JP2012054563A - Nitride crystal and method for manufacturing nitride crystal substrate with epitaxial layer - Google Patents

Nitride crystal and method for manufacturing nitride crystal substrate with epitaxial layer Download PDF

Info

Publication number
JP2012054563A
JP2012054563A JP2011198028A JP2011198028A JP2012054563A JP 2012054563 A JP2012054563 A JP 2012054563A JP 2011198028 A JP2011198028 A JP 2011198028A JP 2011198028 A JP2011198028 A JP 2011198028A JP 2012054563 A JP2012054563 A JP 2012054563A
Authority
JP
Japan
Prior art keywords
crystal
nitride crystal
nitride
penetration depth
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011198028A
Other languages
Japanese (ja)
Inventor
Keiji Ishibashi
恵二 石橋
Tokiko Umemoto
登紀子 梅本
Seiji Nakahata
成二 中畑
Takayuki Nishiura
隆幸 西浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011198028A priority Critical patent/JP2012054563A/en
Publication of JP2012054563A publication Critical patent/JP2012054563A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a nitride crystal having a crystal surface layer directly and surely evaluated so as to suitably be used as a substrate for a semiconductor device without damaging the crystal, and a nitride crystal substrate with an epitaxial layer.SOLUTION: The method for manufacturing the nitride crystal improves the crystallinity of a surface layer 1a in the nitride crystal deteriorated by machining by performing chemical-mechanical polishing after machining the nitride crystal 1. A slurry with pH of 6 or less and 8 or more is determined to be used in the chemical-mechanical polishing. The crystallinity of the surface layer 1a of the nitride crystal 1 improves so that the nitride crystal has uniform distortion of 2.1×10or less on the surface layer of the crystal obtained by X-ray diffraction measurement for varying the X-ray penetration depth from the surface of the crystal, while satisfying X-ray diffraction conditions of an arbitrary specific crystal lattice plane of the nitride crystal.

Description

本発明は窒化物結晶およびエピ層付窒化物結晶基板の製造方法に関し、特に半導体デバイスを作製する際のエピタキシャル結晶成長用の基板として好ましく用いられ得る窒化物結晶およびエピ層付窒化物結晶基板の製造方法に関する。   The present invention relates to a method for manufacturing a nitride crystal and a nitride crystal substrate with an epi layer, and in particular, a nitride crystal and a nitride crystal substrate with an epi layer that can be preferably used as a substrate for epitaxial crystal growth when manufacturing a semiconductor device. It relates to a manufacturing method.

周知のように、近年では窒化物半導体結晶を利用した種々の半導体デバイスが作製されており、そのような半導体デバイスの典型例として窒化物半導体発光デバイスが作製されている。   As is well known, various semiconductor devices using nitride semiconductor crystals have been manufactured in recent years, and nitride semiconductor light emitting devices have been manufactured as typical examples of such semiconductor devices.

窒化物半導体デバイスの作製においては、一般に、基板上に複数の窒化物半導体層がエピタキシャルに結晶成長させられる。エピタキシャル成長した窒化物半導体層の結晶品質はそのエピタキシャル成長に用いられた基板の表面層の状態に影響され、その窒化物半導体層を含む半導体デバイスの性能に影響を及ぼす。したがって、そのような基板として窒化物半導体結晶を用いる場合、少なくともエピタキシャル成長の下地となる基板主面は歪みを含まずかつ平滑であることが望ましい。   In the manufacture of a nitride semiconductor device, generally, a plurality of nitride semiconductor layers are epitaxially grown on a substrate. The crystal quality of the epitaxially grown nitride semiconductor layer is affected by the state of the surface layer of the substrate used for the epitaxial growth, and affects the performance of the semiconductor device including the nitride semiconductor layer. Therefore, when a nitride semiconductor crystal is used as such a substrate, it is desirable that at least the main surface of the substrate serving as the base for epitaxial growth does not contain distortion and is smooth.

すなわち、エピタキシャル成長に用いられる窒化物半導体基板の主面は、一般に、その平滑化処理がなされるとともに歪み除去処理がなされる。この場合に、化合物半導体のなかでも窒化ガリウム系半導体は比較的硬質であり、表面平滑化処理が容易ではなく、その平滑化処理後の歪み除去処理も容易ではない。   That is, the main surface of the nitride semiconductor substrate used for epitaxial growth is generally subjected to smoothing processing and distortion removal processing. In this case, the gallium nitride semiconductor is relatively hard among the compound semiconductors, and the surface smoothing process is not easy, and the distortion removing process after the smoothing process is not easy.

特許文献1の特開2004−311575号公報は、窒化ガリウム基板の表面研磨用の研磨組成物として軟質砥粒と硬質砥粒を用いる研磨方法とその組成物を開示している。また、特許文献2の米国特許第6596079号明細書では、(AlGaIn)N種結晶上に気相エピタキシによって育成された(AlGaIn)Nバルク結晶から基板を作製する場合において、機械的研磨された基板表面に対してCMP(化学機械的研磨)やエッチングなどを施すことによって、表面ダメージが除去されて1nm以下のRMS(2乗平均)表面粗さを有する基板面を形成する方法が開示されている。特許文献3の米国特許第6488767号明細書では、CMP処理によって0.15nmのRMS表面粗さを有するAlxGayInzN(0<y≦1、x+y+z=1)基板が開示されており、そのCMPの処理剤にはAl23砥粒、SiO2砥粒、pH調整剤、および酸化剤が含められる。特許文献4の特開2001−322899号公報では、GaN基板の研磨後にドライエッチで加工変質層を除去して、その基板表面が仕上げられる。 Japanese Patent Application Laid-Open No. 2004-311575 of Patent Document 1 discloses a polishing method using soft abrasive grains and hard abrasive grains as a polishing composition for polishing a surface of a gallium nitride substrate, and a composition thereof. In addition, in US Pat. No. 6,596,079 of Patent Document 2, when a substrate is produced from an (AlGaIn) N bulk crystal grown by vapor phase epitaxy on an (AlGaIn) N seed crystal, a mechanically polished substrate is used. A method of forming a substrate surface having an RMS (root mean square) surface roughness of 1 nm or less by removing surface damage by subjecting the surface to CMP (Chemical Mechanical Polishing) or etching is disclosed. . US Pat. No. 6,488,767 of Patent Document 3 discloses an Al x Ga y In z N (0 <y ≦ 1, x + y + z = 1) substrate having an RMS surface roughness of 0.15 nm by CMP treatment. The CMP treating agent includes Al 2 O 3 abrasive grains, SiO 2 abrasive grains, a pH adjusting agent, and an oxidizing agent. In Japanese Patent Application Laid-Open No. 2001-322899 of Patent Document 4, after the GaN substrate is polished, the work-affected layer is removed by dry etching to finish the substrate surface.

従来では、上述のように、GaN結晶を機械研磨した後にCMP処理またはドライエッチングすることによって、機械研磨時の加工変質層を除去して基板面を仕上げたGaN基板を得ている。しかし、CMP処理は処理レート遅く、コストや生産性に問題がある。また、ドライエッチングでは、表面粗さの問題が生じる。   Conventionally, as described above, a GaN substrate having a substrate surface finished by removing the work-affected layer during mechanical polishing is obtained by mechanically polishing the GaN crystal and then performing CMP treatment or dry etching. However, CMP processing is slow in processing rate, and there are problems in cost and productivity. In dry etching, there is a problem of surface roughness.

すなわち、Si基板のCMPによる仕上げ方法やその方法における研磨剤は、硬質の窒化物半導体基板には不向きであって、表面層の除去速度を遅くする。特に、GaNは化学的に安定であり、ウェットエッチングされにくいのでCMP処理が容易でない。また、ドライエッチングによって窒化物半導体表面を除去することはできるが、その表面を水平方向に平坦化する効果がないので、表面平滑化が得られない。   That is, the finishing method by CMP of the Si substrate and the polishing agent in that method are not suitable for a hard nitride semiconductor substrate, and slows the removal rate of the surface layer. In particular, GaN is chemically stable and is not easily etched by wet etching. Further, although the surface of the nitride semiconductor can be removed by dry etching, there is no effect of flattening the surface in the horizontal direction, so that surface smoothing cannot be obtained.

また、上述のように、基板面上に良好な結晶質の化合物半導体層をエピタキシャル成長させるためには、加工ダメージが少なく歪みの少ない良好な結晶品質の表面層を有する基板面を用いることが必要である。しかし、基板面において必要とされる表面層の結晶品質が明らかでない。   Further, as described above, in order to epitaxially grow a good crystalline compound semiconductor layer on a substrate surface, it is necessary to use a substrate surface having a surface layer having a good crystal quality with less processing damage and less distortion. is there. However, the crystal quality of the surface layer required on the substrate surface is not clear.

従来は、結晶の表面層の歪みの評価は、非特許文献1のJpn. J. Appl. Phys., Vol. 39, November 2000, p.L1141-L1142および非特許文献2の日本セラミックス協会学術論文誌,99,[7],(1991),p.613-619などに示されるように、結晶をへき開してそのへき開面をTEM(透過型電子顕微鏡)により観察することによって行なわれていた。すなわち、従来における結晶の表面層の歪み評価は、結晶を破壊する破壊試験により行なわれていたため、評価結果が悪くても評価後に修正することができず、また製品そのものを評価することができないという問題点があった。また。現状では、仕上げられた基板面における表面層の結晶性を非破壊的に評価する指標がなく、定量的に表面層の結晶品質を規定することが困難である。   Conventionally, the distortion of the surface layer of the crystal has been evaluated by Jpn. J. Appl. Phys., Vol. 39, November 2000, p.L1141-L1142 of Non-Patent Document 1 and the academic paper of Japan Ceramic Society of Non-Patent Document 2. Journal, 99, [7], (1991), p.613-619, etc., was performed by cleaving the crystal and observing the cleavage plane with a TEM (transmission electron microscope). That is, the conventional strain evaluation of the surface layer of the crystal has been performed by a destructive test that destroys the crystal, so even if the evaluation result is bad, it cannot be corrected after the evaluation, and the product itself cannot be evaluated. There was a problem. Also. At present, there is no index for nondestructively evaluating the crystallinity of the surface layer on the finished substrate surface, and it is difficult to quantitatively define the crystal quality of the surface layer.

特開2004−311575号公報Japanese Patent Laid-Open No. 2004-311575 米国特許第6596079号明細書US Pat. No. 6,596,079 米国特許第6488767号明細書US Pat. No. 6,488,767 特開2001−322899号公報JP 2001-322899 A

S. S. Park, 他2名,“Free-Standing GaN Substrate by Hydride Vapor Phase Epitaxy”, Jpn. J. Appl. Phys., The Japan Society of Applied Physics, Vol. 39, November 2000, p.L1141-L1142.S. S. Park, two others, “Free-Standing GaN Substrate by Hydride Vapor Phase Epitaxy”, Jpn. J. Appl. Phys., The Japan Society of Applied Physics, Vol. 39, November 2000, p.L1141-L1142. 高橋裕,他3名,「窒化アルミニウム多結晶基板の湿式研磨における表面損傷の電子顕微鏡観察」,日本セラミックス協会学術論文誌,日本セラミックス協会,99,[7],(1991),p.613-619.Yutaka Takahashi and three others, "Electron microscopic observation of surface damage in wet polishing of aluminum nitride polycrystalline substrates", Journal of the Ceramic Society of Japan, The Ceramic Society of Japan, 99, [7], (1991), p.613- 619.

本発明は、半導体デバイスを作製する際のエピタキシャル結晶成長用の基板として好ましく用いられ得るように結晶を破壊することなく直接かつ確実に評価された結晶表面層を有する窒化物結晶およびエピ層付窒化物結晶基板の製造方法を提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention relates to nitride crystals having a crystal surface layer directly and reliably evaluated without damaging the crystals and nitriding with an epi layer so that they can be preferably used as a substrate for epitaxial crystal growth in manufacturing semiconductor devices. It is an object of the present invention to provide a method for manufacturing a physical crystal substrate.

