JPS5999372A - Radar equipment - Google Patents

Radar equipment

Info

Publication number
JPS5999372A
JPS5999372A JP57211613A JP21161382A JPS5999372A JP S5999372 A JPS5999372 A JP S5999372A JP 57211613 A JP57211613 A JP 57211613A JP 21161382 A JP21161382 A JP 21161382A JP S5999372 A JPS5999372 A JP S5999372A
Authority
JP
Japan
Prior art keywords
transmitting
receiving
reception
beams
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57211613A
Other languages
Japanese (ja)
Inventor
Minoru Terada
寺田 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57211613A priority Critical patent/JPS5999372A/en
Publication of JPS5999372A publication Critical patent/JPS5999372A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To eliminate restriction on the selection of frequency used with a shorter required time of a beam scanning by arranging a transmission module so as to form a plurality of receiving beams corresponding to a plurality of transmitting beams simultaneously formed in a time sharing manner while a receiver corresponding to the receiving beams outputted from a transmitting/receiving module. CONSTITUTION:A phase setting phi1-1 determined by a frequency f1 and a directing elevation angle of a beam #1-1 is provided to a transmission phase shifter of a transmitting/receiving module to transmit the beam #1-1 and then, a phase setting phi1-2 determined by a frequency f2 and a directing elevation angle of a beam #1-2 and a phase setting phi1-3 determined by a frequency f3 and a directing elevation angle of a beam #1-3 are provided successively to the transmission phase shifter to transmit the beams #1-2 and #1-3. On the other hand, at the reception, phase settings phi1-1, phi1-2 and phi1-3 of the beams #1-1, #1-2 and #1-3 are provided to three individual receiving phase shifters of the transmitting and receiving module simultaneously to form three reception games simultaneously. Likewise, the transmission and reception are repeated.

Description

【発明の詳細な説明】 本発明は、位相走査アレイ・レーダー装置において、ペ
ンシル・ビーム走査に要する時間を短縮するために、複
数の受信ビームを形成せしめる手段に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a means for forming multiple receive beams in a phased scanned array radar system to reduce the time required for pencil beam scanning.

従来の位相走査アレイ・レーダー装置の一例としては、
第1図に示すよう番こ、仰角方向にのみ位相走査を用い
、方位角方向については機械回転を行なう一次元位相走
資アレイ・レーダー装置があった。
An example of a conventional phased scanning array radar device is
As shown in Figure 1, there was a one-dimensional phase scanning array radar system that used phase scanning only in the elevation direction and mechanical rotation in the azimuth direction.

ここでは、説明の便宜1各ビー ム#l〜参mについて
は、それぞれlパルスずつ送信されるもの゛として説明
を進める。
Here, for convenience of explanation, the explanation will proceed assuming that each of the beams #1 to #m is transmitted in units of 1 pulse.

との従来装置における仰角定歪方式は、第1図に示すよ
うに、m個のビーム#1〜参mの指向仰角を順次変えて
、送信と受信を(り返しながら全仰角覆域Kを探知する
ものである。このときのビーム走査は、アレイ・アンテ
ナの素子アンテナに対応した1個の送受兼用移相器によ
り位相制御を行なうのが一般的である。このような装置
(こおける送信波形と時間との関係の一例を第2図に示
す。
As shown in Fig. 1, the constant elevation distortion method used in the conventional device is to sequentially change the directional elevation angles of m beams #1 to m, and perform transmission and reception (repeatedly to obtain the total elevation angle coverage K). The beam scanning at this time is generally controlled by a single transmitting/receiving phase shifter corresponding to the element antennas of the array antenna. An example of the relationship between waveform and time is shown in FIG.

同図において、送信パルス間隔T1〜−1’ mは、ビ
ーム#l〜#mに対応して、覆域H−から決定される斜
距離(Slant Range)の減少に伴ないT1か
らTmへと順次短かくなっていき、また、送信パルス幅
n rt〜τmも、斜距離の減少に従ってT1からτm
へと段階的に狭くなっていく。このとき、所要仰角覆域
を走査するのに要する時間、即ち1仰角走査周期′r、
は、送信パルス間隔T1〜Tmの積算値Σ’l’ iで
ある。
In the figure, the transmission pulse interval T1 to -1' m changes from T1 to Tm as the slant range determined from the coverage area H- decreases, corresponding to beams #l to #m. The transmission pulse width nrt~τm also decreases from T1 to τm as the oblique distance decreases.
It gradually becomes narrower. At this time, the time required to scan the required elevation angle coverage area, that is, one elevation angle scanning period 'r,
is the integrated value Σ'l' i of the transmission pulse intervals T1 to Tm.

