討を重ねた結果、並列電気回路を構成する各電気回路にそれぞれ電源装置を配置することによって、電気回路ごとに通電電流値を制御することに着目した。   As a result of further studies on this problem, the present inventors have decided to control the energization current value for each electric circuit by arranging a power supply device in each electric circuit constituting the parallel electric circuit. Pay attention.

ところが、この観点から検討を進めた結果、本発明者らは、複数の電源を有する並列電気回路に電流を通電する際に、電気回路ごとに異なる電源電圧を設定すると、電圧の大きな回路に作用する電圧が電圧の小さな回路の通電を妨げる現象が発生することを見出した。このため、並列電気回路において電気回路ごとに電源電圧が異なる場合には、それぞれの電気回路に所定の電流を通電することは容易ではない。   However, as a result of studying from this point of view, the present inventors, when energizing a parallel electric circuit having a plurality of power supplies, if a different power supply voltage is set for each electric circuit, it acts on a circuit having a large voltage. It has been found that a phenomenon occurs in which the voltage to be generated hinders the energization of a circuit having a small voltage. For this reason, when a power supply voltage differs for every electric circuit in a parallel electric circuit, it is not easy to supply a predetermined electric current to each electric circuit.

このため、本発明者らは、特定の電気回路が他の電気回路の通電に影響を及ぼすことなく所定の電流を通電する方法として、各電気回路の電源電圧を等しくすることを着想し、さらに検討を進めた結果、以下の知見を得た。   For this reason, the present inventors have conceived that the power supply voltage of each electric circuit is equalized as a method of supplying a predetermined current without affecting the energization of another electric circuit by a specific electric circuit, and As a result of the investigation, the following knowledge was obtained.

タンディッシュ内の1つの対極耐火物を複数のストランドのそれぞれに設けられた電気回路で共有させ、各ストランドの電気回路にそれぞれ電源装置を配置することによって、安定通電条件を成立させることが可能となり、浸漬ノズル内面への酸化物の付着抑制効果がさらに向上することがわかった。さらに、対極耐火物を1つだけとすることができたため、対極耐火物のコスト低減および対極耐火物のセッティング作業負荷の低減を達成できる。   It is possible to establish stable energization conditions by sharing one counter electrode refractory in the tundish with the electric circuits provided in each of the plurality of strands and arranging the power supply device in the electric circuit of each strand. It was found that the effect of suppressing the adhesion of oxide to the inner surface of the immersion nozzle was further improved. Furthermore, since only one counter refractory can be provided, the cost of the counter refractory can be reduced and the setting work load of the counter refractory can be reduced.

また、発明者らは、各ストランドの電気回路において、浸漬ノズルの極性が交互に切り替わるように通電する場合、各浸漬ノズルを正極および負極とする時間周期に関し、電気回路ごとに差がある場合や、時間周期が同一であったとしても、正極と負極とが切り替わるタイミング(位相)が電気回路ごとに異なる場合には、それぞれの電気回路における通電が他の電気回路の通電状態に相互干渉し、全てのストランドの電気回路のそれぞれで安定した通電状態が得にくいことを知見した。   In addition, in the electrical circuit of each strand, the inventors, when energized so that the polarity of the immersion nozzle is alternately switched, with respect to the time period in which each immersion nozzle is a positive electrode and a negative electrode, there is a difference for each electrical circuit or Even if the time period is the same, if the timing (phase) at which the positive electrode and the negative electrode are switched differs for each electric circuit, the energization in each electric circuit interferes with the energization state of the other electric circuit, It has been found that it is difficult to obtain a stable energized state in each of the electric circuits of all the strands.

この問題に対し、各浸漬ノズルの極性を切り替える時間周期および位相を同一とすること(同期化すること)で、複数のストランドの電気回路に同時に通電しても、他のストランドの電気回路への干渉を抑制し、全てのストランドの電気回路のそれぞれで安定した通電状態を得ることができることを見出した。   To solve this problem, the time period and the phase for switching the polarity of each immersion nozzle are made the same (synchronized), so that even if the electrical circuits of a plurality of strands are energized simultaneously, It has been found that interference can be suppressed and a stable energized state can be obtained in each of the electrical circuits of all strands.

本発明は、上記知見に基づいてなされたものであり、下記の連続鋳造鋳片の製造方法を要旨としている。すなわち、複数のストランドを有する連続鋳造機に用いられ、タンディッシュ内の溶鋼を各ストランドにそれぞれ対応する浸漬ノズルに導入し、各浸漬ノズルを通じて各ストランドの鋳型に供給する連続鋳造鋳片の製造方法において、各浸漬ノズルをそれぞれ一方の電極とし、これらの各電極の対極として1つの共有電極をタンディッシュ内の溶鋼に浸漬してストランドごとに電気回路を構成し、各電気回路にそれぞれ電源を配置し、各電源から各電気回路に、電流値が10〜300Aで、周期が6〜20msであり、電圧の正負が交互に切り替わるパルス波形の通電を、周期、位相および電圧を互いに同一として行い、かつ、前記パルス波形の1周期における、前記浸漬ノズルが負極となる期間を正極となる期間よりも長くすることを特徴とする連続鋳造鋳片の製造方法である。   This invention is made | formed based on the said knowledge, and makes the summary the manufacturing method of the following continuous cast slab. That is, a continuous casting slab manufacturing method used in a continuous casting machine having a plurality of strands, in which molten steel in a tundish is introduced into dipping nozzles corresponding to the respective strands, and is supplied to the mold of each strand through each dipping nozzle. In each, each immersion nozzle is used as one electrode, and a common electrode is immersed in the molten steel in the tundish as a counter electrode of each of these electrodes to form an electric circuit for each strand, and a power source is arranged in each electric circuit. Then, energization of a pulse waveform in which the current value is 10 to 300 A and the period is 6 to 20 ms and the voltage is alternately switched from each power source to each electric circuit is performed with the same period, phase, and voltage. And the period when the said immersion nozzle becomes a negative electrode in 1 period of the said pulse waveform is made longer than the period when it becomes a positive electrode. A method for producing a continuously cast slab that.

