JP2012052923A - Weather radar device and weather observation method - Google Patents

Weather radar device and weather observation method Download PDF

Info

Publication number
JP2012052923A
JP2012052923A JP2010196046A JP2010196046A JP2012052923A JP 2012052923 A JP2012052923 A JP 2012052923A JP 2010196046 A JP2010196046 A JP 2010196046A JP 2010196046 A JP2010196046 A JP 2010196046A JP 2012052923 A JP2012052923 A JP 2012052923A
Authority
JP
Japan
Prior art keywords
transmission
pri
reception
beams
weather
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2010196046A
Other languages
Japanese (ja)
Inventor
Hironori Handa
浩規 半田
Fumihiko Mizutani
文彦 水谷
Masakazu Wada
将一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010196046A priority Critical patent/JP2012052923A/en
Publication of JP2012052923A publication Critical patent/JP2012052923A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure that three-dimensional weather data can be surely collected with high resolution in terms of both time and space.SOLUTION: The weather radar device includes: a phased array antenna 11 in which a plurality of antenna elements are arranged in a vertical direction; a transmission/reception unit 13 that transmits radar radio wave by radiating a plurality of beams to a plurality of regions with different elevation directions during a Pulse Repetition Interval (PRI) and receives reflection waves of each of the beams; a signal processing unit 14 that generates a transmission timing signal that sets the PRI as a period until completion of reception of all the reflection waves of the beams; and a transmission control unit 15 that generates a transmission signal according to the transmission timing signal.

Description

本発明の実施形態は、雨や雲などの気象現象を三次元で観測する気象レーダ装置及び気象観測方法に関する。   Embodiments described herein relate generally to a meteorological radar apparatus and a meteorological observation method for observing meteorological phenomena such as rain and clouds in three dimensions.

従来のパラボナアンテナ型の気象レーダは、ペンシルビームと呼ばれる細いビームを放射して、水平方向に360°回転して1平面の観測データを取得した後に、アンテナ仰角を上げて次の1平面を取得することを続けて、三次元の降水データを収集している(例えば、非特許文献1を参照。)。この観測シーケンスを実施するには5分〜10分程度要し、時々刻々と変化する積乱雲等の観測には十分な時間・空間分解能がとれていなかった。   A conventional parabona antenna type weather radar emits a thin beam called a pencil beam, rotates 360 ° horizontally to acquire observation data for one plane, and then increases the antenna elevation angle to acquire the next plane. In this way, three-dimensional precipitation data is collected (see, for example, Non-Patent Document 1). It takes about 5 to 10 minutes to carry out this observation sequence, and sufficient temporal and spatial resolution has not been taken for observation of cumulonimbus clouds and the like that change every moment.

吉田 孝 監修、「改訂 レーダ技術」、社団法人電子情報通信学会、平成8年10月1日、初版、“第9章 気象レーダ”、P238−253Supervised by Takashi Yoshida, “Revised Radar Technology”, The Institute of Electronics, Information and Communication Engineers, October 1, 1996, first edition, “Chapter 9 Weather Radar”, P238-253

上述したように、従来のパラボラアンテナを用いた気象レーダ装置では、竜巻や突風などの突発的かつ局所的な現象の検出が困難であった。   As described above, it has been difficult to detect a sudden and local phenomenon such as a tornado or a gust in a weather radar apparatus using a conventional parabolic antenna.

本実施形態の目的は、三次元気象データを時間及び空間的に高解像度で確実に収集可能な気象レーダ装置及び気象観測方法を提供することにある。   An object of the present embodiment is to provide a meteorological radar apparatus and a meteorological observation method capable of reliably collecting three-dimensional meteorological data with high temporal and spatial resolution.

