JP2012055819A - Insolubilization material of contaminated soil - Google Patents

Insolubilization material of contaminated soil Download PDF

Info

Publication number
JP2012055819A
JP2012055819A JP2010200873A JP2010200873A JP2012055819A JP 2012055819 A JP2012055819 A JP 2012055819A JP 2010200873 A JP2010200873 A JP 2010200873A JP 2010200873 A JP2010200873 A JP 2010200873A JP 2012055819 A JP2012055819 A JP 2012055819A
Authority
JP
Japan
Prior art keywords
contaminated soil
lead
fluorine
arsenic
insolubilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010200873A
Other languages
Japanese (ja)
Inventor
Nozomi Kobayashi
望 小林
Mitsuhiro Yamada
光宏 山田
Kunio Hayakawa
国男 早川
Tetsuya Ujiie
鉄也 氏家
Kiyoharu Isobe
清晴 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TERASAWA KENSETSU KK
Yahagi Construction Co Ltd
Original Assignee
TERASAWA KENSETSU KK
Yahagi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TERASAWA KENSETSU KK, Yahagi Construction Co Ltd filed Critical TERASAWA KENSETSU KK
Priority to JP2010200873A priority Critical patent/JP2012055819A/en
Publication of JP2012055819A publication Critical patent/JP2012055819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that the methods for insolubilization of all kinds of lead, arsenic and fluorine in a complex contaminated soil are not practical.SOLUTION: This insolubilization material is used for the contaminated soil whose concentrations of lead and arsenic are not higher than 0.06 mg/L, and a concentration of fluorine is not higher than 6.0 mg/L, and composed of two kinds of a main material which is obtained by mixing gypsum, calcined lime or cement and blast furnace slug fine powder, and a pH-adjusting material which suppress the strong alkalization of soil caused by the main material. A weight ratio of the main material with respect to the contaminated soil is set to be not higher than 5%, and a compounding ratio of gypsum, calcined lime or cement and blast furnace fine powder is set to be 1.5 to 2.0:1.75 to 2.25:1.0 to 1.25. The pH-adjusting material makes the three kinds of at least lead, arsenic and fluorine contained in the contaminated soil applied with the insolubilization treatment.

Description

本発明は、鉛、砒素及びフッ素に汚染された土壌に添加混合して、それら全ての溶出量を抑える様にした汚染土壌の不溶化材に関する。   The present invention relates to an insolubilizing material for contaminated soil that is added to and mixed with soil contaminated with lead, arsenic, and fluorine to suppress the amount of all of them dissolved.

従来、重金属類等で汚染された土壌の処理方法としては、汚染土壌に不溶化材を添加混合して難溶化・固定化することで、汚染物質の溶出を抑制する「不溶化技術」があり、具体的には、掘削した汚染土壌に地上で不溶化材を添加混合したり、或いは汚染土壌に原位置で深層機械攪拌工法などによって不溶化材を混合・攪拌して、汚染物質を不溶化することが行なわれている。   Conventionally, as a method of treating soil contaminated with heavy metals, there is "insolubilization technology" that suppresses the elution of pollutants by adding insolubilizing material to the contaminated soil and making it difficult to solubilize and fix. Specifically, insolubilizing material is added to and mixed with excavated contaminated soil on the ground, or insolubilized material is mixed and stirred by in-situ deep mechanical agitation in the contaminated soil. ing.

そして、上記不溶化材としては、セメント、消石灰、生石灰、炭酸カルシウム、水酸化マグネシウム及び炭酸マグネシウムよりなる群から選ばれる少なくとも1種である主材と、鉄の硫酸塩であるpH調整材とを、主材、pH調整材の順に汚染土壌に添加混合することによって、汚染土壌中の重金属などを効果的に不溶化してその溶出を確実に防止出来る様にしたものが見受けられる(例えば、特許文献1参照)。   And as the insolubilizing material, a main material that is at least one selected from the group consisting of cement, slaked lime, quicklime, calcium carbonate, magnesium hydroxide and magnesium carbonate, and a pH adjuster which is a sulfate of iron, By adding and mixing to the contaminated soil in the order of the main material and the pH adjusting material, it is possible to effectively insolubilize heavy metals and the like in the contaminated soil so that the elution can be reliably prevented (for example, Patent Document 1). reference).

具体的には、鉛汚染土壌にセメントと硫酸第二鉄を順次添加混合する場合、先ず鉛汚染土壌にセメント粉末を添加混合すると、土壌中の酸性物質はセメントから生成する消石灰、アルカリ性塩である炭酸カルシウムにより中和されるために、セメントが混合された後の土壌はpH10以上になるが、pH11以上になると両性化合物である鉛化合物が溶出してくるので、硫酸第二鉄水溶液を添加して、鉛の不溶化に適正なpH7.0〜11.5、好ましくは8.5〜10.5に調整し、セメント混合土壌中のアルカリ性物質と反応して、水酸化第二鉄の沈殿を形成し、これが重金属の水酸化物などと共沈して鉛が不溶化されることになる。   Specifically, when cement and ferric sulfate are sequentially added and mixed in lead-contaminated soil, first, when cement powder is added and mixed in lead-contaminated soil, the acidic substances in the soil are slaked lime and alkaline salts generated from the cement. Since it is neutralized by calcium carbonate, the soil after the cement is mixed will have a pH of 10 or more, but when the pH is 11 or more, the amphoteric lead compound will elute, so add ferric sulfate aqueous solution. The pH is adjusted to 7.0 to 11.5, preferably 8.5 to 10.5, suitable for insolubilization of lead, and reacts with alkaline substances in cement-mixed soil to form ferric hydroxide precipitate. However, this is coprecipitated with heavy metal hydroxides and the like, and lead is insolubilized.

特開2004−8854号公報JP 2004-8854 A

しかし、上記特許文献1には、不溶化処理の対象として、汚染土壌中のカドミウム、鉛、全シアン、砒素、六価クロム、総水銀、セレン、ホウ素、フッ素、銅、亜鉛等が挙げられているが、具体的には、鉛、全シアン、砒素、六価クロム、セレンの1種類か、鉛及び砒素の2種類を対象としたものしか例示されていないため、複合汚染土壌中の少なくとも鉛、砒素及びフッ素の3種類の全てを不溶化処理可能するための具体例が明確でないなど、解決せねばならない課題があった。   However, in Patent Document 1, cadmium, lead, total cyanide, arsenic, hexavalent chromium, total mercury, selenium, boron, fluorine, copper, zinc, and the like in the contaminated soil are listed as targets for insolubilization treatment. However, specifically, only one type of lead, all cyan, arsenic, hexavalent chromium, selenium, or two types of lead and arsenic is exemplified, so at least lead in the complex contaminated soil, There was a problem that had to be solved, such as a specific example for making all three types of arsenic and fluorine insoluble treatment impossible.

