JP2012047509A - Cell for water vapor permeability evaluation and method for manufacturing the same - Google Patents

Cell for water vapor permeability evaluation and method for manufacturing the same Download PDF

Info

Publication number
JP2012047509A
JP2012047509A JP2010187965A JP2010187965A JP2012047509A JP 2012047509 A JP2012047509 A JP 2012047509A JP 2010187965 A JP2010187965 A JP 2010187965A JP 2010187965 A JP2010187965 A JP 2010187965A JP 2012047509 A JP2012047509 A JP 2012047509A
Authority
JP
Japan
Prior art keywords
water vapor
metal
corrosive
metal layer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010187965A
Other languages
Japanese (ja)
Other versions
JP5581893B2 (en
Inventor
Takanobu Hamano
貴信 濱野
Nobuhiko Terada
信彦 寺田
Daisuke Izumikawa
大輔 泉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2010187965A priority Critical patent/JP5581893B2/en
Publication of JP2012047509A publication Critical patent/JP2012047509A/en
Application granted granted Critical
Publication of JP5581893B2 publication Critical patent/JP5581893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cell for water vapor permeability evaluation, which can be prevented from cracking to be able to obtain an evaluation result of higher reliability in water vapor permeability evaluation of a test piece of which the water vapor permeability should be evaluated, and to provide a method for manufacturing the same.SOLUTION: A cell for use in water vapor permeability evaluation includes: a corrosive metal layer made of a metal which chemically reacts with water to produce corrosion products on the test piece; and a water vapor impermeable layer made of a metal which blocks water vapor. The corrosive metal layer made of the metal which chemically reacts with water to produce corrosion products is a metal layer deposited by reduction.

Description

本発明は、水蒸気透過性評価用セルおよびその製造方法に関するものである。   The present invention relates to a water vapor permeability evaluation cell and a method for producing the same.

従来より、プラスチック、フィルム、シートなどの包装材料の重要な特性の一つである水蒸気透過度は、所定の温度と湿度の条件下で単位時間に単位面積の試験片を通過する水蒸気の量で評価され、代表的な試験方法として、感湿センサー法、カップ法などにより測定されている(例えば、非特許文献1及び2参照。)。   Conventionally, water vapor permeability, which is one of the important characteristics of plastics, films, sheets, and other packaging materials, is the amount of water vapor that passes through a test piece of unit area per unit time under a given temperature and humidity condition. It is evaluated and measured by a humidity sensor method, a cup method, or the like as a typical test method (see, for example, Non-Patent Documents 1 and 2).

近年、ディスプレイなどに用いる薄膜などにおいては耐透水性の良好な膜が開発されるようになり、従来の水蒸気透過度試験では評価が困難なレベルとなり、カルシウム層を用いた試験法などにより測定されるようになってきた(例えば、非特許文献3参照。)。しかし、このような方法においても、高度な耐透水性が求められる薄膜の試験では、試験片やカルシウム層上の異物や、カルシウム層形成時に発生する酸化物等の影響により、加湿処理の際に、評価用セルにおけるカルシウム層の外層に設けられた水不透過層にわずかな割れなどを生じることがある。このようにわずかなものであっても割れなどが生じると、その隙間から水蒸気が進入し、カルシウム腐食法の評価基準となるカルシウム層に、目的としない腐食物を生じることとなり、試験片が本来有する特性や測定精度に影響を与えることとなり、評価の信頼性を向上させることが求められている。   In recent years, films with good water permeability have been developed for thin films used in displays, etc., and it has become difficult to evaluate in conventional water vapor permeability tests, and is measured by test methods using calcium layers. (For example, refer nonpatent literature 3). However, even in such a method, in a thin film test that requires a high level of water permeation resistance, during the humidification treatment due to the influence of foreign matter on the test piece or the calcium layer, oxides generated when the calcium layer is formed, etc. A slight crack or the like may occur in the water-impermeable layer provided in the outer layer of the calcium layer in the evaluation cell. If cracks occur even in such a small amount, water vapor enters through the gaps, and an undesired corrosive substance is generated in the calcium layer that is the evaluation standard of the calcium corrosion method. It will affect the characteristics and measurement accuracy, and it is required to improve the reliability of evaluation.

JIS K 7129JIS K 7129 JIS Z 0208JIS Z 0208 G. NISATO at al, SID Conference Record of the International Display Research Conference pp. 1435-8G. NISATO at al, SID Conference Record of the International Display Research Conference pp. 1435-8

本発明は、水蒸気透過性を評価する試験片の水蒸気透過性評価において、セルの割れを防止することが可能であり、より高い信頼性を有する評価結果が得られる水蒸気透過性評価セル及びその製造方法を提供するものである。   The present invention relates to a water vapor permeability evaluation cell that can prevent cracking of a cell in a water vapor permeability evaluation of a test piece for evaluating water vapor permeability, and that can obtain an evaluation result with higher reliability, and its manufacture. A method is provided.

本発明者らは、試験片の評価面に、水蒸気透過性を評価するための腐食性金属層と、水蒸気不透過層とを備えた水蒸気透過性評価用セルにおいて、前記水と化学反応して腐食物を生じる金属からなる腐食性金属層を還元蒸着金属層とすることにより、腐食性金属層を形成する際に、評価用セルの外層の割れの要因の一つである金属酸化物などを生じることがなくなり、金属酸化物などの生成に起因する評価用セルの割れを防止することが可能となることより、評価における信頼性が向上することを見出し、さらに検討することにより、本発明を完成するに至った。   In the water vapor permeability evaluation cell provided with a corrosive metal layer for evaluating water vapor permeability and a water vapor impermeable layer on the evaluation surface of the test piece, the present inventors chemically reacted with the water. By forming a corrosive metal layer made of a metal that generates corrosive materials as a reduced vapor deposition metal layer, when forming the corrosive metal layer, a metal oxide or the like that is one of the causes of cracking of the outer layer of the evaluation cell is removed. It is possible to prevent the evaluation cell from being cracked due to the generation of metal oxide or the like, and the reliability in the evaluation is improved, and further investigation is made to further improve the present invention. It came to be completed.