以下の記述において、鋼の成分組成を表す「質量%」を、単に「%」と表記する。   In the following description, “mass%” representing the component composition of steel is simply expressed as “%”.

本発明の連続鋳造鋳片の製造方法を用いることにより、複数のストランドを用いた鋼の連続鋳造に際して、浸漬ノズル内面への酸化物の付着抑制効果を、簡単な構成の装置を用いて各ストランドで同等かつ安定に得ることが可能である。その結果として、連続鋳造の操業安定化を達成し、表面および内部品質の良好な連続鋳造鋳片を得ることができる。   By using the continuous casting slab manufacturing method of the present invention, when continuously casting steel using a plurality of strands, the effect of suppressing the adhesion of oxides to the inner surface of the immersion nozzle can be reduced by using an apparatus with a simple configuration. It can be obtained equally and stably. As a result, it is possible to achieve continuous casting operation stabilization and obtain a continuous cast slab having good surface and internal quality.

本発明の連続鋳造鋳片の製造方法を適用できる連続鋳造装置の要部を示す概略図である。It is the schematic which shows the principal part of the continuous casting apparatus which can apply the manufacturing method of the continuous cast slab of this invention.

本発明の連続鋳造鋳片の製造方法は、上述の通り、複数のストランドを有する連続鋳造機に用いられ、タンディッシュ内の溶鋼を各ストランドにそれぞれ対応する浸漬ノズルに導入し、各浸漬ノズルを通じて各ストランドの鋳型に供給する連続鋳造鋳片の製造方法において、各浸漬ノズルをそれぞれ一方の電極とし、これらの各電極の対極として1つの共有電極をタンディッシュ内の溶鋼に浸漬してストランドごとに電気回路を構成し、各電気回路にそれぞれ電源を配置し、各電源から各電気回路に、電流値が10〜300Aで、周期が6〜20msであり、電圧の正負が交互に切り替わるパルス波形の通電を、周期、位相および電圧を互いに同一として行い、かつ、前記パルス波形の1周期における、前記浸漬ノズルが負極となる期間を正極となる期間よりも長くする方法である。以下、本発明の内容について説明する。   As described above, the method for producing a continuous cast slab according to the present invention is used in a continuous casting machine having a plurality of strands. The molten steel in the tundish is introduced into immersion nozzles corresponding to the respective strands, and each through the immersion nozzles. In the manufacturing method of continuous cast slabs to be supplied to the mold of each strand, each immersion nozzle is used as one electrode, and one shared electrode is immersed in the molten steel in the tundish as a counter electrode of each electrode. An electric circuit is configured, a power source is arranged in each electric circuit, a current waveform of 10 to 300 A, a period of 6 to 20 ms, and a positive and negative voltage waveform are alternately switched from each power source to each electric circuit. Energization is performed with the same period, phase, and voltage, and the period during which the immersion nozzle is negative in one period of the pulse waveform is positive. It is a method for longer than the period to be. The contents of the present invention will be described below.

図1は、本発明の連続鋳造鋳片の製造方法を適用できる連続鋳造装置の要部を示す概略図である。タンディッシュ1の底面には、複数のストランド(不図示)に対応して1つずつ浸漬ノズル2がスライディングプレート3を介して設けられている。スライディングプレート3は、溶鋼が通過する孔を有する上下の固定プレートと中央の摺動プレートの3層のプレートで構成されており、摺動プレートを移動させることにより、溶鋼の流量を調整する。タンディッシュ1に収容された溶鋼6は、浸漬ノズル2を経て鋳型4およびその下方の二次冷却スプレーノズル(不図示)から噴射されるスプレー水により冷却され、凝固シェルを形成して連続鋳造鋳片となる。   FIG. 1 is a schematic view showing a main part of a continuous casting apparatus to which the method for producing a continuous cast slab of the present invention can be applied. An immersion nozzle 2 is provided on the bottom surface of the tundish 1 via a sliding plate 3 one by one corresponding to a plurality of strands (not shown). The sliding plate 3 is composed of three layers of upper and lower fixed plates having holes through which molten steel passes and a central sliding plate, and the flow rate of the molten steel is adjusted by moving the sliding plate. The molten steel 6 accommodated in the tundish 1 is cooled by spray water sprayed from a mold 4 and a secondary cooling spray nozzle (not shown) below the mold 4 through an immersion nozzle 2 to form a solidified shell and continuously cast. It becomes a piece.