本発明の一つの態様によれば、窒化物結晶の製造方法は、気相成長法または液相成長法により成長させた窒化物結晶を機械加工した後化学機械的研磨することにより、機械加工により悪化した窒化物結晶の表面層の結晶性を化学機械的研磨により向上させる窒化物結晶の製造方法であって、化学機械的研磨においてpHが6以下または8以上のスラリーを用いて、窒化物結晶の表面層の結晶性の向上は、結晶の任意の特定結晶格子面のX線回折条件を満たしながら結晶の表面からのX線侵入深さを変化させるX線回折測定から得られる特定結晶格子面の面間隔において、0.3μmのX線侵入深さにおける面間隔d1と5μmのX線侵入深さにおける面間隔d2とから得られる|d1−d2|/d2の値で表される結晶の表面層の均一歪みを2.1×10-3以下とすることができる。 According to one aspect of the present invention, a method for producing a nitride crystal includes machining a nitride crystal grown by a vapor phase growth method or a liquid phase growth method, followed by chemical mechanical polishing, and machining. A nitride crystal manufacturing method for improving crystallinity of a deteriorated nitride crystal surface layer by chemical mechanical polishing, wherein a slurry having a pH of 6 or less or 8 or more in chemical mechanical polishing is used. The improvement in the crystallinity of the surface layer of the specific crystal lattice plane obtained by X-ray diffraction measurement that changes the X-ray penetration depth from the crystal surface while satisfying the X-ray diffraction condition of any specific crystal lattice plane of the crystal Is expressed by a value of | d 1 −d 2 | / d 2 obtained from a surface distance d 1 at an X-ray penetration depth of 0.3 μm and a surface distance d 2 at an X-ray penetration depth of 5 μm. 1. Uniform distortion of the surface layer of the crystal It can be 1 × 10 −3 or less.

また、本発明の別の態様によれば、窒化物結晶の製造方法は、気相成長法または液相成長法により成長させた窒化物結晶を機械加工した後化学機械的研磨することにより、機械加工により悪化した窒化物結晶の表面層の結晶性を化学機械的研磨により向上させる窒化物結晶の製造方法であって、化学機械的研磨においてpHが6以下または8以上のスラリーを用いて、窒化物結晶の表面層の結晶性の向上は、結晶の任意の特定結晶格子面のX線回折条件を満たしながら結晶の表面からのX線侵入深さを変化させるX線回折測定から得られる特定結晶格子面の回折強度プロファイルにおいて、0.3μmのX線侵入深さにおける回折強度ピークの半値幅v1と5μmのX線侵入深さにおける回折強度ピークの半値幅v2とから得られる|v1−v2|の値で表される結晶の表面層の不均一歪みを150arcsec以下とすることができる。 According to another aspect of the present invention, a method for producing a nitride crystal includes mechanically polishing a nitride crystal grown by a vapor phase growth method or a liquid phase growth method, and then mechanically polishing the nitride crystal. A method for producing a nitride crystal that improves the crystallinity of a surface layer of a nitride crystal that has deteriorated due to processing by chemical mechanical polishing, wherein nitriding is performed using a slurry having a pH of 6 or less or 8 or more in chemical mechanical polishing. The crystallinity of the surface layer of the product crystal is improved by the specific crystal obtained from the X-ray diffraction measurement that changes the X-ray penetration depth from the surface of the crystal while satisfying the X-ray diffraction condition of any specific crystal lattice plane of the crystal. in the diffraction intensity profile of the lattice plane obtained from the half value width v 2 Metropolitan diffraction intensity peak at the half-width v 1 and 5 [mu] m X-ray penetration depth of the diffraction intensity peak at the X-ray penetration depth of 0.3 [mu] m | v 1 −v 2 The nonuniform strain of the surface layer of the crystal represented by the value of | can be set to 150 arcsec or less.

また、本発明の別の態様によれば、窒化物結晶の製造方法は、気相成長法または液相成長法により成長させた窒化物結晶を機械加工した後化学機械的研磨することにより、機械加工により悪化した窒化物結晶の表面層の結晶性を化学機械的研磨により向上させる窒化物結晶の製造方法であって、化学機械的研磨においてpHが6以下または8以上のスラリーを用いて、窒化物結晶の表面層の結晶性の向上は、結晶の任意の特定結晶格子面のX線回折に関して結晶の表面からのX線侵入深さを変化させて測定されたロッキングカーブにおいて、0.3μmのX線侵入深さにおける回折強度ピークの半値幅w1と5μmのX線侵入深さにおける回折強度ピークの半値幅w2とから得られる|w1−w2|の値で表される特定結晶面の面方位ずれが400arcsec以下とすることができる。 According to another aspect of the present invention, a method for producing a nitride crystal includes mechanically polishing a nitride crystal grown by a vapor phase growth method or a liquid phase growth method, and then mechanically polishing the nitride crystal. A method for producing a nitride crystal that improves the crystallinity of a surface layer of a nitride crystal that has deteriorated due to processing by chemical mechanical polishing, wherein nitriding is performed using a slurry having a pH of 6 or less or 8 or more in chemical mechanical polishing. The crystallinity improvement of the surface layer of the product crystal is 0.3 μm in the rocking curve measured by changing the X-ray penetration depth from the surface of the crystal with respect to the X-ray diffraction of any specific crystal lattice plane of the crystal. A specific crystal represented by the value of | w 1 −w 2 | obtained from the half width w 1 of the diffraction intensity peak at the X-ray penetration depth and the half width w 2 of the diffraction intensity peak at the X-ray penetration depth of 5 μm. The surface orientation deviation is 4 It can be a 0arcsec below.

上記態様の窒化物結晶の製造方法において、上記スラリーは、次亜塩素酸、塩素化イソシアヌル酸、塩素化イソシアヌル酸塩、過マンガン酸塩、ニクロム酸塩、臭素酸塩、チオ硫酸塩、硝酸、過酸化水素水およびオゾンからなる群から選ばれる1種以上の酸化剤を含むことができる。   In the method for producing a nitride crystal of the above aspect, the slurry includes hypochlorous acid, chlorinated isocyanuric acid, chlorinated isocyanurate, permanganate, dichromate, bromate, thiosulfate, nitric acid, One or more oxidizing agents selected from the group consisting of hydrogen peroxide and ozone can be included.

本発明のさらに別の態様によれば、エピ層付窒化物結晶基板の製造方法は、窒化物結晶基板として、窒化物結晶であって結晶の任意の特定結晶格子面のX線回折条件を満たしながら結晶の表面からのX線侵入深さを変化させるX線回折測定から得られる特定結晶格子面の面間隔において、0.3μmのX線侵入深さにおける面間隔d1と5μmのX線侵入深さにおける面間隔d2とから得られる|d1−d2|/d2の値で表される結晶の表面層の均一歪みが2.1×10-3以下である結晶を選択し、上記窒化物結晶基板の少なくとも一方の主面側に1層以上の半導体層をエピタキシャル成長させる工程を含む。 According to still another aspect of the present invention, a method for manufacturing an epilayer-attached nitride crystal substrate satisfies the X-ray diffraction conditions of any specific crystal lattice plane of a nitride crystal as the nitride crystal substrate. However, the interplanar spacing d 1 at an X-ray penetration depth of 0.3 μm and an X-ray penetration of 5 μm at a specific crystal lattice plane spacing obtained by X-ray diffraction measurement changing the X-ray penetration depth from the crystal surface. A crystal having a uniform distortion of the surface layer of the crystal represented by | d 1 −d 2 | / d 2 obtained from the interplanar spacing d 2 in the depth of 2.1 × 10 −3 or less, Including a step of epitaxially growing one or more semiconductor layers on at least one main surface of the nitride crystal substrate.

本発明のさらに別の態様によれば、エピ層付窒化物結晶基板の製造方法は、窒化物結晶基板として、窒化物結晶であって結晶の任意の特定結晶格子面のX線回折条件を満たしながら結晶の表面からのX線侵入深さを変化させるX線回折測定から得られる特定結晶格子面の回折強度プロファイルにおいて、0.3μmのX線侵入深さにおける回折強度ピークの半値幅v1と5μmのX線侵入深さにおける回折強度ピークの半値幅v2とから得られる|v1−v2|の値で表される結晶の表面層の不均一歪みが150arcsec以下である結晶を選択し、上記窒化物結晶基板の少なくとも一方の主面側に1層以上の半導体層をエピタキシャル成長させる工程を含む。 According to still another aspect of the present invention, a method for manufacturing an epilayer-attached nitride crystal substrate satisfies the X-ray diffraction conditions of any specific crystal lattice plane of a nitride crystal as the nitride crystal substrate. In the diffraction intensity profile of the specific crystal lattice plane obtained from the X-ray diffraction measurement that changes the X-ray penetration depth from the crystal surface, the half-value width v 1 of the diffraction intensity peak at the X-ray penetration depth of 0.3 μm A crystal having a nonuniform strain of the surface layer of the crystal represented by the value of | v 1 −v 2 | obtained from the half-value width v 2 of the diffraction intensity peak at an X-ray penetration depth of 5 μm is selected. And a step of epitaxially growing one or more semiconductor layers on at least one main surface side of the nitride crystal substrate.

本発明のさらに別の態様によれば、エピ層付窒化物結晶基板の製造方法は、窒化物結晶基板として、窒化物結晶であって結晶の任意の特定結晶格子面のX線回折に関して結晶の表面からのX線侵入深さを変化させて測定されたロッキングカーブにおいて、0.3μmのX線侵入深さにおける回折強度ピークの半値幅w1と5μmのX線侵入深さにおける回折強度ピークの半値幅w2とから得られる|w1−w2|の値で表される特定結晶格子面の面方位ずれが400arcsec以下である結晶を選択し、上記窒化物結晶基板の少なくとも一方の主面側に1層以上の半導体層をエピタキシャル成長させる工程を含む。 According to still another aspect of the present invention, a method of manufacturing an epilayer-attached nitride crystal substrate is a nitride crystal substrate, which is a nitride crystal, and is related to X-ray diffraction of any specific crystal lattice plane of the crystal. In the rocking curve measured by changing the X-ray penetration depth from the surface, the half-value width w 1 of the diffraction intensity peak at the X-ray penetration depth of 0.3 μm and the diffraction intensity peak at the X-ray penetration depth of 5 μm A crystal having a plane orientation deviation of a specific crystal lattice plane represented by a value of | w 1 −w 2 | obtained from the half-value width w 2 of 400 arcsec or less is selected, and at least one main surface of the nitride crystal substrate And a step of epitaxially growing one or more semiconductor layers on the side.

上記態様のエピ層付窒化物結晶基板の製造方法において、窒化物結晶基板の格子定数k0と半導体層の格子定数kとの関係を(|k−k0|/k)≦0.15とすることができる。 In the method for manufacturing a nitride crystal substrate with an epi layer according to the above aspect, the relationship between the lattice constant k 0 of the nitride crystal substrate and the lattice constant k of the semiconductor layer is (| k−k 0 | / k) ≦ 0.15. can do.

本発明によれば、半導体デバイスを作製する際のエピタキシャル結晶成長用の基板として好ましく用いられ得るように結晶を破壊することなく直接かつ確実に評価された結晶表面層を有する窒化物結晶およびエピ層付窒化物結晶基板の製造方法を提供することができる。すなわち、本発明にかかる窒化物結晶を基板として用いることにより特性のよい半導体デバイスが得られる。   According to the present invention, a nitride crystal and an epi layer having a crystal surface layer directly and reliably evaluated without destroying the crystal so that they can be preferably used as a substrate for epitaxial crystal growth in manufacturing a semiconductor device. A method for producing an attached nitride crystal substrate can be provided. That is, a semiconductor device with good characteristics can be obtained by using the nitride crystal according to the present invention as a substrate.

結晶表面から深さ方向への結晶の状態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the state of the crystal | crystallization from the crystal | crystallization surface to a depth direction. 本発明にかかるX線回折法における測定軸、測定角を示す模式図である。It is a schematic diagram which shows the measurement axis and the measurement angle in the X-ray diffraction method concerning this invention. X線回折法における窒化物結晶の結晶格子の均一歪みと回折プロファイルにおける特定結晶格子面の面間隔との関係を示す模式図である。ここで、(a)は結晶格子の均一歪みを示し、(b)は回折プロファイルにおける特定結晶格子面の面間隔を示す。It is a schematic diagram which shows the relationship between the uniform distortion of the crystal lattice of the nitride crystal in a X-ray diffraction method, and the space | interval of the specific crystal lattice plane in a diffraction profile. Here, (a) shows the uniform distortion of the crystal lattice, and (b) shows the interplanar spacing of the specific crystal lattice plane in the diffraction profile. X線回折法における窒化物結晶の結晶格子の不均一歪みと回折プロファイルにおける回折ピークの半価幅との関係を示す模式図である。ここで、(a)は結晶格子の不均一歪みを示し、(b)は回折プロファイルにおける回折ピークの半価幅を示す。It is a schematic diagram which shows the relationship between the non-uniform distortion of the crystal lattice of the nitride crystal in a X-ray diffraction method, and the half width of the diffraction peak in a diffraction profile. Here, (a) shows non-uniform distortion of the crystal lattice, and (b) shows the half width of the diffraction peak in the diffraction profile. X線回折法における窒化物結晶の特定結晶格子面の面方位ずれとロッキングカーブにおける半価幅との関係を示す模式図である。ここで、(a)は特定結晶格子面の面方位ずれを示し、(b)はロッキングカーブにおける半価幅を示す。It is a schematic diagram which shows the relationship between the plane orientation shift | offset | difference of the specific crystal lattice plane of the nitride crystal in a X-ray diffraction method, and the half value width in a rocking curve. Here, (a) shows the plane orientation deviation of the specific crystal lattice plane, and (b) shows the half width in the rocking curve. 本発明にかかる半導体デバイスの一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the semiconductor device concerning this invention.