本実施形態に係る気象レーダ装置は、複数のアンテナ素子を鉛直方向に配列したフェーズドアレイ方式のアンテナ部と、パルス送信繰り返し期間(PRI:Pulse Repetition Interval)に、仰角方向の互いに異なる複数の領域に対して複数のビームを放射することによりレーダ電波を送信し、前記ビーム毎の反射波を受信する送受信部と、前記PRIを前記ビームの全ての反射波の受信期間の終了までの期間とする送信タイミング信号を生成する信号処理部と、前記送信タイミング信号に従って送信信号を作成する送信制御部と、
を具備する。
The meteorological radar apparatus according to the present embodiment includes a phased array type antenna unit in which a plurality of antenna elements are arranged in the vertical direction, and a pulse transmission repetition period (PRI: Pulse Repetition Interval). A transmission / reception unit that transmits a radar radio wave by radiating a plurality of beams and receives a reflected wave for each beam, and a transmission in which the PRI is a period until the end of the reception period of all the reflected waves of the beam A signal processing unit for generating a timing signal, a transmission control unit for generating a transmission signal according to the transmission timing signal,
It comprises.

また、本実施形態に係る気象観測方法は、複数のアンテナ素子を鉛直方向に配列したフェーズドアレイ方式のアンテナを具備する気象レーダに用いられる気象観測方法であって、パルス送信繰り返し期間(PRI:Pulse Repetition Interval)に、仰角方向の互いに異なる複数の領域に対して複数のビームを放射することによりレーダ電波を送信し、前記ビーム毎の反射波を受信し、前記PRIを前記ビームの全ての反射波の受信期間の終了までの期間とする送信タイミング信号を生成し、前記送信タイミング信号に従って送信信号を作成するものである。   The meteorological observation method according to the present embodiment is a meteorological observation method used in a meteorological radar having a phased array antenna in which a plurality of antenna elements are arranged in the vertical direction, and includes a pulse transmission repetition period (PRI: Pulse). In Repetition Interval), a radar radio wave is transmitted by radiating a plurality of beams to a plurality of different areas in the elevation angle direction, a reflected wave for each beam is received, and the PRI is reflected on all reflected waves of the beam. A transmission timing signal that is a period until the end of the reception period is generated, and a transmission signal is generated according to the transmission timing signal.

本実施形態に係る気象レーダ装置を示す機能ブロック図。The functional block diagram which shows the weather radar apparatus which concerns on this embodiment. 送信ビームの一例を示す模式図。The schematic diagram which shows an example of a transmission beam. 実施例1の送受信タイミングを示す図。The figure which shows the transmission / reception timing of Example 1. FIG. 実施例1の場合のビーム1における受信回数を示す図。FIG. 6 is a diagram illustrating the number of receptions in the beam 1 in the case of the first embodiment. 実施例2の送受信タイミングを示す図。The figure which shows the transmission / reception timing of Example 2. FIG. 実施例2の場合のビーム1における受信回数を示す図。FIG. 10 is a diagram illustrating the number of receptions in the beam 1 in the case of the second embodiment. 実施例3の送受信タイミングを示す図。The figure which shows the transmission / reception timing of Example 3. FIG. 実施例3の場合のビーム1における受信回数を示す図。FIG. 10 is a diagram illustrating the number of receptions in the beam 1 in the case of the third embodiment. 一般的な送受信タイミングの例を示す図。The figure which shows the example of a general transmission / reception timing.

以下、図面を参照しながら本実施形態に係る気象レーダ装置及び気象観測方法を説明する。   Hereinafter, a weather radar apparatus and a weather observation method according to the present embodiment will be described with reference to the drawings.

図1は、本実施形態に係る気象レーダ装置の構成を示す機能ブロック図である。図1において、この気象レーダ装置は、アンテナ11と、送受切換器12と、送受信部13と、信号処理部14と、送信制御部15とを備える。   FIG. 1 is a functional block diagram showing the configuration of the weather radar apparatus according to the present embodiment. In FIG. 1, this weather radar apparatus includes an antenna 11, a transmission / reception switch 12, a transmission / reception unit 13, a signal processing unit 14, and a transmission control unit 15.