即ち、本発明は、下記第(1)項〜第(3)項に記載の水蒸気透過性評価用セル、及び下記第(4)項〜第(5)項に記載の水蒸気透過性評価用セルの製造方法により構成される。
(1) 試験片に、水と化学反応して腐食物を生じる金属からなる腐食性金属層と、水蒸気を透過しない金属からなる水蒸気不透過層とを備えた、水蒸気透過性評価に用いる評価用セルであって、前記水と化学反応して腐食物を生じる金属からなる腐食性金属層が、還元蒸着金属層であることを特徴とする水蒸気透過性評価用セル。
(2) 前記多層金属層における水蒸気を透過しない金属からなる水蒸気不透過層は、金属合金で構成されるものである第(1)項に記載の水蒸気透過性評価用セル。
(3) 前記多層金属層における水と化学反応して腐食物を生じる金属からなる腐食性金属層は、還元蒸着アルカリ土類金属を含むものである第(1)項又は第(2)項に記載の水蒸気透過性評価用セル。
(4) 試験片に、水と化学反応して腐食物を生じる金属からなる腐食性金属層と、水蒸気を透過しない金属からなる水蒸気不透過層とを備えた、水蒸気透過性評価に用いる評価用セルを製造する方法であって、前記試験片の評価する面に、還元蒸着法により、水と化学反応して腐食物を生じる金属から、腐食性金属層を形成する工程を有することを特徴とする水蒸気透過性評価用セルの製造方法。
(5) 前記水と化学反応して腐食物を生じる金属は、アルカリ土類金属を含むものである第(4)項に記載の水蒸気透過性評価用セルの製造方法。
That is, the present invention relates to a water vapor permeability evaluation cell described in the following items (1) to (3) and a water vapor permeability evaluation cell described in the following items (4) to (5). It is comprised by the manufacturing method of.
(1) For evaluation used for water vapor permeability evaluation, comprising a test piece comprising a corrosive metal layer made of a metal that chemically reacts with water to produce a corrosive substance and a water vapor impermeable layer made of a metal that does not transmit water vapor. A cell for evaluating water vapor permeability, wherein the corrosive metal layer made of a metal that chemically reacts with water to produce a corrosive substance is a reduced vapor deposition metal layer.
(2) The water vapor permeability evaluation cell according to item (1), wherein the water vapor impermeable layer made of a metal that does not transmit water vapor in the multilayer metal layer is composed of a metal alloy.
(3) The corrosive metal layer made of a metal that chemically reacts with water in the multilayer metal layer to generate a corrosive substance contains the reduced-deposited alkaline earth metal according to (1) or (2) Water vapor permeability evaluation cell.
(4) For evaluation used for water vapor permeability evaluation, comprising a test piece comprising a corrosive metal layer made of a metal that chemically reacts with water to produce a corrosive substance and a water vapor impermeable layer made of a metal that does not transmit water vapor. A method for producing a cell, comprising a step of forming a corrosive metal layer on a surface to be evaluated of the test piece from a metal that chemically reacts with water to generate a corrosive substance by a reduction vapor deposition method. Manufacturing method of water vapor permeability evaluation cell.
(5) The method for producing a water vapor permeability evaluation cell according to item (4), wherein the metal that chemically reacts with water to produce a corrosive substance contains an alkaline earth metal.

本発明によれば、水蒸気透過性を評価する試験片の水蒸気透過性評価において、セルの割れを防止することが可能であり、より高い信頼性を有する評価結果が得られる水蒸気透過性評価セルを得ることができるものである。   According to the present invention, in the water vapor permeability evaluation of a test piece for evaluating water vapor permeability, it is possible to prevent the cracking of the cell, and to provide a water vapor permeability evaluation cell that can obtain an evaluation result with higher reliability. It can be obtained.

本発明の水蒸気透過性評価用セルの構造の第一例について説明するための模式図である。It is a schematic diagram for demonstrating the 1st example of the structure of the water vapor permeability evaluation cell of this invention. 本発明の水蒸気透過性評価用セルの構造の第二例について説明するための模式図である。It is a schematic diagram for demonstrating the 2nd example of the structure of the water vapor permeability evaluation cell of this invention.

本発明は、試験片に、水と化学反応して腐食物を生じる金属からなる腐食性金属層と、水蒸気を透過しない金属からなる水蒸気不透過層とを備えた、水蒸気透過性評価に用いる評価用セルであって、前記水と化学反応して腐食物を生じる金属からなる腐食性金属層が、還元蒸着金属層であることを特徴とする水蒸気透過性評価用セルであり、腐食性金属層を還元蒸着金属層とすることにより、腐食性金属層を形成する際に、評価用セルの外層の割れの要因の一つである金属酸化物などを生じることがなくなり、金属酸化物などの生成に起因する評価用セルの割れを防止することが可能となり、高い信頼性を有する評価結果が得られるものである。   The present invention comprises a test piece comprising a corrosive metal layer made of a metal that chemically reacts with water to produce a corrosive substance and a water vapor impermeable layer made of a metal that does not transmit water vapor, and is used for evaluation of water vapor permeability. A cell for evaluating water vapor permeability, characterized in that a corrosive metal layer made of a metal that chemically reacts with water to produce a corrosive substance is a reduced vapor deposition metal layer, and is a corrosive metal layer. By forming a corrosive metal layer with the reduced vapor deposition metal layer, metal oxides that are one of the causes of cracking of the outer layer of the evaluation cell are not generated, and metal oxides are generated. It is possible to prevent the evaluation cell from being cracked due to the above, and an evaluation result having high reliability can be obtained.

本発明の水蒸気透過性評価用セルの構造について、図面を用いて、その例を説明するが、本発明はこれらに限定されるものではない。
図1は、本発明の水蒸気透過性を評価する試験片と、水と化学反応して腐食物を生じる金属からなる腐食性金属層(以下、腐食性金属層)と、水蒸気を透過しない金属からなる水蒸気不透過層(以下、水蒸気不透過層)とを備えた評価用セルの第一例を示す模式図である。
図2は、本発明の水蒸気透過性を評価する試験片と、腐食性金属層と、水蒸気不透過層とを備え、水蒸気不透過層が、水蒸気不透過金属層と水蒸気不透過金属層との間に、割れ防止緩衝層(以下、割れ防止緩衝層)を有する積層構造を備えた評価用セルの第二例を示す模式図である。
Examples of the structure of the water vapor permeability evaluation cell of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 shows a test piece for evaluating water vapor permeability of the present invention, a corrosive metal layer (hereinafter referred to as a corrosive metal layer) made of a metal that chemically reacts with water to generate a corrosive substance, and a metal that does not transmit water vapor. It is a schematic diagram which shows the 1st example of the cell for evaluation provided with the water-vapor impermeable layer (henceforth a water-vapor impermeable layer) which becomes.
FIG. 2 includes a test piece for evaluating water vapor permeability of the present invention, a corrosive metal layer, and a water vapor impermeable layer, and the water vapor impermeable layer comprises a water vapor impermeable metal layer and a water vapor impermeable metal layer. It is a schematic diagram which shows the 2nd example of the cell for evaluation provided with the laminated structure which has a crack prevention buffer layer (henceforth a crack prevention buffer layer) in between.

本発明の評価用セルとしては、まず、第一例において、フィルムなどの水蒸気透過性を評価する試験片1の評価面の所定の位置に、腐食性金属層2が設けられ、次いで、腐食性金属層2を覆うように、水蒸気不透過層3が設けられた積層構造を有するものを挙げることができる。ここで、腐食性金属層2は還元蒸着金属層とするものである。   As the evaluation cell of the present invention, first, in the first example, the corrosive metal layer 2 is provided at a predetermined position on the evaluation surface of the test piece 1 for evaluating water vapor permeability such as a film, and then corrosive. The thing which has the laminated structure in which the water-vapor impermeable layer 3 was provided so that the metal layer 2 might be covered can be mentioned. Here, the corrosive metal layer 2 is a reduced vapor deposition metal layer.