本発明においては、X線回折法を用いることにより、窒化物結晶の表面層における結晶性を、結晶を破壊することなく直接評価することができる。ここで、結晶性の評価とは、結晶の歪みがどの程度あるかを評価することをいい、具体的には、結晶格子の歪み、結晶格子面の面方位ずれがどの程度あるかを評価することをいう。また、結晶格子の歪みには、結晶格子が均一に歪んでいる均一歪みと、結晶格子が不均一に歪んでいる不均一歪みとがある。結晶格子面の面方位ずれとは、結晶格子全体の格子面の面方位の平均方位から各々の結晶格子の格子面の面方位がずれているばらつきの大きさをいう。   In the present invention, by using the X-ray diffraction method, the crystallinity in the surface layer of the nitride crystal can be directly evaluated without destroying the crystal. Here, the evaluation of crystallinity means evaluating the degree of crystal distortion, and specifically, evaluating the degree of crystal lattice distortion and crystal plane misalignment. That means. The crystal lattice distortion includes a uniform strain in which the crystal lattice is uniformly distorted and a non-uniform strain in which the crystal lattice is distorted non-uniformly. The crystal orientation deviation of the crystal lattice plane refers to the magnitude of variation in which the plane orientation of the lattice plane of each crystal lattice is deviated from the average orientation of the plane orientation of the crystal plane of the entire crystal lattice.

図1に示すように、窒化物結晶1は、切り出し、研削または研磨などによる加工によって、結晶表面1sから一定の深さ方向の結晶表面層1aに結晶格子の均一歪み、不均一歪みおよび/または面方位ずれが生じる。また、結晶表面層1aに隣接する結晶表面隣接層1bにも、結晶格子の均一歪み、不均一歪みまたは結晶格子の面方位ずれの少なくともいずれかが生じる場合もある(図1は、結晶格子の面方位ずれが生じている場合を示す)。さらに、結晶表面隣接層1bよりも内側の結晶内層1cでは、その結晶本来の結晶構造を有するものと考えられる。なお、表面加工における研削または研磨の方法、程度などにより、結晶表面層1a、結晶表面隣接層1bの状態、厚さが異なる。   As shown in FIG. 1, the nitride crystal 1 is processed by cutting, grinding, polishing, or the like to form a uniform strain, non-uniform strain in the crystal lattice, and / or strain from the crystal surface 1s to the crystal surface layer 1a in a certain depth direction. Surface orientation deviation occurs. In addition, the crystal surface adjacent layer 1b adjacent to the crystal surface layer 1a may have at least one of a uniform distortion of the crystal lattice, a non-uniform distortion of the crystal lattice, and a plane orientation shift of the crystal lattice (FIG. (Indicates a case where a plane orientation deviation has occurred). Further, the inner crystal layer 1c inside the crystal surface adjacent layer 1b is considered to have the original crystal structure of the crystal. Note that the state and thickness of the crystal surface layer 1a and the crystal surface adjacent layer 1b differ depending on the grinding method or polishing method in surface processing.

ここで、結晶の表面からその深さ方向に、結晶格子の均一歪み、不均一歪みおよび/または面方位ずれを評価することにより、結晶表面層の結晶性を直接かつ確実に評価することができる。   Here, the crystallinity of the crystal surface layer can be directly and reliably evaluated by evaluating the uniform strain, nonuniform strain, and / or plane orientation deviation of the crystal lattice in the depth direction from the crystal surface. .

本発明において窒化物結晶の表面層の結晶性を評価するためのX線回折測定は、窒化物結晶の任意の特定結晶格子面のX線回折条件を満たしながら前記結晶の表面からのX線侵入深さを変化させるものである。   In the present invention, the X-ray diffraction measurement for evaluating the crystallinity of the surface layer of the nitride crystal is performed by the X-ray penetration from the surface of the crystal while satisfying the X-ray diffraction condition of any specific crystal lattice plane of the nitride crystal. It changes the depth.

ここで、任意の特定結晶格子面の回折条件とは、任意に特定されたその結晶格子面によってX線が回折される条件をいい、Bragg角をθ、X線の波長をλ、結晶格子面の面間隔をdとすると、Braggの条件式(2dsinθ=nλ、ここでnは整数)を満たす結晶格子面でX線が回折される。   Here, the diffraction condition of an arbitrary specific crystal lattice plane refers to a condition in which X-rays are diffracted by the arbitrarily specified crystal lattice plane, the Bragg angle is θ, the X-ray wavelength is λ, and the crystal lattice plane is X is diffracted at a crystal lattice plane that satisfies Bragg's conditional expression (2 d sin θ = nλ, where n is an integer).

また、X線侵入深さとは、入射X線の強度が1/e(eは自然対数の底)になるときの結晶表面1sからの垂直深さ方向への距離をいう。このX線侵入深さTは、図2を参照して、窒化物結晶1におけるX線の線吸収係数μ、結晶表面1sの傾き角χ、結晶表面1sに対するX線入射角ω、Bragg角θによって、式(1)のように表わされる。なお、χ軸21は入射X線11と出射X線12とにより作られる面内にあり、ω軸(2θ軸)22は入射X線11と出射X線12とにより作られる面に垂直であり、φ軸23は結晶表面1sに垂直である。φは結晶表面1s内の回転角を示す。   The X-ray penetration depth refers to the distance in the vertical depth direction from the crystal surface 1s when the intensity of incident X-rays is 1 / e (e is the base of natural logarithm). The X-ray penetration depth T is determined by referring to FIG. 2. The X-ray absorption coefficient μ of the nitride crystal 1, the tilt angle χ of the crystal surface 1 s, the X-ray incident angle ω with respect to the crystal surface 1 s, and the Bragg angle θ Is expressed as in equation (1). The χ axis 21 is in the plane formed by the incident X-ray 11 and the outgoing X-ray 12, and the ω axis (2θ axis) 22 is perpendicular to the plane formed by the incident X-ray 11 and the outgoing X-ray 12. The φ axis 23 is perpendicular to the crystal surface 1s. φ indicates the rotation angle within the crystal surface 1s.

Figure 2012054563
Figure 2012054563

したがって、上記の特定結晶格子面に対する回折条件を満たすように、χ、ωおよびφの少なくともいずれかを調整することにより、連続的にX線侵入深さTを変えることができる。   Therefore, the X-ray penetration depth T can be continuously changed by adjusting at least one of χ, ω, and φ so as to satisfy the diffraction condition for the specific crystal lattice plane.

なお、特定結晶格子面1dにおける回折条件を満たすように、連続的にX線侵入深さTを変化させるためには、その特定結晶格子面1dと結晶表面1sとは平行でないことが必要である。特定結晶格子面と結晶表面とが平行であると、特定結晶格子面1dと入射X線11とのなす角度であるθと結晶表面1sと入射X線11とのなす角度であるωとが同じになり、特定結晶格子面1dにおいてX線侵入深さを変えることができなくなる。   In order to continuously change the X-ray penetration depth T so as to satisfy the diffraction condition on the specific crystal lattice plane 1d, it is necessary that the specific crystal lattice plane 1d and the crystal surface 1s are not parallel to each other. . When the specific crystal lattice plane and the crystal surface are parallel, the angle θ formed by the specific crystal lattice plane 1d and the incident X-ray 11 and the angle ω formed by the crystal surface 1s and the incident X-ray 11 are the same. Thus, the X-ray penetration depth cannot be changed at the specific crystal lattice plane 1d.

ここで、X線侵入深さを変えて結晶の任意の特定結晶格子面にX線を照射し、この特定結晶格子面についての回折プロファイルにおける面間隔の変化から結晶格子の均一歪みを、回折プロファイルにおける回折ピークの半価幅の変化から結晶格子の不均一歪みを、ロッキングカーブにおける半価幅の変化から結晶格子の面方位ずれを評価することを、以下の実施形態に基づいて具体的に説明する。   Here, the X-ray penetration depth is changed to irradiate any specific crystal lattice plane of the crystal with X-rays, and the uniform distortion of the crystal lattice is determined from the change in interplanar spacing in the diffraction profile for the specific crystal lattice plane. Based on the following embodiments, the evaluation of non-uniform distortion of the crystal lattice from the change in half-value width of the diffraction peak in FIG. To do.

(実施形態1)
本実施形態の窒化物結晶は、結晶の任意の特定結晶格子面のX線回折条件を満たしながら結晶の表面からのX線侵入深さを変化させるX線回折測定から得られる特定結晶格子面の面間隔において、0.3μmのX線侵入深さにおける面間隔d1と5μmのX線侵入深さにおける面間隔d2とから得られる|d1−d2|/d2の値で表される結晶の表面層の均一歪みが2.1×10-3以下であることを特徴とする。
(Embodiment 1)
The nitride crystal of the present embodiment has a specific crystal lattice plane obtained by X-ray diffraction measurement that changes the X-ray penetration depth from the crystal surface while satisfying the X-ray diffraction condition of any specific crystal lattice plane of the crystal. It is expressed by a value of | d 1 −d 2 | / d 2 obtained from a surface distance d 1 at an X-ray penetration depth of 0.3 μm and a surface distance d 2 at an X-ray penetration depth of 5 μm. The uniform strain of the surface layer of the crystal is 2.1 × 10 −3 or less.

図1を参照して、X線侵入深さ0.3μmは窒化物結晶の表面から結晶表面層1a内までの距離に相当し、X線侵入深さ5μmは窒化物結晶の表面から結晶内層1c内までの距離に相当する。このとき、図3(a)を参照して、X線侵入深さ5μmにおける面間隔d2はその窒化物結晶本来の特定結晶格子面の面間隔と考えられるが、X線侵入深さ0.3μmにおける面間隔d1は、結晶の表面加工の影響(たとえば、結晶格子面内方向への引張応力30など)による結晶表面層の結晶格子の均一歪みを反映して、X線侵入深さ5μmにおける面間隔d2と異なる値をとる。 Referring to FIG. 1, an X-ray penetration depth of 0.3 μm corresponds to a distance from the surface of the nitride crystal to the crystal surface layer 1a, and an X-ray penetration depth of 5 μm corresponds to the nitride crystal surface from the surface of the nitride crystal 1c. It corresponds to the distance to the inside. At this time, referring to FIG. 3A, the interplanar spacing d 2 at the X-ray penetration depth of 5 μm is considered to be the spacing of the specific crystal lattice plane inherent in the nitride crystal. The interplanar spacing d 1 at 3 μm reflects the uniform distortion of the crystal lattice of the crystal surface layer due to the influence of surface processing of the crystal (for example, tensile stress 30 in the crystal lattice plane direction), and the X-ray penetration depth is 5 μm. A value different from the surface distance d 2 at .

上記の場合、図3(b)を参照して、結晶の任意の特定結晶格子面についての回折プロファイルにおいて、X線侵入深さ0.3μmにおける面間隔d1とX線侵入深さ5μmにおける面間隔d2とが現れる。したがって、d2に対するd1とd2の差の割合である|d1−d2|/d2の値によって、結晶表面層の均一歪みを表わすことができる。 In the above case, referring to FIG. 3B, in the diffraction profile for an arbitrary specific crystal lattice plane of the crystal, the plane distance d 1 at the X-ray penetration depth of 0.3 μm and the plane at the X-ray penetration depth of 5 μm An interval d 2 appears. Accordingly, there is a ratio of the difference between d 1 and d 2 for d 2 | d 1 -d 2 | by / d 2 values, it is possible to represent the uniform distortion of the crystal surface layer.

本実施形態の窒化物結晶は、この|d1−d2|/d2の値で表わされる表面層の均一歪みが2.1×10-3以下である。窒化物結晶の表面層の均一歪みを|d1−d2|/d2≦2.1×10-3とすることにより、この窒化物結晶上に結晶性のよい半導体層をエピタキシャル成長させることができ、特性のよい半導体デバイスを作製することができる。 In the nitride crystal of the present embodiment, the uniform distortion of the surface layer represented by the value of | d 1 −d 2 | / d 2 is 2.1 × 10 −3 or less. By setting the uniform strain of the surface layer of the nitride crystal to | d 1 −d 2 | / d 2 ≦ 2.1 × 10 −3 , a semiconductor layer with good crystallinity can be epitaxially grown on the nitride crystal. And a semiconductor device with good characteristics can be manufactured.