また、各浸漬ノズル2に対応して1つずつ電源装置5が配置されている。各電源装置5には、ケーブル10aとケーブル10bの一端が接続されている。ケーブル10aの他端は、各浸漬ノズル2の側面に設けられた電極8に接続されている。ケーブル10bの他端は、タンディッシュ1内に配置された棒状の耐火物からなる対極7の一端に設けられた電極端子9に接続されている。対極7の他端は溶鋼6に浸漬した状態にされる。このように、一方の電極である複数の浸漬ノズル2と、これに対応する1つの対極7とで並列電気回路を構成する。   Further, one power supply device 5 is arranged corresponding to each immersion nozzle 2. One end of a cable 10 a and a cable 10 b is connected to each power supply device 5. The other end of the cable 10 a is connected to an electrode 8 provided on the side surface of each immersion nozzle 2. The other end of the cable 10 b is connected to an electrode terminal 9 provided at one end of a counter electrode 7 made of a rod-like refractory disposed in the tundish 1. The other end of the counter electrode 7 is immersed in the molten steel 6. Thus, a parallel electric circuit is comprised by the some immersion nozzle 2 which is one electrode, and the one counter electrode 7 corresponding to this.

図1に示すように、本発明の連続鋳造鋳片の製造方法に用いるタンディッシュおよび浸漬ノズル周辺装置では、並列電気回路を構成する各電気回路で1つの対極7を共有するため、複数の対極を設けた場合と比較して、装置を簡単な構成とし、対極7のコストおよびセッティング作業負荷を低減することができる。   As shown in FIG. 1, in the tundish and immersion nozzle peripheral device used in the method for producing a continuous cast slab according to the present invention, each electric circuit constituting the parallel electric circuit shares one counter electrode 7. Compared with the case where the device is provided, the apparatus can be simplified in configuration, and the cost of the counter electrode 7 and the setting work load can be reduced.

連続鋳造鋳片の製造に際し、電源装置5の制御により各電気回路に、電圧の正負が交互に切り替わる波形の通電を、周期、位相および電圧を互いに同一として行う。これにより、各電気回路に所定の電流を通電することが可能となり、浸漬ノズル2内面への酸化物の付着抑制効果を各ストランドで同等に得ることが可能である。   In the production of a continuous cast slab, the electrical circuit is energized in a waveform in which the positive and negative voltages are alternately switched under the control of the power supply device 5 with the same period, phase, and voltage. Thereby, it becomes possible to supply a predetermined current to each electric circuit, and the effect of suppressing the adhesion of oxide to the inner surface of the immersion nozzle 2 can be obtained equally in each strand.

通電条件は、電流値が10〜300Aで、周期が6〜20msのパルス波形とする。ここで、通電波形についてパルスとは、矩形波をいう。   The energization condition is a pulse waveform having a current value of 10 to 300 A and a period of 6 to 20 ms. Here, the pulse in the energization waveform refers to a rectangular wave.

本発明の連続鋳造鋳片の製造方法による浸漬ノズル内面への酸化物の付着抑制技術は、炭素鋼および合金鋼全般の製造に適用することができ、成分組成の上限値および下限値に関する制限はない。もっとも、各ストランドの電気回路の通電条件は、溶融金属と浸漬ノズルの界面近傍に集積する酸化物が分極し、界面張力が変化するとともに、酸化物の生成源の発生を抑制し、浸漬ノズル内面への酸化物の付着抑制効果を発揮させる条件とすることが必要である。   The technique for suppressing oxide adhesion to the inner surface of an immersion nozzle by the method for producing a continuous cast slab of the present invention can be applied to the production of carbon steel and alloy steel in general, and there are no restrictions on the upper limit value and lower limit value of the component composition. Absent. However, the electrical current condition of the electrical circuit of each strand is that the oxide accumulated near the interface between the molten metal and the immersion nozzle is polarized, the interfacial tension changes, and the generation of the oxide generation source is suppressed. It is necessary to set the conditions to exert the effect of suppressing the adhesion of oxide to the surface.

そのため、通電電流値は10〜300Aの範囲とする。通電電流値が10A未満の場合、界面張力低下効果を十分にえることができず、安定した浸漬ノズル内面への酸化物の付着抑制効果を発揮することが困難な場合がある。通電電流値が300Aを超える場合、電流密度が大きく、浸漬ノズルを構成する耐火物への電気的および熱的負荷が大きいことや、電力を供給する電源装置、ケーブル線等の通電設備が大規模になることとともに、電極接合部にスパークが発生しやすくなること等から、操業が困難である。通電電流値の範囲は、50〜200Aが好ましく、100〜200Aがさらに好ましい。   For this reason, the energization current value is in the range of 10 to 300A. When the energization current value is less than 10 A, the interfacial tension lowering effect cannot be sufficiently obtained, and it may be difficult to exert the stable effect of suppressing the adhesion of oxide to the inner surface of the immersion nozzle. When the current value exceeds 300 A, the current density is large, the electrical and thermal load on the refractory that constitutes the immersion nozzle is large, and the power supply equipment that supplies power, the power supply equipment such as cable wires, etc. are large-scale In addition, since the spark is likely to be generated at the electrode joint portion, the operation is difficult. The range of the energization current value is preferably 50 to 200A, and more preferably 100 to 200A.