アンテナ11は、複数のアンテナ素子を鉛直方向に配列した1次元フェーズドアレイアンテナで構成される。アンテナ素子は、例えば、スロットアンテナで構成される。このスロット導波管を複数配列することで、仰角方向でのビーム方向を位相走査により電気的に制御できる。また、スロットアンテナを用いて機械的にビームを絞ることで、方位角方向に鋭い指向性が得られる。   The antenna 11 is a one-dimensional phased array antenna in which a plurality of antenna elements are arranged in the vertical direction. The antenna element is constituted by, for example, a slot antenna. By arranging a plurality of slot waveguides, the beam direction in the elevation angle direction can be electrically controlled by phase scanning. Moreover, sharp directivity in the azimuth direction can be obtained by mechanically focusing the beam using a slot antenna.

送信制御部15は、後述する信号処理部14からの送信タイミング信号に従って、レーダ電波の仰角方向の送出角度を決める位相制御情報を含む送信信号を作成する。送受信部13は、この送信信号を増幅し、レーダ電波として送受切換器12を介してアンテナ11から空中に送出する。   The transmission control unit 15 creates a transmission signal including phase control information for determining the transmission angle of the radar radio wave in the elevation angle direction according to a transmission timing signal from the signal processing unit 14 described later. The transmission / reception unit 13 amplifies this transmission signal and sends it as a radar radio wave from the antenna 11 to the air via the transmission / reception switch 12.

アンテナ11に降水などの気象目標からの反射波が到来すると、送受切換器12を介して送受信部13で受信され、A/D変換された後にI/Q検波される。信号処理部14は、送受信部13で検波されたI/Q信号をもとに、受信電力やドップラ速度を算出する。   When a reflected wave from a weather target such as precipitation arrives at the antenna 11, it is received by the transmission / reception unit 13 via the transmission / reception switch 12, A / D converted, and then subjected to I / Q detection. The signal processing unit 14 calculates received power and Doppler speed based on the I / Q signal detected by the transmission / reception unit 13.

次に、このように構成された気象レーダ装置が実行する観測方法について説明する。図2は、送信ビームの一例を示す模式図である。なお、送信ビーム数N=3として以下の説明を行う。   Next, an observation method performed by the weather radar apparatus configured as described above will be described. FIG. 2 is a schematic diagram illustrating an example of a transmission beam. The following description will be given assuming that the number of transmission beams N = 3.

信号処理部14から送信タイミング信号が送られると、アンテナ11は、送信制御部15からの送信信号に従って、空中線を水平方向に360°回転させるとともに、パルス送信繰り返し期間(PRI:Pulse Repetition Interval)毎に仰角方向の互いに異なる領域に3本の送信ビームを放射する。このようにして、フェーズドアレイ方式による気象レーダ装置において、時間及び空間的分解能を高めた三次元気象データを収集できるようにする。   When a transmission timing signal is sent from the signal processing unit 14, the antenna 11 rotates the antenna in the horizontal direction by 360 ° in accordance with the transmission signal from the transmission control unit 15, and for each pulse transmission repetition period (PRI: Pulse Repetition Interval). Three transmission beams are radiated to different regions in the elevation angle direction. In this manner, the phased array type weather radar apparatus can collect three-dimensional weather data with improved temporal and spatial resolution.