次に、第二例としては、第一例において、水蒸気不透過層について、割れ防止緩衝層を備えた積層構造とするものを挙げることができる。その構造の例としては、まず、フィルムなどの水蒸気透過性を評価する試験片1の評価面の所定の位置に、腐食性金属層2が設けられ、次いで、第二の例における水蒸気不透過層3が設けられている。第二の例の水蒸気不透過層3は、腐食性金属層2を覆うように、第一の水蒸気不透過金属層4が設けられ、さらに第一の水蒸気不透過金属層4を覆うように、割れ防止緩衝層5が設けられ、さらに割れ防止緩衝層5を覆うように、第二の水蒸気不透過金属層6が設けられた積層構造を有するものである。ここで、腐食性金属層2は還元蒸着金属層とするものである。なお、水蒸気不透過層の構造は、2つの水蒸気不透過金属層の間に、割れ防止緩衝層を備えた積層構造を示したが、水蒸気不透過金属層の間に、割れ防止緩衝層をサンドイッチ状とする積層構造を構成することにより、金属酸化物などの他の異物などに起因する評価用セルの割れ防止効果をより発現しやすくなるものである。図面の構造に限られるものではないが、水蒸気不透過金属層は、1種又は2種以上の金属層であっても良い。   Next, as a second example, in the first example, the water vapor impermeable layer may have a laminated structure including a crack prevention buffer layer. As an example of the structure, first, the corrosive metal layer 2 is provided at a predetermined position on the evaluation surface of the test piece 1 for evaluating water vapor permeability such as a film, and then the water vapor impermeable layer in the second example. 3 is provided. The water vapor impermeable layer 3 of the second example is provided with a first water vapor impermeable metal layer 4 so as to cover the corrosive metal layer 2, and further covers the first water vapor impermeable metal layer 4. A crack prevention buffer layer 5 is provided, and a second water vapor impermeable metal layer 6 is provided so as to cover the crack prevention buffer layer 5. Here, the corrosive metal layer 2 is a reduced vapor deposition metal layer. The structure of the water vapor impermeable layer is a laminated structure having a crack preventing buffer layer between two water vapor impermeable metal layers, but the crack preventing buffer layer is sandwiched between the water vapor impermeable metal layers. By forming the laminated structure in a shape, the effect of preventing cracking of the evaluation cell due to other foreign matters such as metal oxides can be more easily expressed. Although not limited to the structure of the drawing, the water vapor impermeable metal layer may be one or more metal layers.

本発明の評価に用いる試験片としては、フィルム状、シート状、板状あるいはブロック状などの形状を有するものを用いることができる。本発明の水蒸気透過性評価には、一般的に、食品や電子部品などに用いられる単層もしくは複合防湿フィルムやシート、金属蒸着膜、建材用防水シート、組立部品などが適用される。   As a test piece used for the evaluation of the present invention, one having a film shape, a sheet shape, a plate shape, a block shape or the like can be used. In the water vapor permeability evaluation of the present invention, a single-layer or composite moisture-proof film or sheet used for food or electronic parts, a metal vapor-deposited film, a waterproof sheet for building materials, an assembly part, or the like is generally applied.

次に、本発明の評価用セルの作り方の例を説明する。
まず、上記第一の例について説明すると、水蒸気透過性を評価する試験片1を用意し、該試験片の評価する面、通常は水蒸気を接触させる面の反対側の面の所定の位置に、水と化学反応して腐食物を生じる金属を用いて、還元蒸着法により、腐食性金属層2を形成することができる。次いで、上記試験片上の腐食性金属層2を覆うように、水蒸気を透過しない金属を用いて、蒸着法などの方法により水蒸気不透過層3を形成し、積層構造を形成することができる。
Next, an example of how to make the evaluation cell of the present invention will be described.
First, the first example will be described. A test piece 1 for evaluating water vapor permeability is prepared. At a predetermined position on the surface to be evaluated of the test piece, usually the surface opposite to the surface in contact with water vapor, The corrosive metal layer 2 can be formed by a reduction vapor deposition method using a metal that chemically reacts with water to generate a corrosive substance. Next, a water vapor impermeable layer 3 is formed by a method such as vapor deposition using a metal that does not transmit water vapor so as to cover the corrosive metal layer 2 on the test piece, thereby forming a laminated structure.

次いで、上記で得られた、積層構造が形成された試験片1において、水蒸気に暴露される際に、少なくとも積層構造が水蒸気に接触することがないように、水蒸気接触面以外の部分を、樹脂、ガラス、金属等により封止を行い、評価用セルを得ることができる。   Next, in the test piece 1 having a laminated structure formed as described above, when exposed to water vapor, at least a portion other than the water vapor contact surface is placed on the resin so that the laminated structure does not come into contact with water vapor. The cell for evaluation can be obtained by sealing with glass, metal or the like.

次に、上記第二の例について説明すると、水蒸気透過性を評価する試験片1を用意し、該試験片の評価する面、通常は水蒸気を接触させる面の反対側の面の所定の位置に、水と化学反応して腐食物を生じる金属を用いて、還元蒸着法により、腐食性金属層2を形成することができる。次いで、第二の例における水蒸気不透過層3を形成するが、まず、上記試験片上の腐食性金属層2を覆うように、水蒸気を透過しない金属を用いて、蒸着法などの方法により第一の水蒸気不透過金属層4を形成することができる。   Next, the second example will be described. A test piece 1 for evaluating water vapor permeability is prepared, and the test piece 1 is evaluated at a predetermined position on the surface to be evaluated, usually the surface opposite to the surface in contact with water vapor. The corrosive metal layer 2 can be formed by a reduction vapor deposition method using a metal that chemically reacts with water to generate a corrosive substance. Next, the water vapor impermeable layer 3 in the second example is formed. First, the first material is vapor-deposited by using a metal that does not transmit water vapor so as to cover the corrosive metal layer 2 on the test piece. The water vapor impermeable metal layer 4 can be formed.

次いで、上記第一の水蒸気不透過金属層4を覆うように、アルカリ土類金属を用いて、上記同様にして蒸着法などの方法により、割れ防止緩衝金属層5を形成し、さらに上記割れ防止緩衝層5を覆うように、水蒸気を透過しない金属を用いて、上記同様にして蒸着法などの方法により、第二の水蒸気不透過金属層6を形成することで水蒸気不透過層3を形成することができる。   Next, a crack preventing buffer metal layer 5 is formed by a method such as vapor deposition using alkaline earth metal so as to cover the first water vapor impermeable metal layer 4, and further preventing the crack. The water vapor impermeable layer 3 is formed by forming the second water vapor impermeable metal layer 6 by a method such as vapor deposition using a metal that does not transmit water vapor so as to cover the buffer layer 5 in the same manner as described above. be able to.

次いで、上記で得られた、腐食性金属層2と水蒸気不透過層3が形成された試験片1において、水蒸気に暴露される際に、少なくとも腐食性金属層2と水蒸気不透過層3が水蒸気に接触することがないように、水蒸気接触面以外の部分を、樹脂、ガラス、金属等により封止を行い、評価用セルを得ることができる。   Next, in the test piece 1 in which the corrosive metal layer 2 and the water vapor impermeable layer 3 obtained above are formed, when exposed to water vapor, at least the corrosive metal layer 2 and the water vapor impermeable layer 3 are water vapor. In order not to come into contact with the surface, portions other than the water vapor contact surface are sealed with resin, glass, metal, or the like, whereby an evaluation cell can be obtained.