本発明は、上記従来技術に基づく、複合汚染土壌中の鉛、砒素及びフッ素の3種類の全ての不溶化処理法が具体的でない課題に鑑み、鉛及び砒素の濃度が0.06mg/L以下で、フッ素の濃度が6.0mg/L以下の汚染土壌を対象とする不溶化材であって、石膏と、生石灰又はセメントと、高炉スラグ微粉末とを混合した主材と、該主材による土壌の強アルカリ化を抑止するpH調整材との2種類からなり、汚染土壌に対する主材の重量比率を5%以下とし、且つ石膏、生石灰又はセメント、高炉スラグ微粉末の配合比を1.5〜2.0:1.75〜2.25:1.0〜1.25とし、pH調整材は、硫酸第一鉄水溶液又は酢醸造残渣液として、汚染土壌に対する重量比率を25%以下とした不溶化材を汚染土壌に添加混合することによって、汚染土壌に含有されている少なくとも鉛、砒素及びフッ素の3種類を不溶化処理可能にして、上記課題を解決する。   In the present invention, in view of the problem that all three insolubilization methods of lead, arsenic and fluorine in complex contaminated soil based on the above prior art are not concrete, the concentration of lead and arsenic is 0.06 mg / L or less. A insolubilizing material for contaminated soil having a fluorine concentration of 6.0 mg / L or less, a main material in which gypsum, quick lime or cement, and blast furnace slag fine powder are mixed, and the soil of the main material It consists of two types of pH adjusting material that suppresses strong alkalinization, the weight ratio of the main material to the contaminated soil is 5% or less, and the mixing ratio of gypsum, quicklime or cement, fine powder of blast furnace slag is 1.5-2 0.0: 1.75-2.25: 1.0-1.25, pH adjusting material is ferrous sulfate aqueous solution or vinegar brewing residue liquid, insolubilized material whose weight ratio to contaminated soil is 25% or less By adding to the contaminated soil Te, at least lead is contained in the contaminated soil, three arsenic and fluorine and enables insolubilization, to solve the above problems.

要するに本発明は、鉛及び砒素の溶出量が0.06mg/L以下で、フッ素の溶出量が6.0mg/L以下の汚染土壌を対象とする不溶化材であって、石膏と、生石灰又はセメントと、高炉スラグ微粉末とを混合した主材と、該主材による土壌の強アルカリ化を抑止するpH調整材との2種類からなっているので、かかる不溶化材を汚染土壌に添加混合すれば、含有されている鉛、砒素及びフッ素の溶出量を不溶化出来、又汚染土壌の処理に当っては、掘削した汚染土壌に地上で不溶化材を混入したり、汚染土壌に原位置で深層機械攪拌工法など従来の地盤改良技術等を用いることが可能であるため、低コストで汚染土壌の不溶化処理を実施することが出来、更に主材に高炉スラグ微粉末が含まれているので、その特性であるOH- などによる刺激作用によって水と反応し水和物を生成し、この水和生成物がスラグの粒間を埋める結合材となって凝結、固化が長期間にわたり進行し、この水和過程においてOH- を消費するため、セメントの欠点である長期間にわたるpH12を超える強アルカリ性を水硬性の進展と共に改善することが出来る。
又、汚染土壌に対する主材の重量比率を5%以下としたので、処理済土壌の過硬化を抑止することが出来、且つ石膏、生石灰又はセメント、高炉スラグ微粉末の配合比を1.5〜2.0:1.75〜2.25:1.0〜1.25としたので、固化機能の低下を抑止しつつ、強アルカリ化を抑止することが出来、pH調整材は、硫酸第一鉄水溶液又は酢醸造残渣液として、汚染土壌に対する重量比率を25%以下としたので、かかるpH調整材に水分が多く含まれているため、フッ素の不溶化を促進させることが出来る。
又、pH調整材を、汚染土壌に対する重量比が1.25〜5%の硫酸第一鉄の粉体を水で希釈して、汚染土壌に対する重量比が10〜25%の水溶液としたので、鉛、砒素及びフッ素の全ての溶出量の数値を環境基準値以下に抑えられれば良いのであって、各数値を各基準値より極端に低くする必要はなく、特に主材における高炉スラグ微粉末とpH調整材の添加量を可能な限り抑えつつ、鉛、砒素及びフッ素の全ての溶出量の数値を環境基準値以下に抑えることが出来る。
又、pH調整材酸性添加材を、汚染土壌に対する重量比が12.5〜25%の酢醸造残渣液としたので、自然由来の材料であるため、植物育成用の土壌として安全に利用することが出来る等その実用的効果甚だ大である。
In short, the present invention is an insolubilizing material for contaminated soil having an elution amount of lead and arsenic of 0.06 mg / L or less and an elution amount of fluorine of 6.0 mg / L or less. And a main material mixed with blast furnace slag fine powder, and a pH adjuster that suppresses strong alkalinization of the soil by the main material, so if such an insolubilizing material is added to and mixed with contaminated soil The amount of lead, arsenic and fluorine contained can be insolubilized, and in the treatment of contaminated soil, insolubilized materials can be mixed with excavated contaminated soil on the ground, or deep mechanical agitation can be performed in situ on the contaminated soil. Because it is possible to use conventional ground improvement techniques such as construction methods, it is possible to insolubilize contaminated soil at a low cost, and the main material contains fine powder of blast furnace slag. etc. - there OH Consumed - by irritation reacts with water to generate a hydrate, the hydration product is a binder to fill the intergranular slag coagulation, solidification progresses over a long period of time, OH in the hydration process Therefore, strong alkalinity exceeding pH 12 over a long period, which is a defect of cement, can be improved with the progress of hydraulic property.
Moreover, since the weight ratio of the main material with respect to the contaminated soil is 5% or less, it is possible to suppress over-curing of the treated soil, and the mixing ratio of gypsum, quicklime or cement, and blast furnace slag fine powder is 1.5 to 2.0: 1.75-2.25: 1.0-1.25, it is possible to suppress strong alkalinization while suppressing a decrease in solidification function. Since the weight ratio with respect to the contaminated soil is set to 25% or less as the iron aqueous solution or the vinegar brewing residue liquid, since the water is contained in such a pH adjusting material, insolubilization of fluorine can be promoted.
Moreover, the pH adjuster was diluted with water ferrous sulfate powder having a weight ratio of 1.25 to 5% with respect to the contaminated soil to form an aqueous solution with a weight ratio of 10 to 25% with respect to the contaminated soil. It is only necessary to keep all the elution amounts of lead, arsenic, and fluorine below the environmental standard value, and it is not necessary to make each value extremely lower than the standard value, especially the blast furnace slag fine powder in the main material. While suppressing the addition amount of the pH adjusting material as much as possible, all the elution amounts of lead, arsenic and fluorine can be suppressed to the environmental standard value or less.
Moreover, since the pH adjuster acidic additive is a vinegar brewing residue liquid having a weight ratio of 12.5 to 25% with respect to the contaminated soil, it is a naturally derived material, and therefore it can be safely used as soil for plant cultivation. The practical effect is great.

本発明の汚染土壌の不溶化材は、基本的に、鉛及び砒素の溶出量が0.06mg/L以下で、フッ素の溶出量が6.0mg/L以下の汚染土壌を対象とする不溶化材であって、
石膏と、生石灰又はセメントと、高炉スラグ微粉末とを混合した主材と、該主材による土壌の強アルカリ化を抑止するpH調整材との2種類からなり、汚染土壌に対する主材の重量比率を5%以下とし、且つ石膏、生石灰又はセメント、高炉スラグ微粉末の配合比を1.5〜2.0:1.75〜2.25:1.0〜1.25とし、pH調整材は、硫酸第一鉄水溶液又は酢醸造残渣液として、汚染土壌に対する重量比率を25%以下とし、この不溶化材を汚染土壌に添加混合することにより、鉛、砒素及びフッ素を不溶化処理することを特徴とするものである。
石膏にあっては、半水石膏が望ましく、具体的には、二水石膏を160〜300℃で焼成し生成されたIII型無水石膏を大気中で放冷することで生成され、生石灰にあっては、土質強度の改善効果及び砒素の不溶化は共に高く、高アルカリ性を示し、高炉スラグ微粉末にあっては、主成分がSiO2 、CaO、Al2 O3 などで、土質強度の改善効果は高く、鉛を含む重金属類の溶出抑制効果を有し、水に接するとCaOが僅かに溶出してアルカリ性を示すことから、土壌の固化材としての主材を石膏、生石灰及び高炉スラグ微粉末の混合材とすることで、主材を生石灰単独とした場合と比較して、固化機能を低下させずにpH値を抑え、少なくとも砒素や重金属類の溶出を抑制する機能を備えている。
The insolubilizing material for contaminated soil of the present invention is basically an insolubilizing material for contaminated soil with an elution amount of lead and arsenic of 0.06 mg / L or less and an elution amount of fluorine of 6.0 mg / L or less. There,
It consists of two types: a main material in which gypsum, quicklime or cement, and blast furnace slag fine powder are mixed, and a pH adjuster that suppresses strong alkalinization of the soil by the main material, and the weight ratio of the main material to the contaminated soil 5% or less, and the blending ratio of gypsum, quicklime or cement, fine powder of blast furnace slag is 1.5 to 2.0: 1.75 to 2.25: 1.0 to 1.25, and the pH adjuster is As a ferrous sulfate aqueous solution or vinegar brewing residue liquid, the weight ratio to the contaminated soil is 25% or less, and this insolubilizing material is added to and mixed with the contaminated soil to insolubilize lead, arsenic and fluorine. To do.
As for gypsum, hemihydrate gypsum is desirable. Specifically, dihydrate gypsum is calcined at 160 to 300 ° C., which is produced by allowing the type III anhydrous gypsum to cool in the air and is suitable for quick lime. The improvement effect of soil strength and insolubilization of arsenic are both high and show high alkalinity. In blast furnace slag fine powder, the main component is SiO2, CaO, Al2 O3, etc., and the improvement effect of soil strength is high. It has the effect of suppressing elution of heavy metals including lead, and CaO dissolves slightly when it comes into contact with water, indicating alkalinity. Therefore, the main material as a solidifying material for soil is a mixture of gypsum, quicklime and fine powder of blast furnace slag. Thus, compared with the case where the main material is quicklime alone, the pH value is suppressed without lowering the solidification function, and at least the elution of arsenic and heavy metals is provided.