ここで、1PRI内の送信ビームを複数にする場合における一般的に想定される送受信タイミングを図9に示す。PRI毎に複数の送信ビームを放射にする場合、電波送信中は電波の受信ができないため、図9に示すようなブランク(観測できない空間)が生じてしまう。つまり、1PRI内においてN回電波を送信する場合のブランクの数は、各受信ビームにつき(N−1)個となる。また、1PRI内における送信ビームの数を増やすほど、ブランクの数も増える。気象レーダ装置の場合、ブランクが存在するとその空間の気象情報が完全に取得できなくなるという問題がある。以下、この課題を改善するために、信号処理部14において生成される送信タイミング信号について、各実施例に従って説明する。   Here, FIG. 9 shows transmission timing generally assumed in the case where a plurality of transmission beams in one PRI are used. When a plurality of transmission beams are radiated for each PRI, radio waves cannot be received during radio wave transmission, resulting in a blank (a space that cannot be observed) as shown in FIG. That is, the number of blanks when transmitting radio waves N times within one PRI is (N−1) for each reception beam. Further, the number of blanks increases as the number of transmission beams in one PRI increases. In the case of a weather radar device, there is a problem that if there is a blank, the weather information in that space cannot be completely acquired. Hereinafter, in order to improve this problem, a transmission timing signal generated in the signal processing unit 14 will be described according to each embodiment.

(実施例1)
図3は、実施例1の送受信タイミングを示す図である。実施例1は、各送信方向に対する送信回数(送信1回目、送信2回目)において、各ビームを一波のみ送信するものである。つまり、図3のように、PRIをN番目のビームのパルスの受信期間の終了までの期間と設定すると、ブランクの発生数を削減することができる。図4は、実施例1の場合のビーム1における各受信タイミングごとの受信回数を示したものである。図4から分かるように、各受信タイミングにおいて受信合計回数0のタイミングが存在してしまうという課題がある。
Example 1
FIG. 3 is a diagram illustrating transmission / reception timings according to the first embodiment. In the first embodiment, only one wave of each beam is transmitted in the number of transmissions in each transmission direction (first transmission and second transmission). That is, as shown in FIG. 3, when PRI is set to the period until the end of the reception period of the pulse of the Nth beam, the number of blanks can be reduced. FIG. 4 shows the number of receptions at each reception timing in the beam 1 in the first embodiment. As can be seen from FIG. 4, there is a problem that there is a timing of the total number of receptions 0 at each reception timing.

(実施例2)
図5は、実施例2の送受信タイミングを示す図である。実施例2は、PRIごとに各ビームの送信順序を変更したものである。図6に、実施例2の場合のビーム1における各受信タイミングごとの受信回数を示す。各受信タイミングにおいて受信合計回数0のタイミングが存在しなくなるため、上記実施例1の課題を解消することができる。
(Example 2)
FIG. 5 is a diagram illustrating transmission / reception timings according to the second embodiment. In the second embodiment, the transmission order of each beam is changed for each PRI. FIG. 6 shows the number of receptions at each reception timing in the beam 1 in the case of the second embodiment. Since there is no timing with the total number of receptions 0 at each reception timing, the problem of the first embodiment can be solved.

(実施例3)
図7は、実施例3の送受信タイミングを示す図である。実施例3は、上記実施例2において、さらに送信タイミングを調整することで受信合計回数を平均化するものである。図8に、実施例3の場合のビーム1における各受信タイミングごとの受信回数を示す。各受信タイミングにおいて受信合計回数が平均化されるため、このようにすると、上記実施例1の課題をさらに有効に解消することができる。
(Example 3)
FIG. 7 is a diagram illustrating transmission / reception timings according to the third embodiment. In the third embodiment, the total number of receptions is averaged by further adjusting the transmission timing in the second embodiment. FIG. 8 shows the number of receptions at each reception timing in the beam 1 in the case of the third embodiment. Since the total number of receptions is averaged at each reception timing, in this way, the problem of the first embodiment can be solved more effectively.