1 =1 以上の説明から−1本のペンシル・ビームにより全仰角
榎域Kを走査する従来の方式では、1仰角走食周期T。
1 = 1 From the above explanation, - in the conventional method of scanning the entire elevation angle range K with one pencil beam, one elevation angle scanning period T.

が長くならざるを得ないという欠点があった。The disadvantage was that it had to be long.

このような従来の方式を改良する仰鶏走畳万式として、
周波数定食があった。これは、一定の長さの伝送線路を
伝搬する送信信号の周波数を変えることにより発生する
位相差によって、ビームの指向仰角を制、御するもので
あり、複数の仰角に対応させて上記送信信号の周波数を
変えることで、複数のビームを形成することが可能とな
るものである。しかるにこのような方式では、一定間隔
の仰角に対して、周波数はやはり一足の間隔を維持しな
ければならず、レーダーの使用周波数の選択に自由度が
小さいという欠点を有していた。
As an improvement on the conventional method,
There was a frequency set meal. This is to control the beam pointing elevation angle by the phase difference generated by changing the frequency of the transmitted signal propagating through a transmission line of a certain length. By changing the frequency of the beam, it is possible to form multiple beams. However, this method has the disadvantage that the frequencies must be maintained at one-foot intervals for elevation angles that are at constant intervals, and the degree of freedom in selecting the frequency to be used by the radar is small.

本発明は、上記のような従来技術の欠点を除去するため
になされたもので、複数の送信ビームを時分割的に形成
し、しかもこの複数の送信ビームに対応する複数の受信
ビームを同時に形成できるよう送受信モジュールを構成
し、該送受4aモジユールから出力される複数の受信ビ
ームに対応して受信機を設けることにより、ビーム定食
の所要時間が短かく、かつ、使用周波数の選択に制約条
件を必要としないビーム走倉万式のレーダー装置を提供
することを目的としている。
The present invention has been made to eliminate the drawbacks of the prior art as described above, and it forms multiple transmit beams in a time-divisional manner, and simultaneously forms multiple receive beams corresponding to the multiple transmit beams. By configuring the transmitting/receiving module so as to be able to transmit and receive, and providing receivers corresponding to the plurality of receiving beams output from the transmitting/receiving 4a module, the time required for beam set meals can be shortened, and there are no restrictions on the selection of frequencies to be used. The purpose is to provide a radar device that does not require a beam traverse.

以下、本発明の一実施例を図について説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

この実施例では、説明の都合上、第3図に示すように、
−次元位相走査アレイ・レーダー装置とし3本のビーム
を一群として所要仰角走査を行なう定食万式について説
明する。第4図は、このレーダー装置の送信波形と時間
との関係を示すものである。ここでもまた、説明の便宜
1各ビーム群#1〜#nについてはそれぞれlパルスず
つ送信されるものとして説明を進める。
In this example, for convenience of explanation, as shown in FIG.
An explanation will be given of a set meal system that is a -dimensional phased scanning array radar device and uses three beams as a group to scan the required elevation angle. FIG. 4 shows the relationship between the transmission waveform and time of this radar device. Again, for convenience of explanation 1, the explanation will proceed assuming that each of the beam groups #1 to #n is transmitted in units of l pulses.