上記水と化学反応して腐食物を生じる金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム及びラジウムなどのアルカリ土類金属などのイオン化傾向の高い金属が挙げられる。これらの中でも、バリウム又はカルシウムが好ましい。これらの金属は、還元蒸着の際に、1〜5mm程度の粒子径のものを用いることができる。   Examples of the metal that generates a corrosive substance by chemical reaction with water include metals having a high ionization tendency such as alkaline earth metals such as magnesium, calcium, strontium, barium, and radium. Among these, barium or calcium is preferable. These metals having a particle diameter of about 1 to 5 mm can be used in the reduction deposition.

本発明における還元蒸着金属層は還元蒸着法により形成することができるが、還元蒸着法としては、抵抗加熱蒸着、電子ビーム蒸着及びレーザー蒸着などの加熱方法を用い、真空中などで行う物理蒸着法や、熱を用いた化学蒸着、及びプラズマを用いた化学蒸着などの方法を用いた化学蒸着法などを用いた還元蒸着が挙げられ、例えば、前記蒸着法を用いて、腐食性金属層を形成するのに必要な上記水と化学反応して腐食物を生じる金属を蒸気として供給するが、このとき、腐食性金属は、チタン、アルミニウム及びジルコニウムなどの還元剤と混合したものを加熱するなどして蒸気化し、試験片上に金属層を形成することができる。また、上記腐食性金属の炭酸塩などを用い、前記還元剤と混合したものを用いることもできる。   The reduced vapor deposition metal layer in the present invention can be formed by a reduction vapor deposition method. As the reduction vapor deposition method, a physical vapor deposition method performed in a vacuum using a heating method such as resistance heating vapor deposition, electron beam vapor deposition, or laser vapor deposition. And reduction deposition using chemical vapor deposition using a method such as chemical vapor deposition using heat and chemical vapor deposition using plasma. For example, a corrosive metal layer is formed using the vapor deposition method. A metal that generates a corrosive substance by chemically reacting with the water necessary for the above is supplied as a vapor. At this time, the corrosive metal is heated by mixing a reducing agent such as titanium, aluminum, and zirconium. And can be vaporized to form a metal layer on the specimen. Moreover, what mixed the said reducing agent using the said corrosive metal carbonate etc. can also be used.

上記腐食性金属層の厚みとしては、30nm〜500nmが好ましく、それぞれの腐食性金属層の厚みは同じであっても異なっていても良い。   The thickness of the corrosive metal layer is preferably 30 nm to 500 nm, and the thickness of each corrosive metal layer may be the same or different.

上記水蒸気を透過しない金属としては、水蒸気を透過しない、かつ、水と化学反応して腐食物を生じない金属であればよく、アルミニウム、亜鉛、錫、インジウム、鉛、銀及び銅などの金属が挙げられ、これらの金属を含む合金であっても良い。これらの中でも、アルミニウム及び銀が好ましい。これらの金属は、第二の例の水蒸気不透過層において、異なる金属を用いることができる。   The metal that does not transmit water vapor may be any metal that does not transmit water vapor and that does not chemically react with water to produce a corrosive substance, such as aluminum, zinc, tin, indium, lead, silver, and copper. An alloy containing these metals may be used. Among these, aluminum and silver are preferable. As these metals, different metals can be used in the water vapor impermeable layer of the second example.

上記割れ防止緩衝層に用いるアルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム及びラジウムなどが挙げられる。これらの中でも、バリウム又はカルシウムが好ましい。また、割れ防止緩衝層に、水と化学反応して腐食物を生じる金属を用いることで、水蒸気不透過層の割れを確認することもできる。   Examples of the alkaline earth metal used for the anti-cracking buffer layer include magnesium, calcium, strontium, barium, and radium. Among these, barium or calcium is preferable. Moreover, the crack of a water vapor | steam impermeable layer can also be confirmed by using the metal which chemically reacts with water and produces a corrosive substance for a crack prevention buffer layer.

上記水蒸気不透過層を作製する方法、また、第二の例の水蒸気不透過層における水蒸気不透過金属層と割れ防止緩衝金属層を作製する方法としては、例えば、真空蒸着法、スパッタリング蒸着法、イオプレーテイング法等の公知の蒸着法を用いることができ、さらには一般的な溶射法を用いることができるが、割れ防止緩衝金属層については、上記腐食性金属層と同様に、還元蒸着法により作製することにより、評価用セルの外層の割れの要因の一つである金属酸化物などを生じることがなくなり、より好ましい。   Examples of the method for producing the water vapor impermeable layer, and the method for producing the water vapor impermeable metal layer and the crack preventing buffer metal layer in the water vapor impermeable layer of the second example include, for example, a vacuum vapor deposition method, a sputtering vapor deposition method, Known vapor deposition methods such as ioplating method can be used, and furthermore, general spraying methods can be used. For the buffer metal layer for preventing cracking, the reduction vapor deposition method is used in the same manner as the corrosive metal layer. It is more preferable that the metal oxide, which is one of the causes of cracking of the outer layer of the evaluation cell, is not produced.

上記水蒸気不透過層の厚みとしては、500nm〜20μmが好ましく、第二の例のように水蒸気不透過層において水蒸気不透過金属層が複数ある場合は、それぞれの水蒸気不透過金属層の厚みは同じであっても異なっていても良い。
また、割れ防止緩衝層の厚みとしては、10nm〜800nmが好ましい。
The thickness of the water vapor impermeable layer is preferably 500 nm to 20 μm. When there are a plurality of water vapor impermeable metal layers in the water vapor impermeable layer as in the second example, the thickness of each water vapor impermeable metal layer is the same. Or different.
Moreover, as thickness of a crack prevention buffer layer, 10 nm-800 nm are preferable.

上記水蒸気接触面以外の部分を封止する樹脂としては、評価用セルの水蒸気不透過層の表面を保護するために、評価の際に加湿を行う条件、例えば、温度40±0.5℃、相対湿度90±2%の条件下に、評価用セルを24時間暴露したときに、封止樹脂の質量変化が、暴露面積50cmで当たり1mg以下である有機物であれば良く、具体例としては、蜜蝋、カルナバ蝋、パラフィン系ワックス等を挙げることができる。 As the resin that seals the portion other than the water vapor contact surface, in order to protect the surface of the water vapor impermeable layer of the evaluation cell, conditions for humidification during the evaluation, for example, a temperature of 40 ± 0.5 ° C., As long as the evaluation cell is exposed for 24 hours under a relative humidity of 90 ± 2%, the mass change of the sealing resin may be an organic substance that is 1 mg or less per exposed area of 50 cm 2. , Beeswax, carnauba wax, paraffin wax and the like.

水蒸気接触面以外の部分の封止を行う方法としては、例えば、蜜蝋とパラフィンとを1:1の割合で溶融混合した樹脂混合物を溶融させ、溶融樹脂として、これを用いて、少なくとも水蒸気不透過層(最外層の前記水蒸気不透過金属層)の露出面の全面を覆うことができるよう、接触させて樹脂層を形成した後、樹脂層を冷却固化させて封止することができる。また、ガラス板や金属板などと、溶融樹脂とを組み合わせて用いることにより、ガラス板や金属板などを樹脂で固定して、腐食性金属層と水蒸気不透過層を封止することもできる。   As a method for sealing the portion other than the water vapor contact surface, for example, a resin mixture in which beeswax and paraffin are melt-mixed at a ratio of 1: 1 is melted and used as a molten resin, and at least water vapor impermeability is used. After the resin layer is formed by contact so that the entire exposed surface of the layer (the outermost water vapor impermeable metal layer) can be covered, the resin layer can be cooled and solidified to be sealed. Further, by using a combination of a glass plate or a metal plate and a molten resin, the corrosive metal layer and the water vapor impermeable layer can be sealed by fixing the glass plate or the metal plate with a resin.