また、パルスは周期を6〜20msの範囲とする。周期が6ms未満の短周期パルス、および20msを超える長周期パルスの場合、パルスの1周期において浸漬ノズル本体が正極または負極である時間が過小または過大となり、パルスの通電に特有の浸漬ノズルを構成する耐火物の極性変化による酸化物の付着抑制効果を十分に得られない。   The pulse has a period in the range of 6 to 20 ms. In the case of short-period pulses with a period of less than 6 ms and long-period pulses with a period of more than 20 ms, the time during which the immersion nozzle body is positive or negative in one cycle of the pulse is too short or too large, forming a unique immersion nozzle for pulse energization Therefore, the effect of suppressing the adhesion of oxide due to the change in polarity of the refractory is not obtained.

パルスの1周期において浸漬ノズル本体が負極である時間と正極である時間の差(負極である時間から正極である時間を減じた値)は、0.20msより大きく1.40ms未満とすることが好ましい。本発明者らが検討した結果によれば、パルスの周期を6〜20msの範囲とし、さらに上記時間差をこの範囲とすれば、良好な酸化物の付着抑制効果が得られることがわかっている。   The difference between the time when the immersion nozzle body is the negative electrode and the time when it is the positive electrode in one cycle of the pulse (the value obtained by subtracting the time when it is the negative electrode from the time when it is the negative electrode) may be greater than 0.20 ms and less than 1.40 ms. preferable. According to the results studied by the present inventors, it has been found that if the pulse period is in the range of 6 to 20 ms and the time difference is in this range, a good oxide adhesion suppressing effect can be obtained.

本発明の連続鋳造鋳片の製造方法は、炭素鋼および合金鋼全般の製造に適用することができ、上述のように成分組成の上限値および下限値に関する制限はない。例えば、本発明の連続鋳造鋳片の製造方法に適した鋼種として、C:0.10〜1.10%、Si:0.10〜0.50%、Mn:0.50〜1.20%、P:0.05%以下、S:0.060%以下の炭素鋼や、C:0.10〜1.10%、Si:0.10〜2.00%、Mn:0.50〜1.20%、P:0.05%以下、S:0.050%以下、Al:0.01〜0.10%、N:0.005〜0.03%であり、Cr、NiおよびMoに関しては任意添加成分で、Cr:1.50%以下、Mo:1.0%以下、Ni:2.0%以下である合金鋼が挙げられる。   The method for producing a continuous cast slab of the present invention can be applied to the production of carbon steel and alloy steel in general, and there is no restriction on the upper limit value and the lower limit value of the component composition as described above. For example, C: 0.10 to 1.10%, Si: 0.10 to 0.50%, Mn: 0.50 to 1.20% as steel types suitable for the continuous casting slab manufacturing method of the present invention. , P: 0.05% or less, S: 0.060% or less of carbon steel, C: 0.10 to 1.10%, Si: 0.10 to 2.00%, Mn: 0.50 to 1 20%, P: 0.05% or less, S: 0.050% or less, Al: 0.01 to 0.10%, N: 0.005 to 0.03%, with respect to Cr, Ni and Mo Is an optional additive component, and includes alloy steels with Cr: 1.50% or less, Mo: 1.0% or less, and Ni: 2.0% or less.

本発明の連続鋳造鋳片の製造方法の効果を確認するため、以下に示す実験を実施してその結果を評価した。   In order to confirm the effect of the manufacturing method of the continuous cast slab of the present invention, the following experiment was performed and the result was evaluated.

1.実験条件
前記図1に示す連続鋳造装置を使用し、鋳片の鋳造試験を行った。
1. Experimental conditions Using the continuous casting apparatus shown in FIG.

鋳造実験に用いた鋼種は、溶鋼として、C:0.56%、Si:0.20%、Mn:0.80%、P:0.020%、S:0.005%の炭素鋼とした。各ストランドでの溶鋼の連続鋳造量は100トンとした。鋳片の寸法は、幅400〜470mm、厚さ300〜340mmとした。   The steel type used for the casting experiment was a carbon steel of C: 0.56%, Si: 0.20%, Mn: 0.80%, P: 0.020%, S: 0.005% as molten steel. . The continuous casting amount of the molten steel in each strand was 100 tons. The dimensions of the slab were 400 to 470 mm in width and 300 to 340 mm in thickness.

鋳造実験時の、鋳造速度ならびに通電条件(通電電圧、通電電流値および正極/負極切替周期)は、表1に示す通りとした。通電波形は、矩形波のパルスとし、各電気回路においてそれぞれの電源を用いてパルスの周期(正極/負極切替周期)、位相および電圧を互いに同一として通電を行った。表1では、2つのストランドのうち、一方を第1ストランド、他方を第2ストランドと記載した。   The casting speed and energization conditions (energization voltage, energization current value, and positive / negative electrode switching cycle) during the casting experiment were as shown in Table 1. The energization waveform was a rectangular wave pulse, and each electric circuit was energized using the same power source with the same pulse period (positive / negative electrode switching period), phase, and voltage. In Table 1, one of the two strands was described as a first strand and the other as a second strand.