以上述べたように、本実施形態では、PRIごとにブランクの発生位置を変化させることで、PRI内の送信ビームを複数にしてパルスの数を増やした場合でも、完全なブランクを発生させない気象観測が可能となる。また、各受信ビームのブランクは、受信する送信ビームとその他の送信ビームとの間の相対的な時間差によってブランクが発生する距離が決まるため、図5、7のように各送信ビーム間の相対的な時間差を変えることによって特定の空間にブランクを生じさせないようにすることができる。したがって、本実施形態によれば、三次元気象データを時間及び空間的に高解像度で確実に収集可能にすることが可能となる。   As described above, in this embodiment, by changing the generation position of the blank for each PRI, even when the number of pulses is increased by increasing the number of transmission beams in the PRI, weather observation that does not generate a complete blank Is possible. In addition, since the distance between the transmission beams is determined by the relative time difference between the received transmission beam and the other transmission beams, the blank of each reception beam is determined relative to the transmission beams as shown in FIGS. It is possible to prevent blanks from being generated in a specific space by changing the time difference. Therefore, according to the present embodiment, it is possible to reliably collect 3D weather data with high resolution in time and space.

なお、いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…アンテナ、12…送受切換器、13…送受信部、14…信号処理部、15…送信制御部。   DESCRIPTION OF SYMBOLS 11 ... Antenna, 12 ... Transmission / reception switch, 13 ... Transmission / reception part, 14 ... Signal processing part, 15 ... Transmission control part.

Claims (6)

複数のアンテナ素子を鉛直方向に配列したフェーズドアレイ方式のアンテナ部と、
パルス送信繰り返し期間(PRI:Pulse Repetition Interval)に、仰角方向の互いに異なる複数の領域に対して複数のビームを放射することによりレーダ電波を送信し、前記ビーム毎の反射波を受信する送受信部と、
前記PRIを前記ビームの全ての反射波の受信期間の終了までの期間とする送信タイミング信号を生成する信号処理部と、
前記送信タイミング信号に従って送信信号を作成する送信制御部と、
を具備することを特徴とする気象レーダ装置。
A phased array type antenna unit in which a plurality of antenna elements are arranged in the vertical direction;
A transmission / reception unit that transmits a radar radio wave by radiating a plurality of beams to a plurality of regions different from each other in an elevation angle direction and receives a reflected wave for each beam in a pulse transmission repetition period (PRI: Pulse Repetition Interval); ,
A signal processing unit that generates a transmission timing signal that uses the PRI as a period until the end of the reception period of all reflected waves of the beam;
A transmission control unit for creating a transmission signal according to the transmission timing signal;
A weather radar apparatus comprising:
前記送信制御部は、前記PRI毎に前記ビームの送信順序を変更することを特徴とする請求項1記載の気象レーダ装置。   The weather radar apparatus according to claim 1, wherein the transmission control unit changes a transmission order of the beams for each PRI. 前記送信制御部は、前記反射波の受信タイミングにおいて受信回数が平均化されるように前記ビームの送信タイミングを調整することを特徴とする請求項2に記載の気象レーダ装置。   The weather radar apparatus according to claim 2, wherein the transmission control unit adjusts the transmission timing of the beam so that the number of receptions is averaged at the reception timing of the reflected wave. 複数のアンテナ素子を鉛直方向に配列したフェーズドアレイ方式のアンテナを具備する気象レーダに用いられる気象観測方法であって、
パルス送信繰り返し期間(PRI:Pulse Repetition Interval)に、仰角方向の互いに異なる複数の領域に対して複数のビームを放射することによりレーダ電波を送信し、前記ビーム毎の反射波を受信し、
前記PRIを前記ビームの全ての反射波の受信期間の終了までの期間とする送信タイミング信号を生成し、
前記送信タイミング信号に従って送信信号を作成することを特徴とする気象観測方法。
A meteorological observation method used in a meteorological radar having a phased array type antenna in which a plurality of antenna elements are arranged in a vertical direction,
During a pulse transmission repetition period (PRI: Pulse Repetition Interval), a radar radio wave is transmitted by radiating a plurality of beams to a plurality of regions different from each other in the elevation angle direction, and a reflected wave for each beam is received.
Generating a transmission timing signal with the PRI as a period until the end of the reception period of all reflected waves of the beam;
A meteorological observation method characterized by creating a transmission signal according to the transmission timing signal.
前記PRI毎に前記ビームの送信順序を変更することを特徴とする請求項4記載の気象観測方法。   The weather observation method according to claim 4, wherein the transmission order of the beams is changed for each PRI. 前記反射波の受信タイミングにおいて受信回数が平均化されるように前記ビームの送信タイミングを調整することを特徴とする請求項5に記載の気象観測方法。   6. The meteorological observation method according to claim 5, wherein the transmission timing of the beam is adjusted so that the number of receptions is averaged at the reception timing of the reflected wave.
JP2010196046A 2010-09-01 2010-09-01 Weather radar device and weather observation method Abandoned JP2012052923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010196046A JP2012052923A (en) 2010-09-01 2010-09-01 Weather radar device and weather observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010196046A JP2012052923A (en) 2010-09-01 2010-09-01 Weather radar device and weather observation method

