JPH0666740A - Method for evaluating surface layer of single crystal - Google Patents
Method for evaluating surface layer of single crystalInfo
- Publication number
- JPH0666740A JPH0666740A JP4220073A JP22007392A JPH0666740A JP H0666740 A JPH0666740 A JP H0666740A JP 4220073 A JP4220073 A JP 4220073A JP 22007392 A JP22007392 A JP 22007392A JP H0666740 A JPH0666740 A JP H0666740A
- Authority
- JP
- Japan
- Prior art keywords
- angle
- surface layer
- crystal
- sample
- single crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、X線二結晶法による単
結晶表面層の評価方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating a single crystal surface layer by an X-ray double crystal method.
【0002】[0002]
【従来の技術】従来、結晶表面層をX線回折法で評価す
る方法としては、例えば、ExtendedAbstracts of the 1
6th Conference on Solid Stste Devices and Material
s,Kobe,1984,pp.201-204に記載のように、特定波長と回
折線を用いてロッキングカーブを描き、評価している。
この方法は、X線の侵入深さが試料の構成元素、結晶構
造、試料の面方位、反射面及びX線の波長で決定され、
表面からその深さまでの領域の歪みの大きさ、格子欠陥
等の濃度を反映した結晶性が測定される。具体的には、
(100)面GaAsを試料とし、X線としてCuKα
1 線を用いた場合、X線の侵入深さは(400)回折線
で15μm、(422)回折線で5.5μm、(31
1)回折線で1.5μmであり、X線の侵入深さをこの
値より小さくすることも、この間で連続的に変化させる
ことも不可能であった。2. Description of the Related Art Conventionally, as a method for evaluating a crystal surface layer by an X-ray diffraction method, for example, Extended Abstracts of the 1
6th Conference on Solid Stste Devices and Material
s, Kobe, 1984, pp. 201-204, a rocking curve is drawn and evaluated using a specific wavelength and a diffraction line.
In this method, the penetration depth of X-rays is determined by the constituent elements of the sample, the crystal structure, the plane orientation of the sample, the reflection surface and the wavelength of the X-rays.
Crystallinity that reflects the magnitude of strain in the region from the surface to the depth and the concentration of lattice defects and the like is measured. In particular,
Using (100) plane GaAs as a sample, CuKα as X-ray
When one line is used, the penetration depth of X-ray is 15 μm for the (400) diffraction line, 5.5 μm for the (422) diffraction line, and (31
1) The diffraction line was 1.5 μm, and it was impossible to make the penetration depth of X-ray smaller than this value or continuously change it during this period.
【0003】そこで、深さ方向の評価を行うためには、
試料の表面をある深さまでエッチングしてX線回折をと
り、再度エッチングしてX線回折をとる、というように
エッチングと測定を交互に繰り返して深さ方向の評価を
行っていた。この方法は試料を破壊して測定する破壊検
査方法である。Therefore, in order to evaluate in the depth direction,
The surface of the sample was etched to a certain depth, X-ray diffraction was performed, and etching was performed again to obtain X-ray diffraction. Etching and measurement were alternately repeated to evaluate in the depth direction. This method is a destructive inspection method in which a sample is destroyed and measured.
【0004】また、SR(放射光)を利用すればX線の
波長を連続して変化させることができ、希望の波長を選
択すれば、希望の侵入深さを有する回折線を得ることが
できるが、装置が大型であり、手軽に利用できるもので
はない。この方法は、さらに、波長を変えるたびに回折
装置のモノクロメータを調整する必要があり、煩雑であ
った。Further, by using SR (synchronized light), the wavelength of X-ray can be continuously changed, and by selecting a desired wavelength, a diffraction line having a desired penetration depth can be obtained. However, the device is large and not easy to use. This method is complicated because it is necessary to adjust the monochromator of the diffractive device each time the wavelength is changed.
【0005】[0005]
【発明が解決しようとする課題】このように、従来のX
線回折法では、X線の侵入深さは、試料の構成元素、結
晶構造、試料表面の面方位、反射面、及び、X線の波長
で決定され、それよりも侵入深さを小さくすることは不
可能であった。また、連続した深さ方向の情報を得るた
めには、特定の回折線を利用したエッチングと測定を交
互に繰り返す必要があった。そこで、本発明は、上記の
問題点を解消し、X線の侵入深さをさらに小さく、か
つ、小さい領域から深さ方向に変化できる、単結晶表面
層の加工歪みやエピタキシャル層の結晶性などを非破壊
検査法で評価する方法を提供しようとするものである。As described above, the conventional X
In the line diffraction method, the penetration depth of X-rays is determined by the constituent elements of the sample, the crystal structure, the plane orientation of the sample surface, the reflecting surface, and the wavelength of the X-rays, and the penetration depth should be smaller than that. Was impossible. Further, in order to obtain continuous information in the depth direction, it was necessary to alternately repeat etching using a specific diffraction line and measurement. Therefore, the present invention solves the above problems and further reduces the penetration depth of X-rays and can change the depth from the small region in the depth direction, such as processing strain of the single crystal surface layer and crystallinity of the epitaxial layer. It is intended to provide a method for evaluating a non-destructive inspection method.