次に、本発明の水蒸気透過性評価用セルの用い方の例を説明する。
本発明の水蒸気透過性評価用セルを用いて、試験片の水蒸気透過性を評価する方法の例としては、まず、上記評価用セルを用意し、これを水蒸気接触面に水蒸気が触れるように、恒温恒湿槽内に配置して、所定の条件下にて加湿処理を行う。
Next, an example of how to use the water vapor permeability evaluation cell of the present invention will be described.
As an example of a method for evaluating the water vapor permeability of a test piece using the water vapor permeability evaluation cell of the present invention, first, the above evaluation cell is prepared, so that the water vapor contacts the water vapor contact surface, It arrange | positions in a constant temperature and humidity tank, and performs a humidification process on predetermined conditions.

加湿処理条件としては、封止樹脂の融点以下での任意の条件下において行うことが好ましいが、例えば、温度が40±0.5℃で、相対湿度が90±2%で行うことができる。   As the humidification treatment conditions, it is preferable to carry out under arbitrary conditions below the melting point of the sealing resin. For example, the temperature can be 40 ± 0.5 ° C. and the relative humidity can be 90 ± 2%.

このような加湿処理を、測定する時間ごとに行った評価用セルを、それぞれ用意し、腐食性金属層の腐食状態を評価することにより、試験片の水蒸気透過性を評価することができる。また、加湿処理時間を経過するごとに、評価用セルを取り出し腐食性金属層の腐食状態を評価することもできる。   By preparing each cell for evaluation in which such a humidification treatment is performed at every measurement time and evaluating the corrosion state of the corrosive metal layer, the water vapor permeability of the test piece can be evaluated. Further, every time the humidifying treatment time elapses, the evaluation cell can be taken out to evaluate the corrosion state of the corrosive metal layer.

また、このような腐食状態を評価する方法としては、試験片と接する、腐食性金属層の表面を直接観察することにより、試験片の欠陥部(生成腐食物)を評価する方法が挙げられる。さらには、腐食性金属層における腐食物の面積と腐食物の厚みから算出される金属腐食物の体積から、試験片を透過した水分量を定量することができる。   Moreover, as a method of evaluating such a corrosion state, a method of directly evaluating the surface of the corrosive metal layer in contact with the test piece to evaluate a defective portion (generated corrosion product) of the test piece can be mentioned. Furthermore, the amount of moisture that has permeated through the test piece can be quantified from the volume of the corroded metal calculated from the area of the corroded material and the thickness of the corroded metal layer.

上記試験片を透過した水分量の定量法としては、加湿処理により、腐食性金属層は水分と化学反応することで、下記化学式(1)に示すように、価数aの腐食性金属層を構成する金属Mの1モルはaモルの水分と反応し、1モルの金属水酸化物を生成する。
M + aHO → M(OH)a + (a/2)H 化学式(1)
As a method of quantifying the amount of water that has passed through the test piece, the corrosive metal layer chemically reacts with moisture by the humidification treatment, so that the corrosive metal layer having a valence of a is represented by the following chemical formula (1). One mole of the constituent metal M reacts with a mole of water to produce one mole of metal hydroxide.
M + aH 2 O → M (OH) a + (a / 2) H 2 chemical formula (1)

このことより、試験片を透過した水分量を1日の単位面積当たりに換算した水蒸気透過度(単位:g/m/day)として表すことができ、前記水蒸気透過度は、上記加湿処理における、加湿処理時間、水蒸気透過性評価用セルの腐食性金属層の面積、加湿処理後の腐食性金属層に生成した金属腐食物の面積と腐食性金属層の厚み、腐食後の金属水酸化物の密度から、下記数式(1)により算出して求めることができる。
水蒸気透過度=X*18*a*(10000/A)*(24/T) 数式(1)
From this, the water content permeated through the test piece can be expressed as water vapor permeability (unit: g / m 2 / day) converted per unit area per day. , Humidity treatment time, Area of corrosive metal layer of water vapor permeability evaluation cell, Area of corrosive metal layer formed on corrosive metal layer after humidification treatment and thickness of corrosive metal layer, Metal hydroxide after corrosion From the density, it can be calculated by the following formula (1).
Water vapor permeability = X * 18 * a * (10000 / A) * (24 / T) Formula (1)

なお、上記数式(1)中、Tは恒温恒湿処理時間(時間)、Aは腐食性金属層の面積(cm)、tは腐食性金属層の厚み(cm)、δは腐食性金属層に生成した金属腐食物の面積(cm)、dは腐食後の金属水酸化物密度(MOH)(g/cm)、aは腐食性金属層を構成する金属の価数を表し、Xは下記数式(2)で得られる加湿処理により生成する金属腐食物(金属水酸化物)のモル質量(g/mol)を表す。
X=(δ*t*d)/Mw 数式(2)
上記数式(2)中、Mwは腐食性金属層に生成した金属腐食物(金属水酸化物)の分子量(式量)を表し、δ、t及びdは数式(1)中のそれらと同じものを表す。
In the above formula (1), T is constant temperature and humidity treatment time (hours), A is the area (cm 2 ) of the corrosive metal layer, t is the thickness (cm) of the corrosive metal layer, and δ is the corrosive metal. The area (cm 2 ) of the metal corrosive material generated in the layer, d is the metal hydroxide density (MOH) after corrosion (g / cm 3 ), a is the valence of the metal constituting the corrosive metal layer, X represents the molar mass (g / mol) of the metal corrosion product (metal hydroxide) generated by the humidification treatment obtained by the following mathematical formula (2).
X = (δ * t * d) / Mw Formula (2)
In the above formula (2), Mw represents the molecular weight (formula weight) of the metal corrosive (metal hydroxide) generated in the corrosive metal layer, and δ, t, and d are the same as those in the formula (1). Represents.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these examples.