第5図は、本発明の一実施例によるレーダー装置の主要
部分の@成を示すもので、(1)はアレイ・アンテナで
あり、該アレイ・アンテナ(1)は送受信モジュール(
2)により励振される素子アンテナ(3)拳送受信モジ
ュール(2)へ送信信号f0を送る送信用分配器(4)
、各送受信モジュール(2)からの3ビームの各受信信
号を合成するための各受信用合成器(5a)〜(5C〕
からなる−1レイ・アンテナ(1)からの各受信信号は
、それぞれ受信機(101) 、 (10b)、 (1
0C3へ送られ、低雑音増幅器(6a)〜(6C)で増
幅され、安定化局部発振器〔8a〕〜(8C)の局部発
振信号によってミキサ(7a)〜(7りで中間周波信号
に友6換された後、バンド・パス・フィルり(9a)〜
(9C〕でそれぞれの周波数選別を受けて所期の中間周
波の受信信号となる。、なお、ここでいう素子アンテナ
(3)は、アレイ・アンテナ(1)が−次元位相定食万
式である場合、方位角方向の素子アンテナのすべてを1
つのアンテナと見なしたものである。
FIG. 5 shows the configuration of the main parts of a radar device according to an embodiment of the present invention, in which (1) is an array antenna, and the array antenna (1) is a transmitting/receiving module (
2) an element antenna excited by (3) a transmitting distributor (4) that sends a transmitting signal f0 to the fist transmitting/receiving module (2);
, each receiving combiner (5a) to (5C) for combining the three beams of received signals from each transmitting/receiving module (2).
Each received signal from the -1 ray antenna (1) consisting of receivers (101), (10b), (1
The local oscillation signals from the stabilizing local oscillators [8a] to (8C) are sent to the mixers (7a) to (7), where they are amplified by the low noise amplifiers (6a) to (6C), and then mixed into intermediate frequency signals by the mixers (7a) to (7). After conversion, band pass fill (9a)~
(9C), each frequency is selected to become a received signal of the desired intermediate frequency. Note that the element antenna (3) here is an array antenna (1) that is a -dimensional phase fixed type. If all the element antennas in the azimuthal direction are 1
It is considered as one antenna.

第6図は、上記アレイ・アンテナ(1+を構成する送受
信モジュール(2)の構成を示すもので、送信用分配器
(43からの送信信号は、送信用移相器@で所要の素子
間位相差が与えられ、この送1=信号は電力増幅器−,
サーキュレータ(2)を通って系ナアンテナ(3)から
放射される。また、上記素子アンテナ(3)で受信され
た受信信号は、サーキュレータ(2)。
FIG. 6 shows the configuration of the transmitting/receiving module (2) constituting the array antenna (1+), in which the transmitting signal from the transmitting divider (43) is sent to the transmitting phase shifter @ to adjust the required inter-element phase. A phase difference is given, and this transmission 1=signal is transmitted to the power amplifier −,
It passes through the circulator (2) and is radiated from the system antenna (3). Further, the received signal received by the element antenna (3) is sent to the circulator (2).

’Jミッタ(ハ)を経て低雑音増幅器(至)で増幅され
、分配器(2)で分配された後、それぞれの受信用移相
器(21a)〜(21C)を通って受信用合成器(5a
)〜(5C)へと伝送される。
'After passing through the J transmitter (c), being amplified by the low noise amplifier (to), and being distributed by the divider (2), it passes through each of the receiving phase shifters (21a) to (21C) to the receiving combiner. (5a
) to (5C).

次にこの莫施例のレーダー装置における3ビ一ム仰角走
査方式は、以下の通りである。
Next, the three-beam elevation angle scanning method in the radar device of this embodiment is as follows.

一般的に、−次元位相定歪のアレイ・アンテナ(1)に
おいて、素子アンテナ(3Jの間lI/iAdと素子間
の位相差φとの関係は、次式で示される。
Generally, in an array antenna (1) with a -dimensional phase constant distortion, the relationship between lI/iAd between the element antennas (3J) and the phase difference φ between the elements is expressed by the following equation.

2πd cosθ=φ χ ここに、λ:送信周波数の波長 θ:ビーム指同仰角 第3図、第4図において、ビーム群#lは次のようにし
て形成される。まず、周波数11とビーム$1−1の指
向仰角とで決定される位相設置φl−1を、送受信モジ
ュール(2)の送信用移相器(2りに与え、ビーム#l
−1の送信を行ない、次いで、周波数[2とビーム#1
−2の指向仰角とで決定される位相設定φ  を、ざら
に、周波数f3とtビー−2 ム#1−3の指向仰角とで決定される位相設定φ  を
次々に送信用移相器(2)に与え、ビーム#−3 1−2,4tl−3の送信を行なう。このようにして、
送信時の3ビームが時分割的に形成される。
2πd cosθ=φχ Here, λ: Wavelength of transmission frequency θ: Beam finger co-elevation angle In FIGS. 3 and 4, beam group #l is formed as follows. First, the phase setting φl-1 determined by the frequency 11 and the directional elevation angle of the beam $1-1 is applied to the transmitting phase shifter (2) of the transmitter/receiver module (2), and the beam #l
-1, then frequency [2 and beam #1
The phase setting φ determined by the directional elevation angle of t-beam #1-2 is roughly determined by the frequency f3 and the directional elevation angle of t-beam #1-3. 2) and transmits beam #-3 1-2, 4tl-3. In this way,
Three beams during transmission are formed in a time-division manner.