【0006】[0006]
【課題を解決するための手段】本発明は、X線二結晶法
により単結晶表面層を評価する方法において、評価対象
の単結晶の表面層を水平に配置した後、反射面が得られ
る条件下で、水平面からの角度、並びに、上記単結晶の
反射面の面内における回転角を調整して、上記単結晶に
対するX線照射角を変化させることを特徴とする単結晶
表面層の評価方法である。The present invention relates to a method for evaluating a single crystal surface layer by an X-ray double crystal method, in which a reflecting surface is obtained after the surface layer of the single crystal to be evaluated is arranged horizontally. Below, the angle from the horizontal plane and the rotation angle in the plane of the reflecting surface of the single crystal are adjusted to change the X-ray irradiation angle with respect to the single crystal. Is.
【0007】[0007]
【作用】図1は、本発明の方法を実施するときの、単結
晶試料の配置を示した図である。即ち、試料結晶1を水
平に対して僅かαO で傾斜させ、反射面が得られる条件
下で、試料を横方向に角度βO まで回転させることによ
り、試料表面に対する照射角θi を小さくさせることに
ある。なお、この照射角θi は(1)式で与えられる。
なお、ここでθB は、用いた反射面のブラッグ角であ
る。 sinθi =sinαsinθB −cosαcosθB sinβ (1)式により回転角βを変えることにより、照射角θ
i が変化し、その結果、X線の侵入深さが変わり、非常
に浅い試料表面層と、βを連続して変化させることによ
って浅い試料表面から深さ方向に連続的に評価すること
が可能となる。X線の侵入深さdは、運動学的理論によ
れば(2)式で表される。 d=〔(μ/2)(1/γO +1/γh )〕-1 (2) ここで、μは線吸収係数、γO =sinθi 、γh =s
inθr である。なお、θr は反射視射角である。FIG. 1 is a view showing the arrangement of single crystal samples when the method of the present invention is carried out. That is, the sample crystal 1 is inclined at a slight alpha O with respect to the horizontal, under conditions in which the reflective surface is obtained by rotating the sample in the transverse direction to the angle beta O, to reduce the irradiation angle theta i with respect to the sample surface Especially. The irradiation angle θ i is given by the equation (1).
Here, θ B is the Bragg angle of the reflection surface used. By changing the rotation angle β by sinθ i = sinαsinθ B -cosαcosθ B sinβ (1) formula, the irradiation angle θ
i changes, and as a result, the penetration depth of X-rays changes, and it is possible to evaluate continuously from the shallow sample surface in the depth direction by changing β in a very shallow sample surface layer continuously. Becomes The penetration depth d of X-rays is expressed by equation (2) according to the kinematic theory. d = [(μ / 2) (1 / γ O + 1 / γ h )] −1 (2) where μ is a linear absorption coefficient, γ O = sin θ i , γ h = s
in θ r . Note that θ r is a reflection glancing angle.
【0008】[0008]
(実施例1)X線としてCuKα1 、第1結晶(モノク
ロメータ)としてSiを用い、試料として〔111〕方
向に2度傾斜させた(100)GaAsの表面層をX線
二結晶法で調べた。GaAs表面は、予め、化学研磨に
より加工歪みを完全に除去し、0.016μm径の砥
粒、並びに、0.05μm径の砥粒でそれぞれラップし
た。試料表面に対するX線の照射角度(視射角)をでき
るだけ小さくするため(022)反射を用いた。このと
きのαは2O であり、βによる半値幅の変化は図2に示
すとおりであった。なお、横軸には運動学的理論より計
算したX線の侵入深さを併記した。図2(βによる半値
幅の変化Si(022)−GaAs(022)α=2.
0 O ,θB =22.6O )より明らかなように、侵入深
さを小さくすることにより、試料表面に導入された歪み
が敏感に現れていることが分かった。 (Example 1) CuKα as X-ray1, The first crystal (monoc
(111) method using Si as the sample
X-ray was applied to the surface layer of (100) GaAs which was tilted 2 degrees toward
It was investigated by the double crystal method. The GaAs surface was previously chemically polished.