(実施形態2)
本実施形態の窒化物結晶は、結晶の任意の特定結晶格子面のX線回折条件を満たしながら結晶の表面からのX線侵入深さを変化させるX線回折測定から得られる特定結晶格子面の回折強度プロファイルにおいて、0.3μmのX線侵入深さにおける回折強度ピークの半値幅v1と5μmのX線侵入深さにおける回折強度ピークの半値幅v2とから得られる|v1−v2|の値で表される結晶の表面層の不均一歪みが150arcsec以下であることを特徴とする。
(Embodiment 2)
The nitride crystal of the present embodiment has a specific crystal lattice plane obtained by X-ray diffraction measurement that changes the X-ray penetration depth from the crystal surface while satisfying the X-ray diffraction condition of any specific crystal lattice plane of the crystal. in the diffraction intensity profile obtained from half-value width v 2 Metropolitan diffraction intensity peak at the half-width v 1 and 5 [mu] m X-ray penetration depth of the diffraction intensity peak at the X-ray penetration depth of 0.3 [mu] m | v 1 -v 2 The non-uniform distortion of the surface layer of the crystal represented by the value of | is 150 arcsec or less.

図1を参照して、X線侵入深さ0.3μmは窒化物結晶の表面から結晶表面層1a内までの距離に相当し、X線侵入深さ5μmは窒化物結晶の表面から結晶内層1c内までの距離に相当する。このとき、図4(a)を参照して、X線侵入深さ5μmにおける回折ピークの半価幅v2はその窒化物結晶本来の半価幅と考えられるが、X線侵入深さ0.3μmにおける回折ピークの半価幅v1は、結晶の表面加工の影響による結晶表面層の結晶格子の不均一歪み(たとえば、各結晶格子面の面間隔が、d3、d4〜d5、d6とそれぞれ異なる)を反映して、X線侵入深さ5μmにおける回折ピークの半価幅v2と異なる値をとる。 Referring to FIG. 1, an X-ray penetration depth of 0.3 μm corresponds to a distance from the surface of the nitride crystal to the crystal surface layer 1a, and an X-ray penetration depth of 5 μm corresponds to the nitride crystal surface from the surface of the nitride crystal 1c. It corresponds to the distance to the inside. At this time, referring to FIG. 4A, the half-value width v 2 of the diffraction peak at an X-ray penetration depth of 5 μm is considered to be the original half-value width of the nitride crystal. The half-value width v 1 of the diffraction peak at 3 μm is the non-uniform distortion of the crystal lattice of the crystal surface layer due to the influence of the surface processing of the crystal (for example, the interplanar spacing of each crystal lattice plane is d 3 , d 4 to d 5 , Reflecting d 6 ), it takes a value different from the half-value width v 2 of the diffraction peak at an X-ray penetration depth of 5 μm.

上記の場合、図4(b)を参照して、結晶の任意の特定結晶格子面についての回折プロファイルにおいて、X線侵入深さ0.3μmにおける回折ピークの半価幅v1とX線侵入深さ5μmにおける回折ピークの半価幅v2とが現れる。したがって、v1とv2の差である|v1−v2|の値によって、結晶表面層の不均一歪みを表わすことができる。 In the above case, referring to FIG. 4B, in the diffraction profile for an arbitrary specific crystal lattice plane of the crystal, the half-value width v 1 of the diffraction peak and the X-ray penetration depth at an X-ray penetration depth of 0.3 μm A half-value width v 2 of a diffraction peak at 5 μm appears. Therefore, the uneven strain of the crystal surface layer can be expressed by the value of | v 1 −v 2 | which is the difference between v 1 and v 2 .

本実施形態の窒化物結晶は、この|v1−v2|の値で表わされる表面層の不均一歪みが150arcsec以下である。窒化物結晶の表面層の不均一歪みを|v1−v2|≦150(arcsec)とすることにより、この窒化物結晶上に結晶性のよい半導体層をエピタキシャル成長させることができ、特性のよい半導体デバイスを作製することができる。 In the nitride crystal of this embodiment, the nonuniform strain of the surface layer represented by the value of | v 1 −v 2 | is 150 arcsec or less. By setting the nonuniform strain of the surface layer of the nitride crystal to | v 1 −v 2 | ≦ 150 (arcsec), a semiconductor layer having good crystallinity can be epitaxially grown on the nitride crystal, and the characteristics are good. A semiconductor device can be manufactured.

(実施形態3)
本実施形態の窒化物結晶は、結晶の任意の特定結晶格子面のX線回折に関して結晶の表面からのX線侵入深さを変化させて測定されたロッキングカーブにおいて、0.3μmのX線侵入深さにおける回折強度ピークの半値幅w1と5μmのX線侵入深さにおける回折強度ピークの半値幅w2とから得られる|w1−w2|の値で表される特定結晶面の面方位ずれが400arcsec以下であることを特徴とする。
(Embodiment 3)
The nitride crystal of this embodiment has an X-ray penetration of 0.3 μm in a rocking curve measured by changing the X-ray penetration depth from the surface of the crystal with respect to the X-ray diffraction of an arbitrary specific crystal lattice plane of the crystal. The plane of the specific crystal plane represented by the value of | w 1 −w 2 | obtained from the half width w 1 of the diffraction intensity peak at the depth and the half width w 2 of the diffraction intensity peak at the X-ray penetration depth of 5 μm. The misorientation is 400 arcsec or less.

図1を参照して、X線侵入深さ0.3μmは窒化物結晶の表面から結晶表面層1a内までの距離に相当し、X線侵入深さ5μmは窒化物結晶の表面から結晶内層1c内までの距離に相当する。このとき、図5(a)を参照して、X線侵入深さ5μmにおける半価幅w2はその結晶本来の半価幅と考えられるが、X線侵入深さ0.3μmにおける半価幅w1は、結晶の表面加工の影響による結晶表面層の結晶格子の面方位ずれ(たとえば、各結晶格子の特定結晶格子面51d,52d,53dの面方位がそれぞれ異なる)を反映して、X線侵入深さ5μmにおける半価幅w2と異なる値をとる。 Referring to FIG. 1, an X-ray penetration depth of 0.3 μm corresponds to a distance from the surface of the nitride crystal to the crystal surface layer 1a, and an X-ray penetration depth of 5 μm corresponds to the nitride crystal surface from the surface of the nitride crystal 1c. It corresponds to the distance to the inside. At this time, referring to FIG. 5A, the half width w 2 at the X-ray penetration depth of 5 μm is considered to be the original half width of the crystal, but the half width at the X-ray penetration depth of 0.3 μm. w 1 reflects the crystal orientation misalignment of the crystal surface layer due to the effect of surface processing of the crystal (for example, the surface orientations of the specific crystal lattice planes 51d, 52d, and 53d of each crystal lattice are different), It takes a value different from the half width w 2 at the line penetration depth of 5 μm.

上記の場合、図5(b)を参照して、結晶の任意の特定結晶格子面についてのロッキングカーブにおいて、X線侵入深さ0.3μmにおける半価幅w1とX線侵入深さ5μmにおける半価幅w2とが現れる。したがって、w1とw2との差である|w1−w2|の値によって、結晶表面層の特定結晶格子面の面方位ずれを表わすことができる。 In the above case, referring to FIG. 5B, in the rocking curve for any specific crystal lattice plane of the crystal, the half-value width w 1 at the X-ray penetration depth of 0.3 μm and the X-ray penetration depth of 5 μm. The half width w 2 appears. Therefore, the deviation of the plane orientation of the specific crystal lattice plane of the crystal surface layer can be expressed by the value of | w 1 −w 2 | which is the difference between w 1 and w 2 .

本実施形態の窒化物結晶は、この|w1−w2|の値で表わされる表面層の特定結晶面の面方位ずれが400arcsec以下である。窒化物結晶の表面層の特定結晶面の面方位ずれを|w1−w2|≦400(arcsec)とすることにより、この窒化物結晶上に結晶性のよい半導体層をエピタキシャル成長させることができ、特性のよい半導体デバイスを作製することができる。 In the nitride crystal of the present embodiment, the plane orientation deviation of the specific crystal plane of the surface layer represented by the value | w 1 −w 2 | is 400 arcsec or less. By setting the plane orientation shift of the specific crystal plane of the surface layer of the nitride crystal to | w 1 −w 2 | ≦ 400 (arcsec), a semiconductor layer with good crystallinity can be epitaxially grown on the nitride crystal. A semiconductor device with good characteristics can be manufactured.

なお、上記の実施形態1〜3における結晶性評価方法により評価される結晶性については、上記の表面加工に起因するものに限定されるものではなく、結晶成長の際に生じる結晶の歪みなども含めることができる。   Note that the crystallinity evaluated by the crystallinity evaluation method in the first to third embodiments is not limited to the one caused by the surface processing described above, and crystal distortion and the like generated during crystal growth are also included. Can be included.

また、上記の実施形態1〜3の窒化物結晶において、結晶の表面は30nm以下の表面粗さRyを有することが好ましい。ここで、表面粗さRyとは、粗さ曲面から、その平均面の方向に基準面積としてとして10μm角(10μm×10μm=100μm2、以下同じ)だけ抜き取り、この抜き取り部分の平均面から最も高い山頂までの高さと最も低い谷底までの深さとの和をいう。窒化物結晶の表面粗さRyを30nm以下とすることにより、この窒化物結晶上に結晶性の良好な半導体層をエピタキシャル成長させることができ、特性のよい半導体デバイスが得られる。 In the nitride crystals of the first to third embodiments, the crystal surface preferably has a surface roughness Ry of 30 nm or less. Here, the surface roughness Ry is extracted from the roughness curved surface by a 10 μm square (10 μm × 10 μm = 100 μm 2 , hereinafter the same) as a reference area in the direction of the average surface, and is highest from the average surface of the extracted portion. The sum of the height to the top of the mountain and the depth to the bottom of the lowest valley. By setting the surface roughness Ry of the nitride crystal to 30 nm or less, a semiconductor layer with good crystallinity can be epitaxially grown on the nitride crystal, and a semiconductor device with good characteristics can be obtained.

また、上記の実施形態1〜3の窒化物結晶において、結晶の表面は3nm以下の表面粗さRaを有することが好ましい。ここで、表面粗さRaとは、粗さ曲面から、その平均面の方向に基準面積として10μm角だけ抜き取り、この抜き取り部分の平均面から測定曲面までの偏差の絶対値を合計してそれを基準面積で平均した値をいう。窒化物結晶の表面粗さRaを3nm以下とすることにより、この窒化物結晶上に結晶性の良好な半導体層をエピタキシャル成長させることができ、特性のよい半導体デバイスが得られる。   In the nitride crystals of the first to third embodiments, the crystal surface preferably has a surface roughness Ra of 3 nm or less. Here, the surface roughness Ra is extracted from the roughness curved surface by a 10 μm square as a reference area in the direction of the average surface, and the absolute value of the deviation from the average surface of the extracted portion to the measurement curved surface is summed up. The value averaged with the reference area. By setting the surface roughness Ra of the nitride crystal to 3 nm or less, a semiconductor layer with good crystallinity can be epitaxially grown on the nitride crystal, and a semiconductor device with good characteristics can be obtained.

また、上記の実施形態1〜3の窒化物結晶において、結晶の表面はウルツ鉱型構造におけるC面に平行であることが好ましい。ここで、C面とは{0001}面、{000−1}面を意味する。族窒化物結晶の表面がウルツ鉱型構造における上記各面に平行または平行に近い状態(たとえば、窒化物結晶の表面と、ウルツ鉱型構造におけるC面とのなす角であるオフ角が0.05°未満)とすることにより、この窒化物結晶上に結晶性の良好な半導体層をエピタキシャル成長させることができ、特性のよい半導体デバイスが得られる。   In the nitride crystals of the first to third embodiments, the crystal surface is preferably parallel to the C plane in the wurtzite structure. Here, the C plane means a {0001} plane and a {000-1} plane. A state in which the surface of the group nitride crystal is parallel or nearly parallel to each of the above surfaces in the wurtzite structure (for example, the off-angle that is the angle formed between the surface of the nitride crystal and the C surface in the wurtzite structure is 0. 0). By setting the angle to less than 05 °, a semiconductor layer with good crystallinity can be epitaxially grown on the nitride crystal, and a semiconductor device with good characteristics can be obtained.

また、上記の実施形態1〜3の窒化物結晶において、結晶の表面はウルツ鉱型構造におけるC面に対して0.05°以上15°以下の範囲内のオフ角を有することが好ましい。0.05°以上のオフ角を設けることにより窒化物結晶上にエピタキシャル成長させる半導体層の欠陥を低減することができる。しかし、オフ角が15°を超えると上記半導体層に階段状の段差ができやすくなる。かかる観点から、オフ角は、0.1°以上10°以下であることがより好ましい。   In the nitride crystals of the first to third embodiments, it is preferable that the surface of the crystal has an off angle in the range of 0.05 ° to 15 ° with respect to the C plane in the wurtzite structure. By providing an off angle of 0.05 ° or more, defects in the semiconductor layer epitaxially grown on the nitride crystal can be reduced. However, if the off angle exceeds 15 °, a stepped step is easily formed in the semiconductor layer. From this viewpoint, the off angle is more preferably 0.1 ° or more and 10 ° or less.