Figure 2012055911
Figure 2012055911

実験番号1および2は、いずれも電気回路に通電を行わなかった比較例である。実験番号3は、第1ストランドと第2ストランドとで通電電圧が異なる比較例である。実験番号4は、第1ストランドと第2ストランドとで正極/負極切替周期が異なる比較例である。実験番号5および6は、いずれも本発明の規定を満足する本発明例である。実験番号7および8は、いずれも正極/負極切替周期が本発明の規定を満足しない比較例である。   Experiment numbers 1 and 2 are comparative examples in which no electric current was applied to the electric circuit. Experiment No. 3 is a comparative example in which the energization voltage differs between the first strand and the second strand. Experiment No. 4 is a comparative example in which the positive / negative electrode switching cycle is different between the first strand and the second strand. Experiment numbers 5 and 6 are examples of the present invention that both satisfy the provisions of the present invention. Experiment numbers 7 and 8 are comparative examples in which the positive / negative electrode switching period does not satisfy the provisions of the present invention.

2.評価項目
表1には、実験条件と併せて、評価項目およびその結果を示す。評価項目は、「使用後ノズル内面付着物厚さ」、「スライディングプレート開度進行度」および「鋳型内湯面変動幅」とした。
2. Evaluation Items Table 1 shows the evaluation items and the results together with the experimental conditions. The evaluation items were “the thickness of the deposit on the inner surface of the nozzle after use”, “the degree of progress of the sliding plate opening”, and “the fluctuation range of the molten metal surface in the mold”.

「使用後ノズル内面付着物厚さ」および「スライディングプレート開度進行度」は、浸漬ノズル内面への酸化物の付着抑制効果の評価指標である。   “Post-use nozzle inner surface deposit thickness” and “sliding plate opening degree progress” are evaluation indexes of the effect of suppressing the adhesion of oxide to the inner surface of the immersion nozzle.

「使用後ノズル内面付着物厚さ」は、鋳造実験後の浸漬ノズルを縦に切断し、長手方向4箇所から測定した、浸漬ノズルの内面に付着している酸化物の厚さの平均値である。測定位置は、スラグラインの下50mm、スラグライン部、スラグラインの上100mmおよび200mmとした。   The “thickness on the inner surface of the nozzle after use” is an average value of the thickness of the oxide adhering to the inner surface of the immersion nozzle, which was measured from four locations in the longitudinal direction by vertically cutting the immersion nozzle after the casting experiment. is there. The measurement positions were 50 mm below the slag line, the slag line part, and 100 mm and 200 mm above the slag line.

「スライディングプレート開度進行度」は、各ストランドで溶鋼100トンを連続鋳造する間の、スライディングプレートの初期開度と末期開度の変化値(差)の絶対値である。スライディングプレートの開度とは、前記図1に示すスライディングプレートの摺動プレートの摺動ストローク長さを意味する。   The “sliding plate opening degree of progress” is an absolute value of a change value (difference) between the initial opening degree and the final opening degree of the sliding plate during continuous casting of 100 tons of molten steel in each strand. The opening degree of the sliding plate means the sliding stroke length of the sliding plate of the sliding plate shown in FIG.

浸漬ノズル内孔の閉塞がない場合には、スライディングプレートの開度は安定しているため、スライディングプレート開度進行度はほぼ0になる。逆に、浸漬ノズル内孔の閉塞が発生した場合には、連続鋳造末期のスライディングプレートの開度は、初期の開度と比較して大きいため、閉塞がない場合と比較してスライディングプレート開度進行度は大きくなる。   When there is no blockage of the immersion nozzle inner hole, the opening degree of the sliding plate is stable, and the degree of progress of the sliding plate opening degree is almost zero. On the contrary, when the clogging of the immersion nozzle bore occurs, the sliding plate opening at the end of continuous casting is larger than the initial opening, so the sliding plate opening compared to the case without clogging Progression becomes large.

「鋳型内湯面変動幅」は、連続鋳造を開始してから終了するまでの間の各ストランドでの鋳型内の溶鋼湯面の変動幅であり、以下に説明するように、鋳片表皮下欠陥が発生する可能性を示す指標である。   “Valve surface fluctuation width in mold” is the fluctuation width of the molten steel surface in the mold at each strand from the start to the end of continuous casting. This is an index indicating the possibility of occurrence of.