Grinding with a diameter of 0.016μm by removing machining strain completely
Wrap each with grain and 0.05μm diameter abrasive grain
It was It is possible to set the X-ray irradiation angle (glancing angle) to the sample surface.
The (022) reflection was used to make it as small as possible. This and
Mushroom α is 2OAnd the change in half-width with β is shown in Fig. 2.
It was exactly as it was. The horizontal axis is based on kinematic theory.
The calculated penetration depth of X-rays is also shown. Fig. 2 (Half value by β
Change in width Si (022) -GaAs (022) α = 2.
0 O, ΘB= 22.6O) As is clearer, the penetration depth
The strain introduced to the sample surface by reducing the
Was found to appear sensitively.
【0009】(実施例2)実施例1において、第1結晶
としてGaAsを用い、(022)反射の代わりに(1
33)反射を用い、他の条件は実施例1と同様にして照
射角依存性を調べて図3(βによる半値幅の変化GaA
s(004)−GaAs(133)α=15.1O ,θ
B =36.3O )に示した。図3より明らかなように、
侵入深さを小さくすることにより、試料表面に導入され
た歪みが敏感に現れていることが分かった。(Example 2) In Example 1, GaAs was used as the first crystal, and (1) was used instead of (022) reflection.
33) Using reflection, the irradiation angle dependence was examined under the other conditions in the same manner as in Example 1, and FIG.
s (004) -GaAs (133) α = 15.1 O , θ
B = 36.3 O ). As is clear from FIG.
It was found that the strain introduced into the sample surface appeared sensitively by reducing the penetration depth.
【0010】[0010]
【発明の効果】本発明は、上記の構成を採用することに
より、単結晶表面層を非破壊検査法で深さを変えて評価
できるので、結晶の加工歪みや基板上にエピタキシャル
成長させた薄膜の結晶性について評価するのに有効であ
る。According to the present invention, by adopting the above-mentioned constitution, the single crystal surface layer can be evaluated by a non-destructive inspection method while changing the depth, so that the processing strain of the crystal and the thin film epitaxially grown on the substrate can be evaluated. It is effective for evaluating crystallinity.
【図1】本発明の方法を実施するときの、試料結晶の配
置を示した図である。FIG. 1 is a diagram showing the arrangement of sample crystals when carrying out the method of the present invention.
【図2】実施例1で(022)反射の半値幅の試料回転
角度依存性の測定結果を示した図である。FIG. 2 is a diagram showing the measurement results of the sample rotation angle dependence of the full width at half maximum of (022) reflection in Example 1.
【図3】実施例2で(133)反射の半値幅の試料回転
角度依存性の測定結果を示した図である。FIG. 3 is a diagram showing a measurement result of a sample rotation angle dependency of a half width of (133) reflection in Example 2.
Claims (1)
する方法において、評価対象の単結晶の表面層を水平に
配置した後、反射面が得られる条件下で、水平面からの
角度、並びに、上記単結晶の反射面の面内における回転
角を調整して、上記単結晶に対するX線照射角を変化さ
せることを特徴とする単結晶表面層の評価方法。1. A method for evaluating a single crystal surface layer by an X-ray double crystal method, comprising arranging a surface layer of a single crystal to be evaluated horizontally, and then, under a condition that a reflecting surface is obtained, an angle from a horizontal plane, A method for evaluating a single crystal surface layer, which comprises adjusting an in-plane rotation angle of the reflecting surface of the single crystal to change an X-ray irradiation angle with respect to the single crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22007392A JP3176441B2 (en) | 1992-08-19 | 1992-08-19 | Evaluation method of single crystal surface layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22007392A JP3176441B2 (en) | 1992-08-19 | 1992-08-19 | Evaluation method of single crystal surface layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0666740A true JPH0666740A (en) | 1994-03-11 |
JP3176441B2 JP3176441B2 (en) | 2001-06-18 |
Family
ID=16745521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22007392A Expired - Fee Related JP3176441B2 (en) | 1992-08-19 | 1992-08-19 | Evaluation method of single crystal surface layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3176441B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007005526A (en) * | 2005-06-23 | 2007-01-11 | Sumitomo Electric Ind Ltd | Nitride crystal, nitride crystal substrate, nitride crystal substrate with epitaxial layer, semiconductor device, and its manufacturing method |
JP2012054563A (en) * | 2011-09-12 | 2012-03-15 | Sumitomo Electric Ind Ltd | Nitride crystal and method for manufacturing nitride crystal substrate with epitaxial layer |
US8771552B2 (en) | 2005-06-23 | 2014-07-08 | Sumitomo Electric Industries, Ltd. | Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same |
US9708735B2 (en) | 2005-06-23 | 2017-07-18 | Sumitomo Electric Industries, Ltd. | Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same |
-
1992