(実施形態4)
本実施形態は、上記実施形態1〜3の窒化物結晶で形成されている窒化物結晶基板である。また、本実施形態の窒化物結晶基板の少なくとも一方の主面に1層以上の半導体層をエピタキシャル成長させることにより、エピタキシャル層(エピ層ともいう)である1層以上の半導体層を含むエピ層付窒化物結晶基板が得られる。ここで、窒化物結晶基板の格子定数(結晶成長面に垂直な軸における格子定数をいう、本実施形態において以下同じ)k0と半導体層の格子定数kとの関係が、(|k−k0|/k)≦0.15であれば、窒化物結晶基板にその半導体層をエピタキシャル成長させることができ、(|k−k0|/k
)≦0.05であることが好ましい。かかる観点から、半導体層としては、III族窒化物層が好ましい。
(Embodiment 4)
The present embodiment is a nitride crystal substrate formed of the nitride crystals of the first to third embodiments. In addition, by epitaxially growing one or more semiconductor layers on at least one main surface of the nitride crystal substrate of this embodiment, an epitaxial layer including one or more semiconductor layers that are epitaxial layers (also referred to as epilayers) is provided. A nitride crystal substrate is obtained. Here, the relationship between the lattice constant of the nitride crystal substrate (referring to the lattice constant in the axis perpendicular to the crystal growth surface, hereinafter the same in this embodiment) k 0 and the lattice constant k of the semiconductor layer is expressed as (| k−k If 0 | / k) ≦ 0.15, the semiconductor layer can be epitaxially grown on the nitride crystal substrate, and (| k−k 0 | / k
) ≦ 0.05 is preferable. From this viewpoint, the group III nitride layer is preferable as the semiconductor layer.

(実施形態5)
本実施形態は、上記実施形態4の窒化物結晶基板または上記エピ層付窒化物結晶基板の少なくとも一方の主面側にエピタキシャル成長により形成されている1層以上の半導体層を含む半導体デバイスである。こうして得られる半導体デバイスは、基板として用いられている窒化物結晶の表面層の均一歪み、不均一歪みおよび面方位ずれの少なくともいずれかが小さいことから、窒化物結晶基板またはエピ層付窒化物結晶基板の少なくとも一方の主面側に形成される半導体層は結晶性が良好であり、良好なデバイス特性が得られる。
(Embodiment 5)
The present embodiment is a semiconductor device including one or more semiconductor layers formed by epitaxial growth on at least one main surface side of the nitride crystal substrate of the fourth embodiment or the nitride crystal substrate with an epi layer. The semiconductor device thus obtained has a nitride crystal substrate or a nitride crystal with an epi layer because at least one of the uniform strain, non-uniform strain and plane orientation deviation of the surface layer of the nitride crystal used as the substrate is small. The semiconductor layer formed on at least one main surface side of the substrate has good crystallinity and good device characteristics can be obtained.

ここで、本実施形態における半導体層ついても、実施形態4における半導体層と同様である。すなわち、本実施形態においても、窒化物結晶基板の格子定数(結晶成長面に垂直な軸における格子定数をいう、本実施形態において以下同じ)k0と半導体層の格子定数kとの関係が、(|k−k0|/k)≦0.15であれば、窒化物結晶基板にその半導体層をエピタキシャル成長させることができ、(|k−k0|/k)≦0.05であることが好ましい。かかる観点から、半導体層としては、III族窒化物層が好ましい。 Here, the semiconductor layer in the present embodiment is the same as the semiconductor layer in the fourth embodiment. That is, also in the present embodiment, the relationship between the lattice constant of the nitride crystal substrate (referring to the lattice constant in the axis perpendicular to the crystal growth surface, the same applies to the present embodiment) k 0 and the lattice constant k of the semiconductor layer is If (| k−k 0 | / k) ≦ 0.15, the semiconductor layer can be epitaxially grown on the nitride crystal substrate, and (| k−k 0 | / k) ≦ 0.05. Is preferred. From this viewpoint, the group III nitride layer is preferable as the semiconductor layer.

本実施形態の半導体デバイスとしては、発光ダイオード、レーザダイオードなどの発光素子、整流器、バイポーラトランジスタ、電界効果トランジスタ、HEMT(High Electron Mobility Transistor;高電子移動度トランジスタ)などの電子素子、温度センサ、圧力センサ、放射線センサ、可視−紫外光検出器などの半導体センサ、SAWデバイス(Surface Acoustic Wave Device;表面弾性波素子)などが挙げられる。   Examples of the semiconductor device of the present embodiment include light-emitting elements such as light-emitting diodes and laser diodes, rectifiers, bipolar transistors, field-effect transistors, electronic elements such as HEMTs (High Electron Mobility Transistors), temperature sensors, and pressures. Examples thereof include a sensor, a radiation sensor, a semiconductor sensor such as a visible-ultraviolet light detector, and a SAW device (Surface Acoustic Wave Device).

(実施形態6)
本実施形態の半導体デバイスは、図6を参照して、基板610として上記の窒化物結晶基板またはエピ層付窒化物結晶基板を含む半導体デバイスであって、窒化物結晶基板またはエピ層付窒化物結晶基板(基板610)の一方の主面側にエピタキシャル成長により形成されている3層以上の複数の半導体層650と、窒化物結晶基板またはエピ層付窒化物結晶基板(基板610)の他方の主面側に形成された第1の電極661と、複数の半導体層650の最外半導体層上に形成された第2の電極662とを含む発光素子を備え、さらに発光素子を搭載する導電体682を備え、発光素子の基板610側が発光面側であり、最外半導体層側が搭載面側であり、複数の半導体層650はp型半導体層630とn型半導体層620とこれらの導電型半導体層の間に形成されている発光層640とを含むことを特徴とする。上記構成を有することにより、窒化物結晶基板側を発光面側とする半導体デバイスを形成することができる。
(Embodiment 6)
Referring to FIG. 6, the semiconductor device of the present embodiment is a semiconductor device including the above-described nitride crystal substrate or the nitride crystal substrate with an epi layer as the substrate 610, and the nitride crystal substrate or the nitride with an epi layer A plurality of three or more semiconductor layers 650 formed by epitaxial growth on one main surface side of the crystal substrate (substrate 610) and the other main layer of the nitride crystal substrate or the nitride crystal substrate with an epi layer (substrate 610). A conductor 682 including a light emitting element including a first electrode 661 formed on the surface side and a second electrode 662 formed on the outermost semiconductor layer of the plurality of semiconductor layers 650, and further mounting the light emitting element. The substrate 610 side of the light emitting element is the light emitting surface side, the outermost semiconductor layer side is the mounting surface side, and the plurality of semiconductor layers 650 include the p-type semiconductor layer 630, the n-type semiconductor layer 620, and their conductivity types Characterized in that it comprises a light-emitting layer 640 formed between the conductive layers. With the above configuration, a semiconductor device having the light emitting surface side on the nitride crystal substrate side can be formed.

本実施形態の半導体デバイスは、半導体層側が発光面側である半導体デバイスと比較して、発光層での発熱に対する放熱性に優れる。そのため、高電力で作動させても半導体デバイスの温度上昇が緩和され、高輝度の発光を得ることができる。また、サファイア基板などの絶縁性基板では、半導体層にn側電極およびp側電極の2種類の電極を形成する片面電極構造をとる必要があるが、本実施形態の半導体デバイスは、半導体層と基板とにそれぞれ電極を形成する両面電極構造をとることができ、半導体デバイスの主面の大部分を発光面とすることができる。さらに、半導体デバイスの実装の際に、ワイヤボンデイングが1回で足りるなど製造工程が簡略化できるなどの利点がある。   The semiconductor device of this embodiment is excellent in heat dissipation with respect to heat generation in the light emitting layer as compared with the semiconductor device in which the semiconductor layer side is the light emitting surface side. Therefore, even when operated with high power, the temperature rise of the semiconductor device is mitigated and light emission with high luminance can be obtained. In addition, an insulating substrate such as a sapphire substrate needs to have a single-sided electrode structure in which two types of electrodes, an n-side electrode and a p-side electrode, are formed on a semiconductor layer. A double-sided electrode structure in which electrodes are respectively formed on the substrate can be adopted, and most of the main surface of the semiconductor device can be a light emitting surface. Furthermore, there is an advantage that the manufacturing process can be simplified, for example, wire bonding is sufficient for mounting a semiconductor device.

(実施形態7)
本実施形態は、基板として窒化物結晶基板または窒化物結晶基板の少なくとも一方の主面側にエピタキシャル成長により形成されている1層以上の半導体層を含むエピ層付窒化物結晶基板を含む半導体デバイスの製造方法であって、窒化物結晶基板として、実施形態1の窒化物結晶を選択し、基板の少なくとも一方の主面側に1層以上の半導体層をエピタキシャル成長させる工程を含む半導体デバイスの製造方法である。
(Embodiment 7)
This embodiment is a semiconductor device including a nitride crystal substrate with an epitaxial layer including a nitride crystal substrate or one or more semiconductor layers formed by epitaxial growth on at least one main surface side of the nitride crystal substrate as a substrate. A method for manufacturing a semiconductor device, comprising: selecting the nitride crystal of Embodiment 1 as a nitride crystal substrate and epitaxially growing one or more semiconductor layers on at least one main surface side of the substrate. is there.

本実施形態の半導体デバイスの窒化物結晶基板として選択される実施形態1の窒化物結晶は、その表面層の均一歪みが小さいため、その窒化物結晶上に結晶性のよい半導体層をエピタキシャル成長させることができ、特性のよい半導体デバイスを形成することができる。なお、本実施形態における半導体層についても、実施形態4および実施形態5における半導体層と同様である。   Since the nitride crystal of Embodiment 1 selected as the nitride crystal substrate of the semiconductor device of this embodiment has a small uniform strain on its surface layer, a semiconductor layer with good crystallinity is epitaxially grown on the nitride crystal. Thus, a semiconductor device with good characteristics can be formed. The semiconductor layer in this embodiment is the same as the semiconductor layer in the fourth and fifth embodiments.

(実施形態8)
本実施形態は、基板として窒化物結晶基板または窒化物結晶基板の少なくとも一方の主面側にエピタキシャル成長により形成されている1層以上の半導体層を含むエピ層付窒化物結晶基板を含む半導体デバイスの製造方法であって、窒化物結晶基板として、実施形態2の窒化物結晶を選択し、基板の少なくとも一方の主面側に1層以上の半導体層をエピタキシャル成長させる工程を含む半導体デバイスの製造方法である。
(Embodiment 8)
This embodiment is a semiconductor device including a nitride crystal substrate with an epitaxial layer including a nitride crystal substrate or one or more semiconductor layers formed by epitaxial growth on at least one main surface side of the nitride crystal substrate as a substrate. A method for manufacturing a semiconductor device, comprising: selecting the nitride crystal of Embodiment 2 as a nitride crystal substrate, and epitaxially growing one or more semiconductor layers on at least one main surface side of the substrate. is there.

本実施形態の半導体デバイスの窒化物結晶基板として選択される実施形態2の窒化物結晶は、その表面層の不均一歪みが小さいため、その窒化物結晶上に結晶性のよい半導体層をエピタキシャル成長させることができ、特性のよい半導体デバイスを形成することができる。なお、本実施形態における半導体層についても、実施形態4および実施形態5における半導体層と同様である。   The nitride crystal of the second embodiment selected as the nitride crystal substrate of the semiconductor device of the present embodiment has a small nonuniform strain on its surface layer, and therefore a semiconductor layer with good crystallinity is epitaxially grown on the nitride crystal. Therefore, a semiconductor device with good characteristics can be formed. The semiconductor layer in this embodiment is the same as the semiconductor layer in the fourth and fifth embodiments.

(実施形態9)
本実施形態は、基板として窒化物結晶基板または窒化物結晶基板の少なくとも一方の主面側にエピタキシャル成長により形成されている1層以上の半導体層を含むエピ層付窒化物結晶基板を含む半導体デバイスの製造方法であって、窒化物結晶基板として、実施形態3の窒化物結晶を選択し、基板の少なくとも一方の主面側に1層以上の半導体層をエピタキシャル成長させる工程を含む半導体デバイスの製造方法である。
(Embodiment 9)
This embodiment is a semiconductor device including a nitride crystal substrate with an epitaxial layer including a nitride crystal substrate or one or more semiconductor layers formed by epitaxial growth on at least one main surface side of the nitride crystal substrate as a substrate. A method for manufacturing a semiconductor device, comprising: selecting the nitride crystal of Embodiment 3 as a nitride crystal substrate, and epitaxially growing one or more semiconductor layers on at least one main surface side of the substrate. is there.

本実施形態の半導体デバイスの基板として選択される実施形態3の窒化物結晶は、その表面層の特定結晶格子面の面方位のずれが小さいため、その窒化物結晶上に結晶性のよい半導体層をエピタキシャル成長させることができ、特性のよい半導体デバイスを形成することができる。なお、本実施形態における半導体層についても、実施形態4および実施形態5における半導体層と同様である。   The nitride crystal of the third embodiment selected as the substrate of the semiconductor device of the present embodiment has a small crystal orientation shift of the specific crystal lattice plane of the surface layer, and thus a semiconductor layer with good crystallinity on the nitride crystal Can be epitaxially grown, and a semiconductor device with good characteristics can be formed. The semiconductor layer in this embodiment is the same as the semiconductor layer in the fourth and fifth embodiments.

窒化物結晶は、HVPE(ハイドライド気相成長)法、昇華法などの気相成長法、またはフラックス法などの液相成長法により成長させることができる。   The nitride crystal can be grown by a vapor phase growth method such as an HVPE (hydride vapor phase growth) method or a sublimation method, or a liquid phase growth method such as a flux method.

上記の成長法により得られた窒化物結晶から半導体デバイスの窒化物結晶基板となる窒化物結晶を切り出し、その表面を平坦化するため研削、研磨などの表面加工を行なう。表面加工のうち研削、機械的研磨などの機械加工では、硬質な砥粒が結晶に切り込んで材料を除去するため、窒化物結晶基板となる窒化物結晶の表面には結晶性が悪化した加工変質層(ダメージ層)が残る。したがって、機械加工で平坦化された基板上に高品質のIII族窒化物半導層を作製するためには、加工変質層を低減することが必要となる。加工変質層の低減には、加工変質層および表面粗さの両方を低減できる観点から、CMP処理がもっとも適している。   A nitride crystal to be a nitride crystal substrate of a semiconductor device is cut out from the nitride crystal obtained by the above growth method, and surface processing such as grinding and polishing is performed to flatten the surface. In surface processing, such as grinding and mechanical polishing, the hard abrasive grains cut into the crystal to remove the material, so the surface of the nitride crystal that becomes the nitride crystal substrate has deteriorated workability due to poor crystallinity. The layer (damage layer) remains. Therefore, in order to produce a high-quality group III nitride semiconductor layer on a substrate flattened by machining, it is necessary to reduce the work-affected layer. CMP processing is most suitable for reducing the work-affected layer from the viewpoint of reducing both the work-affected layer and the surface roughness.

なお、基板表面の加工変質層は完全に除去する必要はなく、エピタキシャル成長前のアニール処理により表面の改質を行うこともできる。成長前のアニールにより結晶表面の再配列が行なわれ、結晶性のよい半導体層のエピタキシャル成長が可能となる。   Note that the work-affected layer on the substrate surface does not need to be completely removed, and the surface can be modified by annealing before epitaxial growth. The crystal surface is rearranged by annealing before growth, and the semiconductor layer having good crystallinity can be epitaxially grown.

窒化物結晶の表面層の結晶性を向上させるための表面加工方法の好ましい例として、CMP表面処理方法について以下に説明する。CMPに用いられるスラリー溶液のpHの値xと酸化還元電位の値y(mV)は以下の式(2)および(3)
y≧−50x+1000 (2)
y≦−50x+1900 (3)
のいずれもの関係を満たすことが好ましい。y<−50x+1000であると研磨速度が低くなる。一方、y>−50x+1900であると研磨パッドおよび研磨装置への腐食作用が大きくなり安定した研磨が困難となる。
As a preferred example of the surface processing method for improving the crystallinity of the surface layer of the nitride crystal, a CMP surface treatment method will be described below. The pH value x and the oxidation-reduction potential value y (mV) of the slurry solution used for CMP are expressed by the following equations (2) and (3).
y ≧ −50x + 1000 (2)
y ≦ −50x + 1900 (3)
It is preferable to satisfy any of these relationships. When y <−50x + 1000, the polishing rate becomes low. On the other hand, if y> -50x + 1900, the corrosive action on the polishing pad and the polishing apparatus becomes large, and stable polishing becomes difficult.

また、研磨速度をさらに向上させる観点から、さらに以下の式(4)
y≧−50x+1300 (4)
の関係をも満たすことが好ましい。
Further, from the viewpoint of further improving the polishing rate, the following formula (4)
y ≧ −50x + 1300 (4)
It is preferable to satisfy this relationship.

CMPのスラリーには、通常、塩酸、硫酸、硝酸などの酸、KOH、NaOHなどのアルカリが添加されているが、これらの酸および/またはアルカリのみでは化学的に安定な窒化ガリウムの表面を酸化する効果が小さい。そこで、さらに、酸化剤の添加により酸化還元電位を増加させて、上記式(2)および式(3)または上記式(3)および式(4)の関係を満たすようにすることが好ましい。   In general, acids such as hydrochloric acid, sulfuric acid, and nitric acid, and alkalis such as KOH and NaOH are added to the CMP slurry, but these acids and / or alkali alone oxidize the surface of chemically stable gallium nitride. The effect to do is small. Therefore, it is preferable to further increase the redox potential by adding an oxidizing agent so as to satisfy the relationship of the above formulas (2) and (3) or the above formulas (3) and (4).

CMPのスラリーに添加される酸化剤としては、特に制限はないが、研磨速度を高める観点から、次亜塩素酸、トリクロロイソシアヌル酸などの塩素化イソシアヌル酸、ジクロロイソシアヌル酸ナトリウムなどの塩素化イソシアヌル酸塩、過マンガン酸カリウムなどの過マンガン酸塩、ニクロム酸カリウムなどのニクロム酸塩、臭素酸カリウムなどの臭素酸塩、チオ硫酸ナトリウムなどのチオ硫酸塩、硝酸、過酸化水素水、オゾンなどが好ましく用いられる。なお、これらの酸化剤は、単独で用いても、2以上を併用してもよい。   The oxidizing agent added to the CMP slurry is not particularly limited, but from the viewpoint of increasing the polishing rate, chlorinated isocyanuric acid such as hypochlorous acid and trichloroisocyanuric acid, and chlorinated isocyanuric acid such as sodium dichloroisocyanurate. Salt, permanganate such as potassium permanganate, nichromate such as potassium dichromate, bromate such as potassium bromate, thiosulfate such as sodium thiosulfate, nitric acid, hydrogen peroxide, ozone etc. Preferably used. In addition, these oxidizing agents may be used independently or may use 2 or more together.

CMPのスラリーのpHは、6以下または8以上であることが好ましい。pHが6以下の酸性スラリーまたはpHが8以上の塩基性スラリーをIII族窒化物結晶に接触させて、III族窒化物結晶の加工変質層をエッチング除去することにより、研磨速度を高めることができる。かかる観点から、スラリーのpHは4以下または10以上であることがより好ましい。   The pH of the CMP slurry is preferably 6 or less or 8 or more. The polishing rate can be increased by bringing an acidic slurry having a pH of 6 or less or a basic slurry having a pH of 8 or more into contact with the group III nitride crystal and etching away the work-affected layer of the group III nitride crystal. . From this viewpoint, the pH of the slurry is more preferably 4 or less or 10 or more.

ここで、スラリーのpHの調整に用いられる酸および塩基には特に制限はなく、たとえば、塩酸、硝酸、硫酸、リン酸などの無機酸、ギ酸、酢酸、クエン酸、リンゴ酸、酒石酸、コハク酸、フタル酸、フマル酸などの有機酸、KOH、NaOH、NH4OH、アミンなどの塩基の他、硫酸塩、炭酸塩、リン酸塩などの塩を用いることができる。また、上記酸化剤の添加により、pHを調整することもできる。 Here, there are no particular limitations on the acid and base used to adjust the pH of the slurry. For example, inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, citric acid, malic acid, tartaric acid, succinic acid In addition to organic acids such as phthalic acid and fumaric acid, bases such as KOH, NaOH, NH 4 OH and amines, salts such as sulfates, carbonates and phosphates can be used. Moreover, pH can also be adjusted by addition of the said oxidizing agent.

CMPのスラリーには、砥粒が含まれることが好ましい。この砥粒により研磨速度をより高めることができる。スラリーに含められる砥粒には、特に制限はなく、窒化物結晶よりも硬度の高い高硬度砥粒、窒化物結晶の硬度以下に硬度の低い低硬度砥粒、または高硬度砥粒と低硬度砥粒との混合砥粒を用いることができる。   The CMP slurry preferably contains abrasive grains. The polishing rate can be further increased by the abrasive grains. The abrasive grains included in the slurry are not particularly limited, and are high-hardness abrasive grains whose hardness is higher than that of nitride crystals, low-hardness abrasive grains whose hardness is lower than that of nitride crystals, or high-hardness abrasive grains and low hardness. Mixed abrasive grains with abrasive grains can be used.

(比較例1)
窒化物結晶としてHVPE法により成長させた厚さ500μmのSiドープされたn型GaN結晶を用いて、このn型GaN結晶を以下のようにして機械研磨した。すなわち、ダイヤモンド砥粒が分散したスラリーをラップ装置の定盤上に供給しながら、定盤に直径50mm×厚さ500μmのn型GaN結晶のGa側C面((0001)面)を押し当てることにより、n型GaN結晶を機械研磨した。定盤は銅定盤または錫定盤を用いた。粒径が6μm、3μm、1μmの3種類の砥粒を準備し、機械研磨の進行とともに砥粒の粒径を段階的に小さくした。機械研磨における研磨圧力は100gf/cm2〜500gf/cm2、定盤の回転数は30rpm〜100rpmとした。
(Comparative Example 1)
Using a 500 μm thick Si-doped n-type GaN crystal grown by the HVPE method as a nitride crystal, this n-type GaN crystal was mechanically polished as follows. That is, the Ga side C surface ((0001) surface) of the n-type GaN crystal having a diameter of 50 mm and a thickness of 500 μm is pressed against the surface plate while supplying the slurry in which the diamond abrasive grains are dispersed on the surface plate of the lapping apparatus. Thus, the n-type GaN crystal was mechanically polished. As the surface plate, a copper surface plate or a tin surface plate was used. Three types of abrasive grains having a particle diameter of 6 μm, 3 μm, and 1 μm were prepared, and the grain diameter of the abrasive grains was gradually reduced as the mechanical polishing progressed. The polishing pressure in mechanical polishing was 100 gf / cm 2 to 500 gf / cm 2 , and the rotation speed of the surface plate was 30 rpm to 100 rpm.

次に、機械研磨後のn型GaN結晶について、ウルツ鉱型構造の(10−13)面からの回折X線を、X線侵入深さを0.3μmから5μmまで変えて測定することにより、回折プロファイルにおける(10−13)面(本測定における特定結晶格子面)の面間隔および回折強度ピークの半価幅ならびにロッキングカーブにおける回折強度ピークの半価幅を求めた。X線回折測定には、平行光学系、CuKα1のX線波長を用いた。また、X線侵入深さは、結晶表面に対するX線入射角ω、結晶表面の傾き角χおよび結晶表面内の回転角φの少なくともいずれかを変えることにより制御した。また、このn型GaN結晶の表面粗さRyおよび表面粗さRaをAFM(原子間力顕微鏡)(VEECO社製DIMENSION3100)により測定した。結果を表1にまとめた。 Next, with respect to the n-type GaN crystal after mechanical polishing, the diffraction X-ray from the (10-13) plane of the wurtzite structure is measured by changing the X-ray penetration depth from 0.3 μm to 5 μm, The interplanar spacing of the (10-13) plane (the specific crystal lattice plane in this measurement) in the diffraction profile, the half width of the diffraction intensity peak, and the half width of the diffraction intensity peak in the rocking curve were determined. For X-ray diffraction measurement, a parallel optical system, CuK α1 X-ray wavelength was used. The X-ray penetration depth was controlled by changing at least one of the X-ray incident angle ω with respect to the crystal surface, the tilt angle χ of the crystal surface, and the rotation angle φ within the crystal surface. Further, the surface roughness Ry and the surface roughness Ra of the n-type GaN crystal were measured with an AFM (atomic force microscope) (DIMENSION 3100 manufactured by VEECO). The results are summarized in Table 1.

次に、図6を参照して、n型GaN結晶の基板610の一方の主面側に、MOCVD法により、n型半導体層620としての厚さ1μmのn型GaN層621(ドーパント:Si)および厚さ150nmのn型Al0.1Ga0.9N層622(ドーパント:Si)、発光層640、p型半導体層630としての厚さ20nmのp型Al0.2Ga0.8N層631(ドーパント:Mg)および厚さ150nmのp型GaN層632(ドーパント:Mg)を順次形成して、半導体デバイスとしての発光素子を得た。ここで、発光層640は、厚さ10nmのGaN層で形成される障壁層の4層と、厚さ3nmのGa0.85In0.15N層で形成される井戸層の3層とが交互に積層された多重量子井戸構造とした。 Next, referring to FIG. 6, an n-type GaN layer 621 (dopant: Si) having a thickness of 1 μm as an n-type semiconductor layer 620 is formed on one main surface side of an n-type GaN crystal substrate 610 by MOCVD. And a 150 nm thick n-type Al 0.1 Ga 0.9 N layer 622 (dopant: Si), a light emitting layer 640, a 20 nm thick p-type Al 0.2 Ga 0.8 N layer 631 (dopant: Mg) as a p-type semiconductor layer 630, and A p-type GaN layer 632 (dopant: Mg) having a thickness of 150 nm was sequentially formed to obtain a light-emitting element as a semiconductor device. Here, the light emitting layer 640 is formed by alternately laminating four barrier layers formed of GaN layers having a thickness of 10 nm and three well layers formed of Ga 0.85 In 0.15 N layers having a thickness of 3 nm. A multi-quantum well structure was adopted.

次に、n型GaN結晶の基板610の他方の主面側に第1の電極661として、厚さ200nmのTi層、厚さ1000nmのAl層、厚さ200nmのTi層、厚さ2000nmのAu層から形成される積層構造を形成し、窒素雰囲気中で加熱することにより、直径100μmのn側電極を形成した。一方、p型GaN層632上に第2の電極662として、厚さ4nmのNi層、厚さ4nmのAu層から形成される積層構造を形成し、不活性ガス雰囲気中で加熱することにより、p側電極を形成した。上記積層体を400μm角にチップ化した後に、上記p側電極をAuSnで形成されたはんだ層670で導電体682にボンディングした。さらに、上記n側電極と導電体681とをワイヤ690でボンディングして、発光デバイスとして構成を有する半導体デバイス600を得た。得られた半導体デバイスを積分球内に搭載し、半導体デバイスに20mAの電流を注入して発光させ、積分球によって集められる光の出力を測定した。しかし、本比較例の半導体デバイスには発光が認められなかった。結果を表1にまとめた。   Next, a 200 nm thick Ti layer, a 1000 nm thick Al layer, a 200 nm thick Ti layer, and a 2000 nm thick Au layer are formed as a first electrode 661 on the other main surface side of the n-type GaN crystal substrate 610. A laminated structure formed of layers was formed and heated in a nitrogen atmosphere to form an n-side electrode having a diameter of 100 μm. On the other hand, as a second electrode 662 on the p-type GaN layer 632, a stacked structure formed of a 4 nm thick Ni layer and a 4 nm thick Au layer is formed and heated in an inert gas atmosphere, A p-side electrode was formed. After the laminated body was chipped into a 400 μm square, the p-side electrode was bonded to the conductor 682 with a solder layer 670 formed of AuSn. Further, the n-side electrode and the conductor 681 were bonded with a wire 690 to obtain a semiconductor device 600 having a structure as a light emitting device. The obtained semiconductor device was mounted in an integrating sphere, a current of 20 mA was injected into the semiconductor device to emit light, and the output of light collected by the integrating sphere was measured. However, no light emission was observed in the semiconductor device of this comparative example. The results are summarized in Table 1.

(実施例1〜7)
機械研磨後X線回折前に、表1に示す条件にてCMPを行なったこと以外は比較例1と同様にして、半導体デバイスを作製した。得られた半導体デバイスの光出力を比較例1と同様にして測定した。結果を表1にまとめた。
(Examples 1-7)
A semiconductor device was fabricated in the same manner as in Comparative Example 1 except that CMP was performed under the conditions shown in Table 1 after mechanical polishing and before X-ray diffraction. The optical output of the obtained semiconductor device was measured in the same manner as in Comparative Example 1. The results are summarized in Table 1.

Figure 2012054563
Figure 2012054563

(比較例2)
窒化物結晶として昇華法により成長させた厚さ400μmのSiドープされたn型AlN結晶を用いて、このn型AlN結晶を比較例1と同様にして機械研磨を行なった。
(Comparative Example 2)
Using a 400 μm thick Si-doped n-type AlN crystal grown by sublimation as a nitride crystal, this n-type AlN crystal was mechanically polished in the same manner as in Comparative Example 1.

機械研磨後のn型AlN結晶について、ウルツ鉱型構造の(11−22)面からの回折X線を、X線侵入深さを0.3μmから5μmまで変えて測定することにより、回折プロファイルにおける(11−22)面(本測定における特定結晶格子面)の面間隔および回折強度ピークの半価幅ならびにロッキングカーブにおける回折強度ピークの半価幅を求めた。X線回折測定には、平行光学系、CuKα1のX線波長を用いた。また、X線侵入深さは、結晶表面に対するX線入射角ω、結晶表面の傾き角χおよび結晶表面内の回転角φの少なくともいずれかを変えることにより制御した。また、このn型AlN結晶の表面粗さRyおよび表面粗さRaをAFMにより測定した。結果を表2にまとめた。 For the n-type AlN crystal after mechanical polishing, the diffraction X-ray from the (11-22) plane of the wurtzite structure is measured by changing the X-ray penetration depth from 0.3 μm to 5 μm. The interplanar spacing of the (11-22) plane (specific crystal lattice plane in this measurement), the half width of the diffraction intensity peak, and the half width of the diffraction intensity peak in the rocking curve were determined. For X-ray diffraction measurement, a parallel optical system, CuK α1 X-ray wavelength was used. The X-ray penetration depth was controlled by changing at least one of the X-ray incident angle ω with respect to the crystal surface, the tilt angle χ of the crystal surface, and the rotation angle φ within the crystal surface. Further, the surface roughness Ry and the surface roughness Ra of the n-type AlN crystal were measured by AFM. The results are summarized in Table 2.

次に、上記AlN結晶を基板として用いて、比較例1と同様にして半導体デバイスを作製した。この半導体デバイスの光出力を比較例1と同様に測定したところ、発光が認められなかった。結果を表2にまとめた。   Next, a semiconductor device was fabricated in the same manner as in Comparative Example 1 using the AlN crystal as a substrate. When the optical output of this semiconductor device was measured in the same manner as in Comparative Example 1, no light emission was observed. The results are summarized in Table 2.

(実施例8〜10)
機械研磨後X線回折前に、表2に示す条件にてCMPを行なったこと以外は比較例2と同様にして、半導体デバイスを作製した。得られた半導体デバイスの光出力を比較例2と同様に測定した。結果を表2にまとめた。
(Examples 8 to 10)
A semiconductor device was fabricated in the same manner as in Comparative Example 2 except that CMP was performed under the conditions shown in Table 2 after mechanical polishing and before X-ray diffraction. The light output of the obtained semiconductor device was measured in the same manner as in Comparative Example 2. The results are summarized in Table 2.

Figure 2012054563
Figure 2012054563

上記表1および表2から明らかなように、結晶の任意の特定結晶格子面のX線回折条件を満たしながら前記結晶の表面からのX線侵入深さを変化させるX線回折測定において、0.3μmのX線侵入深さにおける特定結晶格子面の面間隔d1と5μmのX線侵入深さにおける特定結晶格子面の面間隔d2とから得られる表面層の均一歪み|d1−d2|/d2が2.1×10-3以下、0.3μmのX線侵入深さにおける回折強度ピークの半値幅v1と5μmのX線侵入深さにおける回折強度ピークの半値幅v2とから得られる結晶表面層の不均一歪み|v1−v2|が150arcsec以下、および0.3μmのX線侵入深さにおける回折強度ピークの半値幅w1と5μmのX線侵入深さにおける回折強度ピークの半値幅w2とから得られる結晶表面層の特定結晶格子面の面方位ずれ|w1−w2|が400arcsec以下の少なくともいずれかを満たす窒化物結晶を窒化物結晶基板として選択した半導体デバイスであるLEDは、高い光出力を有していた。 As apparent from Table 1 and Table 2, in the X-ray diffraction measurement in which the X-ray penetration depth from the surface of the crystal is changed while satisfying the X-ray diffraction conditions of any specific crystal lattice plane of the crystal, 0. Uniform strain of the surface layer obtained from the interplanar spacing d 1 of the specific crystal lattice plane at an X-ray penetration depth of 3 μm and the interplanar spacing d 2 of the specific crystal lattice plane at an X-ray penetration depth of 5 μm | d 1 -d 2 | / D 2 is 2.1 × 10 −3 or less, the half-value width v 1 of the diffraction intensity peak at an X-ray penetration depth of 0.3 μm, and the half-value width v 2 of the diffraction intensity peak at an X-ray penetration depth of 5 μm Diffraction at a half-value width w 1 of the diffraction intensity peak at an X-ray penetration depth of 0.3 μm and a non-uniform strain | v 1 −v 2 | Crystal surface obtained from half width w 2 of intensity peak An LED, which is a semiconductor device in which a nitride crystal satisfying at least one of the plane orientation deviation | w 1 -w 2 | of the layer of at least one of 400 arcsec or less is selected as a nitride crystal substrate, has a high light output. It was.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 窒化物結晶、1a 結晶表面層、1b 結晶表面隣接層、1c 結晶内層、1d,51d,52d,53d 特定結晶格子面、1s 結晶表面、11 入射X線、12 出射X線、21 χ軸、22 ω軸(2θ軸)、23 φ軸、30 引張応力、600 半導体デバイス、610 基板、620 n型半導体層、621 n型GaN層、622 n型Al0.1Ga0.9N層、630 p型半導体層、631 p型Al0.2Ga0.8N層、632 p型GaN層、640 発光層、650 半導体層、661 第1の電極、662 第2の電極、670 はんだ層、681,682 導電体、690 ワイヤ。 1 nitride crystal, 1a crystal surface layer, 1b crystal surface adjacent layer, 1c inner crystal layer, 1d, 51d, 52d, 53d specific crystal lattice plane, 1s crystal surface, 11 incident X-ray, 12 outgoing X-ray, 21 χ axis, 22 ω axis (2θ axis), 23 φ axis, 30 tensile stress, 600 semiconductor device, 610 substrate, 620 n-type semiconductor layer, 621 n-type GaN layer, 622 n-type Al 0.1 Ga 0.9 N layer, 630 p-type semiconductor layer , 631 p-type Al 0.2 Ga 0.8 N layer, 632 p-type GaN layer, 640 light emitting layer, 650 semiconductor layer, 661 first electrode, 662 second electrode, 670 solder layer, 681, 682 conductor, 690 wire.

Claims (8)