−万、受信時においては、送受信モジュール(2)の3
つの受信用移相器(21a) 、(21b) 、(21
C)それぞれに、ビーム#l−1、+1−2.+1−3
の位相設定φ□−1,φl−2,φ1−3を同時に与え
、これにより同時に3つの受信ゲームを形成させる。同
様にして、#2群、#3群、・・・・・・#n群と、順
次、上述の送受を繰返すことにより、所要の仰角覆域を
走査することができる。
- 10,000, at the time of reception, 3 of the transmitting/receiving module (2)
receiving phase shifters (21a), (21b), (21
C) Beams #l-1, +1-2, respectively. +1-3
The phase settings φ□-1, φl-2, and φ1-3 are applied simultaneously, thereby forming three reception games at the same time. Similarly, by sequentially repeating the above transmission and reception for #2 group, #3 group, . . . #n group, it is possible to scan the required elevation angle coverage area.

第1図における#l〜#3の距離覆域と、第3図におけ
るビーム群#1の距離覆域とが同一とすれば、第2図に
おけるビーム#1〜#3の送信パルス間隔の積算値(T
□十T2 +”3)と、第4図におけるビーム群#lの
送信パルス間隔゛r1′とを比較すると、送信パルス幅
τ(がτ、の3倍ではあるものの、送信パルス間隔゛1
1は第21.!!Jに5ける送信パルス間隔の積算値(
−r□+”’z +T3)の約/3になる。したがって
、第4図におけるl仰角定食周期Tご=、Σ1゛i′ 
は、第2図に8ける1仰角走1=1 また、上記実施例における周波数11・f2.f、の4
・1互開運については、素子アンテナ間の位相差が指向
仰角と送信周波数とから一我的に決定できるので、上記
周波数f□Ifglf3は全(自由に選択することが可
能である。たたし、受信機のバンド・パス・フィルタ(
9a)〜(9C)の通過周波数帯域を、例えば、レーダ
ー装置の使用周波数帯域を3分割するように設定すれは
、3周波数の選択に若干の制約が生まれるが、このバン
ド・パス・フィルタ(9a〕〜(9C)を狭帯域の電子
同調フィルタとし、使用周波数に応じて追尾間開させれ
ば、この制約も解t184されることになる。
If the distance coverage of #1 to #3 in FIG. 1 is the same as the distance coverage of beam group #1 in FIG. 3, then the integrated transmission pulse interval of beams #1 to #3 in FIG. Value (T
□T2+"3) and the transmission pulse interval ゛r1' of beam group #l in Fig. 4, it is found that although the transmission pulse width τ (is three times as large as
1 is the 21st. ! ! The integrated value of the transmission pulse interval at J5 (
−r
is 1 elevation angle travel 1=1 in FIG. 2. Also, the frequency 11·f2. f, no 4
・For 1 mutual advantage, since the phase difference between the element antennas can be arbitrarily determined from the directivity elevation angle and the transmission frequency, the above frequency f□Ifglf3 can be selected freely. , receiver band pass filter (
For example, if the pass frequency bands of 9a) to (9C) are set to divide the frequency band used by a radar device into three, there will be some restrictions on the selection of the three frequencies, but this band pass filter (9a) ] to (9C) are narrow band electronic tuning filters, and if the tracking interval is opened according to the frequency used, this constraint can also be solved t184.