Publications (1)

Publication Number Publication Date
JP2012052923A true JP2012052923A (en) 2012-03-15

Family

ID=45906398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010196046A Abandoned JP2012052923A (en) 2010-09-01 2010-09-01 Weather radar device and weather observation method

Country Status (1)

Country Link
JP (1) JP2012052923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219230A (en) * 2013-05-02 2014-11-20 三菱電機株式会社 Parallel signal processor
CN115575920A (en) * 2022-11-24 2023-01-06 国家气象中心(中央气象台) Radar echo dynamic fusion forecasting method, system and equipment based on wavelet transformation

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443495A (en) * 1977-09-12 1979-04-06 Toshiba Corp Radar device
JPS5686573U (en) * 1979-12-07 1981-07-11
JPS5750668A (en) * 1980-09-11 1982-03-25 Mitsubishi Electric Corp Pulse radar system
JPS5999372A (en) * 1982-11-30 1984-06-08 Mitsubishi Electric Corp Radar equipment
JPS63167287A (en) * 1986-12-27 1988-07-11 Toshiba Corp Radar equipment
JPS63187180A (en) * 1987-01-29 1988-08-02 Mitsubishi Electric Corp Holographic radar
JPH0353183A (en) * 1989-07-20 1991-03-07 Mitsubishi Electric Corp Phased aray radar equipment
JPH03105276A (en) * 1989-09-20 1991-05-02 Mitsubishi Electric Corp Radar apparatus
JPH03276083A (en) * 1990-03-27 1991-12-06 Mitsubishi Electric Corp Radar equipment
JPH04121684A (en) * 1990-09-13 1992-04-22 Mitsubishi Electric Corp Phased array radar apparatus
JPH08248117A (en) * 1995-03-10 1996-09-27 Nec Corp Radar system
JPH08271610A (en) * 1995-03-31 1996-10-18 Mitsubishi Heavy Ind Ltd Multifunctional radar apparatus
JPH1114749A (en) * 1997-06-26 1999-01-22 Mitsubishi Electric Corp Radar device
JP2000193738A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Radar device
JP2003207559A (en) * 2002-01-11 2003-07-25 Mitsubishi Electric Corp Beam scanning method of phased array antenna and radar device using beam scanning method
JP2004219428A (en) * 2004-04-30 2004-08-05 Toshiba Corp Dbf radar system
JP2010185700A (en) * 2009-02-10 2010-08-26 Mitsubishi Electric Corp Radar system
JP2010256333A (en) * 2009-04-02 2010-11-11 Toshiba Corp Weather radar and weather observation method