(実施例1)
(1)水蒸気透過性評価用セルの作製
試験片として、ポリエーテルサルホンフィルム(厚み200μm)とSiO層(無機層、厚み50nm)からなる二層構造を有する水蒸気不透過性フィルムを用意し、試験片の一方の面の中央部に、腐食性金属層として、カルシウム層を形成するにあたり、腐食性金属カルシウムの炭酸塩である炭酸カルシウム50mgに、還元剤として、チタニウム粉末65mgを混ぜたものを用いて、真空蒸着装置(日本電子製真空蒸着装置JEE−400)を用いて、還元蒸着法により、面積が2.0mm×2.0mmで、厚み200nmからなるカルシウムの還元蒸着金属層を形成した。この時、排気系統はロータリーポンプと油拡散ポンプの2種を用いた。次いで、前記還元蒸着金属層の露出面のすべてを覆うように、金属アルミニウムを用いて、真空蒸着法により、厚み4μmの水蒸気不透過層を形成した。次いで、蜜蝋(融点60〜62℃)とパラフィン(融点60〜62℃)とを1:1の割合で溶融混合した樹脂を用いて、80℃〜100℃の温度で溶融させたものに、水蒸気不透過層を全て覆うように接触させ、樹脂を冷却固化させて封止を行い、水蒸気透過性評価用セルを作製した。なお、試験片のフィルムは、その無機層をスパッタリングにて形成したものを用いた。
Example 1
(1) Preparation of water vapor permeability evaluation cell As a test piece, a water vapor impermeable film having a two-layer structure consisting of a polyethersulfone film (thickness 200 μm) and a SiO 2 layer (inorganic layer, thickness 50 nm) is prepared. In forming a calcium layer as a corrosive metal layer at the center of one surface of a test piece, 50 mg of calcium carbonate which is a carbonate of corrosive metal calcium and 65 mg of titanium powder as a reducing agent are mixed. Is used to form a reduced vapor deposition metal layer of calcium having an area of 2.0 mm × 2.0 mm and a thickness of 200 nm by a reduction vapor deposition method using a vacuum vapor deposition device (vacuum vapor deposition device JEE-400 manufactured by JEOL Ltd.). did. At this time, two types of exhaust systems, a rotary pump and an oil diffusion pump, were used. Next, a water vapor impermeable layer having a thickness of 4 μm was formed by vacuum vapor deposition using metal aluminum so as to cover all exposed surfaces of the reduced vapor deposition metal layer. Next, using a resin in which beeswax (melting point: 60 to 62 ° C.) and paraffin (melting point: 60 to 62 ° C.) are melt-mixed at a ratio of 1: 1, It was made to contact so that all the impervious layers might be covered, resin was cooled and solidified, it sealed, and the water vapor permeability evaluation cell was produced. In addition, the film of the test piece used what formed the inorganic layer by sputtering.

(2)水蒸気透過性の評価
上記で得た水蒸気透過性評価用セルを用い、これを40℃、湿度90%の恒温恒湿槽に、400時間載置し、恒温恒湿による処理(加湿処理)を行った。加湿処理後、還元蒸着金属層における腐食物の生成について、レーザー顕微鏡により、2.0mm×2.0mmの画像を撮影し記録した。腐食した部分は、金属カルシウムが水分と反応し、水酸化カルシウムとなり、撮影すると変色あるいは白色部として観察された。予め、加湿処理前に、上記水蒸気透過性評価用セルの還元蒸着金属層における腐食物の生成について、レーザー顕微鏡により記録しておいた画像を基準として比較して、恒温恒湿処理400時間での腐食部の総面積を測定した。恒温恒湿度300時間処理後の2.0mm×2.0mmの面積の還元蒸着金属層に50〜150μm径の腐食が確認でき、腐食総面積は7.1x10−4cmであった。腐食として観察される水酸化カルシウムの分子量と密度は76.1と2.24g/cmとであることから、生成した水酸化カルシウムのモル質量は4.18x10−10g/molであった。これらより、水蒸気透過度を求めたところ、2.3×10−4(g/m/day)であった。尚、腐食部付近を観察したが、水蒸気不透過層に割れは認められず、上記水蒸気透過性評価用セルが正常に機能したことがわかった。
(2) Evaluation of water vapor permeability Using the water vapor permeability evaluation cell obtained above, this was placed in a constant temperature and humidity chamber at 40 ° C and a humidity of 90% for 400 hours, and a treatment by constant temperature and humidity (humidification treatment) ) After the humidification treatment, images of 2.0 mm × 2.0 mm were taken and recorded with a laser microscope for the formation of corrosive substances in the reduced vapor deposition metal layer. In the corroded portion, metallic calcium reacted with moisture to form calcium hydroxide, and when photographed, it was observed as a discolored or white portion. Prior to the humidification treatment, the generation of corrosives in the reduced vapor deposition metal layer of the water vapor permeability evaluation cell was compared with an image recorded by a laser microscope as a reference. The total area of the corroded area was measured. Corrosion with a diameter of 50 to 150 μm was confirmed in the reduced vapor deposition metal layer having an area of 2.0 mm × 2.0 mm after the treatment with constant temperature and humidity for 300 hours, and the total corrosion area was 7.1 × 10 −4 cm 2 . Since the molecular weight and density of calcium hydroxide observed as corrosion were 76.1 and 2.24 g / cm 3 , the molar mass of the produced calcium hydroxide was 4.18 × 10 −10 g / mol. From these, the water vapor permeability was determined to be 2.3 × 10 −4 (g / m 2 / day). Although the vicinity of the corroded portion was observed, no crack was observed in the water vapor impermeable layer, and it was found that the water vapor permeability evaluation cell functioned normally.

(実施例2)
(1)水蒸気透過性評価用セルの作製
実施例1において、水蒸気不透過層(第一の水蒸気不透過金属層)の露出面のすべてを覆うように、金属バリウム(2価)を用いて、真空蒸着法により、厚み50nmの割れ防止緩衝層を形成した。次いで、割れ防止緩衝層の露出面のすべてを覆うように、銀を用いて、真空蒸着法により、厚み1μmの第二の水蒸気不透過金属層を形成し、水蒸気不透過層の構造を、2つの水蒸気不透過金属層の間に割れ防止緩衝層をサンドイッチ状にした積層構造とした以外は、実施例1と同様にして、水蒸気透過性評価用セルを作製した。
(Example 2)
(1) Production of water vapor permeability evaluation cell In Example 1, using metal barium (divalent) so as to cover all exposed surfaces of the water vapor impermeable layer (first water vapor impermeable metal layer), A 50 nm thick anti-cracking buffer layer was formed by vacuum deposition. Next, a second water vapor impermeable metal layer having a thickness of 1 μm is formed by vacuum deposition using silver so as to cover the entire exposed surface of the anti-cracking buffer layer, and the structure of the water vapor impermeable layer is 2 A water vapor permeability evaluation cell was produced in the same manner as in Example 1 except that a laminated structure in which a crack prevention buffer layer was sandwiched between two water vapor impermeable metal layers was used.

(2)水蒸気透過性の評価
上記で得た水蒸気透過性評価用セルを用い、実施例1における恒温恒湿槽の載置時間を、400時間から300時間とした以外は、実施例1と同様の操作により水蒸気透過性の評価を行った。
加湿処理後の還元蒸着金属層における腐食物の生成について確認したところ、変色あるいは白色部となった腐食物である水酸化カルシウムが観察された。
恒温恒湿度300時間処理後の2.0mm×2.0mmの面積の還元蒸着金属層に50〜150μm径の腐食が確認でき、腐食総面積は5.1x10−4cmであった。腐食として観察される水酸化カルシウムの分子量と密度は76.1と2.24g/cmとであることから、生成した水酸化カルシウムのモル質量は3.00x10−10g/molであった。これらより、水蒸気透過度を求めたところ、2.2×10−4(g/m/day)であった。尚、腐食部付近を観察したが、水蒸気不透過層に割れは認められず、上記水蒸気透過性評価用セルが正常に機能したことがわかった。
(2) Evaluation of water vapor permeability As in Example 1, except that the water vapor permeability evaluation cell obtained above was used and the mounting time of the constant temperature and humidity chamber in Example 1 was changed from 400 hours to 300 hours. The water vapor permeability was evaluated by the operation of
When it confirmed about the production | generation of the corrosive substance in the reduction | restoration vapor deposition metal layer after a humidification process, the calcium hydroxide which is a corrosive substance which became discoloration or became a white part was observed.
Corrosion having a diameter of 50 to 150 μm was confirmed in the reduced vapor deposition metal layer having an area of 2.0 mm × 2.0 mm after treatment for 300 hours at constant temperature and humidity, and the total corrosion area was 5.1 × 10 −4 cm 2 . Since the molecular weight and density of calcium hydroxide observed as corrosion were 76.1 and 2.24 g / cm 3 , the molar mass of the produced calcium hydroxide was 3.00 × 10 −10 g / mol. From these, the water vapor transmission rate was determined to be 2.2 × 10 −4 (g / m 2 / day). Although the vicinity of the corroded portion was observed, no crack was observed in the water vapor impermeable layer, and it was found that the water vapor permeability evaluation cell functioned normally.

(比較例1)
(1)水蒸気透過性評価用セルの作製
実施例1において、試験片として、水蒸気不透過性フィルム上に、直径約100μm〜約500μmの異物粒子を付着させた試験片を用い、腐食性金属層を形成する際に、炭酸カルシウムとチタニウム粉末の混合物に替えて、腐食性金属として金属カルシウム(2価)を用いて、真空蒸着法により、腐食性金属層を形成した以外は、実施例1と同様にして水蒸気透過性評価用セルを作製した。
(Comparative Example 1)
(1) Production of cell for evaluating water vapor permeability In Example 1, as a test piece, a test piece in which foreign particles having a diameter of about 100 μm to about 500 μm were adhered on a water vapor impermeable film was used. In Example 1, except that instead of the mixture of calcium carbonate and titanium powder, metal calcium (divalent) was used as the corrosive metal, the corrosive metal layer was formed by vacuum deposition. Similarly, a water vapor permeability evaluation cell was produced.

(2)水蒸気透過性の評価
上記で得た水蒸気透過性評価用セルを用い、実施例2と同様の操作により水蒸気透過性の評価を行った。
加湿処理後の腐食性金属層における腐食物の生成について確認したところ、変色あるいは白色部となった腐食物である水酸化カルシウムが観察された。恒温恒湿度300時間処理後の2.0mm×2.0mmサイズのカルシウム薄膜中に100〜580μm径の腐食が確認でき、腐食総面積は7.5×10−3cmであった。これより算出される水酸化カルシウムのmol質量は4.42×10−9g/molであった。これらより、水蒸気透過度を求めたところ、3.2×10−3(g/m/day)であった。なお、腐食部付近を観察したところ、水蒸気不透過層に割れが認められ、水蒸気透過性評価用セルが正常に機能していないことがわかった。
(2) Evaluation of water vapor permeability Water vapor permeability was evaluated by the same operation as in Example 2 using the water vapor permeability evaluation cell obtained above.
As a result of confirming the formation of corrosives in the corrosive metal layer after the humidification treatment, calcium hydroxide, which is a discolored or white corroded corrosive, was observed. Corrosion with a diameter of 100 to 580 μm could be confirmed in a 2.0 mm × 2.0 mm size calcium thin film after treatment for 300 hours at constant temperature and humidity, and the total corrosion area was 7.5 × 10 −3 cm 2 . The molar mass of calcium hydroxide calculated from this was 4.42 × 10 −9 g / mol. From these, the water vapor transmission rate was determined to be 3.2 × 10 −3 (g / m 2 / day). When the vicinity of the corroded portion was observed, cracks were observed in the water vapor impermeable layer, and it was found that the water vapor permeability evaluation cell did not function normally.

1 試験片
2 腐食性金属層
3 水蒸気不透過層
4 第一の水蒸気不透過金属層
5 割れ防止緩衝層
6 第二の水蒸気不透過金属層
DESCRIPTION OF SYMBOLS 1 Test piece 2 Corrosive metal layer 3 Water vapor impermeable layer 4 1st water vapor impermeable metal layer 5 Crack prevention buffer layer 6 2nd water vapor impermeable metal layer

Claims (5)

試験片に、水と化学反応して腐食物を生じる金属からなる腐食性金属層と、水蒸気を透過しない金属からなる水蒸気不透過層とを備えた、水蒸気透過性評価に用いる評価用セルであって、前記水と化学反応して腐食物を生じる金属からなる腐食性金属層が、還元蒸着金属層であることを特徴とする水蒸気透過性評価用セル。   This test cell was equipped with a corrosive metal layer made of a metal that chemically reacts with water to produce a corrosive substance, and a water vapor impermeable layer made of a metal that does not permeate water vapor. A water vapor permeability evaluation cell, wherein the corrosive metal layer made of a metal that chemically reacts with water to generate a corrosive substance is a reduced vapor deposition metal layer. 前記多層金属層における水蒸気を透過しない金属からなる水蒸気不透過層は、金属合金で構成されるものである請求項1に記載の水蒸気透過性評価用セル。   The water vapor permeability evaluation cell according to claim 1, wherein the water vapor impermeable layer made of a metal that does not transmit water vapor in the multilayer metal layer is made of a metal alloy. 前記多層金属層における水と化学反応して腐食物を生じる金属からなる腐食性金属層は、還元蒸着アルカリ土類金属を含むものである請求項1又は2に記載の水蒸気透過性評価用セル。   3. The water vapor permeability evaluation cell according to claim 1, wherein the corrosive metal layer made of a metal that chemically reacts with water and generates a corrosive substance in the multilayer metal layer contains a reduced-deposition alkaline earth metal. 試験片に、水と化学反応して腐食物を生じる金属からなる腐食性金属層と、水蒸気を透過しない金属からなる水蒸気不透過層とを備えた、水蒸気透過性評価に用いる評価用セルを製造する方法であって、前記試験片の評価する面に、還元蒸着法により、水と化学反応して腐食物を生じる金属から、腐食性金属層を形成する工程を有することを特徴とする水蒸気透過性評価用セルの製造方法。   Manufactures an evaluation cell used for water vapor permeability evaluation, comprising a test piece with a corrosive metal layer made of a metal that chemically reacts with water to produce a corrosive substance, and a water vapor impermeable layer made of a metal that does not transmit water vapor. A method of performing water vapor permeation, comprising a step of forming a corrosive metal layer on a surface to be evaluated of the test piece from a metal that chemically reacts with water to generate a corrosive substance by a reduction vapor deposition method. Manufacturing method of cell for property evaluation. 前記水と化学反応して腐食物を生じる金属は、アルカリ土類金属を含むものである請求項4に記載の水蒸気透過性評価用セルの製造方法。   The method for producing a water vapor permeability evaluation cell according to claim 4, wherein the metal that chemically reacts with water to produce a corrosive substance contains an alkaline earth metal.
JP2010187965A 2010-08-25 2010-08-25 Water vapor permeability evaluation cell and manufacturing method thereof Active JP5581893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010187965A JP5581893B2 (en) 2010-08-25 2010-08-25 Water vapor permeability evaluation cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010187965A JP5581893B2 (en) 2010-08-25 2010-08-25 Water vapor permeability evaluation cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012047509A true JP2012047509A (en) 2012-03-08
JP5581893B2 JP5581893B2 (en) 2014-09-03