- 1992-08-19 JP JP22007392A patent/JP3176441B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007005526A (en) * | 2005-06-23 | 2007-01-11 | Sumitomo Electric Ind Ltd | Nitride crystal, nitride crystal substrate, nitride crystal substrate with epitaxial layer, semiconductor device, and its manufacturing method |
US7854804B2 (en) | 2005-06-23 | 2010-12-21 | Sumitomo Electric Industries, Ltd. | Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same |
US8192543B2 (en) | 2005-06-23 | 2012-06-05 | Sumitomo Electric Industries, Ltd. | Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same |
KR101172549B1 (en) * | 2005-06-23 | 2012-08-08 | 스미토모덴키고교가부시키가이샤 | Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same |
US8771552B2 (en) | 2005-06-23 | 2014-07-08 | Sumitomo Electric Industries, Ltd. | Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same |
US8828140B2 (en) | 2005-06-23 | 2014-09-09 | Sumitomo Electric Industries, Ltd. | Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same |
US9499925B2 (en) | 2005-06-23 | 2016-11-22 | Sumitomo Electric Industries, Ltd. | Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same |
US9570540B2 (en) | 2005-06-23 | 2017-02-14 | Sumitomo Electric Industries, Ltd. | Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same |
US9708735B2 (en) | 2005-06-23 | 2017-07-18 | Sumitomo Electric Industries, Ltd. | Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same |
US10078059B2 (en) | 2005-06-23 | 2018-09-18 | Sumitomo Electric Industries, Ltd. | Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same |
JP2012054563A (en) * | 2011-09-12 | 2012-03-15 | Sumitomo Electric Ind Ltd | Nitride crystal and method for manufacturing nitride crystal substrate with epitaxial layer |
Also Published As
Publication number | Publication date |
---|---|
JP3176441B2 (en) | 2001-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7769135B2 (en) | X-ray diffraction wafer mapping method for rhombohedral super-hetero-epitaxy | |
Van Hove et al. | The surface reconstructions of the (100) crystal faces of iridium, platinum and gold: I. Experimental observations and possible structural models | |
Darakchieva et al. | Strain-related structural and vibrational properties of thin epitaxial AlN layers | |
Raghothamachar et al. | Defect analysis in crystals using X‐ray topography | |
Nakazawa et al. | X-ray section topographs of a vapour-grown diamond film on a diamond substrate | |
Lider | X-ray diffraction topography methods | |
Tanner et al. | Advanced X-ray scattering techniques for the characterization of semiconducting materials | |
JPH0666740A (en) | Method for evaluating surface layer of single crystal | |
Tanner | High resolution X-ray diffraction and topography for crystal characterization | |
US4928294A (en) | Method and apparatus for line-modified asymmetric crystal topography | |
Jenichen et al. | Double crystal topography compensating for the strain in processed samples | |
Tanner | X‐ray topography and precision diffractometry of semiconducting materials | |
Raghothamachar et al. | X-ray topography techniques for defect characterization of crystals | |
O'hara et al. | The optimum choice of reflexion to reveal dislocations in gallium arsenide by X-ray reflexion topography | |
Larsson et al. | Growth of high quality Ge films on Si (111) using Sb as surfactant | |
Kužel et al. | On X-ray diffraction study of microstructure of ZnO thin nanocrystalline films with strong preferred grain orientation | |
Liu et al. | Dislocations and grain boundaries in polycrystalline ice: a preliminary study by synchrotron X-ray topography | |
Caslavsky et al. | The study of basal dislocations in sapphire | |
Voloshin et al. | Imaging of microdefects in silicon single crystals by plane wave X‐r ay topography at asymmetric diffraction | |
Härtwig et al. | X‐ray Diffraction Topography at a Synchrotron Radiation Source Applied to the Study of Bonded Silicon on Insulator Material | |
Jacobs et al. | An X-ray topographic study of large crystals for a bent-crystal gamma diffractometer | |
Ishikawa | Synchrotron X-ray topographic studies on minute strain fields in as-grown silicon single crystals | |
Vetter et al. | Simulation of threading dislocation images in X-ray topographs of silicon carbide homo-epilayers | |
Qadri et al. | Double‐crystal x‐ray topography and rocking curve studies of epitaxially grown ZnSe | |
Cho et al. | Grain boundaries and antiphase boundaries in GaAs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090406 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090406 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100406 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110406 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |