JP2012052968A - Defect detection apparatus, defect detection method, defect detection program and recording medium - Google Patents

Defect detection apparatus, defect detection method, defect detection program and recording medium Download PDF

Info

Publication number
JP2012052968A
JP2012052968A JP2010197171A JP2010197171A JP2012052968A JP 2012052968 A JP2012052968 A JP 2012052968A JP 2010197171 A JP2010197171 A JP 2010197171A JP 2010197171 A JP2010197171 A JP 2010197171A JP 2012052968 A JP2012052968 A JP 2012052968A
Authority
JP
Japan
Prior art keywords
resolution
imaging
defect
display panel
defect detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010197171A
Other languages
Japanese (ja)
Inventor
Shuhei Yamamoto
修平 山本
Shintaro Tabata
慎太郎 田畑
Hidenobu Nakanishi
秀信 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010197171A priority Critical patent/JP2012052968A/en
Publication of JP2012052968A publication Critical patent/JP2012052968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a defect detection apparatus capable of shortening an imaging tact as further as possible when detecting a defect in a plane display panel such as a liquid crystal panel in which pixels of a plurality of colors constituting a picture element are arranged in a matrix shape through pixel displacement.SOLUTION: In a defect detection apparatus 100, based on dimensions Tx and Ty of pixels in first and second array directions X and Y in a liquid crystal panel L of an inspection target and an imaging resolution R of an area sensor 30, a resolution improve magnification Vx for the first array direction X and a resolution improve magnification Vy for the second array direction Y are individually calculated and based on the calculated resolution improve magnifications Vx and Vy, a plurality of imaging positions indicating a relative positional relationship, to be satisfied during imaging, between the liquid crystal panel L and the area sensor 30 are set as many as Vx×Vy. On the basis of captured images which are captured at the imaging positions, a resolution improved image is produced through pixel displacement and on the basis of the resolution improved image, a defect in the liquid crystal panel L is detected.

Description

本発明は、絵素を構成する複数色の画素がマトリクス状に配列された液晶パネルなどの平面表示パネルにおける欠陥を検出する欠陥検出装置、欠陥検出方法、欠陥検出用プログラムおよび該欠陥検出用プログラムを記録したコンピュータ読取り可能な記録媒体に関する。   The present invention relates to a defect detection apparatus, a defect detection method, a defect detection program, and a defect detection program for detecting defects in a flat display panel such as a liquid crystal panel in which pixels of a plurality of colors constituting a picture element are arranged in a matrix. The present invention relates to a computer-readable recording medium on which is recorded.

絵素を構成する三原色すなわちR(赤)・G(緑)・B(青)の画素がマトリクス状に配列された液晶パネルなどの平面表示パネルを搭載するフラットパネルディスプレイ(
Flat Panel Display;略称「FPD」)の製造工程では、組み立てられた平面表示パネルに対して、電気的な断線または短絡による欠陥、液晶への異物混入による微小な欠陥、液晶の部分的な配向不良による微小な欠陥、およびシミ・ムラなどの欠陥を検出する欠陥検出工程が含まれている。この欠陥検出工程により、平面表示パネルの品質が確保されている。
A flat panel display equipped with a flat panel display such as a liquid crystal panel in which pixels of the three primary colors, ie, R (red), G (green), and B (blue) constituting the picture element are arranged in a matrix.
In the manufacturing process of Flat Panel Display (abbreviated as “FPD”), defects due to electrical disconnection or short-circuiting, minute defects due to foreign matter entering the liquid crystal, partial alignment failure of the liquid crystal with respect to the assembled flat display panel And a defect detection step for detecting defects such as spots and unevenness. The quality of the flat display panel is ensured by this defect detection process.

従来、欠陥検出工程では、検査対象の平面表示パネルに検査用の表示パターンを表示させ、その平面表示パネルの表示画面を検査員が目視することにより、欠陥の有無が検査されていた。   Conventionally, in the defect detection process, a display pattern for inspection is displayed on a flat display panel to be inspected, and the presence or absence of a defect is inspected by an inspector viewing the display screen of the flat display panel.

しかしながら、目視による検査の場合、検査員の疲労による見落としが発生したり、検査員ごとに評価にばらつきが生じたりすることが問題となっていた。さらには、平面表示パネル1枚あたりの検査に、多くの検査時間を要していることも問題となっていた。   However, in the case of inspection by visual inspection, oversight due to fatigue of the inspector occurs and evaluation varies from inspector to inspector. Furthermore, it takes a lot of time to inspect each flat display panel.

そこで、これらの問題を解決するために、欠陥検出工程を自動化する欠陥検出装置が導入されている。欠陥検出装置は、CCD(Charge Coupled Device)エリアセンサなどの撮像素子を搭載した撮像装置を備え、検査用の表示パターンが表示されている平面表示パネルを撮像素子で撮像し、撮像した画像の画像データをコンピュータによって解析することにより、欠陥を検出するように構成されている。   In order to solve these problems, a defect detection apparatus that automates the defect detection process has been introduced. The defect detection device includes an imaging device equipped with an imaging device such as a CCD (Charge Coupled Device) area sensor, images a flat display panel on which a display pattern for inspection is displayed, and images the captured image. It is configured to detect defects by analyzing the data by a computer.

このような欠陥検出装置を用いて、画素サイズの欠陥あるいはそれよりも小さな欠陥を精度良く検出するためには、撮像に使用される撮像素子の撮像分解能を、検出したい欠陥のサイズ以下にしておく必要がある。   In order to accurately detect a pixel-size defect or a defect smaller than that by using such a defect detection device, the imaging resolution of the image sensor used for imaging is set to be equal to or smaller than the size of the defect to be detected. There is a need.

ところで、近年では、画像を表示可能な表示領域のサイズ(画面サイズ)が大きいだけでなく、フルHD(High Definition)に対応した絵素数1920×1080(横×縦)以上の平面表示パネルを搭載したFPDが普及している。このような平面表示パネルに対して撮像素子の撮像分解能を画素サイズ以下にするためには、非常に高解像度の撮像素子を搭載した撮像装置を、欠陥検出装置に設置しなければならない。しかしながら、そのような撮像装置は、非常に高価であるため、そのような撮像装置を設置すると、欠陥検出装置全体としてのコストが増大してしまうという問題がある。   By the way, in recent years, not only the size (screen size) of a display area capable of displaying an image is large, but also a flat display panel having a picture element number of 1920 × 1080 (horizontal × vertical) or more corresponding to full HD (High Definition) is mounted. FPDs are widely used. In order to reduce the imaging resolution of the imaging device to a pixel size or less with respect to such a flat display panel, an imaging device equipped with an extremely high resolution imaging device must be installed in the defect detection device. However, since such an imaging apparatus is very expensive, when such an imaging apparatus is installed, there is a problem that the cost of the entire defect detection apparatus increases.

そこで、欠陥検出装置において、このような高価な撮像装置を設置することなく、撮像素子の撮像分解能を小さくする技術が、たとえば特許文献1および2に提案されている。   Therefore, for example, Patent Documents 1 and 2 propose a technique for reducing the imaging resolution of the imaging element without installing such an expensive imaging device in the defect detection device.

特許文献1には、通常の解像度を有する撮像素子を搭載した撮像装置を、検査対象の平面表示パネルの表示面に沿って複数台並べて設置し、各撮像装置から出力される撮像画像の画像データを合成することによって、撮像素子の撮像分解能を小さくする技術が開示されている。   In Patent Document 1, a plurality of image pickup devices each equipped with an image pickup device having a normal resolution are arranged along the display surface of a flat display panel to be inspected, and image data of a picked-up image output from each image pickup device. A technique for reducing the imaging resolution of the imaging device by combining the above is disclosed.

また、特許文献2には、互いに直交する2つの配列方向に沿ってマトリクス状に画素が配列されている平面表示パネルに対して、撮像装置を前記2つの配列方向に沿って移動可能に設置し、互いに異なる所定の撮像位置で平面表示パネルを撮像して得られた複数の撮像画像によって、高解像度化した画像を生成する技術が開示されている。これは、画素ずらしと呼ばれる手法であり、撮像画像の解像度を疑似的に向上させる技術である。   Further, in Patent Document 2, an imaging device is installed movably along the two arrangement directions with respect to a flat display panel in which pixels are arranged in a matrix along two arrangement directions orthogonal to each other. A technique for generating a high-resolution image from a plurality of captured images obtained by imaging a flat display panel at predetermined imaging positions different from each other is disclosed. This is a technique called pixel shifting, and is a technique for artificially improving the resolution of a captured image.

ここで、図11〜図13を用いて、画素ずらしによって撮像画像の解像度を2倍にする方法を説明する。図11は、撮像装置に設置される撮像素子の撮像分解能rを示す図である。図11に示す正方形状の各マス目は、撮像素子における各画素による撮像範囲に相当し、すなわち、各マス目の大きさによって撮像分解能rが示されている。   Here, a method of doubling the resolution of a captured image by shifting pixels will be described with reference to FIGS. FIG. 11 is a diagram illustrating the imaging resolution r of the imaging device installed in the imaging apparatus. Each square square shown in FIG. 11 corresponds to an imaging range by each pixel in the imaging device, that is, the imaging resolution r is indicated by the size of each square.

図11に示すように、撮像素子における各画素は、互いに直交する第1方向uおよび第2方向vに沿ってマトリクス状に配列されている。なお、撮像素子における各画素は、一辺の長さがaの正方形状であるとする。また、図11〜図13では、理解を容易にするために、撮像素子によって「A」という文字を撮像した場合を示している。   As shown in FIG. 11, the pixels in the imaging device are arranged in a matrix along a first direction u and a second direction v that are orthogonal to each other. It is assumed that each pixel in the imaging element has a square shape with a side length of a. In addition, FIGS. 11 to 13 show a case where the letter “A” is imaged by the imaging element in order to facilitate understanding.

図12は、画素ずらしによって撮像画像の解像度を2倍にする場合の各撮像位置を示す図である。なお、図12では、理解を容易にするために、撮像素子における1画素の撮像範囲だけを示している。   FIG. 12 is a diagram illustrating each imaging position when the resolution of the captured image is doubled by pixel shifting. In FIG. 12, only the imaging range of one pixel in the imaging element is shown for easy understanding.

図12(a)は、第1の撮像位置(0,0)から撮像したときの撮像範囲Faを示している。図12(b)は、第2の撮像位置(a/2,0)から撮像したときの撮像範囲Fbを示している。第2の撮像位置(a/2,0)は、第1の撮像位置(0,0)から、第1方向uに沿って、撮像素子における画素寸法aの1/2だけ移動した位置である。   FIG. 12A shows the imaging range Fa when imaging from the first imaging position (0, 0). FIG. 12B shows the imaging range Fb when imaging from the second imaging position (a / 2, 0). The second imaging position (a / 2, 0) is a position moved from the first imaging position (0, 0) by ½ of the pixel size a in the imaging element along the first direction u. .

図12(c)は、第3の撮像位置(a/2,a/2)から撮像したときの撮像範囲Fcを示している。第3の撮像位置(a/2,a/2)は、第2の撮像位置(a/2,0)から、第2方向vに沿って、撮像素子における画素寸法aの1/2だけ移動した位置である。   FIG. 12C shows the imaging range Fc when imaging from the third imaging position (a / 2, a / 2). The third imaging position (a / 2, a / 2) moves from the second imaging position (a / 2, 0) by ½ of the pixel size a in the imaging device along the second direction v. Is the position.

図12(d)は、第4の撮像位置(0,a/2)から撮像したときの撮像範囲Fdを示している。第4の撮像位置(0,a/2)は、第3の撮像位置(a/2,a/2)から、第1方向uとは反対の−u方向に沿って、撮像素子における画素寸法aの1/2だけ移動した位置である。   FIG. 12D shows the imaging range Fd when imaging from the fourth imaging position (0, a / 2). The fourth imaging position (0, a / 2) is a pixel size in the imaging device along the −u direction opposite to the first direction u from the third imaging position (a / 2, a / 2). This is a position moved by a half of a.

このように第1〜第4の撮像位置において撮像された4つの画像を、高解像度バッファにおいて、それぞれの撮像位置に対応した位置に配置して重ね合わせて、画像を再構成することにより、解像度を疑似的に2倍に高解像度化した画像を生成することができる。   In this way, the four images captured at the first to fourth imaging positions are arranged and superimposed at positions corresponding to the respective imaging positions in the high resolution buffer to reconstruct the image, thereby resolving the resolution. It is possible to generate an image in which the resolution is increased by a factor of two.

図13は、画素ずらしによって生成された高解像度化画像による撮像分解能r1を示す図である。撮像分解能r1は、撮像素子の撮像分解能rの1/2に相当する。このように、画素ずらしの手法を用いることにより、撮像分解能を小さくすることができる。   FIG. 13 is a diagram illustrating the imaging resolution r1 based on the high-resolution image generated by pixel shifting. The imaging resolution r1 corresponds to ½ of the imaging resolution r of the imaging device. In this way, the imaging resolution can be reduced by using the pixel shifting method.

特開2004−226083号公報JP 2004-226083 A 特開2008−98968号公報JP 2008-98968 A

特許文献1に記載の方法では、大画面かつ総絵素数の多い平面表示パネルに対して、撮像素子の撮像分解能を画素サイズ以下にするためには、欠陥検出装置に多くの撮像装置を設置しなければならず、これにより欠陥検出装置全体としてのコストが増大してしまうという問題がある。   In the method described in Patent Document 1, a large number of imaging devices are installed in the defect detection device in order to make the imaging resolution of the imaging element equal to or less than the pixel size for a flat display panel having a large screen and a large total number of picture elements. Therefore, there is a problem that the cost of the entire defect detection apparatus increases.

特許文献2に記載の方法は、特許文献1のように多くの撮像装置を設置する必要はないものの、高解像度化画像を生成するためには、検査対象の平面表示パネルを複数の撮像位置で撮像する必要がある。たとえば、前記のように解像度が2倍の高解像度化画像を生成するためには、4箇所の撮像位置で撮像する必要がある。また、解像度が3倍の高解像度化画像を生成するためには、9箇所の撮像位置で撮像する必要がある。   Although the method described in Patent Document 2 does not require a large number of image pickup devices as in Patent Document 1, in order to generate a high-resolution image, the flat display panel to be inspected is set at a plurality of image capturing positions. Need to image. For example, in order to generate a high-resolution image having double the resolution as described above, it is necessary to capture images at four imaging positions. In addition, in order to generate a high-resolution image with a resolution of 3 times, it is necessary to capture images at nine imaging positions.

しかしながら、複数の撮像位置で撮像するためには、撮像装置(または検査対象の平面表示パネル)を何度も移動させる必要があるため、結果として、全ての画像を撮像するのに要する時間(以下、「撮像タクト」と称する)が増大してしまうという問題がある。   However, in order to capture images at a plurality of imaging positions, it is necessary to move the imaging device (or the flat display panel to be inspected) many times. As a result, the time required to capture all the images (hereinafter referred to as “image capturing time”) , Which is referred to as “imaging tact”).

本発明の目的は、絵素を構成する複数色の画素がマトリクス状に配列された液晶パネルなどの平面表示パネルにおける欠陥を画素ずらしによって検出する場合に、撮像タクトを可及的に短縮することができる欠陥検出装置、欠陥検出方法、欠陥検出用プログラムおよび該欠陥検出用プログラムを記録したコンピュータ読取り可能な記録媒体を提供することである   An object of the present invention is to shorten the imaging tact as much as possible when detecting a defect in a flat display panel such as a liquid crystal panel in which a plurality of color pixels constituting a picture element are arranged in a matrix. Defect detection apparatus, defect detection method, defect detection program, and computer-readable recording medium on which the defect detection program is recorded

本発明は、絵素を構成する複数色の画素が、互いに直交する第1および第2の配列方向に沿ってマトリクス状に配列された平面表示パネルを撮像する撮像素子と、前記平面表示パネルと前記撮像素子との相対的な位置関係を変化させる移動装置とを備え、該平面表示パネルにおける欠陥を、該撮像素子によって撮像された平面表示パネルの画像データに基づいて検出する欠陥検出装置であって、
予め定める検出対象の欠陥寸法および前記撮像素子の撮像分解能を取得する撮像条件取得部と、
前記撮像条件取得部によって取得された欠陥寸法および撮像分解能に基づいて、前記第1の配列方向に関する高解像度化倍率Vx(ただし、Vxは正の整数)と前記第2の配列方向に関する高解像度化倍率Vy(ただし、Vyは正の整数)とを個別に算出する高解像度化倍率算出部と、
前記高解像度化倍率算出部によって算出された各高解像度化倍率Vx,Vyに基づいて、撮像時に満たすべき平面表示パネルと撮像素子との相対的な位置関係を示す複数の撮像位置を、Vx×Vy箇所だけ設定する撮像位置設定部と、
前記撮像位置設定部によって設定された各撮像位置で平面表示パネルが撮像されるように、前記移動装置および前記撮像素子を制御する装置制御部と、
前記複数の撮像位置で撮像された各撮像画像に基づいて、各撮像画像よりも高解像度の高解像度化画像を生成する高解像度化画像生成部と、
高解像度化画像生成部によって生成された高解像度化画像に基づいて、平面表示パネルにおける欠陥を検出する欠陥検出部とを含むことを特徴とする欠陥検出装置である。
The present invention provides an image sensor that images a flat display panel in which pixels of a plurality of colors constituting a picture element are arranged in a matrix along first and second arrangement directions orthogonal to each other, and the flat display panel. A defect detection device that detects a defect in the flat display panel based on image data of the flat display panel imaged by the image pickup device. And
An imaging condition acquisition unit for acquiring a predetermined defect size to be detected and an imaging resolution of the imaging element;
Based on the defect size and the imaging resolution acquired by the imaging condition acquisition unit, the higher resolution magnification Vx (where Vx is a positive integer) in the first arrangement direction and the higher resolution in the second arrangement direction. A high-resolution magnification calculator that individually calculates a magnification Vy (where Vy is a positive integer);
Based on the high resolution magnifications Vx and Vy calculated by the high resolution magnification calculation unit, a plurality of imaging positions indicating a relative positional relationship between the flat display panel and the image sensor to be satisfied at the time of imaging are represented by Vxx. An imaging position setting unit for setting only Vy points;
A device control unit that controls the moving device and the image sensor so that the flat display panel is imaged at each imaging position set by the imaging position setting unit;
A high-resolution image generation unit that generates a high-resolution image that is higher in resolution than each captured image based on each captured image captured at the plurality of imaging positions;
The defect detection apparatus includes a defect detection unit that detects a defect in the flat display panel based on the resolution-enhanced image generated by the resolution-enhanced image generation unit.

また本発明は、前記検出対象の欠陥寸法は、前記平面表示パネルの前記第1および第2の配列方向の画素の寸法であることを特徴とする。   In the invention, it is preferable that the defect size to be detected is a pixel size in the first and second arrangement directions of the flat display panel.

また本発明は、前記高解像度化倍率算出部は、前記撮像条件取得部によって取得された前記第1の配列方向の画素の寸法がTx、前記第2の配列方向の画素の寸法がTy、前記撮像素子の撮像分解能がRであるとき、Vx≧R/TxおよびVy≧R/Tyの各関係式に基づいて、各高解像度化倍率Vx,Vyを算出することを特徴とする。   Further, according to the present invention, the high-resolution magnification calculation unit is configured such that the pixel size in the first arrangement direction acquired by the imaging condition acquisition unit is Tx, the pixel size in the second arrangement direction is Ty, When the imaging resolution of the imaging device is R, the respective resolution enhancement magnifications Vx and Vy are calculated based on the relational expressions of Vx ≧ R / Tx and Vy ≧ R / Ty.

また本発明は、絵素を構成する複数色の画素が、互いに直交する第1および第2の配列方向に沿ってマトリクス状に配列された平面表示パネルを撮像する撮像素子と、前記平面表示パネルと前記撮像素子との相対的な位置関係を変化させる移動装置とを用いて、該平面表示パネルにおける欠陥を、該撮像素子によって撮像された平面表示パネルの画像データに基づいて検出する欠陥検出方法であって、
予め定める検出対象の欠陥寸法および前記撮像素子の撮像分解能を取得する撮像条件取得ステップと、
前記撮像条件取得ステップによって取得された欠陥寸法および撮像分解能に基づいて、前記第1の配列方向に関する高解像度化倍率Vx(ただし、Vxは正の整数)と前記第2の配列方向に関する高解像度化倍率Vy(ただし、Vyは正の整数)とを個別に算出する高解像度化倍率算出ステップと、
前記高解像度化倍率算出ステップによって算出された各高解像度化倍率Vx,Vyに基づいて、撮像時に満たすべき平面表示パネルと撮像素子との相対的な位置関係を示す複数の撮像位置を、Vx×Vy箇所だけ設定する撮像位置設定ステップと、
前記撮像位置設定ステップによって設定された各撮像位置で平面表示パネルが撮像されるように、前記移動装置および前記撮像素子を制御する装置制御ステップと、
前記複数の撮像位置で撮像された各撮像画像に基づいて、各撮像画像よりも高解像度の高解像度化画像を生成する高解像度化画像生成ステップと、
高解像度化画像生成ステップによって生成された高解像度化画像に基づいて、平面表示パネルにおける欠陥を検出する欠陥検出ステップとを含むことを特徴とする欠陥検出方法である。
In addition, the present invention provides an imaging device for imaging a flat display panel in which pixels of a plurality of colors constituting a picture element are arranged in a matrix along first and second arrangement directions orthogonal to each other, and the flat display panel Detection method for detecting a defect in the flat display panel based on image data of the flat display panel imaged by the image pickup device using a moving device that changes a relative positional relationship between the image pickup device and the image pickup device Because
An imaging condition acquisition step for acquiring a predetermined defect size to be detected and an imaging resolution of the imaging device;
Based on the defect size and the imaging resolution acquired in the imaging condition acquisition step, the resolution increasing magnification Vx (where Vx is a positive integer) in the first arrangement direction and the resolution in the second arrangement direction. A high-resolution magnification calculation step for individually calculating the magnification Vy (where Vy is a positive integer);
Based on the high resolution magnifications Vx and Vy calculated in the high resolution magnification calculation step, a plurality of imaging positions indicating a relative positional relationship between the flat display panel and the image sensor to be satisfied at the time of imaging are represented by Vxx. An imaging position setting step for setting only Vy points;
An apparatus control step for controlling the moving device and the image sensor so that the flat display panel is imaged at each imaging position set by the imaging position setting step;
A high-resolution image generation step for generating a high-resolution image having a higher resolution than each captured image based on each captured image captured at the plurality of imaging positions;
And a defect detection step of detecting a defect in the flat display panel based on the high-resolution image generated by the high-resolution image generation step.

また本発明は、前記検出対象の欠陥寸法は、前記平面表示パネルの前記第1および第2の配列方向の画素の寸法であることを特徴とする。   In the invention, it is preferable that the defect size to be detected is a pixel size in the first and second arrangement directions of the flat display panel.

また本発明は、前記高解像度化倍率算出ステップは、前記撮像条件取得ステップによって取得された前記第1の配列方向の画素の寸法がTx、前記第2の配列方向の画素の寸法がTy、前記撮像素子の撮像分解能がRであるとき、Vx≧R/TxおよびVy≧R/Tyの各関係式に基づいて、各高解像度化倍率Vx,Vyを算出することを特徴とする。   Further, according to the present invention, in the high resolution magnification calculation step, the pixel size in the first arrangement direction acquired by the imaging condition acquisition step is Tx, the pixel size in the second arrangement direction is Ty, When the imaging resolution of the imaging device is R, the respective resolution enhancement magnifications Vx and Vy are calculated based on the relational expressions of Vx ≧ R / Tx and Vy ≧ R / Ty.

また本発明は、前記欠陥検出方法をコンピュータに実行させるための欠陥検出用プログラムである。   The present invention is also a defect detection program for causing a computer to execute the defect detection method.

また本発明は、前記欠陥検出用プログラムを記録したコンピュータ読取り可能な記録媒体である。   The present invention is also a computer-readable recording medium on which the defect detection program is recorded.

本発明によれば、絵素を構成する複数色の画素がマトリクス状に配列された液晶パネルなどの平面表示パネルにおける欠陥を画素ずらしによって検出する場合に、必要な検査精度を確保しつつ、撮像タクトを可及的に短縮することができる。   According to the present invention, when a defect in a flat display panel such as a liquid crystal panel in which pixels of a plurality of colors constituting a picture element are arranged in a matrix is detected by pixel shifting, imaging is performed while ensuring necessary inspection accuracy. Tact can be shortened as much as possible.

本発明の実施形態に係る欠陥検出装置100の概略的な構成を示す模式図である。It is a mimetic diagram showing a schematic structure of defect detection device 100 concerning an embodiment of the present invention. 本実施形態における検査対象の液晶パネルLを示す平面図であり、図2(a)は液晶パネルL全体を示す平面図であり、図2(b)は液晶パネルLの角部を拡大して示す平面図である。FIG. 2A is a plan view showing a liquid crystal panel L to be inspected in the present embodiment, FIG. 2A is a plan view showing the entire liquid crystal panel L, and FIG. 2B is an enlarged view of a corner of the liquid crystal panel L. FIG. 制御装置51の構成を示すブロック図である。2 is a block diagram showing a configuration of a control device 51. FIG. 本実施形態における検査対象の液晶パネルLの画素の寸法Tx,Tyとエリアセンサ30の撮像分解能Rとの関係を示す図である。It is a figure which shows the relationship between the dimension Tx and Ty of the pixel of the liquid crystal panel L to be examined in this embodiment, and the imaging resolution R of the area sensor 30. 制御装置51による欠陥検出処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the defect detection process by the control apparatus 51. FIG. 高解像度化画像生成部71によって生成された高解像度化画像における分解能Rx,Ryを示す図である。It is a figure which shows the resolutions Rx and Ry in the high resolution image produced | generated by the high resolution image production | generation part 71. FIG. 従来技術の画素ずらしによる手法で生成された解像度が3倍の高解像度化画像における分解能Rx,Ryを示す図である。It is a figure which shows the resolutions Rx and Ry in the high-resolution image produced | generated by the technique by the pixel shift of a prior art 3 times. 高解像度化画像に基づいて欠陥を検出する方法の一例を説明するための図である。It is a figure for demonstrating an example of the method of detecting a defect based on the high resolution image. 他の実施形態における検査対象の液晶パネルLの画素の寸法Tx,Tyとエリアセンサ30の撮像分解能Rとの関係を示す図である。It is a figure which shows the relationship between the dimensions Tx and Ty of the pixel of the liquid crystal panel L to be examined and the imaging resolution R of the area sensor 30 in another embodiment. 高解像度化倍率の違いによる高解像度化画像における分解能の違いを示す図であり、図10(a)は、Vx=2とした場合に生成される高解像度化画像における長辺方向Xおよび短辺方向Yの分解能Rxa,Ryaを示す図であり、図10(b)は、Vx=3とした場合に生成される高解像度化画像における長辺方向Xおよび短辺方向Yの分解能Rxb,Rybを示す図である。It is a figure which shows the difference in the resolution in the high resolution image by the difference in high resolution magnification, and Fig.10 (a) is the long side direction X and short side in the high resolution image produced | generated when Vx = 2. FIG. 10B is a diagram showing the resolutions Rxa and Rya in the direction Y, and FIG. 10B shows the resolutions Rxb and Ryb in the long-side direction X and the short-side direction Y in the high-resolution image generated when Vx = 3. FIG. 撮像装置に設置される撮像素子の撮像分解能rを示す図である。It is a figure which shows the imaging resolution r of the image pick-up element installed in an imaging device. 画素ずらしによって撮像画像の解像度を2倍にする場合の各撮像位置を示す図である。It is a figure which shows each imaging position in the case of doubling the resolution of a captured image by pixel shifting. 画素ずらしによって生成された高解像度化画像による撮像分解能r1を示す図である。It is a figure which shows the imaging resolution r1 by the high resolution image produced | generated by pixel shifting.

図1は、本発明の実施形態に係る欠陥検出装置100の概略的な構成を示す模式図である。欠陥検出装置100は、バックライト10と、検査台20と、CCDエリアセンサ(以下、「エリアセンサ」と記す)30およびアクチュエータ40を搭載する撮像装置31と、コンピュータ50とを含んで構成される。   FIG. 1 is a schematic diagram showing a schematic configuration of a defect detection apparatus 100 according to an embodiment of the present invention. The defect detection apparatus 100 includes a backlight 10, an inspection table 20, an image pickup apparatus 31 on which a CCD area sensor (hereinafter referred to as “area sensor”) 30 and an actuator 40 are mounted, and a computer 50. .

欠陥検出装置100は、平面表示パネルである液晶パネルLをエリアセンサ30によって複数の撮像位置から撮像し、各撮像位置で撮像された画像データを用いて画素ずらしにより高解像度化画像を生成し、該高解像度化画像に基づいて、液晶パネルLにおける電気的な断線または短絡による欠陥、液晶への異物混入による微小な欠陥、液晶の部分的な配向不良による微小な欠陥、およびシミ・ムラなどの欠陥を検出するように構成されている。   The defect detection apparatus 100 images the liquid crystal panel L, which is a flat display panel, from the plurality of imaging positions by the area sensor 30, and generates a high-resolution image by shifting pixels using image data captured at each imaging position. Based on the resolution-enhanced image, a defect due to electrical disconnection or short circuit in the liquid crystal panel L, a minute defect due to foreign matter mixing into the liquid crystal, a minute defect due to partial alignment failure of the liquid crystal, a spot or unevenness, etc. It is configured to detect defects.

バックライト10は、光を出射可能な光源を備え、本実施形態では、上方に向かって平面的に光を出射する面光源として構成されている。検査台20は、検査対象の液晶パネルLが載置される平坦な載置面Sを有する。検査台20は、本実施形態では、載置面Sが水平または略水平となるように、バックライト10上に取り付けられている。したがって、バックライト10を駆動することによって、検査台20に載置された液晶パネルLに対して、下方から光を照射することができる。   The backlight 10 includes a light source capable of emitting light. In the present embodiment, the backlight 10 is configured as a surface light source that emits light planarly upward. The inspection table 20 has a flat mounting surface S on which the liquid crystal panel L to be inspected is mounted. In the present embodiment, the inspection table 20 is mounted on the backlight 10 so that the placement surface S is horizontal or substantially horizontal. Therefore, by driving the backlight 10, the liquid crystal panel L placed on the inspection table 20 can be irradiated with light from below.

撮像素子であるエリアセンサ30は、図11に示すように、互いに直交する第1方向uおよび第2方向vに沿って、一辺の寸法がaの正方形状の画素がマトリクス状に配列されている。エリアセンサ30は、検査台20の上方に、検査台20の載置面Sに対向して配設され、検査台20に載置された液晶パネルLを撮像可能に構成されている。エリアセンサ30は、コンピュータ50から送信される撮像タイミング制御信号に従って、撮像動作を開始または停止する。また、エリアセンサ30は、撮像した画像の画像データをコンピュータ50へ出力するように構成されている。   As shown in FIG. 11, the area sensor 30 that is an image sensor has square pixels with one side dimension a arranged in a matrix along a first direction u and a second direction v that are orthogonal to each other. . The area sensor 30 is disposed above the inspection table 20 so as to face the mounting surface S of the inspection table 20 and is configured to be able to image the liquid crystal panel L mounted on the inspection table 20. The area sensor 30 starts or stops the imaging operation according to the imaging timing control signal transmitted from the computer 50. The area sensor 30 is configured to output image data of a captured image to the computer 50.

移動装置であるアクチュエータ40は、検査台20に載置された液晶パネルLとエリアセンサ30との相対的な位置関係を、エリアセンサ30を移動させることによって変化させる。アクチュエータ40は、本実施形態では、エリアセンサ30を、エリアセンサ30における画素の配列方向である第1方向uおよび第2方向v、ならびに第1方向uおよび第2方向vに垂直な第3方向wに沿って、移動可能に構成されている。アクチュエータ40は、コンピュータ50から送信される撮像位置制御信号に従って、エリアセンサ30を所定の位置へ移動させる。   The actuator 40 which is a moving device changes the relative positional relationship between the liquid crystal panel L placed on the inspection table 20 and the area sensor 30 by moving the area sensor 30. In the present embodiment, the actuator 40 moves the area sensor 30 in the first direction u and the second direction v, which are pixel arrangement directions in the area sensor 30, and the third direction perpendicular to the first direction u and the second direction v. It is configured to be movable along w. The actuator 40 moves the area sensor 30 to a predetermined position according to the imaging position control signal transmitted from the computer 50.

移動装置としては、検査台20に載置された液晶パネルLとエリアセンサ30との相対的な位置関係を変化させることが可能な構成であればよく、たとえば、バックライト10、検査台20および検査台20に載置された液晶パネルLを一体的に移動可能に構成されてもよい。また、エリアセンサ30と液晶パネルL側の構成とをそれぞれ個別に移動可能に構成されてもよい。   The moving device may be any configuration that can change the relative positional relationship between the liquid crystal panel L placed on the inspection table 20 and the area sensor 30. For example, the backlight 10, the inspection table 20, and The liquid crystal panel L placed on the inspection table 20 may be configured to be movable integrally. Further, the area sensor 30 and the configuration on the liquid crystal panel L side may be configured to be individually movable.

コンピュータ50は、検査台20に載置された液晶パネルLにおける電気的な断線または短絡による欠陥、液晶への異物混入による微小な欠陥、液晶の部分的な配向不良による微小な欠陥、およびシミ・ムラなどの欠陥を検出するための欠陥検出処理を実行する制御装置51を備える。制御装置51は、図示しないROM(Read Only Memory)に格納されている欠陥検出用プログラムを読み込むことによって、欠陥検出処理を実行する。   The computer 50 includes a defect due to an electrical disconnection or short circuit in the liquid crystal panel L placed on the inspection table 20, a minute defect due to foreign matter mixed into the liquid crystal, a minute defect due to partial alignment failure of the liquid crystal, A control device 51 that executes a defect detection process for detecting defects such as unevenness is provided. The control device 51 executes a defect detection process by reading a defect detection program stored in a ROM (Read Only Memory) (not shown).

制御装置51は、検査台20に載置された液晶パネルLに対してパターン指定信号を送信することにより、液晶パネルLの駆動を制御する。また、制御装置51は、エリアセンサ30に対して撮像タイミング制御信号を送信することにより、エリアセンサ30の駆動を制御する。   The control device 51 controls driving of the liquid crystal panel L by transmitting a pattern designation signal to the liquid crystal panel L placed on the inspection table 20. Further, the control device 51 controls the driving of the area sensor 30 by transmitting an imaging timing control signal to the area sensor 30.

また、制御装置51は、アクチュエータ40に対して撮像位置制御信号を送信することにより、アクチュエータ40の動作を制御する。また、制御装置51は、エリアセンサ30から入力される画像データに基づいて所定の処理を行うことによって、液晶パネルLにおける欠陥を検出するように構成されている。   Further, the control device 51 controls the operation of the actuator 40 by transmitting an imaging position control signal to the actuator 40. The control device 51 is configured to detect a defect in the liquid crystal panel L by performing a predetermined process based on image data input from the area sensor 30.

検査対象の液晶パネルLは、機械的な手段または作業者の手動によって、検査台20上に所定の姿勢で載置される。本実施形態では、所定の姿勢として、後述する液晶パネルLの長辺方向Xとエリアセンサ30の移動方向である第1方向uとが一致し、液晶パネルLの短辺方向Yとエリアセンサ30の移動方向である第2方向vとが一致するような姿勢で載置される。   The liquid crystal panel L to be inspected is placed in a predetermined posture on the inspection table 20 by mechanical means or manually by an operator. In the present embodiment, as a predetermined posture, a long side direction X of a liquid crystal panel L, which will be described later, and a first direction u that is a movement direction of the area sensor 30 coincide with each other, and a short side direction Y of the liquid crystal panel L and the area sensor 30 are aligned. Is placed in such a posture as to coincide with the second direction v which is the moving direction.

図2は、本実施形態における検査対象の液晶パネルLを示す平面図であり、図2(a)は液晶パネルL全体を示す平面図であり、図2(b)は液晶パネルLの角部を拡大して示す平面図である。   2 is a plan view showing a liquid crystal panel L to be inspected in the present embodiment, FIG. 2A is a plan view showing the entire liquid crystal panel L, and FIG. 2B is a corner portion of the liquid crystal panel L. It is a top view which expands and shows.

液晶パネルLは、その厚み方向に見て矩形状に形成されており、画像を表示可能な矩形状の表示領域Aと、表示領域Aを囲繞する矩形枠状の周縁領域Aとを有する。表示領域Aには、複数の絵素Pが、液晶パネルLの長辺方向Xおよび短辺方向Yに沿って、マトリクス状に配列されている。 The liquid crystal panel L is formed in a rectangular shape when viewed in the thickness direction, and includes a rectangular display area A 1 capable of displaying an image and a rectangular frame-shaped peripheral area A 2 surrounding the display area A 1. Have. In the display area A 1 , a plurality of picture elements P are arranged in a matrix along the long side direction X and the short side direction Y of the liquid crystal panel L.

表示領域Aを構成する各絵素Pは、複数色の画素によって構成され、本実施形態では、三原色R・G・Bの画素、すなわち赤色の画素S、緑色の画素Sおよび青色の画素Sによって構成されている。 Each picture element P forming the display area A 1 is composed of a plurality of colors of pixels, in the present embodiment, the three primary colors R · G · B pixels, i.e., red pixel S R, a green pixel S G and blue It is constituted by the pixel S B.

各画素S,S,Sは、いずれも短冊状に形成された画素領域から成り、各画素領域はそれぞれ、長辺方向Xの寸法がTxであり、短辺方向Yの寸法がTyである。本実施形態では、液晶パネルLの絵素Pは正方形絵素であり、したがって、画素領域の長辺方向Xの寸法Txと短辺方向Yの寸法Tyとの比は、Tx:Ty=1:3である。表示領域Aを構成する各絵素Pでは、このような三原色の画素S,S,Sが、長辺方向Xに沿って、この順に並んで配列されている。 Each of the pixels S R , S G , and S B is composed of a pixel area formed in a strip shape, and each pixel area has a dimension in the long side direction X of Tx and a dimension in the short side direction Y of Ty. It is. In this embodiment, the picture element P of the liquid crystal panel L is a square picture element. Therefore, the ratio of the dimension Tx in the long side direction X to the dimension Ty in the short side direction Y of the pixel region is Tx: Ty = 1: 3. Each pixel P constituting the display area A 1, the pixel S R of such three primary colors, S G, is S B, along the longitudinal direction X, are arranged side by side in this order.

ここで、長辺方向Xに沿う画素の並びを「行」と称し、短辺方向Yに沿う画素の並びを「列」と称すると、各行には、三原色の画素S,S,Sが周期的に繰り返し配列されている。一方、各列には、同色の画素が連続して配列されている。このように、表示領域Aには、三原色の画素S,S,Sが、長辺方向Xおよび短辺方向Yに沿ってマトリクス状に配列されている。なお、隣接する画素間には、混色を防ぐための遮光領域であるブラックマトリクスが設けられている。 Here, when the arrangement of pixels along the long side direction X is referred to as “row” and the arrangement of pixels along the short side direction Y is referred to as “column”, each row includes three primary color pixels S R , S G , S B is periodically and repeatedly arranged. On the other hand, pixels of the same color are continuously arranged in each column. As described above, the pixels S R , S G , and S B of the three primary colors are arranged in a matrix along the long side direction X and the short side direction Y in the display area A 1 . A black matrix that is a light shielding region for preventing color mixture is provided between adjacent pixels.

図3は、制御装置51の構成を示すブロック図である。制御装置51は、表示パターン指定部61と、装置制御部62と、撮像画像取得部65と、データ格納部66と、画像処理部70と、撮像位置演算部73とを含んで構成される。   FIG. 3 is a block diagram illustrating a configuration of the control device 51. The control device 51 includes a display pattern designation unit 61, a device control unit 62, a captured image acquisition unit 65, a data storage unit 66, an image processing unit 70, and an imaging position calculation unit 73.

表示パターン指定部61は、検査台20に載置された検査対象の液晶パネルLに対して、欠陥検査用に予め設定された各種の表示パターンをそれぞれ表示させるためのパターン指定信号を出力することにより、液晶パネルLの駆動を制御する。   The display pattern designating unit 61 outputs a pattern designating signal for displaying various display patterns preset for defect inspection on the liquid crystal panel L to be inspected placed on the inspection table 20. Thus, the drive of the liquid crystal panel L is controlled.

液晶パネルLは、表示パターン指定部61からパターン指定信号が入力されると、そのパターン指定信号に応答して液晶分子の向きが変化する。これにより、バックライト10によって照射される光の液晶パネルLにおける各画素を透過する量が制御されて、表示領域Aには、そのパターン指定信号に対応した表示パターンが表示される。 In the liquid crystal panel L, when a pattern designation signal is input from the display pattern designation unit 61, the orientation of liquid crystal molecules changes in response to the pattern designation signal. Thus, a controlled amount transmitted through each pixel of the liquid crystal panel L of the light emitted by the backlight 10, in the display area A 1, the display pattern corresponding to the pattern designation signal is displayed.

欠陥検出用の表示パターンは、検出対象の欠陥の種類によってそれぞれ異なる。たとえば、表示領域Aに含まれる全ての画素を非点灯状態にさせて全面黒表示にする非点灯パターンは、輝点で表示される画素を輝点欠陥として検出するために用いられる。また、表示領域Aに含まれる全ての画素を点灯状態にさせて全面白表示にする全点灯パターンは、黒点で表示される画素を黒点欠陥として検出するために用いられる。 The display pattern for defect detection differs depending on the type of defect to be detected. For example, non-lighting pattern on the whole surface black display by all the pixels included in the display area A 1 to the non-lighting state is used to detect a pixel to be displayed by the luminescent spot as a bright spot defect. The total lighting pattern to all white display of all pixels is the lighting states included in the display area A 1 is used to detect a pixel to be displayed by black dots as black spot defect.

また、全点灯パターンによる全面白表示よりも輝度を落として全面白表示にする中間階調パターンは、全点灯パターンでは検出されにくい微弱な欠陥、および表示画面全体の輝度ムラを検出するために用いられる。また、赤色の画素Sのみ、緑色の画素Sのみまたは青色の画素Sのみを全て点灯状態にさせて全面単色表示にする単色点灯パターンは、欠陥画素を色ごとに判別するために用いられる。 In addition, the halftone pattern that lowers the brightness compared to the full white display with the full lighting pattern and displays the full white display is used to detect weak defects that are difficult to detect with the full lighting pattern and uneven luminance on the entire display screen. It is done. Also, single-color lighting pattern to red pixels S R only, is only to all lit green pixel S G only or blue pixel S B are entirely monochromatic display is used to determine a defective pixel for each color It is done.

また、表示領域Aの長辺方向X一方側の端辺Cから数えて奇数番目の画素列の画素を全て点灯状態にさせる奇数列点灯パターンおよび端辺Cから数えて偶数番目の画素列の画素を全て点灯状態にさせる偶数列点灯パターンは、隣接する画素同士が電気的にリークする欠陥を検出するために用いられる。 Also, even-numbered pixels as counted from the odd-row lighting pattern and the end side C 1 of all to the lighting state pixels of odd-numbered pixel columns counted from the end side C 1 of the long-side direction X on one side of the display area A 1 The even column lighting pattern that turns on all the pixels in the column is used to detect a defect in which adjacent pixels electrically leak.

装置制御部62は、アクチュエータ制御部63と、撮像制御部64とを含んで構成され、後述する撮像位置設定部76によって設定された各撮像位置で検査対象の液晶パネルLが撮像されるように、エリアセンサ30およびアクチュエータ40を制御する。   The apparatus control unit 62 includes an actuator control unit 63 and an imaging control unit 64 so that the liquid crystal panel L to be inspected is imaged at each imaging position set by an imaging position setting unit 76 described later. The area sensor 30 and the actuator 40 are controlled.

アクチュエータ制御部63は、後述する撮像位置設定部76によって設定された各撮像位置で検査対象の液晶パネルLが撮像されるように、エリアセンサ30を各撮像位置へ順次移動させるための撮像位置制御信号を生成し、所定のタイミングで、該撮像位置制御信号をアクチュエータ40へ送信する。これにより、エリアセンサ30は、所定のタイミングで、撮像位置設定部76によって設定された各撮像位置へ順次移動する。   The actuator controller 63 controls the imaging position for sequentially moving the area sensor 30 to each imaging position so that the liquid crystal panel L to be inspected is imaged at each imaging position set by an imaging position setting unit 76 described later. A signal is generated, and the imaging position control signal is transmitted to the actuator 40 at a predetermined timing. Accordingly, the area sensor 30 sequentially moves to each imaging position set by the imaging position setting unit 76 at a predetermined timing.

撮像制御部64は、アクチュエータ40によってエリアセンサ30が所定の撮像位置へ移動された後、エリアセンサ30に対して、撮像動作を開始させるための撮像タイミング制御信号を送信する。また、撮像制御部64は、撮像開始から所定時間経過後に、エリアセンサ30に対して、撮像動作を停止させるための撮像タイミング制御信号を送信する。   The imaging control unit 64 transmits an imaging timing control signal for starting the imaging operation to the area sensor 30 after the area sensor 30 is moved to a predetermined imaging position by the actuator 40. Further, the imaging control unit 64 transmits an imaging timing control signal for stopping the imaging operation to the area sensor 30 after a predetermined time has elapsed from the start of imaging.

撮像画像取得部65は、エリアセンサ30から入力される撮像画像の画像データを取得し、取得した画像データを、後述する撮像画像格納部68に格納する。   The captured image acquisition unit 65 acquires image data of the captured image input from the area sensor 30 and stores the acquired image data in a captured image storage unit 68 described later.

データ格納部66は、撮像条件格納部67と、撮像画像格納部68と、高解像度化画像格納部69とを含んで構成される。撮像条件格納部67には、検出対象とする欠陥の寸法情報が格納される。この欠陥の寸法情報は、検査対象の液晶パネルLの機種情報に基づいて設定されてもよく、作業者によって図示しない入力装置を介して設定されてもよい。   The data storage unit 66 includes an imaging condition storage unit 67, a captured image storage unit 68, and a high resolution image storage unit 69. The imaging condition storage unit 67 stores dimension information of defects to be detected. The defect dimension information may be set based on the model information of the liquid crystal panel L to be inspected, or may be set by an operator via an input device (not shown).

液晶パネルにおいて生じ得る欠陥のうち発生頻度が最も高い電気的な断線または短絡による欠陥は、必ず画素領域の全体に明暗の輝度異常をもたらす。したがって、検出対象とする欠陥が、この電気的な断線または短絡による欠陥である場合には、検査対象の液晶パネルLの機種情報に基づいて、欠陥の長辺方向Xの寸法情報として、画素領域の長辺方向Xの寸法Txが、欠陥の短辺方向Yの寸法情報として、画素領域の短辺方向Yの寸法Tyが、データ格納部66に予め格納される。   Of the defects that can occur in the liquid crystal panel, defects due to electrical disconnection or short-circuiting that occur most frequently always cause bright and dark luminance abnormalities in the entire pixel region. Therefore, when the defect to be detected is a defect due to this electrical disconnection or short circuit, the pixel region is obtained as dimension information in the long side direction X of the defect based on the model information of the liquid crystal panel L to be inspected. The dimension Tx in the long side direction X of the pixel area is stored in advance in the data storage unit 66 as the dimension information in the short side direction Y of the defect.

また、液晶パネルにおいて生じ得る欠陥のうち液晶への異物混入による欠陥または液晶の部分的な配向不良による欠陥は、1画素の画素領域における一部の領域にのみ輝度異常をもたらす。したがって、検出対象とする欠陥が、この液晶への異物混入による欠陥または液晶の部分的な配向不良による欠陥である場合には、欠陥の長辺方向Xの寸法情報として、画素領域の寸法Txよりも小さな寸法Dxが、欠陥の短辺方向Yの寸法情報として、画素領域の寸法Tyよりも小さな寸法Dyが、データ格納部66に予め格納される。この場合、各寸法Dx,Dyは、作業者によって適当な値に設定される。   Of the defects that can occur in the liquid crystal panel, a defect due to foreign matter mixing in the liquid crystal or a defect due to partial alignment failure of the liquid crystal causes a luminance abnormality only in a part of the pixel region of one pixel. Therefore, when the defect to be detected is a defect due to foreign matters mixed into the liquid crystal or a defect due to partial alignment failure of the liquid crystal, as dimension information in the long side direction X of the defect, the dimension Tx of the pixel region is used. The dimension Dx that is smaller than the dimension Ty of the pixel region is stored in advance in the data storage unit 66 as dimension information in the short side direction Y of the defect. In this case, the dimensions Dx and Dy are set to appropriate values by the operator.

また、撮像条件格納部67には、検査対象の液晶パネルLを撮像する際のエリアセンサ30の撮像分解能情報が格納されている。この撮像分解能情報は、たとえば、エリアセンサ30の画素数、エリアセンサ30と液晶パネルLとの離間距離、および光学系の設定状態などに基づいて、自動的に演算されて格納される。本実施形態では、エリアセンサ30の撮像分解能がRであるものとする。   The imaging condition storage unit 67 stores imaging resolution information of the area sensor 30 when imaging the liquid crystal panel L to be inspected. This imaging resolution information is automatically calculated and stored based on, for example, the number of pixels of the area sensor 30, the separation distance between the area sensor 30 and the liquid crystal panel L, the setting state of the optical system, and the like. In the present embodiment, it is assumed that the imaging resolution of the area sensor 30 is R.

図4は、本実施形態における検査対象の液晶パネルLの画素の寸法Tx,Tyとエリアセンサ30の撮像分解能Rとの関係を示す図である。なお、図4では、液晶パネルLの一部だけを示すとともに、見易さのために、エリアセンサ30の1画素による撮像範囲を矩形ではなく円で示している。   FIG. 4 is a diagram showing the relationship between the pixel dimensions Tx, Ty of the liquid crystal panel L to be inspected and the imaging resolution R of the area sensor 30 in the present embodiment. In FIG. 4, only a part of the liquid crystal panel L is shown, and the imaging range by one pixel of the area sensor 30 is shown as a circle instead of a rectangle for ease of viewing.

本実施形態では、図4に示すように、エリアセンサ30の1画素による撮像範囲は、液晶パネルLの1絵素Pの大きさに一致し、つまり、エリアセンサ30の撮像分解能Rと、液晶パネルLの画素の各寸法Tx,Tyとの関係は、R=3Tx=Tyを満足する。   In the present embodiment, as shown in FIG. 4, the imaging range by one pixel of the area sensor 30 matches the size of one picture element P of the liquid crystal panel L, that is, the imaging resolution R of the area sensor 30 and the liquid crystal The relationship between the dimensions Tx and Ty of the pixels of the panel L satisfies R = 3Tx = Ty.

撮像画像格納部68には、撮像画像取得部65によって取得された画像データが格納される。高解像度化画像格納部69には、後述する高解像度化画像生成部71によって生成された高解像度化画像の画像データが格納される。   The captured image storage unit 68 stores the image data acquired by the captured image acquisition unit 65. The high-resolution image storage unit 69 stores the image data of the high-resolution image generated by the high-resolution image generation unit 71 described later.

画像処理部70は、高解像度化画像生成部71と、欠陥検出部72とを含んで構成される。高解像度化画像生成部71は、撮像画像格納部68に格納されている撮像位置ごとの画像データを、それぞれの撮像位置に応じて再構成することにより、すなわち画素ずらしの手法を用いることによって、撮像画像よりも高解像度の高解像度化画像を生成する。高解像度化画像生成部71は、生成した高解像度化画像の画像データを、高解像度化画像格納部69に格納する。   The image processing unit 70 includes a high-resolution image generation unit 71 and a defect detection unit 72. The high-resolution image generation unit 71 reconstructs image data for each imaging position stored in the captured image storage unit 68 according to each imaging position, that is, by using a pixel shifting method. A high-resolution image having a higher resolution than the captured image is generated. The high resolution image generation unit 71 stores the generated image data of the high resolution image in the high resolution image storage unit 69.

欠陥検出部72は、高解像度化画像格納部69に格納されている高解像度化画像の画像データを解析して、検査対象の液晶パネルLにおける欠陥を検出する。   The defect detection unit 72 analyzes the image data of the high resolution image stored in the high resolution image storage unit 69 and detects a defect in the liquid crystal panel L to be inspected.

撮像位置演算部73は、撮像条件取得部74と、高解像度化倍率算出部75と、撮像位置設定部76とを含んで構成される。撮像条件取得部74は、撮像条件格納部67に格納されている欠陥の寸法情報および撮像分解能情報を取得する。   The imaging position calculation unit 73 includes an imaging condition acquisition unit 74, a high resolution magnification calculation unit 75, and an imaging position setting unit 76. The imaging condition acquisition unit 74 acquires the defect dimension information and imaging resolution information stored in the imaging condition storage unit 67.

高解像度化倍率算出部75は、撮像条件取得部74によって取得された欠陥の寸法情報および撮像分解能情報に基づいて、エリアセンサ30によって撮像される撮像画像の解像度に対して、長辺方向Xに高解像度化するべき倍率Vx(ただし、Vxは正の整数)と、短辺方向Yに高解像度化するべき倍率Vy(ただし、Vyは正の整数)とを、個別に算出する。   The high-resolution magnification calculation unit 75 is arranged in the long side direction X with respect to the resolution of the captured image captured by the area sensor 30 based on the defect dimension information and imaging resolution information acquired by the imaging condition acquisition unit 74. The magnification Vx (where Vx is a positive integer) to be increased in resolution and the magnification Vy (where Vy is a positive integer) to be increased in the short side direction Y are calculated individually.

たとえば、検出対象とする欠陥が電気的な断線または短絡による欠陥である場合には、撮像条件取得部74によって取得された長辺方向Xの画素の寸法Tx、短辺方向Yの画素の寸法Tyおよび撮像分解能Rに基づいて、Vx≧R/TxおよびVy≧R/Tyの各関係式によって、各高解像度化倍率Vx,Vyが個別に算出される。   For example, when the defect to be detected is a defect due to electrical disconnection or short circuit, the pixel size Tx in the long side direction X and the pixel size Ty in the short side direction Y acquired by the imaging condition acquisition unit 74. On the basis of the imaging resolution R, the resolution increasing magnifications Vx and Vy are calculated individually by the relational expressions Vx ≧ R / Tx and Vy ≧ R / Ty.

撮像位置設定部76は、高解像度化倍率算出部75によって算出された各高解像度化倍率Vx,Vyおよびエリアセンサ30の1画素の寸法aに基づいて、Vx×Vy箇所の撮像位置を設定する。撮像位置設定部76は、設定したVx×Vy箇所の撮像位置の情報を、アクチュエータ制御部63に対して出力する。   The imaging position setting unit 76 sets the imaging positions of Vx × Vy locations based on the high resolution magnifications Vx and Vy calculated by the high resolution magnification calculation unit 75 and the size a of one pixel of the area sensor 30. . The imaging position setting unit 76 outputs information about the imaging positions of the set Vx × Vy locations to the actuator control unit 63.

図5は、制御装置51による欠陥検出処理の処理手順を示すフローチャートである。以下、図5に示すフローチャートに従って、本実施形態に係る欠陥検出方法について説明する。   FIG. 5 is a flowchart showing a processing procedure of defect detection processing by the control device 51. Hereinafter, the defect detection method according to the present embodiment will be described with reference to the flowchart shown in FIG.

欠陥検出処理は、検査対象の液晶パネルLが、前述する所定の姿勢で検査台20上に載置された後、制御装置51によって駆動制御可能な状態にセッティングされるとともに、バックライト10が駆動されることによって開始される。   In the defect detection process, after the liquid crystal panel L to be inspected is placed on the inspection table 20 in the above-described predetermined posture, it is set in a state where it can be driven and controlled by the control device 51 and the backlight 10 is driven. Is started.

ステップs1では、表示パターン指定部61が、欠陥検査用の表示パターンの1つである全点灯パターンを表示させるためのパターン指定信号を、液晶パネルLに対して出力する。これにより、液晶パネルLの表示領域Aには、全点灯パターンが表示される。 In step s1, the display pattern designating unit 61 outputs a pattern designating signal for displaying all lighting patterns, which is one of the display patterns for defect inspection, to the liquid crystal panel L. Thus, in the display area A 1 of the liquid crystal panel L, the total lighting pattern is displayed.

ステップs2では、撮像条件取得部74が、撮像条件格納部67に格納されている各画素の長辺方向Xの寸法Tx、短辺方向Yの寸法Tyおよび撮像分解能Rを取得する。   In step s 2, the imaging condition acquisition unit 74 acquires the dimension Tx in the long side direction X, the dimension Ty in the short side direction Y, and the imaging resolution R of each pixel stored in the imaging condition storage unit 67.

ステップs3では、高解像度化倍率算出部75が、ステップs2で取得された各データTx,Ty,Rに基づいて、Vx≧R/TxおよびVy≧R/Tyの各関係式を満足する最小の高解像度化倍率Vx,Vyをそれぞれ算出する。すなわち、本実施形態では、R=3Tx=Tyであるので、Vx=3、Vy=1と算出される。   In step s3, the high resolution magnification calculation unit 75 satisfies the relational expressions Vx ≧ R / Tx and Vy ≧ R / Ty based on the data Tx, Ty, R acquired in step s2. The high resolution magnifications Vx and Vy are respectively calculated. That is, in this embodiment, since R = 3Tx = Ty, Vx = 3 and Vy = 1 are calculated.

ステップs4では、撮像位置設定部76が、ステップs3で算出された高解像度化倍率Vx,Vyおよびエリアセンサ30の1画素の寸法aに基づいて、Vx×Vy=3箇所の撮像位置を設定する。   In step s4, the imaging position setting unit 76 sets Vx × Vy = 3 imaging positions based on the resolution enhancement magnifications Vx and Vy calculated in step s3 and the size a of one pixel of the area sensor 30. .

本実施形態のように、長辺方向Xに高解像度化するべき倍率Vxが3倍であるとは、高解像度化画像を生成するために、長辺方向Xに沿って、エリアセンサ30の1画素の寸法aの1/3ずつずらした位置で撮像をしなければならないということである。また、短辺方向Yに高解像度化するべき倍率Vyが1倍であるとは、短辺方向Yに沿って、エリアセンサ30をずらす必要がないということである。すなわち、本実施形態では、3箇所の撮像位置が設定される。   As in the present embodiment, the magnification Vx to be increased in resolution in the long-side direction X is three times that one of the area sensors 30 along the long-side direction X in order to generate a high-resolution image. This means that imaging must be performed at a position shifted by 1/3 of the pixel dimension a. Further, that the magnification Vy to increase the resolution in the short side direction Y is 1 means that it is not necessary to shift the area sensor 30 along the short side direction Y. That is, in this embodiment, three imaging positions are set.

具体的には、第1の撮像位置が(0,0)であるとき、第2の撮像位置は、第1の撮像位置(0,0)から、長辺方向Xに沿って、撮像素子における画素寸法aの1/3だけ移動させた位置、すなわち(a/3,0)に設定される。また第3の位置は、第2の位置(a/3,0)から、さらに長辺方向Xに沿って、撮像素子における画素寸法aの1/3だけ移動させた位置、すなわち(2a/3,0)に設定される。   Specifically, when the first imaging position is (0, 0), the second imaging position is from the first imaging position (0, 0) along the long side direction X in the imaging device. The position is moved by 1/3 of the pixel size a, that is, (a / 3, 0). The third position is a position moved from the second position (a / 3, 0) by 1/3 of the pixel size a in the image sensor along the long side direction X, that is, (2a / 3). , 0).

ステップs5では、装置制御部62が、ステップs4で設定された第1〜第3の撮像位置(0,0),(a/3,0),(2a/3,0)で検査対象の液晶パネルLが撮像されるように、エリアセンサ30およびアクチュエータ40を制御する。エリアセンサ30によって撮像された撮像画像の画像データは、第1〜第3の撮像位置(0,0),(a/3,0),(2a/3,0)ごとに撮像画像格納部68に格納される。   In step s5, the apparatus control unit 62 checks the liquid crystal to be inspected at the first to third imaging positions (0, 0), (a / 3, 0), (2a / 3, 0) set in step s4. The area sensor 30 and the actuator 40 are controlled so that the panel L is imaged. The image data of the captured image captured by the area sensor 30 is the captured image storage unit 68 for each of the first to third imaging positions (0, 0), (a / 3, 0), (2a / 3, 0). Stored in

ステップs6では、高解像度化画像生成部71が、撮像画像格納部68に格納されている第1〜第3の撮像位置(0,0),(a/3,0),(2a/3,0)に対応する画像データを、それぞれの撮像位置に応じて再構成することにより、すなわち画素ずらしの手法を用いることによって、長辺方向Xに高解像度化倍率3倍で高解像度化した高解像度化画像を生成する。高解像度化画像生成部71によって生成された高解像度化画像は、高解像度化画像格納部69に格納される。   In step s6, the resolution-enhanced image generation unit 71 performs the first to third imaging positions (0, 0), (a / 3, 0), (2a / 3, 3) stored in the captured image storage unit 68. 0) by reconstructing the image data corresponding to each imaging position, that is, by using a pixel shifting method, the resolution is increased in the long-side direction X at a resolution enhancement factor of 3 times. Generate a digitized image. The high resolution image generated by the high resolution image generation unit 71 is stored in the high resolution image storage unit 69.

図6は、高解像度化画像生成部71によって生成された高解像度化画像における分解能Rx,Ryを示す図である。なお、図6では、高解像度化画像の一部だけを示すとともに、見易さのために、高解像度化画像における分解能を示す領域を矩形ではなく楕円で示している。図6に示すように、高解像度化画像における分解能を示す領域の大きさは、画素領域の大きさに一致し、つまり、長辺方向Xの分解能Rxは、画素領域の長辺方向Xの寸法Txに一致し、短辺方向Yの分解能Ryは、画素領域の短辺方向Yの寸法Tyに一致する。   FIG. 6 is a diagram illustrating the resolutions Rx and Ry in the high-resolution image generated by the high-resolution image generation unit 71. In FIG. 6, only a part of the high-resolution image is shown, and the region indicating the resolution in the high-resolution image is indicated by an ellipse instead of a rectangle for ease of viewing. As shown in FIG. 6, the size of the region indicating the resolution in the high-resolution image matches the size of the pixel region, that is, the resolution Rx in the long side direction X is the dimension in the long side direction X of the pixel region. The resolution Ry in the short side direction Y coincides with the size Ty in the short side direction Y of the pixel region.

図7は、従来技術の画素ずらしによる手法で生成された解像度が3倍の高解像度化画像における分解能Rx,Ryを示す図である。なお、図7では、高解像度化画像の一部だけを示すとともに、見易さのために、高解像度化画像における分解能を示す領域を矩形ではなく円で示している。図7に示すように、高解像度化画像における分解能を示す領域の大きさは、画素領域の大きさよりも小さく、具体的には、長辺方向Xの分解能Rxは、画素領域の長辺方向Xの寸法Txに一致し、短辺方向Yの分解能Ryも、画素領域の長辺方向Xの寸法Tx(=Ty/3)に一致する。   FIG. 7 is a diagram showing the resolutions Rx and Ry in the high-resolution image generated by the pixel shift method of the prior art with a resolution of 3 times. In FIG. 7, only a part of the high-resolution image is shown, and the region indicating the resolution in the high-resolution image is indicated by a circle instead of a rectangle for ease of viewing. As shown in FIG. 7, the size of the region indicating the resolution in the high resolution image is smaller than the size of the pixel region. Specifically, the resolution Rx in the long side direction X is equal to the long side direction X of the pixel region. The resolution Ry in the short side direction Y also matches the size Tx (= Ty / 3) in the long side direction X of the pixel region.

図6と図7とを参照して、本実施形態で生成された高解像度化画像と従来技術の画素ずらしで生成された高解像度化画像とを比較すると、従来技術の高解像度化画像の方が、高解像度化画像における分解能を示す領域が小さい。したがって、従来技術の高解像度化画像の方が、画素領域よりも小さな欠陥を検出する場合には精度良く検出することができる。   Referring to FIG. 6 and FIG. 7, when comparing the high resolution image generated in the present embodiment with the high resolution image generated by the pixel shift of the conventional technique, the high resolution image of the conventional technique is compared. However, the area indicating the resolution in the high-resolution image is small. Therefore, the high-resolution image of the prior art can be detected with higher accuracy when a defect smaller than the pixel region is detected.

しかしながら、本実施形態のように、検出対象とする欠陥が、電気的な断線または短絡による欠陥である場合には、本実施形態の高解像度化画像であっても、従来技術の高解像度化画像であっても、略同一の精度で欠陥を検出することができる。一方、本実施形態の高解像度化画像を生成するための撮像位置は3箇所であるのに対し、従来技術の高解像度化画像を生成するための撮像位置は、本実施形態の3倍の9箇所である。   However, when the defect to be detected is a defect due to an electrical disconnection or a short circuit as in the present embodiment, even the high resolution image of the present embodiment is the high resolution image of the prior art. Even so, the defect can be detected with substantially the same accuracy. On the other hand, there are three imaging positions for generating the high-resolution image of the present embodiment, whereas the imaging positions for generating the high-resolution image of the prior art are nine times that of this embodiment. It is a place.

すなわち、本実施形態によれば、検出対象の欠陥の大きさに基づいて、高解像度化すべき倍率を長辺方向Xおよび短辺方向Yで個別に算出しているので、必要な検査精度を確保しつつ、撮像タクトを可及的に短縮することができる。   That is, according to the present embodiment, the magnification to be increased in resolution is calculated separately in the long side direction X and the short side direction Y based on the size of the defect to be detected, so that necessary inspection accuracy is ensured. However, the imaging tact time can be shortened as much as possible.

ステップs7では、欠陥検出部72が、高解像度化画像格納部69に格納されている高解像度化画像の画像データを解析して、検査対象の液晶パネルLにおける欠陥を検出する。   In step s7, the defect detection unit 72 analyzes the image data of the high resolution image stored in the high resolution image storage unit 69, and detects a defect in the liquid crystal panel L to be inspected.

図8は、高解像度化画像に基づいて欠陥を検出する方法の一例を説明するための図である。なお、図8では、図6と同様に、高解像度化画像の一部だけを示すとともに、見易さのために、高解像度化画像における分解能を示す領域を矩形ではなく楕円で示している。ステップs6において、図6に示すような高解像度化画像が生成されると、ステップs7では、分解能を示す各領域のうちの1つの注目領域Gaと、分解能を示す各領域のうち該注目領域Gaと同じ位置関係にある8近傍の周辺領域Gbとを比較することにより、その注目領域Gaが正常であるか否かを判定する。たとえば、注目領域Gaの輝度値と、8近傍の周辺領域Gbの平均値との差分をとることにより、その注目領域Gaが正常であるか否かを判定する。本実施形態では、このような判定を、分解能を示す全ての領域についてに行うことにより欠陥が検出される。   FIG. 8 is a diagram for explaining an example of a method for detecting a defect based on a resolution-enhanced image. In FIG. 8, as in FIG. 6, only a part of the high-resolution image is shown, and for the sake of easy viewing, the region indicating the resolution in the high-resolution image is indicated by an ellipse instead of a rectangle. When a high resolution image as shown in FIG. 6 is generated in step s6, in step s7, one attention area Ga in each area indicating resolution and the attention area Ga in each area indicating resolution. It is determined whether or not the attention area Ga is normal by comparing with the neighboring area Gb in the vicinity of 8 in the same positional relationship. For example, it is determined whether or not the attention area Ga is normal by taking the difference between the luminance value of the attention area Ga and the average value of the eight neighboring areas Gb. In the present embodiment, such a determination is performed for all the areas indicating the resolution, thereby detecting a defect.

ステップs8では、他の表示パターンを使用して欠陥を検出すべきか否かが判定され、他の表示パターンを使用すべきと判定されると、ステップs1に戻る。たとえば、上記のように全点灯パターンを使用して欠陥検出処理が行われただけで、非点灯パターンを使用した欠陥検出処理が行われていない場合には、ステップs1に戻って、非点灯パターンを使用して欠陥検出処理が行われる。他の表示パターンを使用する必要が無いと判定されると、欠陥検出処理を終了する。   In step s8, it is determined whether a defect should be detected using another display pattern. If it is determined that another display pattern should be used, the process returns to step s1. For example, when the defect detection process is performed using the all lighting pattern as described above and the defect detection process using the non-lighting pattern is not performed, the process returns to step s1 to return to the non-lighting pattern. The defect detection process is performed using. If it is determined that it is not necessary to use another display pattern, the defect detection process is terminated.

本実施形態では、検出対象とする欠陥のサイズが、画素のサイズに等しい場合について説明しているが、これに限らず、液晶への異物混入による欠陥または液晶の部分的な配向不良による欠陥など画素のサイズよりも小さな欠陥を検出する場合であっても、検出対象とする欠陥の寸法情報を適宜設定しておくことにより、必要な検査精度を確保しつつ、撮像タクトを可及的に短縮することができる。   In the present embodiment, the case where the size of a defect to be detected is equal to the size of a pixel has been described. However, the present invention is not limited to this. Even when detecting defects that are smaller than the pixel size, by appropriately setting the dimension information of the defects to be detected, the imaging tact time can be shortened as much as possible while ensuring the necessary inspection accuracy. can do.

図9は、他の実施形態における検査対象の液晶パネルLの画素の寸法Tx,Tyとエリアセンサ30の撮像分解能Rとの関係を示す図である。なお、図9では、液晶パネルLの一部だけを示すとともに、見易さのために、エリアセンサ30の1画素による撮像範囲を矩形ではなく円で示している。前記の実施形態と同様に、液晶パネルLにおける画素領域の長辺方向Xの寸法Txと短辺方向Yの寸法Tyとの比は、Tx:Ty=1:3であるとする。   FIG. 9 is a diagram illustrating the relationship between the pixel dimensions Tx and Ty of the liquid crystal panel L to be inspected and the imaging resolution R of the area sensor 30 in another embodiment. In FIG. 9, only a part of the liquid crystal panel L is shown, and the imaging range by one pixel of the area sensor 30 is indicated by a circle instead of a rectangle for ease of viewing. As in the above-described embodiment, the ratio of the dimension Tx in the long side direction X to the dimension Ty in the short side direction Y of the pixel region in the liquid crystal panel L is assumed to be Tx: Ty = 1: 3.

本実施形態では、図9に示すように、エリアセンサ30の1画素による撮像範囲は、液晶パネルLの1絵素Pの2/3倍の大きさであり、つまり、エリアセンサ30の撮像分解能Rと、液晶パネルLの画素の各寸法Tx,Tyとの関係は、R=2Tx=2Ty/3を満足する。   In the present embodiment, as shown in FIG. 9, the imaging range by one pixel of the area sensor 30 is 2/3 times as large as one picture element P of the liquid crystal panel L, that is, the imaging resolution of the area sensor 30. The relationship between R and the respective dimensions Tx and Ty of the pixels of the liquid crystal panel L satisfies R = 2Tx = 2Ty / 3.

したがって、長辺方向Xに高解像度化するべき倍率Vxおよび短辺方向Yに高解像度化するべき倍率Vyは、Vx≧R/TxおよびVy≧R/Tyの各関係式により、Vx≧2およびVy≧2/3となる。ここで、Vx=2とする場合と、Vx=3とする場合とを比較する。なお、Vyについては、Vy=1とする。   Therefore, the magnification Vx for increasing the resolution in the long-side direction X and the magnification Vy for increasing the resolution in the short-side direction Y are expressed by Vx ≧ 2 and Vy ≧ 2/3. Here, the case where Vx = 2 is compared with the case where Vx = 3. Note that Vy = 1 for Vy.

図10は、高解像度化倍率の違いによる高解像度化画像における分解能の違いを示す図であり、図10(a)は、Vx=2とした場合に生成される高解像度化画像における長辺方向Xおよび短辺方向Yの分解能Rxa,Ryaを示す図であり、図10(b)は、Vx=3とした場合に生成される高解像度化画像における長辺方向Xおよび短辺方向Yの分解能Rxb,Rybを示す図である。   FIG. 10 is a diagram illustrating a difference in resolution in a high-resolution image due to a difference in high-resolution resolution. FIG. 10A illustrates a long side direction in a high-resolution image generated when Vx = 2. FIG. 10B is a diagram illustrating the resolutions Rxa and Rya in X and the short side direction Y. FIG. 10B shows the resolution in the long side direction X and the short side direction Y in the high-resolution image generated when Vx = 3. It is a figure which shows Rxb and Ryb.

図10(a)に示すように、Vx=2とした場合に生成される高解像度化画像を用いて、前記の実施形態のように、分解能を示す各領域のうちの1つの注目領域Gaと、分解能を示す各領域のうち該注目領域Gaと同じ位置関係にある8近傍の周辺領域Gbとを比較する場合、注目領域Gaに対して長辺方向Xに隣接する周辺領域Gbと注目領域Gaとの間隔は、1絵素の長辺方向Xの寸法3Txになる。   As shown in FIG. 10A, using the high-resolution image generated when Vx = 2, as in the above-described embodiment, one attention area Ga in each area indicating the resolution and , When comparing each of the regions indicating resolution with the eight neighboring peripheral regions Gb having the same positional relationship as the target region Ga, the peripheral region Gb adjacent to the target region Ga in the long side direction X and the target region Ga Is the dimension 3Tx in the long side direction X of one picture element.

これに対して、図10(b)に示すように、Vx=3とした場合に生成される高解像度化画像を用いて、前記の実施形態のように、分解能を示す各領域のうちの1つの注目領域Gaと、分解能を示す各領域のうち該注目領域Gaと同じ位置関係にある8近傍の周辺領域Gbとを比較する場合、注目領域Gaに対して長辺方向Xに隣接する周辺領域Gbと注目領域Gaとの間隔は、2絵素の長辺方向Xの寸法6Txになる。   On the other hand, as shown in FIG. 10B, using the resolution-enhanced image generated when Vx = 3, as in the above-described embodiment, one of the regions indicating the resolution. When comparing two attention areas Ga and eight neighboring peripheral areas Gb having the same positional relationship as the attention area Ga among the areas indicating resolution, the peripheral areas adjacent to the attention area Ga in the long side direction X The distance between Gb and the attention area Ga is a dimension 6Tx in the long-side direction X of the two picture elements.

すなわち、高解像度化倍率が相違すると、注目領域Gaから周辺領域Gbまでの距離が変化する。比較対象の周辺領域Gbは、注目領域Gaに対し可能な限り近接している方が好ましい。したがって、本実施形態の場合、高解像度化倍率として、Vx=2を採用するのが好ましい。   That is, when the resolution enhancement magnification is different, the distance from the attention area Ga to the peripheral area Gb changes. It is preferable that the peripheral region Gb to be compared is as close as possible to the attention region Ga. Therefore, in the case of this embodiment, it is preferable to adopt Vx = 2 as the high resolution magnification.

コンピュータ50の制御装置51に含まれる各ブロックは、ハードウェアロジックによって構成してもよいし、次のようにCPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。   Each block included in the control device 51 of the computer 50 may be configured by hardware logic, or may be realized by software using a CPU (Central Processing Unit) as follows.

すなわち、コンピュータ50の制御装置51は、各機能を実現する欠陥検出用プログラムの命令を実行するCPU、上記プログラムを格納したROM、上記プログラムを展開するRAM(Random Access Memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである欠陥検出用プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体をコンピュータ50に供給し、コンピュータ50がその記録媒体に記録されているプログラムコードを読み出し実行することによっても達成可能である。   That is, the control device 51 of the computer 50 includes a CPU that executes instructions of a defect detection program that implements each function, a ROM that stores the program, a RAM (Random Access Memory) that expands the program, the program, and various data. A storage device (recording medium) such as a memory for storing the. An object of the present invention is to provide a computer 50 with a recording medium in which a program code (execution format program, intermediate code program, source program) of a defect detection program, which is software that realizes the functions described above, is recorded in a computer-readable manner. It can also be achieved by supplying and executing the program code recorded on the recording medium by the computer 50.

上記記録媒体としては、たとえば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD−ROM/MO/MD/DVD/CD−R等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ系などを用いることができる。   Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R. Card system such as IC card, IC card (including memory card) / optical card, or semiconductor memory system such as mask ROM / EPROM / EEPROM / flash ROM.

また、コンピュータ50を通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介してコンピュータ50に供給するようにしてもよい。この通信ネットワークとしては、とくに限定されず、たとえば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(
Virtual Private Network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、とくに限定されず、たとえば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。
The computer 50 may be configured to be connectable to a communication network, and the program code may be supplied to the computer 50 via the communication network. The communication network is not particularly limited. For example, the Internet, intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network (
Virtual Private Network), telephone line network, mobile communication network, satellite communication network, etc. can be used. Also, the transmission medium constituting the communication network is not particularly limited. For example, even in the case of wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc., infrared rays such as IrDA and remote control, Bluetooth ( (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used. The present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.

10 バックライト
20 検査台
30 CCDエリアセンサ
40 アクチュエータ
50 コンピュータ
51 制御装置
61 表示パターン指定部
62 装置制御部
63 アクチュエータ制御部
64 撮像制御部
65 撮像画像取得部
66 データ格納部
67 撮像条件格納部
68 撮像画像格納部
69 高解像度化画像格納部
70 画像処理部
71 高解像度化画像生成部
72 欠陥検出部
73 撮像位置演算部
74 撮像条件取得部
75 高解像度化倍率算出部
76 撮像位置設定部
100 欠陥検出装置
DESCRIPTION OF SYMBOLS 10 Backlight 20 Inspection table 30 CCD area sensor 40 Actuator 50 Computer 51 Control apparatus 61 Display pattern designation | designated part 62 Apparatus control part 63 Actuator control part 64 Imaging control part 65 Captured image acquisition part 66 Data storage part 67 Imaging condition storage part 68 Imaging Image storage unit 69 High-resolution image storage unit 70 Image processing unit 71 High-resolution image generation unit 72 Defect detection unit 73 Imaging position calculation unit 74 Imaging condition acquisition unit 75 High-resolution magnification calculation unit 76 Imaging position setting unit 100 Defect detection apparatus

Claims (8)

絵素を構成する複数色の画素が、互いに直交する第1および第2の配列方向に沿ってマトリクス状に配列された平面表示パネルを撮像する撮像素子と、前記平面表示パネルと前記撮像素子との相対的な位置関係を変化させる移動装置とを備え、該平面表示パネルにおける欠陥を、該撮像素子によって撮像された平面表示パネルの画像データに基づいて検出する欠陥検出装置であって、
予め定める検出対象の欠陥寸法および前記撮像素子の撮像分解能を取得する撮像条件取得部と、
前記撮像条件取得部によって取得された欠陥寸法および撮像分解能に基づいて、前記第1の配列方向に関する高解像度化倍率Vx(ただし、Vxは正の整数)と前記第2の配列方向に関する高解像度化倍率Vy(ただし、Vyは正の整数)とを個別に算出する高解像度化倍率算出部と、
前記高解像度化倍率算出部によって算出された各高解像度化倍率Vx,Vyに基づいて、撮像時に満たすべき平面表示パネルと撮像素子との相対的な位置関係を示す複数の撮像位置を、Vx×Vy箇所だけ設定する撮像位置設定部と、
前記撮像位置設定部によって設定された各撮像位置で平面表示パネルが撮像されるように、前記移動装置および前記撮像素子を制御する装置制御部と、
前記複数の撮像位置で撮像された各撮像画像に基づいて、各撮像画像よりも高解像度の高解像度化画像を生成する高解像度化画像生成部と、
高解像度化画像生成部によって生成された高解像度化画像に基づいて、平面表示パネルにおける欠陥を検出する欠陥検出部とを含むことを特徴とする欠陥検出装置。
An image sensor that images a flat display panel in which pixels of a plurality of colors constituting a picture element are arranged in a matrix along first and second arrangement directions orthogonal to each other, the flat display panel, and the image sensor A defect detecting device that detects a defect in the flat display panel based on image data of the flat display panel imaged by the imaging device, the moving device changing the relative positional relationship of
An imaging condition acquisition unit for acquiring a predetermined defect size to be detected and an imaging resolution of the imaging element;
Based on the defect size and the imaging resolution acquired by the imaging condition acquisition unit, the higher resolution magnification Vx (where Vx is a positive integer) in the first arrangement direction and the higher resolution in the second arrangement direction. A high-resolution magnification calculator that individually calculates a magnification Vy (where Vy is a positive integer);
Based on the high resolution magnifications Vx and Vy calculated by the high resolution magnification calculation unit, a plurality of imaging positions indicating a relative positional relationship between the flat display panel and the image sensor to be satisfied at the time of imaging are represented by Vxx. An imaging position setting unit for setting only Vy points;
A device control unit that controls the moving device and the image sensor so that the flat display panel is imaged at each imaging position set by the imaging position setting unit;
A high-resolution image generation unit that generates a high-resolution image that is higher in resolution than each captured image based on each captured image captured at the plurality of imaging positions;
A defect detection apparatus comprising: a defect detection unit configured to detect a defect in a flat display panel based on the high-resolution image generated by the high-resolution image generation unit.
前記検出対象の欠陥寸法は、前記平面表示パネルの前記第1および第2の配列方向の画素の寸法であることを特徴とする請求項1記載の欠陥検出装置。   2. The defect detection apparatus according to claim 1, wherein the defect size to be detected is a size of pixels in the first and second arrangement directions of the flat display panel. 前記高解像度化倍率算出部は、前記撮像条件取得部によって取得された前記第1の配列方向の画素の寸法がTx、前記第2の配列方向の画素の寸法がTy、前記撮像素子の撮像分解能がRであるとき、Vx≧R/TxおよびVy≧R/Tyの各関係式に基づいて、各高解像度化倍率Vx,Vyを算出することを特徴とする請求項2記載の欠陥検出装置。   The high-resolution magnification calculation unit is configured such that the pixel size in the first array direction acquired by the imaging condition acquisition unit is Tx, the pixel size in the second array direction is Ty, and the imaging resolution of the image sensor 3. The defect detection apparatus according to claim 2, wherein, when R is R, the resolution enhancement magnifications Vx and Vy are calculated based on the relational expressions of Vx ≧ R / Tx and Vy ≧ R / Ty. 絵素を構成する複数色の画素が、互いに直交する第1および第2の配列方向に沿ってマトリクス状に配列された平面表示パネルを撮像する撮像素子と、前記平面表示パネルと前記撮像素子との相対的な位置関係を変化させる移動装置とを用いて、該平面表示パネルにおける欠陥を、該撮像素子によって撮像された平面表示パネルの画像データに基づいて検出する欠陥検出方法であって、
予め定める検出対象の欠陥寸法および前記撮像素子の撮像分解能を取得する撮像条件取得ステップと、
前記撮像条件取得ステップによって取得された欠陥寸法および撮像分解能に基づいて、前記第1の配列方向に関する高解像度化倍率Vx(ただし、Vxは正の整数)と前記第2の配列方向に関する高解像度化倍率Vy(ただし、Vyは正の整数)とを個別に算出する高解像度化倍率算出ステップと、
前記高解像度化倍率算出ステップによって算出された各高解像度化倍率Vx,Vyに基づいて、撮像時に満たすべき平面表示パネルと撮像素子との相対的な位置関係を示す複数の撮像位置を、Vx×Vy箇所だけ設定する撮像位置設定ステップと、
前記撮像位置設定ステップによって設定された各撮像位置で平面表示パネルが撮像されるように、前記移動装置および前記撮像素子を制御する装置制御ステップと、
前記複数の撮像位置で撮像された各撮像画像に基づいて、各撮像画像よりも高解像度の高解像度化画像を生成する高解像度化画像生成ステップと、
高解像度化画像生成ステップによって生成された高解像度化画像に基づいて、平面表示パネルにおける欠陥を検出する欠陥検出ステップとを含むことを特徴とする欠陥検出方法。
An image sensor that images a flat display panel in which pixels of a plurality of colors constituting a picture element are arranged in a matrix along first and second arrangement directions orthogonal to each other, the flat display panel, and the image sensor A defect detection method for detecting a defect in the flat display panel based on image data of the flat display panel imaged by the image sensor using a moving device that changes the relative positional relationship of
An imaging condition acquisition step for acquiring a predetermined defect size to be detected and an imaging resolution of the imaging device;
Based on the defect size and the imaging resolution acquired in the imaging condition acquisition step, the resolution increasing magnification Vx (where Vx is a positive integer) in the first arrangement direction and the resolution in the second arrangement direction. A high-resolution magnification calculation step for individually calculating the magnification Vy (where Vy is a positive integer);
Based on the high resolution magnifications Vx and Vy calculated in the high resolution magnification calculation step, a plurality of imaging positions indicating a relative positional relationship between the flat display panel and the image sensor to be satisfied at the time of imaging are represented by Vxx. An imaging position setting step for setting only Vy points;
An apparatus control step for controlling the moving device and the image sensor so that the flat display panel is imaged at each imaging position set by the imaging position setting step;
A high-resolution image generation step for generating a high-resolution image having a higher resolution than each captured image based on each captured image captured at the plurality of imaging positions;
And a defect detection step of detecting a defect in the flat display panel based on the high-resolution image generated by the high-resolution image generation step.
前記検出対象の欠陥寸法は、前記平面表示パネルの前記第1および第2の配列方向の画素の寸法であることを特徴とする請求項4記載の欠陥検出方法。   5. The defect detection method according to claim 4, wherein the defect size to be detected is a pixel size in the first and second arrangement directions of the flat display panel. 前記高解像度化倍率算出ステップは、前記撮像条件取得ステップによって取得された前記第1の配列方向の画素の寸法がTx、前記第2の配列方向の画素の寸法がTy、前記撮像素子の撮像分解能がRであるとき、Vx≧R/TxおよびVy≧R/Tyの各関係式に基づいて、各高解像度化倍率Vx,Vyを算出することを特徴とする請求項5記載の欠陥検出方法。   In the high-resolution magnification calculation step, the pixel size in the first array direction acquired by the imaging condition acquisition step is Tx, the pixel size in the second array direction is Ty, and the imaging resolution of the image sensor 6. The defect detection method according to claim 5, wherein, when R is R, the respective resolution enhancement magnifications Vx and Vy are calculated based on the relational expressions of Vx ≧ R / Tx and Vy ≧ R / Ty. 請求項4〜6のいずれか1つに記載の欠陥検出方法をコンピュータに実行させるための欠陥検出用プログラム。   A defect detection program for causing a computer to execute the defect detection method according to any one of claims 4 to 6. 請求項7に記載の欠陥検出用プログラムを記録したコンピュータ読取り可能な記録媒体。   A computer-readable recording medium on which the defect detection program according to claim 7 is recorded.
JP2010197171A 2010-09-02 2010-09-02 Defect detection apparatus, defect detection method, defect detection program and recording medium Pending JP2012052968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197171A JP2012052968A (en) 2010-09-02 2010-09-02 Defect detection apparatus, defect detection method, defect detection program and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197171A JP2012052968A (en) 2010-09-02 2010-09-02 Defect detection apparatus, defect detection method, defect detection program and recording medium

Publications (1)

Publication Number Publication Date
JP2012052968A true JP2012052968A (en) 2012-03-15

Family

ID=45906432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197171A Pending JP2012052968A (en) 2010-09-02 2010-09-02 Defect detection apparatus, defect detection method, defect detection program and recording medium

Country Status (1)

Country Link
JP (1) JP2012052968A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150062380A (en) * 2013-11-29 2015-06-08 엘지디스플레이 주식회사 Inspection method for flat panel
CN111553897A (en) * 2020-04-27 2020-08-18 上海果纳半导体技术有限公司 Wafer defect detection equipment
WO2021100192A1 (en) * 2019-11-22 2021-05-27 シャープ株式会社 Method for manufacturing display panel
CN117456168A (en) * 2023-11-08 2024-01-26 珠海瑞杰电子科技有限公司 PCBA intelligent detection system and method based on data analysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226083A (en) * 2003-01-20 2004-08-12 Minato Electronics Inc Inspection device for display element of flat liquid crystal display
JP2008098968A (en) * 2006-10-12 2008-04-24 Yokogawa Electric Corp Defect inspection device
JP2009115566A (en) * 2007-11-06 2009-05-28 Aitesu:Kk Apparatus for determining detect position of panel
JP2009294170A (en) * 2008-06-09 2009-12-17 Sharp Corp Apparatus, method, and program for defect detection and recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226083A (en) * 2003-01-20 2004-08-12 Minato Electronics Inc Inspection device for display element of flat liquid crystal display
JP2008098968A (en) * 2006-10-12 2008-04-24 Yokogawa Electric Corp Defect inspection device
JP2009115566A (en) * 2007-11-06 2009-05-28 Aitesu:Kk Apparatus for determining detect position of panel
JP2009294170A (en) * 2008-06-09 2009-12-17 Sharp Corp Apparatus, method, and program for defect detection and recording medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150062380A (en) * 2013-11-29 2015-06-08 엘지디스플레이 주식회사 Inspection method for flat panel
KR102139674B1 (en) * 2013-11-29 2020-07-30 엘지디스플레이 주식회사 Inspection method for flat panel
WO2021100192A1 (en) * 2019-11-22 2021-05-27 シャープ株式会社 Method for manufacturing display panel
CN114651169A (en) * 2019-11-22 2022-06-21 夏普株式会社 Method for manufacturing display panel
CN111553897A (en) * 2020-04-27 2020-08-18 上海果纳半导体技术有限公司 Wafer defect detection equipment
CN111553897B (en) * 2020-04-27 2024-03-12 上海果纳半导体技术有限公司 Wafer defect detection equipment
CN117456168A (en) * 2023-11-08 2024-01-26 珠海瑞杰电子科技有限公司 PCBA intelligent detection system and method based on data analysis
CN117456168B (en) * 2023-11-08 2024-04-16 珠海瑞杰电子科技有限公司 PCBA intelligent detection system and method based on data analysis

Similar Documents

Publication Publication Date Title
WO2013118306A1 (en) Defect-detecting device, defect-detecting method, computer-readable recording medium for recording defect-detecting program
US9322707B2 (en) Method for measuring luminance of light-emitting display panel
WO2010146733A1 (en) Defect inspection method and defect inspection device for display panel
JP2011196685A (en) Defect detection device, defect repairing device, display panel, display device, defect detection method and program
JP5236241B2 (en) Defect inspection apparatus, defect inspection method, image processing apparatus, program, and computer-readable recording medium recording the program
JPWO2010146732A1 (en) Display panel defect inspection method and defect inspection apparatus
JP4411588B2 (en) Defect inspection equipment
JP2007315967A (en) Defect detection apparatus, defect detection method, defect detection program, and computer-readable recording medium stored with the progtram
WO2013175703A1 (en) Display device inspection method and display device inspection device
JP5242248B2 (en) Defect detection apparatus, defect detection method, defect detection program, and recording medium
JP2012052968A (en) Defect detection apparatus, defect detection method, defect detection program and recording medium
US11321811B2 (en) Imaging apparatus and driving method of the same
JP4143660B2 (en) Image analysis method, image analysis apparatus, inspection apparatus, image analysis program, and computer-readable recording medium
JP2008180602A (en) Inspection apparatus, testing method, inspection program, and computer readable medium
JP2009270870A (en) Display inspection apparatus
KR101409568B1 (en) Inspectiing device of display panel and inspecting method of the same
JP2003167530A (en) Method and device for display picture inspection
JP2010203889A (en) Method and device for measuring luminance of display panel
KR101426487B1 (en) Apparatus for inspecting of display panel and method thereof
JP2005337797A (en) Pixel position acquiring method of display element, and inspection method of display panel
US20120129419A1 (en) Display-panel inspection method, and method for fabricating display device
JP4308575B2 (en) Inspection device for flat panel display
JP2008067154A (en) Method and device for inspecting image quality for color display board
JP2008014790A (en) Brightness calculation method, brightness calculation system, inspection system, brightness calculation program and computer-readable recording medium
WO2012169423A1 (en) Pattern inspection device and pattern inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029