鋳型内の溶鋼湯面は、スライディングプレートの開閉によって一定位置に維持されるように制御されている。しかし、鋳造中に浸漬ノズル内面に酸化物が付着し、その付着物が剥離した際等には、瞬間的に浸漬ノズル内の溶鋼通過断面積が増加し、鋳型へ供給される溶鋼流量が増加する。このとき、スライディングプレートの開閉制御がわずかに遅れると、鋳型内の溶鋼湯面が大きく変動する。鋳型内湯面変動幅が大きい場合には、鋳型内の溶鋼上に投入しているモールドパウダーを未滓化状態のままで巻き込み、鋳片表皮下欠陥が発生する可能性が高くなる。溶鋼内湯面変動幅が小さいほど、得られた鋳塊の表面品質が良好であることが一般的に知られている。   The molten steel surface in the mold is controlled so as to be maintained at a fixed position by opening and closing the sliding plate. However, when an oxide adheres to the inner surface of the immersion nozzle during casting and the deposit is peeled off, the molten steel passage cross-sectional area in the immersion nozzle instantaneously increases, and the flow rate of molten steel supplied to the mold increases. To do. At this time, if the opening / closing control of the sliding plate is slightly delayed, the molten steel surface in the mold greatly fluctuates. When the molten metal surface fluctuation width in the mold is large, there is a high possibility that the mold powder put on the molten steel in the mold is wound in an unhatched state and a slab surface subcutaneous defect is generated. It is generally known that the smaller the molten steel inner surface fluctuation width, the better the surface quality of the resulting ingot.

3.実験結果
表1に示すように、電気回路に通電を行わなかった比較例である実験番号1および2での、「使用後ノズル内面付着物厚さ」は5〜6mmと、通電を行った他の実施例と比較して大きい数値であった。
3. Experimental results As shown in Table 1, in the experiment numbers 1 and 2 which are comparative examples in which the electric circuit was not energized, the “thickness on the inner surface of the nozzle after use” was 5 to 6 mm. It was a large numerical value as compared with the Example.

これに対して、本発明の要件を満足する実験番号5および6では、「使用後ノズル内面付着物厚さ」は1〜2mmと非常に小さく、大幅な酸化物付着抑制効果が認められた。また、スライディングプレートの開度も変化していなかった。さらに、「鋳型内湯面変動幅」も±1mmと、湯面の変動がほとんど認められず、複数のストランドの全てに対して同等の浸漬ノズル内面への酸化物の付着抑制効果が得られた。   On the other hand, in Experiment Nos. 5 and 6 that satisfy the requirements of the present invention, the “post-use nozzle inner surface deposit thickness” was as extremely small as 1 to 2 mm, and a significant oxide adhesion suppressing effect was recognized. Also, the opening of the sliding plate did not change. Furthermore, the fluctuation range of the molten metal surface in the mold was also ± 1 mm, and almost no variation of the molten metal surface was observed, and the same effect of suppressing the adhesion of oxide to the inner surface of the immersion nozzle was obtained for all of the plurality of strands.

通電条件を第1ストランドと第2ストランドとで異なる条件とした場合の有意差については、通電電圧を異なる値とした実験番号3の場合、および正極/負極切替周期を異なる値とした実験番号4の場合のいずれも、「使用後ノズル内面付着物厚さ」が3mmおよび4mmと大きく、スライディングプレート開度は1mmおよび2mm進行し、最大3mmの鋳型内湯面の変動が認められた。   Regarding the significant difference when the energization conditions are different between the first strand and the second strand, the experiment number 3 with different energization voltages and the experiment number 4 with different positive / negative electrode switching cycles In both cases, the “thickness of deposit on the inner surface of the nozzle after use” was as large as 3 mm and 4 mm, the sliding plate opening was advanced by 1 mm and 2 mm, and a variation of the hot water level in the mold of 3 mm at maximum was observed.

これは、実験番号3の場合には、相互の電気回路に働く電圧が異なることに伴う、大電圧回路が小電圧回路の通電に干渉した影響と推定され、実験番号4の場合には、相互の電気回路における正極/負極切替周期が異なることに伴う、並列電気回路内での相互干渉による不安定通電電流の影響と推定される。   This is presumed to be the effect of the large voltage circuit interfering with the energization of the small voltage circuit in the case of Experiment No. 3 due to the difference in the voltages applied to the electrical circuits. This is presumably due to the influence of unstable energization current due to mutual interference in the parallel electric circuit due to the difference between the positive / negative electrode switching periods in the electric circuit.

一方、実験番号7では、正極/負極切替周期が過小であり、十分な浸漬ノズル耐火物と溶鋼界面での界面張力低下効果が得られなかった。そのため、「使用後ノズル内面付着物厚さ」が4mm、「鋳型内湯面変動幅」が±4mmと大きく、十分な浸漬ノズル内面への酸化物の付着抑制効果を得ることができなかった。   On the other hand, in Experiment No. 7, the positive / negative electrode switching cycle was too short, and a sufficient interfacial tension reduction effect at the interface between the immersion nozzle refractory and the molten steel was not obtained. Therefore, the “thickness on the nozzle inner surface after use” was as large as 4 mm and the “in-mold molten metal surface fluctuation width” was as large as ± 4 mm, and a sufficient effect of suppressing the adhesion of oxide to the inner surface of the immersion nozzle could not be obtained.