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443495A (en) * 1977-09-12 1979-04-06 Toshiba Corp Radar device
JPS5686573U (en) * 1979-12-07 1981-07-11
JPS5750668A (en) * 1980-09-11 1982-03-25 Mitsubishi Electric Corp Pulse radar system
JPS5999372A (en) * 1982-11-30 1984-06-08 Mitsubishi Electric Corp Radar equipment
JPS63167287A (en) * 1986-12-27 1988-07-11 Toshiba Corp Radar equipment
JPS63187180A (en) * 1987-01-29 1988-08-02 Mitsubishi Electric Corp Holographic radar
JPH0353183A (en) * 1989-07-20 1991-03-07 Mitsubishi Electric Corp Phased aray radar equipment
JPH03105276A (en) * 1989-09-20 1991-05-02 Mitsubishi Electric Corp Radar apparatus
JPH03276083A (en) * 1990-03-27 1991-12-06 Mitsubishi Electric Corp Radar equipment
JPH04121684A (en) * 1990-09-13 1992-04-22 Mitsubishi Electric Corp Phased array radar apparatus
JPH08248117A (en) * 1995-03-10 1996-09-27 Nec Corp Radar system
JPH08271610A (en) * 1995-03-31 1996-10-18 Mitsubishi Heavy Ind Ltd Multifunctional radar apparatus
JPH1114749A (en) * 1997-06-26 1999-01-22 Mitsubishi Electric Corp Radar device
JP2000193738A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Radar device
JP2003207559A (en) * 2002-01-11 2003-07-25 Mitsubishi Electric Corp Beam scanning method of phased array antenna and radar device using beam scanning method
JP2004219428A (en) * 2004-04-30 2004-08-05 Toshiba Corp Dbf radar system
JP2010185700A (en) * 2009-02-10 2010-08-26 Mitsubishi Electric Corp Radar system
JP2010256333A (en) * 2009-04-02 2010-11-11 Toshiba Corp Weather radar and weather observation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219230A (en) * 2013-05-02 2014-11-20 三菱電機株式会社 Parallel signal processor
CN115575920A (en) * 2022-11-24 2023-01-06 国家气象中心(中央气象台) Radar echo dynamic fusion forecasting method, system and equipment based on wavelet transformation
CN115575920B (en) * 2022-11-24 2023-02-28 国家气象中心(中央气象台) Radar echo dynamic fusion forecasting method, system and equipment based on wavelet transformation

Similar Documents

Publication Publication Date Title
JP2012058162A (en) Meteorological radar device and meteorological observation method
JP5395692B2 (en) Meteorological radar apparatus and meteorological observation method
US8451163B2 (en) Weather radar apparatus and weather observation method
JP5304393B2 (en) Radar equipment
JP2007316016A (en) Radar device
EP2296006A3 (en) Airborne radar with wide angular coverage, in particular for the function for detecting and avoiding obstacles
JP2015055577A (en) Weather rader device and weather observing method
JP6266188B1 (en) Weather radar equipment
JP2014173865A (en) Weather radar device, observation sequence creation method and observation sequence creation program
JP5621499B2 (en) Pulse radar equipment
Schvartzman et al. Distributed beams: Concept of operations for polarimetric rotating phased array radar
JP5693857B2 (en) Meteorological radar apparatus and meteorological observation method
JP2005233723A (en) Distributed aperture radar device
JP2014048273A (en) Weather radar device, phased array radar device and observation sequence preparation method
JP2017003539A (en) Meteorological radar device
JP2012052923A (en) Weather radar device and weather observation method
JP2011180004A (en) Search radar device, and method of inhibiting unnecessary wave component in the search radar device
JPWO2017169300A1 (en) Antenna apparatus, radar system, and antenna rotation method
JP5443867B2 (en) Weather radar apparatus and radar signal processing method
JP2020027051A (en) Radar system and radar signal processing method therefor
JP2016075614A (en) Guidance device
JP2012058160A (en) Meteorological radar device and meteorological observation method
JP2016045132A (en) Weather radar system
JP2016057207A (en) Radar system, radar device, and received radar device
KR102495378B1 (en) Radar signal processing apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20140807