これらにより構成された不溶化材を、対象汚染土壌1m3に対して50〜300kg添加することが好ましく、その理由は、50kg未満では不溶化材料が均一に混練し難く効果が得られ難く、一方300kgを越えると、不経済で、而も処理土壌の強度発現が大きくなって固化された汚染土壌の掘り起こし等に難がある場合もあるためである。 It is preferable to add 50 to 300 kg of the insolubilized material composed of these to 1 m 3 of the target contaminated soil. The reason is that if it is less than 50 kg, the insolubilized material is difficult to knead uniformly, and it is difficult to obtain the effect. If it exceeds, it is uneconomical, and the strength expression of the treated soil becomes large, and it may be difficult to dig up the solidified contaminated soil.

本発明に係る不溶化材による汚染土壌中の鉛、砒素、フッ素の不溶化処理実験を下記の工程で行うこととする。
(1)試料と不溶化材を混合攪拌
鉛、砒素、フッ素の汚染土壌を500g量り取り、不溶化材を任意重量比で添加した後、汚染土壌と不溶化材をホバートミキサーにより5分間(2.5分で掻き落とし)練り混ぜる。
(2)養生
撹拌終了後、バットに入れ直射日光の当らない室内で7日間密閉養生を行う。
(3)風乾・篩分け
養生後の試料を風乾し、中小礫、木片等を除き、土塊、団粒を粗砕した後、非金属製の2mmの目のふるいを通過させた後十分混合する。
(4)溶媒混合
試料(単位g)と溶媒(純水に塩酸を加え、pHが5.8以上6.3以下となる様にしたもの)(単位ml)とを重量体積比10%の割合で混合する。
(5)振とう攪拌
調製した試料液を常温常圧で振とう機(予め振とう回数を毎分約200回に、振とう幅を4cm以上5cm以下に調整したもの)を用いて、6時間連続して振とうする。
(6)静置
振とう後、試料液を10分から30分程度静置する。
(7)遠心分離
静置後、試料液を毎分約3、000回転で20分間遠心分離する。
(8)上澄液濾過・濾液濃度測定
分離した上澄み液を孔径0.45μmのメンブランフィルターでろ過してろ液を取り、定量に必要な量を正確に計り取ってこれを検液とし、この検液中の鉛、砒素又はフッ素の濃度を測定する。
そして、その測定値が環境基準値(鉛及び砒素:0.01mg/L、フッ素:0.8mg/L)以下であれば合格となる。
The insolubilization treatment experiment of lead, arsenic, and fluorine in the contaminated soil with the insolubilizing material according to the present invention is performed in the following steps.
(1) Mixing and stirring the sample and insolubilized material Weigh 500 g of contaminated soil of lead, arsenic, and fluorine, add the insolubilized material at an arbitrary weight ratio, and then mix the contaminated soil and insolubilized material with a Hobart mixer for 5 minutes (2.5 minutes). Scrape it off) and mix.
(2) Curing After completion of stirring, put in a bat and perform sealed curing for 7 days in a room not exposed to direct sunlight.
(3) Air-drying and sieving After curing, air-dry the sample, remove medium pebbles, wood chips, etc., crush clots and aggregates, pass through a non-metallic 2 mm sieve and mix well. .
(4) Solvent mixture The sample (unit g) and the solvent (hydrochloric acid added to pure water so that the pH is adjusted to 5.8 or more and 6.3 or less) (unit ml) is a ratio of 10% by weight to volume Mix with.
(5) Shaking and stirring The prepared sample solution is shaken at room temperature and normal pressure for 6 hours using a shaker (previously adjusted to about 200 times per minute and the shaking width is adjusted to 4 cm or more and 5 cm or less). Shake continuously.
(6) Standing After shaking, leave the sample solution for about 10 to 30 minutes.
(7) Centrifugation After standing, the sample solution is centrifuged at about 3,000 rpm for 20 minutes.
(8) Supernatant filtration / filtrate concentration measurement The separated supernatant is filtered through a membrane filter having a pore size of 0.45 μm, and the filtrate is taken. The amount necessary for quantification is accurately measured and used as a test solution. Measure the concentration of lead, arsenic or fluorine in the liquid.
And if the measured value is below an environmental standard value (lead and arsenic: 0.01 mg / L, fluorine: 0.8 mg / L), it will pass.

そこで、表1の汚染土壌a1〜a3、b1〜b4に、表2の不溶化材を適宜選択し添加混合した結果を表3〜表9に示す。
尚、表2中の「%」は、汚染土壌の重量に対する重量%で、『pH調整材の状態・混合方法』欄中の「同時混合」とは、主材とpH調整材を同時に(両者を事前混合後の添加混合を含む)、「二次混合」とは、主材−pH調整材の順で、「一次混合」とは、pH調整材−主材の順で、汚染土壌に添加混合することを示す。
特に、C−1〜3において、「二次混合」とは、下水汚泥を混合済の主材−pH調整材の順で、「一次混合」とは、下水汚泥とpH調整材の混合材−主材の順で、汚染土壌に添加混合することを示す。
Accordingly, Tables 3 to 9 show the results of appropriately selecting and adding the insolubilizing materials in Table 2 to the contaminated soils a1 to a3 and b1 to b4 in Table 1.
“%” In Table 2 is weight% relative to the weight of the contaminated soil, and “simultaneous mixing” in the “conditions and mixing method of pH adjusting material” column means that the main material and pH adjusting material are simultaneously used (both "Secondary mixing" is added to contaminated soil in the order of main material-pH adjusting material, and "primary mixing" is added in the order of pH adjusting material-main material. Indicates mixing.
In particular, in C-1 to C-3, "secondary mixing" refers to the main material in which sewage sludge has been mixed-in the order of pH adjusting material, and "primary mixing" refers to the mixed material of sewage sludge and pH adjusting material- Indicates that the main material is added to and mixed with contaminated soil.

Figure 2012055819
Figure 2012055819

Figure 2012055819
Figure 2012055819

上記汚染土壌a1と、上記不溶化材A−1、A−2、A−4とを用いて上記不溶化処理実験を実施し、その試験結果を表3に示す。   The said insolubilization treatment experiment was implemented using the said contaminated soil a1 and the said insolubilizing material A-1, A-2, A-4, and the test result is shown in Table 3.

Figure 2012055819
Figure 2012055819

〔不溶化材A−1、2、4について〕
A−1、2、4に関しては、鉛及び砒素の数値に関しては、全てが基準値以下で特にA−2が効果的であり、フッ素の数値に関しては、全てが基準値以上であるが、強いて言えばA−4がより基準値に近いことから、粉体は鉛の不溶化に極めて効果大であるがフッ素の不溶化には全く効果が無く、水溶液は鉛及びフッ素の両方の不溶化に効果的であるが、鉛の数値は粉体より劣る。
これは、A−2、4での鉛の数値を比較すると、Z1の添加量が同一で二次混合である点で共通するも、A−2が粉体であるのに対し、A−4は多量の水で希釈された水溶液として使用されている点で異なっており、よって水を添加することで、鉛の数値が高くなり、フッ素の数値が低くなったと考えられる。
つまり、鉛、砒素及びフッ素の全てを基準値以下にするためには、粉体のままでは効果的でないが水溶液にして使用すれば効果的であり、25%水溶液の二次混合の場合、Z1添加量の適正量域の上限は5%未満で、尚且つフッ素数値が基準値以下になる量になると考えられる。
[About insolubilized materials A-1, 2, 4]
As for A-1, 2, and 4, all the values of lead and arsenic are below the standard value and A-2 is particularly effective, and all the values of fluorine are above the standard value, In other words, since A-4 is closer to the standard value, the powder is extremely effective for insolubilizing lead, but is ineffective for insolubilizing fluorine, and the aqueous solution is effective for insolubilizing both lead and fluorine. Yes, the lead figure is inferior to the powder.
This is common in the point that the addition amount of Z1 is the same and secondary mixing is performed when the numerical values of lead in A-2 and 4 are compared, whereas A-2 is a powder, whereas A-4 is a powder. Is different in that it is used as an aqueous solution diluted with a large amount of water. Therefore, it is considered that by adding water, the numerical value of lead increases and the numerical value of fluorine decreases.
That is, in order to make all of lead, arsenic and fluorine below the standard value, it is not effective if it is in powder form, but it is effective if it is used as an aqueous solution. In the case of secondary mixing of 25% aqueous solution, Z1 It is considered that the upper limit of the appropriate amount range of the addition amount is less than 5%, and the amount of fluorine becomes below the reference value.

上記汚染土壌a2と、上記不溶化材A−5、A−6、D−1、E−1、E−2、F−1、F−2とを用いて上記不溶化処理実験を実施し、その試験結果を表4に示す。
尚、Z3である酢醸造残渣液は、主に、水分、酢酸、有機物(もろみ等の残りかす)、有機酸類(プロピオン酸、ペンタノン酸、蟻酸、クエン酸等)、エタノールが含まれ、Z4である木酢液蒸留残渣液は、主に、水分、酢酸、植物性油、有機酸類(プロピオン酸、ペンタノン酸、蟻酸、クエン酸等)が含まれている。
The said insolubilization treatment experiment is implemented using the said contaminated soil a2, and the said insolubilization material A-5, A-6, D-1, E-1, E-2, F-1, F-2, The test The results are shown in Table 4.
The vinegar brewing residue liquid as Z3 mainly contains water, acetic acid, organic matter (residue residue such as moromi), organic acids (propionic acid, pentanoic acid, formic acid, citric acid, etc.), ethanol, and Z4. A certain wood vinegar distillation residue liquid mainly contains water, acetic acid, vegetable oil, and organic acids (propionic acid, pentanoic acid, formic acid, citric acid, etc.).

Figure 2012055819
Figure 2012055819

〔不溶化材A−5、6について〕
A−5、6を比較すると、A−6における鉛の数値だけが基準値以上で、而も汚染土壌a2の鉛の数値を大きく超えている。そして、Z1の添加量を減らすと、鉛及びフッ素の数値が高くなる傾向にあることが確認出来た。
よって、Z1の25%水溶液を二次混合する場合、Z1の添加量の適正量域の下限は2.5%未満で尚且つ2.5%に近い数値になると考えられる。

〔不溶化材D−1について〕
D−1に関しては、鉛及び砒素の数値が基準値より低いのに対しフッ素の数値は基準値より高く、Z2の添加量の減少に伴い鉛及び砒素の数値が高くフッ素の数値が低くなるため、5%未満の範囲に適正量域があると推測される。

〔汚染土壌a2における不溶化材D−1と汚染土壌a1における不溶化材A−1の比較〕
Z1、Z2の添加量は同一であるのに対し、
鉛濃度がa2<a1であるのに対し、溶出量は基準値>D−1>A−2
砒素濃度がa2<a1であるのに対し、溶出量はD−1<A−2<基準値
フッ素濃度がa2>a1であるのに対し、溶出量は基準値<D−1<A−2
となった。
よって、5%粉体同時混合の場合、総合的にはZ2の方が効果的であると推測されるが、鉛だけに関してはZ1の方が、フッ素だけに関してはZ2の方が断然効果的である。

〔不溶化材E−1、2について〕
E−1、2を比較すると、Z3の添加量の減少に伴い、鉛の数値は減少傾向で、砒素及びフッ素の数値が増加傾向にあると推測されるが、E−2では砒素の数値が基準値と同じであるため、12.5%以上で、鉛及びフッ素の数値が基準値を超えない量の範囲までが適正量域になると考えられる。

〔不溶化材F−1、2について〕
F−1、2に関しては、鉛の数値が極めて大きく悪化しているため、不溶化材としては不合格である。
[About insolubilized materials A-5 and 6]
Comparing A-5 and 6, only the numerical value of lead in A-6 is equal to or higher than the reference value, which greatly exceeds the numerical value of lead in the contaminated soil a2. And when the addition amount of Z1 was reduced, it has confirmed that the numerical value of lead and a fluorine tends to become high.
Therefore, when the 25% aqueous solution of Z1 is secondarily mixed, the lower limit of the appropriate amount range of the amount of Z1 added is considered to be a value less than 2.5% and close to 2.5%.

[About insolubilized material D-1]
Regarding D-1, lead and arsenic values are lower than the reference value, whereas fluorine values are higher than the reference value, and lead and arsenic values are higher and fluorine values are lower as the amount of Z2 added decreases. It is estimated that there is an appropriate amount range in the range of less than 5%.

[Comparison of Insolubilizing Material D-1 in Contaminated Soil a2 and Insolubilizing Material A-1 in Contaminated Soil a1]
While the addition amount of Z1 and Z2 is the same,
While the lead concentration is a2 <a1, the elution amount is the standard value>D-1> A-2
While the arsenic concentration is a2 <a1, the elution amount is D-1 <A-2 <reference value fluorine concentration is a2> a1, whereas the elution amount is reference value <D-1 <A-2.
It became.
Therefore, in the case of simultaneous mixing of 5% powder, it is estimated that Z2 is more effective overall, but Z1 is far more effective for lead alone and Z2 is far more effective for fluorine alone. is there.

[About insolubilized materials E-1 and E-2]
Comparing E-1 and 2, it is presumed that the numerical value of lead is decreasing and the numerical values of arsenic and fluorine are increasing with the decrease in the amount of Z3 added. In E-2, the numerical value of arsenic is Since it is the same as the reference value, it is considered that the appropriate amount range is up to a range where the numerical values of lead and fluorine do not exceed the reference value at 12.5% or more.

[About insolubilized materials F-1 and F-2]
Regarding F-1 and 2, since the numerical value of lead is extremely deteriorated, it is rejected as an insolubilizing material.

上記汚染土壌a3と、上記不溶化材A−3、C−1、D−2とを用いて上記不溶化処理実験を実施し、その試験結果を表5に示す。   The said insolubilization treatment experiment was implemented using the said contaminated soil a3 and the said insolubilization material A-3, C-1, D-2, and the test result is shown in Table 5.

Figure 2012055819
Figure 2012055819

〔不溶化材A−3について〕
A−3に関しては、全ての数値が基準値よりかなり低いため、3種全てを対象とする不溶化材としては合格である。

〔汚染土壌a3における不溶化材A−3と汚染土壌a1における不溶化材A−4の比較〕
Z1の添加量は同じであり、
鉛濃度がa3<a1であるのに対し、溶出量はA−3<A−4<基準値
砒素濃度がa3<a1であるのに対し、溶出量はA−3=A−4<基準値
フッ素濃度がa3>a1であるのに対し、溶出量はA−3<基準値<A−4
である。
よって、Z1の5%の25%水溶液の同時混合であれば全ての数値が良く、特にフッ素の不溶化に優れており、よって二次混合より同時混合の方が効果ありと推測される。

〔不溶化材C−1について〕
C−1に関しては、鉛の数値は極めて優れ、フッ素の数値が劣っているため、3種全てを対象とする不溶化材としては不合格であり、その理由はY1を加えたことか、主材の添加量をY1の分だけ減らしたことか、或いはこれら両方が原因であると推測される。

〔汚染土壌a3における不溶化材C−1と汚染土壌a1における不溶化材A−4の比較〕
Z1の添加量はC−1=A−4であり、
鉛濃度がa3<a1であるのに対し、溶出量はC−1<A−4<基準値
砒素濃度がa3<a1であるのに対し、溶出量はC−1=A−4<基準値
フッ素濃度がa3>a1であるのに対し、溶出量は基準値<A−4<C−1
である。
よって、Z1が5%の25%水溶液の同時混合の場合、総合的にはA−4の方が効果的であると推測されるが、鉛だけに関してはC−1の方が断然効果的である。

〔不溶化材D−2について〕
D−2に関しては、鉛及びフッ素の数値が基準値以上のため、3種全てを対象とする不溶化材としては不合格であり、汚染土壌a2におけるD−1と比較すると、汚染土壌a2、3における鉛及びフッ素の数値は略同じであるが、D−1、2での数値はD−2の方が劣っているため、Z2が5%で粉体の場合、同時混合は適切でなく二次混合が良いと推測される。
[About insolubilized material A-3]
Regarding A-3, since all the numerical values are considerably lower than the reference value, they are acceptable as insolubilizing materials for all three types.

[Comparison of Insolubilized Material A-3 in Contaminated Soil a3 and Insolubilized Material A-4 in Contaminated Soil a1]
The amount of Z1 added is the same,
Whereas lead concentration is a3 <a1, elution amount is A-3 <A-4 <reference value arsenic concentration is a3 <a1, whereas elution amount is A-3 = A-4 <reference value While the fluorine concentration is a3> a1, the elution amount is A-3 <reference value <A-4
It is.
Therefore, all the numerical values are good if they are simultaneously mixed with a 25% aqueous solution of 5% of Z1, and it is particularly excellent in insolubilization of fluorine. Therefore, it is estimated that simultaneous mixing is more effective than secondary mixing.

[About insolubilized material C-1]
Regarding C-1, the numerical value of lead is extremely excellent and the numerical value of fluorine is inferior, so it is rejected as an insolubilizing material for all three types, and the reason is that Y1 has been added, or the main material It is presumed that the addition amount of Y is reduced by Y1 or both.

[Comparison of Insolubilizing Material C-1 in Contaminated Soil a3 and Insolubilizing Material A-4 in Contaminated Soil a1]
The amount of Z1 added is C-1 = A-4,
Whereas lead concentration is a3 <a1, elution amount is C-1 <A-4 <reference value arsenic concentration is a3 <a1, whereas elution amount is C-1 = A-4 <reference value. While the fluorine concentration is a3> a1, the elution amount is the reference value <A-4 <C-1
It is.
Therefore, in the case of simultaneous mixing of 25% aqueous solution with 5% Z1, it is estimated that A-4 is more effective overall, but C-1 is far more effective for lead alone. is there.

[About insolubilized material D-2]
Regarding D-2, the numerical values of lead and fluorine are not less than the reference values, so it is not acceptable as an insolubilizing material for all three types. Compared to D-1 in contaminated soil a2, contaminated soil a2, 3 Although the numerical values of lead and fluorine are substantially the same, the numerical values of D-1 and D-2 are inferior to D-2. Therefore, when Z2 is 5% and powder is used, simultaneous mixing is not appropriate. It is estimated that the next mixing is good.

上記汚染土壌b1と、上記不溶化材A−5、A−6、D−1、E−1、E−2、F−1、F−2とを用いて上記不溶化処理実験を実施し、その試験結果を表6に示す。   The said insolubilization treatment experiment was implemented using the said contaminated soil b1, and the said insolubilizing material A-5, A-6, D-1, E-1, E-2, F-1, and F-2, and the test The results are shown in Table 6.

Figure 2012055819
Figure 2012055819

〔不溶化材A−5、6について〕
A−5、6を比較すると、両者の鉛の数値だけが基準値以上で、而もA−6における鉛の数値が汚染土壌b1の鉛の数値を超えている。そして、Z1の添加量の減少に伴い全ての数値が増加傾向にあり、特に鉛の増加率が大きいと考えられる。
よって、Z1の添加量の減少に伴い、全ての数値が悪化し、且つA−5における鉛の数値は基準値以上であるが僅差で、砒素及びフッ素の数値は基準値より充分低いため、Z1の25%水溶液の二次混合の場合、Z1の下限値は2.5%超になると推測される。

〔汚染土壌b1における不溶化材A−5と汚染土壌a1における不溶化材A−4の比較〕
Z1の添加量はA−5<A−4であり、
鉛濃度がb1<a1であるのに対し、溶出量はA−4<基準値<A−5
砒素濃度がb1<a1であるのに対し、溶出量はA−4<A−5<基準値
フッ素濃度がb1<a1であるのに対し、溶出量はA−5<基準値<A−4
である。
よって、Z1の添加量の減少に伴い、鉛の数値は増加傾向で、砒素の数値は微増傾向で、フッ素の数値は減少傾向であると推測される。

〔不溶化材D−1について〕
D−1に関しては、鉛及び砒素の数値が基準値より低いのに対し、フッ素の数値は基準値より高いため、このままでは3種全てを対象とする不溶化材としては不合格であるが、Z2の添加量を変えることで対応可能になると推測される。

〔不溶化材E−1、2について〕
E−1、2に関しては、添加量の減少に伴い、鉛及び砒素の数値が減少傾向にあるのに対し、フッ素の数値は増加傾向にあり、而もE−2での砒素の数値は基準値と同じであるため、Z3は12.5%を上限とし、フッ素の数値が基準値を超えない様に下限を設定することが可能であると推測される。

〔不溶化材F−1、2について〕
F−1、2に関しては、鉛の数値が極めて大きく悪化しているため、3種全てを対象とする不溶化材としては不合格である。
[About insolubilized materials A-5 and 6]
Comparing A-5 and 6, only the lead value of both is above the reference value, and the lead value in A-6 exceeds the lead value of the contaminated soil b1. And all the numerical values are increasing with the decrease in the amount of Z1 added, and it is considered that the increase rate of lead is particularly large.
Therefore, as the amount of Z1 added decreases, all numerical values deteriorate, and the numerical value of lead in A-5 is not less than the reference value, but the values of arsenic and fluorine are sufficiently lower than the reference value. In the case of secondary mixing of a 25% aqueous solution, it is estimated that the lower limit value of Z1 exceeds 2.5%.

[Comparison of Insolubilized Material A-5 in Contaminated Soil b1 and Insolubilized Material A-4 in Contaminated Soil a1]
The amount of Z1 added is A-5 <A-4,
The lead concentration is b1 <a1, whereas the elution amount is A-4 <reference value <A-5.
While the arsenic concentration is b1 <a1, the elution amount is A-4 <A-5 <reference value, while the fluorine concentration is b1 <a1, whereas the elution amount is A-5 <reference value <A-4.
It is.
Therefore, it is presumed that the numerical value of lead is increasing, the numerical value of arsenic is increasing slightly, and the numerical value of fluorine is decreasing as the amount of Z1 added decreases.

[About insolubilized material D-1]
Regarding D-1, since the numerical values of lead and arsenic are lower than the standard value, the numerical value of fluorine is higher than the standard value, so this is unacceptable as an insolubilizing material for all three types. It is presumed that it becomes possible to cope with this by changing the amount of addition.

[About insolubilized materials E-1 and E-2]
As for E-1 and 2, the values of lead and arsenic are decreasing with the decrease in the amount of addition, while the value of fluorine is increasing, and the value of arsenic in E-2 is the standard Since it is the same as the value, it is estimated that Z3 has an upper limit of 12.5%, and a lower limit can be set so that the numerical value of fluorine does not exceed the reference value.

[About insolubilized materials F-1 and F-2]
Regarding F-1 and 2, since the numerical value of lead is extremely deteriorated, it is rejected as an insolubilizing material for all three types.

上記汚染土壌b2と、上記不溶化材A−3、C−1、D−2とを用いて上記不溶化処理実験を実施し、その試験結果を表7に示す。   The insolubilization treatment experiment was performed using the contaminated soil b2 and the insolubilizing materials A-3, C-1, and D-2, and the test results are shown in Table 7.

Figure 2012055819
Figure 2012055819

〔不溶化材A−3について〕
A−3に関しては、砒素及びフッ素の数値が基準値より低いのに対し、鉛の数値は基準値以上のため、3種全てを対象とする不溶化材としては不合格であるが、鉛の数値は基準値と僅差のため、Z1の添加量の適正量域の上限は5%未満で尚且つ5%に近い数値になると考えられる。

〔不溶化材C−1について〕
C−1に関しては、鉛の数値は極めて優れ、フッ素の数値が劣っているため、3種全てを対象とする不溶化材としては不合格であり、その理由はY1を加えたことか、主材の添加量をY1の分だけ減らしたことか、或いはこれら両方が原因であると推測される。

〔不溶化材D−2について〕
不溶化材D−2に関しては、3種全てを対象とする不溶化材としては不合格であり、Z2の添加量を変えることで対応する可能性はあるも極めて低いと推測される。
[About insolubilized material A-3]
Regarding A-3, the values for arsenic and fluorine are lower than the standard values, while the values for lead are more than the standard values, so they are rejected as insolubilizing materials for all three types. Is slightly different from the reference value, so the upper limit of the appropriate amount range of Z1 addition is considered to be less than 5% and close to 5%.

[About insolubilized material C-1]
Regarding C-1, the numerical value of lead is extremely excellent and the numerical value of fluorine is inferior, so it is rejected as an insolubilizing material for all three types, and the reason is that Y1 has been added, or the main material It is presumed that the addition amount of Y is reduced by Y1 or both.

[About insolubilized material D-2]
Regarding the insolubilizing material D-2, it is presumed that the insolubilizing material for all three types is rejected, and there is a possibility that the insolubilizing material D-2 may be dealt with by changing the addition amount of Z2.

上記汚染土壌b3と、上記不溶化材A−7、A−8、A−9、D−3〜5、F−3、F−4とを用いて上記不溶化処理実験を実施し、その試験結果を表8に示す。   The insolubilization treatment experiment was conducted using the contaminated soil b3 and the insolubilized materials A-7, A-8, A-9, D-3-5, F-3, F-4, and the test results were obtained. Table 8 shows.

Figure 2012055819
Figure 2012055819

〔不溶化材A−7〜9について〕
A−7、8に関しては、全ての数値が基準値以下であるため、3種全てを対象とする不溶化材としては合格である。
A−8、9を比較すると、A−9による鉛の数値だけが基準値以上であるため、Z1の12.5%水溶液の二次混合であれば、1.25%超で2.5%未満の範囲内に適正量域の下限値があると考えられる。

〔汚染土壌b3における不溶化材A−7と汚染土壌b1における不溶化材A−5の比較〕
Z1の添加量がA−7=A−5であり、
鉛濃度がb3<b1であるのに対し、溶出量は基準値=A−7<A−5であるが、A−5の数値は基準値に極めて近く、
砒素濃度がb3>b1であるのに対し、溶出量はA−5<A−7<基準値
フッ素濃度がb3<b1であるのに対し、溶出量はA−7<A−5<基準値
である。
よって、Z1が2.5%の12.5%水溶液では、b3とb1での鉛、砒素及びフッ素の濃度の違いを勘案すると、同時混合より二次混合が効果的であると推測される。

〔汚染土壌b3における不溶化材A−8と汚染土壌b1における不溶化材A−5の比較〕
水の添加量がA−8<A−5であり、
鉛濃度がb3<b1であるのに対し、溶出量はA−8<基準値<A−5
砒素濃度がb3>b1であるのに対し、溶出量はA−5<A−8<基準値
フッ素濃度がb3<b1であるのに対し、溶出量はA−8<A−5<基準値
である。
よって、Z1の水溶液では、水量の減少に伴い、鉛の数値は増加傾向で、砒素及びフッ素の数値は減少傾向であると推測される。

〔不溶化材D−3〜5について〕
D−3、4を比較すると、両者共に鉛及びフッ素の数値が基準値以上であるが、強いていえばD−3の方が良く、D−3、5を比較すると、D−3では砒素のみ基準値以下であるのに対し、D−5では鉛及びフッ素が基準値以下であるため、Z2の10%水溶液の二次混合であれば、2.5%超で5%未満の範囲内に適正量域があると推測される。

〔汚染土壌b3における不溶化材D−3と汚染土壌b1における不溶化材D−1の比較〕
Z2の添加量はD−3=D−1であり、
鉛濃度がb3<b1であるのに対し、溶出量はD−1<基準値<D−3
砒素濃度がb3>b1であるのに対し、溶出量は基準値<D−1<D−3
フッ素濃度がb3<b1であるのに対し、溶出量は基準値<D−1<D−3
である。
よって、Z2を5%二次混合する場合、粉体の方が水溶液より効果的であると推測される。

〔汚染土壌b3における不溶化材D−4と汚染土壌b2における不溶化材D−2の比較〕
Z2の添加量はD−4=D−2であり、
鉛濃度がb3<b2であるのに対し、溶出量はD−2<基準値<D−4
砒素濃度がb3<b2であるのに対し、溶出量は基準値<D−2<D−4
フッ素濃度がb3<b2であるのに対し、溶出量は基準値<D−4≒D−2
である。
よって、Z2を5%同時混合する場合、粉体の方が水溶液より効果的であると推測される。

〔不溶化材F−3、4について〕
F−3、4に関しては、鉛の数値が極めて大きく悪化しているため、3種全てを対象とする不溶化材としては不合格である。
[About insolubilized material A-7-9]
Regarding A-7 and 8, since all the numerical values are below the reference value, they are acceptable as insolubilizing materials for all three types.
When A-8 and 9 are compared, only the lead value according to A-9 is greater than the reference value, so if it is a secondary mixture of 12.5% aqueous solution of Z1, it is more than 1.25% and 2.5% It is considered that there is a lower limit of the appropriate amount range within the range below.

[Comparison of Insolubilized Material A-7 in Contaminated Soil b3 and Insolubilized Material A-5 in Contaminated Soil b1]
The amount of Z1 added is A-7 = A-5,
The lead concentration is b3 <b1, whereas the elution amount is the reference value = A-7 <A-5, but the numerical value of A-5 is very close to the reference value.
While the arsenic concentration is b3> b1, the elution amount is A-5 <A-7 <reference value, while the fluorine concentration is b3 <b1, whereas the elution amount is A-7 <A-5 <reference value. It is.
Therefore, in the 12.5% aqueous solution with Z1 of 2.5%, it is presumed that the secondary mixing is more effective than the simultaneous mixing in consideration of the difference in the concentration of lead, arsenic and fluorine between b3 and b1.

[Comparison of Insolubilized Material A-8 in Contaminated Soil b3 and Insolubilized Material A-5 in Contaminated Soil b1]
The amount of water added is A-8 <A-5,
The lead concentration is b3 <b1, whereas the elution amount is A-8 <reference value <A-5.
While the arsenic concentration is b3> b1, the elution amount is A-5 <A-8 <reference value, while the fluorine concentration is b3 <b1, whereas the elution amount is A-8 <A-5 <reference value. It is.
Therefore, in the aqueous solution of Z1, it is presumed that the numerical values of lead are increasing and the numerical values of arsenic and fluorine are decreasing as the amount of water decreases.

[About insolubilized material D-3-5]
When D-3 and 4 are compared, both lead and fluorine values are above the standard value, but if it is strong, D-3 is better, and when D-3 and 5 are compared, D-3 is only arsenic. In D-5, lead and fluorine are less than the reference value, while D-5 is less than the reference value. Therefore, if it is a secondary mixture of 10% aqueous solution of Z2, it is more than 2.5% and less than 5%. It is estimated that there is an appropriate amount range.

[Comparison of Insolubilizing Material D-3 in Contaminated Soil b3 and Insolubilizing Material D-1 in Contaminated Soil b1]
The amount of Z2 added is D-3 = D-1,
The lead concentration is b3 <b1, whereas the elution amount is D-1 <reference value <D-3.
While the arsenic concentration is b3> b1, the elution amount is the reference value <D-1 <D-3
While the fluorine concentration is b3 <b1, the elution amount is a reference value <D-1 <D-3.
It is.
Therefore, when secondary mixing of Z2 is 5%, it is estimated that the powder is more effective than the aqueous solution.

[Comparison of Insolubilizing Material D-4 in Contaminated Soil b3 and Insolubilizing Material D-2 in Contaminated Soil b2]
The amount of Z2 added is D-4 = D-2,
The lead concentration is b3 <b2, whereas the elution amount is D-2 <reference value <D-4.
While the arsenic concentration is b3 <b2, the elution amount is the reference value <D-2 <D-4
While the fluorine concentration is b3 <b2, the elution amount is a reference value <D-4≈D-2
It is.
Therefore, when 5% of Z2 is mixed at the same time, it is presumed that the powder is more effective than the aqueous solution.

[About insolubilized materials F-3 and 4]
Regarding F-3 and 4, since the numerical value of lead is extremely deteriorated, it is rejected as an insolubilizing material for all three types.

上記汚染土壌b4と、上記不溶化材A−10、A−11、C−2、D−6、D−7、F−5、F−6とを用いて上記不溶化処理実験を実施し、その試験結果を表9に示す。   The insolubilization treatment experiment was carried out using the contaminated soil b4 and the insolubilizing materials A-10, A-11, C-2, D-6, D-7, F-5, F-6, and the test The results are shown in Table 9.

Figure 2012055819
Figure 2012055819

〔不溶化材A−10、11について〕
A−10、11を比較すると、鉛及びフッ素の数値はA−10の方が良く、砒素の数値はA−11の方が良く、更に不溶化材A−10における砒素の数値だけが基準値以上であることから、3種全てを対象とする不溶化材として、A−10は不合格、A−11は合格であるため、Z1が2%の10%水溶液であれば、同時混合より一次混合の方が良いと推測される。

〔不溶化材C−2、3について〕
C−2、3を比較すると、不溶化材C−2におけるフッ素の数値が基準値以上であり、全ての数値が不溶化材C−3の方が良いことから、
同時混合より一次混合の方が良いと推測される。

〔不溶化材D−6、7について〕
D−6、7に関しては、鉛の数値が極めて大きく悪化しているため、3種全てを対象とする不溶化材としては不合格である。

〔不溶化材F−5、6について〕
F−5、6に関しては、鉛の数値が極めて大きく悪化しているため、3種全てを対象とする不溶化材としては不合格である。
[About insolubilized materials A-10 and 11]
Comparing A-10 and 11, A-10 is better for lead and fluorine, A-11 is better for arsenic, and only the arsenic value in insolubilized material A-10 is above the reference value. Therefore, as an insolubilizing material for all three types, A-10 is rejected and A-11 is acceptable, so if Z1 is a 10% aqueous solution of 2%, the primary mixing is more than simultaneous mixing. I guess it is better.

[About insolubilized materials C-2 and 3]
When C-2 and 3 are compared, the numerical value of fluorine in the insolubilized material C-2 is greater than or equal to the reference value, and all numerical values are better for the insolubilized material C-3.
It is assumed that primary mixing is better than simultaneous mixing.

[About insolubilized materials D-6 and 7]
Regarding D-6 and 7, since the numerical value of lead is extremely deteriorated, it is rejected as an insolubilizing material for all three types.

[About insolubilized materials F-5 and 6]
Regarding F-5 and 6, since the numerical value of lead is extremely deteriorated, it is rejected as an insolubilizing material for all three types.

以下、上記実施例1〜7の結果を総括する。
〔Z1に関する総括〕
・粉体混合より水溶液混合が効果的。
・二次混合より同時混合が、同時混合より一次混合が効果的。
・添加量の減少に伴い、鉛の数値は増加傾向、砒素の数値は微増傾向、フッ素の数値は減 少傾向。
・水溶液では、水量減少に伴い鉛の数値は増加傾向、砒素及びフッ素の数値は減少傾向。
・条件によっても異なるが、1.25〜5%の粉体を水で希釈して10〜25%の水溶液とする。
つまり、硫酸第一鉄にあっては、土質強度の改善効果は無く、砒素の不溶化は高く、弱酸性を示して、処理済みの汚染土壌のpH値を下げることで鉛の溶出を抑止するが、水溶液にすることで完全にイオン化し、フッ素の溶出抑制を速やかに行うものと考えられるが、反面鉛を溶出しやすい状態にしてしまう。
〔Z2に関する総括〕
・水溶液混合より粉体混合が効果的
・同時混合より二次混合が効率的。
・条件によっても異なるが、添加量域は2.5〜5%。
〔Z3に関する総括〕
・添加量の減少に伴い、鉛の数値は減少傾向で、フッ素の数値が増加傾向(砒素の数値の 傾向は特定不可)。
・添加量域は12.5〜25%で、条件によっては12.5%未満でも可。
Hereinafter, the results of Examples 1 to 7 will be summarized.
[Overview of Z1]
・ Aqueous solution mixing is more effective than powder mixing.
・ Simultaneous mixing is more effective than secondary mixing, and primary mixing is more effective than simultaneous mixing.
・ Lead values are increasing, arsenic values are increasing slightly, and fluorine values are decreasing as the amount added is decreased.
・ For aqueous solutions, the lead value is increasing and the arsenic and fluorine values are decreasing as the amount of water decreases.
・ Depending on conditions, 1.25 to 5% of powder is diluted with water to make 10 to 25% aqueous solution.
In other words, ferrous sulfate has no effect on improving soil strength, arsenic is highly insolubilized, shows weak acidity, and suppresses the elution of lead by lowering the pH value of treated contaminated soil. It is considered that the solution is completely ionized by making it into an aqueous solution, and the elution suppression of fluorine is performed promptly, but on the other hand, the lead is easily eluted.
[Overview of Z2]
・ Powder mixing is more effective than aqueous solution mixing ・ Secondary mixing is more efficient than simultaneous mixing.
・ Although it depends on the conditions, the addition amount range is 2.5 to 5%.
[Overview of Z3]
・ Lead values are decreasing and fluorine values are increasing as the amount of additive is decreased (arsenic values are not identifiable).
-Addition amount range is 12.5-25%, and depending on conditions, it may be less than 12.5%.