以上の説明では、3本のビームを一群とした走査方式に
ついて連べたが、ビーム数を増やすには送受1Mモジュ
ール(2)内の分配器關の分配数、受信用移相器シD、
受信用合成器(51、葛よび低軸音増幅器(6)以降の
受信機チャンネル数などを、それぞれビーム数に応じて
増設してやれは良い。また、第5図、第6図では、説明
の都合上、送信用分配器(4)と受1H用合成器(5)
、および送信用移相器(2)と受信用移相器tallに
ついては区別して述べたが、それぞれは、本質的に同一
のものである。
In the above explanation, we have talked about the scanning method in which three beams are set as a group, but in order to increase the number of beams, the number of distributions related to the distributor in the transmitting/receiving 1M module (2), the receiving phase shifter D,
It would be a good idea to increase the number of receiver channels after the receiving synthesizer (51, Kuzuyo and low-axis sound amplifier (6)) according to the number of beams. Top, transmitting distributor (4) and receiving 1H combiner (5)
, and the transmission phase shifter (2) and the reception phase shifter (tall) have been described separately, but they are essentially the same.

な2′j、上記実施例では、−次元位相走査方式による
レーダー装置についてねべたが、二次元位相麦方式の場
合についても上記実施例と同様の効果を奏する。また1
周波欽定食方式と位相走査方式とを組み合せたビーム走
査方式の場合についても適用できる。
2'j In the above embodiment, a radar device using a -dimensional phase scanning method has been described, but the same effect as in the above embodiment can be obtained also in the case of a two-dimensional phase scanning method. Also 1
The present invention can also be applied to a beam scanning method that is a combination of a frequency scanning method and a phase scanning method.

さらに、第3図におけるビーム走査方間、順序は一例で
あって、これと異なる走査方間、順序におい”Cも適用
は可能である。
Further, the beam scanning direction and order in FIG. 3 are merely examples, and "C" can also be applied to a different scanning direction and order.

以上のように、本発明によれは%複数の受信ビームを同
時に形成することができるよう送受信モジュールを構成
し、該送受信モジュールから出方される複数の受信ビー
ムに対応して受信機を設けたので、ビーム走査の所要時
間が短縮でき、また使用周波数の制約が必要のないレー
ダー装置が得第1図は一次元位相定歪アレイ・レーダー
装置における従来の仰角走査方式の一例を示す図、第2
図は!41図の走査方式における送信波形の例を示す図
、第3図は本発明の一実施例による一次元位相走量アレ
イ・レーダー装置における仰角走査方式を示す凶、第4
図は第3図の走査方式における送信波形の例を示す凶、
第5凶は本発明の一実施例による一次元位相走f7°レ
イ・レーダー装dの主要部分のブロック構成図、第6凶
は該レーダ−装置の送受信モジュールの一構成例を示す
図である。
As described above, according to the present invention, the transmitting/receiving module is configured so as to be able to simultaneously form a plurality of receiving beams, and a receiver is provided corresponding to the plurality of receiving beams emitted from the transmitting/receiving module. Therefore, the time required for beam scanning can be shortened, and a radar device that does not require restrictions on the operating frequency can be obtained. 2
The diagram is! 41 is a diagram showing an example of a transmission waveform in the scanning method; FIG. 3 is a diagram showing an elevation scanning method in a one-dimensional phase scanning array radar device according to an embodiment of the present invention;
The figure shows an example of the transmission waveform in the scanning method shown in Figure 3.
The fifth figure is a block configuration diagram of the main part of the one-dimensional phase scanning f7° ray radar device d according to an embodiment of the present invention, and the sixth figure is a diagram showing an example of the configuration of the transmitting/receiving module of the radar device. .

(1)・・・アレイアンテナ、(2)・・・送受信モジ
ュール、(3]・・・素子アンテナ、(4)・・・送信
用分配器、(5a)(5b)(5C)・・・受信用合成
器、(10a)(10b)(IOC)・・・受信機。
(1)...Array antenna, (2)...Transmission/reception module, (3)...Element antenna, (4)...Transmission distributor, (5a) (5b) (5C)... Reception synthesizer, (10a) (10b) (IOC)...receiver.

f: ′16図中同−符号は同一、又は相当部分を示す
f: '16 The same reference numerals in the drawings indicate the same or corresponding parts.