Family

ID=45902574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187965A Active JP5581893B2 (en) 2010-08-25 2010-08-25 Water vapor permeability evaluation cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5581893B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009944A (en) * 2012-06-27 2014-01-20 Toppan Printing Co Ltd Steam permeability evaluation structure body and steam permeability evaluation method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140440A (en) * 1986-12-02 1988-06-13 Matsushita Electric Ind Co Ltd Production of optical information recording member
JPH1011816A (en) * 1996-06-19 1998-01-16 Fuji Xerox Co Ltd Production of phase separation type optical recording medium
JP2001337084A (en) * 2000-05-30 2001-12-07 Tokyo Gas Co Ltd Method for simply evaluating moisture permeability of coating film
JP2004333127A (en) * 2002-04-05 2004-11-25 Sumitomo Bakelite Co Ltd Cell for evaluating vapor barrier property, and method for evaluating vapor barrier property
JP2005181300A (en) * 2003-11-26 2005-07-07 Sumitomo Bakelite Co Ltd Method for evaluating water vapor permeability
JP2005283561A (en) * 2004-03-04 2005-10-13 Sumitomo Bakelite Co Ltd Steam permeability measurement device
JP2006105713A (en) * 2004-10-04 2006-04-20 Seiko Epson Corp Method of manufacturing laminate for evaluating gas characteristic, laminate for evaluating gas characteristic, evaluation method and evaluation device
JP2006119069A (en) * 2004-10-25 2006-05-11 Sumitomo Bakelite Co Ltd Method for measuring water vapor permeability by using calcium corrosion test
JP2007095462A (en) * 2005-09-28 2007-04-12 Dainippon Printing Co Ltd Battery exterior sheet manufacturing method, battery exterior sheet, and battery
JP2008170358A (en) * 2007-01-15 2008-07-24 Ulvac Japan Ltd Sample stand, measuring object sample, and moisture permeability measuring device
JP2010286285A (en) * 2009-06-09 2010-12-24 Toyo Seikan Kaisha Ltd Unit and method for evaluating steam barrier properties
JP2011047680A (en) * 2009-08-25 2011-03-10 Toppan Printing Co Ltd Method and instrument for measuring permeation of steam

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140440A (en) * 1986-12-02 1988-06-13 Matsushita Electric Ind Co Ltd Production of optical information recording member
JPH1011816A (en) * 1996-06-19 1998-01-16 Fuji Xerox Co Ltd Production of phase separation type optical recording medium
JP2001337084A (en) * 2000-05-30 2001-12-07 Tokyo Gas Co Ltd Method for simply evaluating moisture permeability of coating film
JP2004333127A (en) * 2002-04-05 2004-11-25 Sumitomo Bakelite Co Ltd Cell for evaluating vapor barrier property, and method for evaluating vapor barrier property
JP2005181300A (en) * 2003-11-26 2005-07-07 Sumitomo Bakelite Co Ltd Method for evaluating water vapor permeability
JP2005283561A (en) * 2004-03-04 2005-10-13 Sumitomo Bakelite Co Ltd Steam permeability measurement device
JP2006105713A (en) * 2004-10-04 2006-04-20 Seiko Epson Corp Method of manufacturing laminate for evaluating gas characteristic, laminate for evaluating gas characteristic, evaluation method and evaluation device
JP2006119069A (en) * 2004-10-25 2006-05-11 Sumitomo Bakelite Co Ltd Method for measuring water vapor permeability by using calcium corrosion test
JP2007095462A (en) * 2005-09-28 2007-04-12 Dainippon Printing Co Ltd Battery exterior sheet manufacturing method, battery exterior sheet, and battery
JP2008170358A (en) * 2007-01-15 2008-07-24 Ulvac Japan Ltd Sample stand, measuring object sample, and moisture permeability measuring device
JP2010286285A (en) * 2009-06-09 2010-12-24 Toyo Seikan Kaisha Ltd Unit and method for evaluating steam barrier properties
JP2011047680A (en) * 2009-08-25 2011-03-10 Toppan Printing Co Ltd Method and instrument for measuring permeation of steam

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
R. S. KUMAR ET AL: "Low moisture permeation measurement through polymer substrates for organic light emitting devices", THIN SOLID FILMS, vol. 417, JPN6009051129, 2002, pages 120 - 126, XP055522555, ISSN: 0002831332, DOI: 10.1016/S0040-6090(02)00584-9 *
杉崎 敦 ATSUSHI SUGIZAKI: "Ca腐食法を用いた水蒸気バリア性プラスチック基板のバリア欠陥解析 Defect analysis of water vapor bar", 2003年(平成15年)春季 第50回応用物理学関係連合講演会講演予稿集 第3分冊 EXTENDED ABSTRAC, vol. 第3巻, JPN6009051131, ISSN: 0002831333 *
藤本健太郎 他: "Ca腐食法と新規な画像解析手法を用いた水蒸気バリア膜欠陥解析と微少な水蒸気透過の定量評価", 第12回ポリマー材料フォーラム要旨集, JPN6009053363, 10 November 2003 (2003-11-10), JP, pages 200, ISSN: 0002831334 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009944A (en) * 2012-06-27 2014-01-20 Toppan Printing Co Ltd Steam permeability evaluation structure body and steam permeability evaluation method

Also Published As

Publication number Publication date
JP5581893B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
TWI550111B (en) Self-passivating mechanically stable hermetic thin film
Yoon et al. Extremely high barrier performance of organic–inorganic nanolaminated thin films for organic light-emitting diodes
Wang et al. Air sensitivity and degradation evolution of halide solid state electrolytes upon exposure
KR100846296B1 (en) Pouch for packing cell and method for preparing the same
JP5359575B2 (en) Water vapor barrier property evaluation unit and water vapor barrier property evaluation method
KR101296415B1 (en) Base with film and glass for film formation
TW200915637A (en) Low temperature sintering using Sn2+ containing inorganic materials to hermetically seal a device
CN102687044B (en) Reflective film laminate
TW200830597A (en) Tin phosphate barrier film, method, and apparatus
TWI518352B (en) Radiation detector and manufacturing method thereof
JP2002528372A (en) Laminates for transparent substrates
Garnier et al. Interest and durability of multilayers: from model films to complex films
KR20150089075A (en) Method for forming a barrier layer
JP3958235B2 (en) Water vapor barrier evaluation cell and water vapor barrier evaluation method
JP5581844B2 (en) Water vapor permeability evaluation cell and water vapor permeability evaluation method
JP5581893B2 (en) Water vapor permeability evaluation cell and manufacturing method thereof
JP3997177B2 (en) Ag alloy film for forming electromagnetic wave shield, Ag alloy film forming body for electromagnetic wave shield, and Ag alloy sputtering target for forming Ag alloy film for electromagnetic wave shield
JP4617933B2 (en) Film coated with glass with low softening point
Cano et al. Ultrastable CoxSiyOz nanowires by glancing angle deposition with magnetron sputtering as novel electrocatalyst for water oxidation
JP3956623B2 (en) High water vapor barrier film
JP2003251732A (en) Transparent gas-barrier thin coating film
JP2005119148A (en) Gas-barrier substrate, substrate for display device, and display device
JP2013224877A (en) Vapor permeability evaluation cell and vapor permeability evaluation method
JP5733367B2 (en) Scintillator panel
Chen et al. Study of Atomic Layer Deposition Nano-Oxide Films on Corrosion Protection of Al-SiC Composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5581893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150