気相成長法または液相成長法により成長させた窒化物結晶を機械加工した後化学機械的研磨することにより、前記機械加工により悪化した前記窒化物結晶の表面層の結晶性を前記化学機械的研磨により向上させる窒化物結晶の製造方法であって、
前記化学機械的研磨において、pHが6以下または8以上のスラリーを用いて、
前記窒化物結晶の表面層の結晶性の向上は、前記結晶の任意の特定結晶格子面のX線回折条件を満たしながら前記結晶の表面からのX線侵入深さを変化させるX線回折測定から得られる前記特定結晶格子面の面間隔において、0.3μmの前記X線侵入深さにおける前記面間隔d1と5μmの前記X線侵入深さにおける前記面間隔d2とから得られる|d1−d2|/d2の値で表される前記結晶の表面層の均一歪みが2.1×10-3以下である窒化物結晶の製造方法。
The nitride crystal grown by the vapor phase growth method or the liquid phase growth method is machined and then subjected to chemical mechanical polishing, whereby the crystallinity of the surface layer of the nitride crystal deteriorated by the machining is changed to the chemical mechanical A method for producing a nitride crystal that is improved by polishing,
In the chemical mechanical polishing, using a slurry having a pH of 6 or less or 8 or more,
The improvement in crystallinity of the surface layer of the nitride crystal is based on an X-ray diffraction measurement in which the X-ray penetration depth from the surface of the crystal is changed while satisfying the X-ray diffraction condition of an arbitrary specific crystal lattice plane of the crystal. in spacing of the specific parallel crystal lattice plane obtained, resulting from the spacing d 2 Metropolitan in the spacing d 1 and 5μm the X-ray penetration depth of in the X-ray penetration depth of 0.3 [mu] m | d 1 A method for producing a nitride crystal, wherein the uniform strain of the surface layer of the crystal represented by a value of −d 2 | / d 2 is 2.1 × 10 −3 or less.
気相成長法または液相成長法により成長させた窒化物結晶を機械加工した後化学機械的研磨することにより、前記機械加工により悪化した前記窒化物結晶の表面層の結晶性を前記化学機械的研磨により向上させる窒化物結晶の製造方法であって、
前記化学機械的研磨において、pHが6以下または8以上のスラリーを用いて、
前記窒化物結晶の表面層の結晶性の向上は、前記結晶の任意の特定結晶格子面のX線回折条件を満たしながら前記結晶の表面からのX線侵入深さを変化させるX線回折測定から得られる前記特定結晶格子面の回折強度プロファイルにおいて、0.3μmの前記X線侵入深さにおける回折強度ピークの半値幅v1と5μmの前記X線侵入深さにおける回折強度ピークの半値幅v2とから得られる|v1−v2|の値で表される前記結晶の表面層の不均一歪みが150arcsec以下である窒化物結晶の製造方法。
The nitride crystal grown by the vapor phase growth method or the liquid phase growth method is machined and then subjected to chemical mechanical polishing, whereby the crystallinity of the surface layer of the nitride crystal deteriorated by the machining is changed to the chemical mechanical A method for producing a nitride crystal that is improved by polishing,
In the chemical mechanical polishing, using a slurry having a pH of 6 or less or 8 or more,
The improvement in crystallinity of the surface layer of the nitride crystal is based on an X-ray diffraction measurement in which the X-ray penetration depth from the surface of the crystal is changed while satisfying the X-ray diffraction condition of an arbitrary specific crystal lattice plane of the crystal. In the obtained diffraction intensity profile of the specific crystal lattice plane, the half width v 1 of the diffraction intensity peak at the X-ray penetration depth of 0.3 μm and the half width v 2 of the diffraction intensity peak at the X-ray penetration depth of 5 μm. A method for producing a nitride crystal in which the nonuniform strain of the surface layer of the crystal represented by the value of | v 1 −v 2 |
気相成長法または液相成長法により成長させた窒化物結晶を機械加工した後化学機械的研磨することにより、前記機械加工により悪化した前記窒化物結晶の表面層の結晶性を前記化学機械的研磨により向上させる窒化物結晶の製造方法であって、
前記化学機械的研磨において、pHが6以下または8以上のスラリーを用いて、
前記窒化物結晶の表面層の結晶性の向上は、前記結晶の任意の特定結晶格子面のX線回折に関して前記結晶の表面からのX線侵入深さを変化させて測定されたロッキングカーブにおいて、0.3μmの前記X線侵入深さにおける回折強度ピークの半値幅w1と5μmの前記X線侵入深さにおける回折強度ピークの半値幅w2とから得られる|w1−w2|の値で表される前記特定結晶面の面方位ずれが400arcsec以下である窒化物結晶の製造方法。
The nitride crystal grown by the vapor phase growth method or the liquid phase growth method is machined and then subjected to chemical mechanical polishing, whereby the crystallinity of the surface layer of the nitride crystal deteriorated by the machining is changed to the chemical mechanical A method for producing a nitride crystal that is improved by polishing,
In the chemical mechanical polishing, using a slurry having a pH of 6 or less or 8 or more,
The improvement in crystallinity of the surface layer of the nitride crystal is a rocking curve measured by changing the X-ray penetration depth from the surface of the crystal with respect to the X-ray diffraction of any specific crystal lattice plane of the crystal. The value of | w 1 −w 2 | obtained from the half width w 1 of the diffraction intensity peak at the X-ray penetration depth of 0.3 μm and the half width w 2 of the diffraction intensity peak at the X-ray penetration depth of 5 μm. A method for producing a nitride crystal in which the plane orientation deviation of the specific crystal plane represented by:
前記スラリーは、次亜塩素酸、塩素化イソシアヌル酸、塩素化イソシアヌル酸塩、過マンガン酸塩、ニクロム酸塩、臭素酸塩、チオ硫酸塩、硝酸、過酸化水素水およびオゾンからなる群から選ばれる1種以上の酸化剤を含む請求項1から3のいずれかに記載の窒化物結晶の製造方法。   The slurry is selected from the group consisting of hypochlorous acid, chlorinated isocyanuric acid, chlorinated isocyanurate, permanganate, dichromate, bromate, thiosulfate, nitric acid, hydrogen peroxide, and ozone. The method for producing a nitride crystal according to any one of claims 1 to 3, comprising one or more oxidizing agents. 窒化物結晶基板を含むエピ層付窒化物結晶基板の製造方法であって、
前記窒化物結晶基板として、窒化物結晶であって前記結晶の任意の特定結晶格子面のX線回折条件を満たしながら前記結晶の表面からのX線侵入深さを変化させるX線回折測定から得られる前記特定結晶格子面の面間隔において、0.3μmの前記X線侵入深さにおける前記面間隔d1と5μmの前記X線侵入深さにおける前記面間隔d2とから得られる|d1−d2|/d2の値で表される前記結晶の表面層の均一歪みが2.1×10-3以下である結晶を選択し、
前記窒化物結晶基板の少なくとも一方の主面側に1層以上の半導体層をエピタキシャル成長させる工程を含むエピ層付窒化物結晶基板の製造方法。
A method of manufacturing an epitaxial layer-attached nitride crystal substrate including a nitride crystal substrate,
The nitride crystal substrate is a nitride crystal obtained from an X-ray diffraction measurement in which an X-ray penetration depth from the surface of the crystal is changed while satisfying an X-ray diffraction condition of an arbitrary specific crystal lattice plane of the crystal. in spacing of the specific parallel crystal lattice plane is obtained from the plane spacing d 2 Metropolitan in the spacing d 1 and 5μm the X-ray penetration depth of in the X-ray penetration depth of 0.3 [mu] m | d 1 - a crystal having a uniform distortion of a surface layer of the crystal represented by a value of d 2 | / d 2 of 2.1 × 10 −3 or less is selected;
A method for manufacturing a nitride crystal substrate with an epi layer, comprising a step of epitaxially growing one or more semiconductor layers on at least one main surface side of the nitride crystal substrate.
窒化物結晶基板を含むエピ層付窒化物結晶基板の製造方法であって、
前記窒化物結晶基板として、窒化物結晶であって前記結晶の任意の特定結晶格子面のX線回折条件を満たしながら前記結晶の表面からのX線侵入深さを変化させるX線回折測定から得られる前記特定結晶格子面の回折強度プロファイルにおいて、0.3μmの前記X線侵入深さにおける回折強度ピークの半値幅v1と5μmの前記X線侵入深さにおける回折強度ピークの半値幅v2とから得られる|v1−v2|の値で表される前記結晶の表面層の不均一歪みが150arcsec以下である結晶を選択し、
前記窒化物結晶基板の少なくとも一方の主面側に1層以上の半導体層をエピタキシャル成長させる工程を含むエピ層付窒化物結晶基板の製造方法。
A method of manufacturing an epitaxial layer-attached nitride crystal substrate including a nitride crystal substrate,
The nitride crystal substrate is a nitride crystal obtained from an X-ray diffraction measurement in which an X-ray penetration depth from the surface of the crystal is changed while satisfying an X-ray diffraction condition of an arbitrary specific crystal lattice plane of the crystal. In the diffraction intensity profile of the specific crystal lattice plane, the half-value width v 1 of the diffraction intensity peak at the X-ray penetration depth of 0.3 μm and the half-value width v 2 of the diffraction intensity peak at the X-ray penetration depth of 5 μm A crystal having a nonuniform strain of the surface layer of the crystal represented by the value of | v 1 −v 2 |
A method for manufacturing a nitride crystal substrate with an epi layer, comprising a step of epitaxially growing one or more semiconductor layers on at least one main surface side of the nitride crystal substrate.
窒化物結晶基板を含むエピ層付窒化物結晶基板の製造方法であって、
前記窒化物結晶基板として、窒化物結晶であって前記結晶の任意の特定結晶格子面のX線回折に関して前記結晶の表面からのX線侵入深さを変化させて測定されたロッキングカーブにおいて、0.3μmの前記X線侵入深さにおける回折強度ピークの半値幅w1と5μmの前記X線侵入深さにおける回折強度ピークの半値幅w2とから得られる|w1−w2|の値で表される前記特定結晶格子面の面方位ずれが400arcsec以下である結晶を選択し、
前記窒化物結晶基板の少なくとも一方の主面側に1層以上の半導体層をエピタキシャル成長させる工程を含むエピ層付窒化物結晶基板の製造方法。
A method of manufacturing an epitaxial layer-attached nitride crystal substrate including a nitride crystal substrate,
In the rocking curve measured by changing the X-ray penetration depth from the surface of the crystal with respect to the X-ray diffraction of the nitride crystal substrate, which is a nitride crystal and an arbitrary specific crystal lattice plane of the crystal, 0 The value of | w 1 −w 2 | obtained from the half width w 1 of the diffraction intensity peak at the X-ray penetration depth of 3 μm and the half width w 2 of the diffraction intensity peak at the X-ray penetration depth of 5 μm. A crystal whose plane orientation deviation of the specific crystal lattice plane represented is 400 arcsec or less,
A method for manufacturing a nitride crystal substrate with an epi layer, comprising a step of epitaxially growing one or more semiconductor layers on at least one main surface side of the nitride crystal substrate.
前記窒化物結晶基板の格子定数k0と前記半導体層の格子定数kとの関係が、(|k−k0|/k)≦0.15である請求項5から7のいずれかに記載のエピ層付窒化物結晶基板の製造方法。 The relationship between the lattice constant k 0 of the nitride crystal substrate and the lattice constant k of the semiconductor layer is (| k−k 0 | / k) ≦ 0.15. A method of manufacturing a nitride crystal substrate with an epi layer.
JP2011198028A 2011-09-12 2011-09-12 Nitride crystal and method for manufacturing nitride crystal substrate with epitaxial layer Pending JP2012054563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198028A JP2012054563A (en) 2011-09-12 2011-09-12 Nitride crystal and method for manufacturing nitride crystal substrate with epitaxial layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198028A JP2012054563A (en) 2011-09-12 2011-09-12 Nitride crystal and method for manufacturing nitride crystal substrate with epitaxial layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008334503A Division JP2009124160A (en) 2008-12-26 2008-12-26 Nitride crystal and method for manufacturing nitride crystalline substrate with epitaxial layer

Publications (1)

Publication Number Publication Date
JP2012054563A true JP2012054563A (en) 2012-03-15

Family

ID=45907510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198028A Pending JP2012054563A (en) 2011-09-12 2011-09-12 Nitride crystal and method for manufacturing nitride crystal substrate with epitaxial layer

Country Status (1)

Country Link
JP (1) JP2012054563A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666740A (en) * 1992-08-19 1994-03-11 Nobuo Ito Method for evaluating surface layer of single crystal
JP2004530306A (en) * 2001-06-08 2004-09-30 アドバンスト テクノロジー マテリアルズ,インコーポレイテッド High surface quality GaN wafer and method for manufacturing the same
JP2004281671A (en) * 2003-03-14 2004-10-07 Ricoh Co Ltd Method of polishing group iii nitride crystal, and group iii nitride crystal and semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666740A (en) * 1992-08-19 1994-03-11 Nobuo Ito Method for evaluating surface layer of single crystal
JP2004530306A (en) * 2001-06-08 2004-09-30 アドバンスト テクノロジー マテリアルズ,インコーポレイテッド High surface quality GaN wafer and method for manufacturing the same
JP2004281671A (en) * 2003-03-14 2004-10-07 Ricoh Co Ltd Method of polishing group iii nitride crystal, and group iii nitride crystal and semiconductor device

Similar Documents

Publication Publication Date Title
JP4277826B2 (en) Nitride crystal, nitride crystal substrate, nitride crystal substrate with epi layer, and semiconductor device and method for manufacturing the same
JP4518209B1 (en) Group III nitride crystal substrate, group III nitride crystal substrate with epi layer, and semiconductor device and method for manufacturing the same
JP6573154B2 (en) Nitride semiconductor structure, electronic device with nitride semiconductor structure, light emitting device with nitride semiconductor structure, and method for manufacturing nitride semiconductor structure
JP4835749B2 (en) Group III nitride crystal substrate, group III nitride crystal substrate with epi layer, and semiconductor device and method for manufacturing the same
KR102062327B1 (en) Aluminium nitride substrate and group-iii nitride laminate
KR20080101707A (en) Gan substrate, and epitaxial substrate and semiconductor light-emitting device employing the substrate
JP4337953B2 (en) Nitride crystal substrate, nitride crystal substrate with epi layer, and semiconductor device
JP2009124160A (en) Nitride crystal and method for manufacturing nitride crystalline substrate with epitaxial layer
JP2014157983A (en) Group iii nitride composite substrate, method for manufacturing the same, lamination group iii nitride composite substrate, group iii nitride semiconductor device and method for manufacturing the same
JP2012054563A (en) Nitride crystal and method for manufacturing nitride crystal substrate with epitaxial layer
JP5375392B2 (en) Gallium nitride based semiconductor optical device and method for fabricating gallium nitride based semiconductor optical device
WO2011058870A1 (en) Group-iii nitride crystal substrate, group-iii nitride crystal substrate with epitaxial layer, semiconductor device and method of manufacturing thereof
JP5565396B2 (en) Group III nitride crystal substrate, group III nitride crystal substrate with epi layer, and semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604