代理人   葛 野 信 − 第1図 第2図Agent Nobu Kuzuno - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] +11  r個の配列された素子アンテナのそれぞれに
移相器を具備することによりペンシル・ビームを電子的
に走査する位相走査アレイ・レーダー装置において、入
力される送信信号を上記r個の素子アンテナのそれぞれ
に分配するための1つの送信用分配器と、それぞれこの
送信用分配器からの送信信号を受けて1個の送信ビーム
を時分割的に形成し上記素子アンテナで受1gされた信
号から上記1個の送信ビームに対する1個の受信ビーム
を同時に形成するr個の送受信モジュールと、このr個
の送受1gモジュールの1つにより形成される1個の受
信ビームに対応して設けられ上記r個の各送受信モジュ
ールからの1個の受信ビームをそれぞれ合成する1個の
受信用合成器と、この1個の受信用合成器のそれぞれか
らの出力を受ける1個の受、信磯とを備えたことを特徴
とするし一ダー装置。
+11 In a phased scanning array radar device that electronically scans a pencil beam by equipping each of the r element antennas with a phase shifter, the input transmission signal is transferred to the r element antennas. One transmitting distributor for distributing the signals to each of the transmitting distributors, and one transmitting beam is formed in a time-divisional manner by receiving the transmitting signal from each transmitting distributor, and the above-mentioned is transmitted from the signal received by the element antenna. r transmitting/receiving modules that simultaneously form one receiving beam for one transmitting beam; and r transmitting/receiving modules provided corresponding to one receiving beam formed by one of the r transmitting/receiving 1g modules. one reception combiner that combines one reception beam from each of the transmission and reception modules, and one reception combiner that receives the output from each of the reception combiners. A unique device characterized by:
JP57211613A 1982-11-30 1982-11-30 Radar equipment Pending JPS5999372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57211613A JPS5999372A (en) 1982-11-30 1982-11-30 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57211613A JPS5999372A (en) 1982-11-30 1982-11-30 Radar equipment

Publications (1)

Publication Number Publication Date
JPS5999372A true JPS5999372A (en) 1984-06-08

Family

ID=16608654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57211613A Pending JPS5999372A (en) 1982-11-30 1982-11-30 Radar equipment

Country Status (1)

Country Link
JP (1) JPS5999372A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611969A1 (en) * 1993-02-17 1994-08-24 Honda Giken Kogyo Kabushiki Kaisha Time-sharing radar system
JP2012052923A (en) * 2010-09-01 2012-03-15 Toshiba Corp Weather radar device and weather observation method
JP2012058162A (en) * 2010-09-10 2012-03-22 Toshiba Corp Meteorological radar device and meteorological observation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418296A (en) * 1977-07-11 1979-02-10 Mitsubishi Electric Corp Radar device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418296A (en) * 1977-07-11 1979-02-10 Mitsubishi Electric Corp Radar device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611969A1 (en) * 1993-02-17 1994-08-24 Honda Giken Kogyo Kabushiki Kaisha Time-sharing radar system
JP2012052923A (en) * 2010-09-01 2012-03-15 Toshiba Corp Weather radar device and weather observation method
JP2012058162A (en) * 2010-09-10 2012-03-22 Toshiba Corp Meteorological radar device and meteorological observation method

Similar Documents

Publication Publication Date Title
JP3393204B2 (en) Multi-beam radar device
US4868574A (en) Electronically scanned radar system
US5038147A (en) Electronically scanned antenna
US3307188A (en) Steerable antenna array and method of operating the same
CN109067439B (en) Testing method adopted by digital multi-beam array transmitting device
US4101902A (en) Electronic scanning antenna
KR100963233B1 (en) Beam steering system of phased array antenna using frequency
JPH07321536A (en) Phased array antenna
JP3456167B2 (en) Multifunctional antenna device
JPH06291535A (en) Array antenna
JPS5999372A (en) Radar equipment
US3496569A (en) Phased array multibeam formation antenna system
US3718933A (en) Microwave antenna
JPH06242229A (en) Radar apparatus
KR101007213B1 (en) Antenna combiner of radar system where many radiation patterns can be synthesized
JPS63284484A (en) Radar equipment
JPS624667B2 (en)
JP3736735B2 (en) Adaptive array antenna
JPS6382003A (en) Multibeam antenna system for transmission and reception
JPS61150504A (en) Antenna system
US3444559A (en) Phased array multibeam formation antenna system
JPH03148082A (en) Radar equipment
RU2312435C1 (en) Back-scattered spaced transceiver antenna array
US4025921A (en) Technique for obtaining wide bandwidth with optically fed array
RU2751980C2 (en) Converter transceiver module of digital antenna array with orthogonal control (options)