実験番号8では、期待する十分な浸漬ノズル内面への酸化物の付着抑制効果を得ることができなかった。これは、正極/負極切替周期が過大であり、正極/負極切替周期の1周期において浸漬ノズルが正極である時間が長いことに起因して、浸漬ノズル内面への酸化物の付着量が多くなったためと推測される。   In Experiment No. 8, it was not possible to obtain the expected effect of suppressing the adhesion of oxide to the inner surface of the immersion nozzle. This is because the positive electrode / negative electrode switching cycle is excessive, and the time during which the immersion nozzle is the positive electrode is long in one cycle of the positive electrode / negative electrode switching cycle, so that the amount of oxide attached to the inner surface of the immersion nozzle increases. It is estimated that

本発明の連続鋳造鋳片の製造方法を用いることにより、複数のストランドを用いた鋼の連続鋳造に際して、安定した浸漬ノズル内面への酸化物の付着抑制効果を各ストランドで同等に得ることが可能である。その結果として、連続鋳造の操業安定化を達成し、表面および内部品質の良好な連続鋳造鋳片を得ることができる。   By using the continuous casting slab manufacturing method of the present invention, it is possible to obtain the same effect of suppressing the adhesion of oxide to the inner surface of the immersion nozzle in each strand during continuous casting of steel using a plurality of strands. It is. As a result, it is possible to achieve continuous casting operation stabilization and obtain a continuous cast slab having good surface and internal quality.

本発明は、従来技術では解決できなかった各ストランドでの浸漬ノズルの閉塞抑制効果が同等でないという問題を解決しており、産業上、非常に価値が高い。   The present invention solves the problem that the effect of suppressing the clogging of the immersion nozzle in each strand that could not be solved by the prior art is not equivalent, and is very valuable industrially.

1:タンディッシュ、 2:浸漬ノズル、 3:スライディングプレート、 4:鋳型、
5:電源装置、 6:溶鋼、 7:対極、 8:電極、 9:電極端子、 10a:ケーブル、 10b:ケーブル
1: tundish, 2: immersion nozzle, 3: sliding plate, 4: mold,
5: Power supply device, 6: Molten steel, 7: Counter electrode, 8: Electrode, 9: Electrode terminal, 10a: Cable, 10b: Cable

Claims (1)

複数のストランドを有する連続鋳造機に用いられ、タンディッシュ内の溶鋼を各ストランドにそれぞれ対応する浸漬ノズルに導入し、各浸漬ノズルを通じて各ストランドの鋳型に供給する連続鋳造鋳片の製造方法において、
各浸漬ノズルをそれぞれ一方の電極とし、これらの各電極の対極として1つの共有電極をタンディッシュ内の溶鋼に浸漬してストランドごとに電気回路を構成し、各電気回路にそれぞれ電源を配置し、
各電源から各電気回路に、電流値が10〜300Aで、周期が6〜20msであり、電圧の正負が交互に切り替わるパルス波形の通電を、周期、位相および電圧を互いに同一として行い、
かつ、前記パルス波形の1周期における、前記浸漬ノズルが負極となる期間を正極となる期間よりも長くすることを特徴とする連続鋳造鋳片の製造方法。
In a continuous casting slab manufacturing method used in a continuous casting machine having a plurality of strands, introducing molten steel in a tundish into dipping nozzles corresponding to the respective strands, and supplying each of the strands to a mold of each strand through each dipping nozzle,
Each immersion nozzle is set as one electrode, and one shared electrode is immersed in the molten steel in the tundish as a counter electrode of each electrode to constitute an electric circuit for each strand, and a power source is arranged in each electric circuit,
A current of 10 to 300 A and a period of 6 to 20 ms from each power source to each electric circuit is applied with a pulse waveform in which the voltage is alternately switched between positive and negative with the same period, phase and voltage.
And the manufacturing method of the continuous cast slab characterized by making the period when the said immersion nozzle becomes a negative electrode in 1 period of the said pulse waveform longer than the period when it becomes a positive electrode.
JP2010199746A 2010-09-07 2010-09-07 Manufacturing method of continuous cast slab Active JP5360024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010199746A JP5360024B2 (en) 2010-09-07 2010-09-07 Manufacturing method of continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010199746A JP5360024B2 (en) 2010-09-07 2010-09-07 Manufacturing method of continuous cast slab

Publications (2)

Publication Number Publication Date
JP2012055911A true JP2012055911A (en) 2012-03-22
JP5360024B2 JP5360024B2 (en) 2013-12-04

Family

ID=46053652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010199746A Active JP5360024B2 (en) 2010-09-07 2010-09-07 Manufacturing method of continuous cast slab

Country Status (1)

Country Link
JP (1) JP5360024B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008530A (en) * 2012-07-02 2014-01-20 Nippon Steel & Sumitomo Metal Continuous casting method using immersed nozzle
CN105127389A (en) * 2015-09-07 2015-12-09 河北钢铁股份有限公司 Control method for reducing inter-flow temperature difference of multi-machine and multi-flow continuous casting
CN107812902A (en) * 2017-12-07 2018-03-20 安徽工业大学 A kind of device for improving micro-alloyed steel continuous casting process castability
CN107999718A (en) * 2017-12-07 2018-05-08 安徽工业大学 A kind of method for improving micro-alloyed steel continuous casting process castability
CN109732072A (en) * 2019-03-19 2019-05-10 东北大学 A method of applying homophilic charge to inhibit submersed nozzle inner wall dross
CN109759573A (en) * 2019-03-19 2019-05-17 东北大学 A method of using pulse current to inhibit submersed nozzle inner wall dross
CN111230086A (en) * 2020-03-17 2020-06-05 辽宁科技大学 Method for inhibiting erosion of continuous casting nozzle by using potential elimination method
CN112024864A (en) * 2020-08-25 2020-12-04 辽宁科技大学 Method for removing inclusions in tundish steel by using pulse current