尚、C−1以外の不溶化材における主材にあっては、石膏:生石灰:高炉スラグ微粉末=2.0:1.75:1.25であるが、この配合比を変えた主材だけを汚染土壌に添加混合して不溶化処理実験を実施し、その試験結果を表10に示す。   The main material in the insolubilized material other than C-1 is gypsum: quick lime: ground granulated blast furnace slag = 2.0: 1.75: 1.25, but only the main material in which this blending ratio is changed. Was added to and mixed with contaminated soil to conduct an insolubilization experiment, and the test results are shown in Table 10.

Figure 2012055819
Figure 2012055819

そして、汚染土壌に対する主材の重量%は0.5%であるが、配合比がC−1以外の不溶化材と同じであるNo.1の数値が最も良いが、石膏の割合が小さくなるのに従いフッ素の数値が良くなることから、2.0を上限に、1.5を下限に設定し、生石灰の割合が大きくなるのに従いフッ素の数値が良くなることから、1.75を下限に、2.25を上限に設定し、高炉スラグ微粉末は、なるべく少量にするのが好ましいことから、1.25を上限に、1.0を下限に設定し、よって石膏:生石灰:高炉スラグ微粉末=1.5〜2.0:1.75〜2.25:1.0〜1.25となる。   And the weight% of the main material with respect to the contaminated soil is 0.5%, but the mixing ratio is the same as that of the insolubilized material other than C-1. The numerical value of 1 is the best, but since the numerical value of fluorine improves as the proportion of gypsum decreases, 2.0 is set as the upper limit, 1.5 is set as the lower limit, and the proportion of quicklime increases as the proportion of quicklime increases. Since 1.75 is set as the lower limit and 2.25 is set as the upper limit, and the blast furnace slag fine powder is preferably made as small as possible, 1.25 is set as the upper limit and 1.05 is set as the upper limit. Is set to the lower limit, so that gypsum: quick lime: blast furnace slag fine powder = 1.5 to 2.0: 1.75 to 2.25: 1.0 to 1.25.

以上、本発明の汚染土壌の不溶化方法について複数の実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することが可能である。   As described above, the method for insolubilizing contaminated soil according to the present invention has been described based on a plurality of examples. However, the present invention is not limited to the structure described in the above examples, and the structure is appropriately set within the scope of the invention. It is possible to change.

Claims (3)

鉛及び砒素の溶出量が0.06mg/L以下で、フッ素の溶出量が6.0mg/L以下の汚染土壌を対象とする不溶化材であって、
石膏と、生石灰又はセメントと、高炉スラグ微粉末とを混合した主材と、該主材による土壌の強アルカリ化を抑止するpH調整材との2種類からなり、汚染土壌に対する主材の重量比率を5%以下とし、且つ石膏、生石灰又はセメント、高炉スラグ微粉末の配合比を1.5〜2.0:1.75〜2.25:1.0〜1.25とし、pH調整材は、硫酸第一鉄水溶液又は酢醸造残渣液として、汚染土壌に対する重量比率を25%以下としたことを特徴とする汚染土壌の不溶化材。
An insolubilizing material for contaminated soil with an elution amount of lead and arsenic of 0.06 mg / L or less and an elution amount of fluorine of 6.0 mg / L or less,
It consists of two types: a main material in which gypsum, quicklime or cement, and blast furnace slag fine powder are mixed, and a pH adjuster that suppresses strong alkalinization of the soil by the main material, and the weight ratio of the main material to the contaminated soil 5% or less, and the blending ratio of gypsum, quicklime or cement, fine powder of blast furnace slag is 1.5 to 2.0: 1.75 to 2.25: 1.0 to 1.25, and the pH adjuster is An insolubilizing material for contaminated soil, characterized in that, as a ferrous sulfate aqueous solution or a vinegar brewing residue, the weight ratio to the contaminated soil is 25% or less.
pH調整材を、汚染土壌に対する重量比が1.25〜5%の硫酸第一鉄の粉体を水で希釈して、汚染土壌に対する重量比が10〜25%の水溶液としたことを特徴とする請求項1記載の汚染土壌の不溶化材。   The pH adjuster is characterized by diluting ferrous sulfate powder with a weight ratio of 1.25 to 5% with respect to the contaminated soil with water to obtain an aqueous solution with a weight ratio of 10 to 25% with respect to the contaminated soil. The insolubilizing material for contaminated soil according to claim 1. pH調整材を、汚染土壌に対する重量比が12.5〜25%の酢醸造残渣液としたことを特徴とする請求項1記載の汚染土壌の不溶化材。   The insolubilizing material for contaminated soil according to claim 1, wherein the pH adjusting material is a vinegar brewing residue liquid having a weight ratio of 12.5 to 25% with respect to the contaminated soil.
JP2010200873A 2010-09-08 2010-09-08 Insolubilization material of contaminated soil Pending JP2012055819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010200873A JP2012055819A (en) 2010-09-08 2010-09-08 Insolubilization material of contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010200873A JP2012055819A (en) 2010-09-08 2010-09-08 Insolubilization material of contaminated soil

Publications (1)

Publication Number Publication Date
JP2012055819A true JP2012055819A (en) 2012-03-22

Family

ID=46053576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200873A Pending JP2012055819A (en) 2010-09-08 2010-09-08 Insolubilization material of contaminated soil

Country Status (1)

Country Link
JP (1) JP2012055819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037623A (en) * 2018-09-03 2020-03-12 太平洋セメント株式会社 Insolubilization material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037623A (en) * 2018-09-03 2020-03-12 太平洋セメント株式会社 Insolubilization material
JP7076337B2 (en) 2018-09-03 2022-05-27 太平洋セメント株式会社 Insolubilizer

Similar Documents

Publication Publication Date Title
CN100471585C (en) Curing agent for waste drilling mud and use method therefor
JP4109017B2 (en) Solidification and insolubilization methods for contaminated soil
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
CN114656178B (en) Cementing material and application thereof
JP5047745B2 (en) Ground improvement material
CN105505399A (en) Heavy-metal solidifying agent and heavy metal contaminated soil solidifying method
CN103289703A (en) Early-strength soil solidifying agent and manufacturing method and application for same
JP2010159347A (en) Soil-solidifying material
CN106746814B (en) A kind of slag aggregate processing method
JP2019056081A (en) Pollution countermeasure material for heavy metal or the like and pollution countermeasure method for heavy metal or the like using the same
JP2012055819A (en) Insolubilization material of contaminated soil
EP2835359A1 (en) Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improvement method
JP2007216069A (en) Treating method of contaminated soil
JP4999786B2 (en) Method for evaluating heavy metal insolubilization performance of magnesium oxide
JP2008255171A (en) Fixing agent for inorganic harmful component
JP7519799B2 (en) Solidification aid, solidification treatment material, and soil solidification treatment method
KR101600747B1 (en) Composition for solidification of spoil or sludge, method for solidification of spoil or sludge using the same, and solid matter prepared therefrom
JP2018065131A (en) Method for modifying dredge soil
JP2006225475A (en) Solidifier and method for improving solidification of soil by using the solidifier
JP2021143262A (en) Fabrication method of improved ground and insolubilizing agent
JP2023033045A (en) Method for producing fluorine insolubilization agent and bentonite dehydration cake
JP4745955B2 (en) Hexavalent chromium elution inhibitor
JP6331514B2 (en) Slightly acidic solidification method for soil
JP6749126B2 (en) Hazardous substance treatment material and treatment method
JP6385818B2 (en) Cement additive and cement composition