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106141126A (en) * 2015-03-25 2016-11-23 宝山钢铁股份有限公司 Improve the device and method of continuous casting billet solidified structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025203A (en) * 2002-06-21 2004-01-29 Sumitomo Metal Ind Ltd Method for continuously casting molten steel
JP2004243385A (en) * 2003-02-14 2004-09-02 Sumitomo Metal Ind Ltd Continuous casting method
JP2005066689A (en) * 2003-08-28 2005-03-17 Sumitomo Metal Ind Ltd Method for continuously casting metal
JP2005169477A (en) * 2003-12-12 2005-06-30 Sumitomo Metal Ind Ltd Method for continuously casting steel
WO2008090649A1 (en) * 2007-01-25 2008-07-31 Sumitomo Metal Industries, Ltd. Continuous casting method of steel
JP2010201504A (en) * 2009-02-09 2010-09-16 Sumitomo Metal Ind Ltd Continuous casting method for steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025203A (en) * 2002-06-21 2004-01-29 Sumitomo Metal Ind Ltd Method for continuously casting molten steel
JP2004243385A (en) * 2003-02-14 2004-09-02 Sumitomo Metal Ind Ltd Continuous casting method
JP2005066689A (en) * 2003-08-28 2005-03-17 Sumitomo Metal Ind Ltd Method for continuously casting metal
JP2005169477A (en) * 2003-12-12 2005-06-30 Sumitomo Metal Ind Ltd Method for continuously casting steel
WO2008090649A1 (en) * 2007-01-25 2008-07-31 Sumitomo Metal Industries, Ltd. Continuous casting method of steel
JP2010201504A (en) * 2009-02-09 2010-09-16 Sumitomo Metal Ind Ltd Continuous casting method for steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008530A (en) * 2012-07-02 2014-01-20 Nippon Steel & Sumitomo Metal Continuous casting method using immersed nozzle
CN105127389A (en) * 2015-09-07 2015-12-09 河北钢铁股份有限公司 Control method for reducing inter-flow temperature difference of multi-machine and multi-flow continuous casting
CN107812902A (en) * 2017-12-07 2018-03-20 安徽工业大学 A kind of device for improving micro-alloyed steel continuous casting process castability
CN107999718A (en) * 2017-12-07 2018-05-08 安徽工业大学 A kind of method for improving micro-alloyed steel continuous casting process castability
CN109732072A (en) * 2019-03-19 2019-05-10 东北大学 A method of applying homophilic charge to inhibit submersed nozzle inner wall dross
CN109759573A (en) * 2019-03-19 2019-05-17 东北大学 A method of using pulse current to inhibit submersed nozzle inner wall dross
CN109732072B (en) * 2019-03-19 2021-05-25 东北大学 Method for applying same-polarity charges to inhibit inner wall accretion of submerged nozzle
CN111230086A (en) * 2020-03-17 2020-06-05 辽宁科技大学 Method for inhibiting erosion of continuous casting nozzle by using potential elimination method
CN112024864A (en) * 2020-08-25 2020-12-04 辽宁科技大学 Method for removing inclusions in tundish steel by using pulse current

Also Published As

Publication number Publication date
JP5360024B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5360024B2 (en) Manufacturing method of continuous cast slab
JP5024296B2 (en) Steel continuous casting method
JP5768919B2 (en) Continuous casting method of Al killed steel
JP5316327B2 (en) Steel continuous casting method
US6598662B2 (en) Molten steel supplying apparatus for continuous casting and continuous casting method therewith
JP3747848B2 (en) Continuous casting method
JP5803851B2 (en) Continuous casting method of steel containing rare earth metal
JP5869748B2 (en) Continuous casting method of Al killed steel
JP5768773B2 (en) Continuous casting method using immersion nozzle
JP4089556B2 (en) Metal continuous casting method
JP5304716B2 (en) Continuous casting method of steel containing rare earth metal
JP2011056516A (en) Continuous casting method for steel
TW201838744A (en) Continuous casting method for steel
WO2013190594A1 (en) Submerged entry nozzle for continuous casting and continous casting method using same
JP2004330256A (en) Method of continuous casting of steel
JP5637087B2 (en) Continuous casting method
JP2002210546A (en) Method for producing continuously cast product
JP6590110B2 (en) Continuous molten metal plating processing apparatus and molten metal plating processing method using the apparatus
JP7393638B2 (en) Continuous steel casting method
JP2003200242A (en) Immersion nozzle for continuous casting and method for continuously casting molten steel
JP4218515B2 (en) Steel continuous casting method
JP4462052B2 (en) Continuous casting mold and steel continuous casting method
JP2010207843A (en) Continuous casting method of molten metal
JP2024014995A (en) Method for continuously casting steel
JP2003002742A (en) Refractory having excellent electrical conductivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R151 Written notification of patent or utility model registration

Ref document number: 5360024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350