JP5581844B2 - Water vapor permeability evaluation cell and water vapor permeability evaluation method - Google Patents
Water vapor permeability evaluation cell and water vapor permeability evaluation method Download PDFInfo
- Publication number
- JP5581844B2 JP5581844B2 JP2010143062A JP2010143062A JP5581844B2 JP 5581844 B2 JP5581844 B2 JP 5581844B2 JP 2010143062 A JP2010143062 A JP 2010143062A JP 2010143062 A JP2010143062 A JP 2010143062A JP 5581844 B2 JP5581844 B2 JP 5581844B2
- Authority
- JP
- Japan
- Prior art keywords
- water vapor
- metal
- metal layer
- vapor permeability
- corrosive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 200
- 238000011156 evaluation Methods 0.000 title claims description 92
- 230000035699 permeability Effects 0.000 title claims description 85
- 229910052751 metal Inorganic materials 0.000 claims description 154
- 239000002184 metal Substances 0.000 claims description 154
- 238000012360 testing method Methods 0.000 claims description 39
- 230000007797 corrosion Effects 0.000 claims description 26
- 238000005260 corrosion Methods 0.000 claims description 26
- 239000003518 caustics Substances 0.000 claims description 24
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 11
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 11
- 230000002265 prevention Effects 0.000 claims description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000007547 defect Effects 0.000 claims description 2
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 158
- 231100001010 corrosive Toxicity 0.000 description 61
- 238000000034 method Methods 0.000 description 23
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 13
- 229910052791 calcium Inorganic materials 0.000 description 13
- 239000011575 calcium Substances 0.000 description 13
- 239000011347 resin Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000010408 film Substances 0.000 description 11
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 9
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 9
- 239000000920 calcium hydroxide Substances 0.000 description 9
- 238000005336 cracking Methods 0.000 description 9
- 238000007740 vapor deposition Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 5
- 229910000000 metal hydroxide Inorganic materials 0.000 description 5
- 150000004692 metal hydroxides Chemical class 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229910052788 barium Inorganic materials 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 235000013871 bee wax Nutrition 0.000 description 3
- 239000012166 beeswax Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052705 radium Inorganic materials 0.000 description 2
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010227 cup method (microbiological evaluation) Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- -1 sheets Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Description
本発明は、水蒸気透過性評価用セルおよび水蒸気透過性評価方法に関するものである。 The present invention relates to a water vapor permeability evaluation cell and a water vapor permeability evaluation method.
従来より、プラスチック、フィルム、シートなどの包装材料の重要な特性の一つである水蒸気透過度は、所定の温度と湿度の条件下で単位時間に単位面積の試験片を通過する水蒸気の量で評価され、代表的な試験方法として、感湿センサー法、カップ法などにより測定されている(例えば、非特許文献1及び2参照。)。 Conventionally, water vapor permeability, which is one of the important characteristics of plastics, films, sheets, and other packaging materials, is the amount of water vapor that passes through a test piece of unit area per unit time under a given temperature and humidity condition. It is evaluated and measured by a humidity sensor method, a cup method, or the like as a typical test method (see, for example, Non-Patent Documents 1 and 2).
近年、ディスプレイなどに用いる薄膜などにおいては耐透水性の良好な膜が開発されるようになり、従来の水蒸気透過度試験では評価が困難なレベルとなり、カルシウム層を用いた試験法などにより測定されるようになってきた(例えば、非特許文献3参照。)。しかし、このような方法においても、高度な耐透水性が求められる薄膜の試験では、適切な処理をしないと、試験片やカルシウム層上のゴミ等の影響により、加湿処理の際に、評価用セルにおけるカルシウム層の外層に設けられた水不透過層にわずかな割れなどを生じることがある。このようにわずかなものであっても割れなどが生じると、その隙間から水蒸気が進入し、カルシウム腐食法の評価基準となるカルシウム層に、目的としない腐食物を生じることとなり、試験片が本来有する特性や測定精度に影響を与えることとなる。また、カルシウム層に生じた腐食物が、試験片を透過した水によるものか、外層部の水不透過層より浸入した水によるものかを容易に確認できないこともあり、評価の信頼性を向上させることが求められている。 In recent years, films with good water permeability have been developed for thin films used in displays, etc., and it has become difficult to evaluate in conventional water vapor permeability tests, and is measured by test methods using calcium layers. (For example, refer nonpatent literature 3). However, even in such a method, in a thin film test that requires a high level of water permeability, if it is not properly treated, it will be used for evaluation during the humidification process due to the influence of dust on the test piece and calcium layer. A slight crack may occur in the water-impermeable layer provided on the outer layer of the calcium layer in the cell. If cracks occur even in such a small amount, water vapor enters through the gaps, and an undesired corrosive substance is generated in the calcium layer that is the evaluation standard of the calcium corrosion method. It will affect the characteristics and measurement accuracy. In addition, it may not be easy to confirm whether the corrosive substances generated in the calcium layer are due to water that has permeated the test piece or water that has penetrated from the water-impermeable layer of the outer layer, improving the reliability of the evaluation. It is demanded to make it.
本発明は、水蒸気透過性を評価する試験片の水蒸気透過性評価において、セルの割れを防止することが可能であり、より高い信頼性を有する評価結果が得られる水蒸気透過性評価セル及び水蒸気透過性評価方法を提供するものである。 In the water vapor permeability evaluation of a test piece for evaluating water vapor permeability, the present invention is capable of preventing cracking of the cell, and provides a water vapor permeability evaluation cell and a water vapor permeation that can obtain a more reliable evaluation result. It provides a sex assessment method.
本発明者らは、試験片の評価面に、水蒸気透過性を評価するための腐食性金属層と、水蒸気不透過層とを備えた評価用セルにおいて、前記水蒸気不透過層が、水蒸気を透過しない金属からなる金属層と該金属層の割れ防止緩衝層を有する積層構造を備えることにより、評価用セルの割れを防止することが可能となり、評価における信頼性が向上することを見出し、さらに検討することにより、本発明を完成するに至った。 In the evaluation cell provided with a corrosive metal layer for evaluating water vapor permeability and a water vapor impermeable layer on the evaluation surface of the test piece, the water vapor impermeable layer transmits water vapor. It has been found that it is possible to prevent the evaluation cell from being cracked by providing a laminated structure having a metal layer made of non-performing metal and a buffer layer for preventing cracking of the metal layer, and the reliability in the evaluation is improved. As a result, the present invention has been completed.
即ち、本発明は、下記第(1)項〜第(4)項に記載の水蒸気透過性評価用セル、及び下記第(5)項〜第(7)項に記載の水蒸気透過性評価方法により構成される。
(1)試験片に、水と化学反応して腐食物を生じる金属からなる腐食性金属層と、水蒸気を透過しない金属からなる金属層を有する水蒸気不透過層とを備えた、水蒸気透過性評価に用いる評価用セルであって、前記水蒸気不透過層は、水蒸気を透過しない金属からなる金属層と、アルカリ土類金属からなる割れ防止緩衝層と、を有し、前記腐食性金属層、前記金属層、前記割れ防止緩衝層、前記金属層の順に積層された積層構造を備えたものであることを特徴とする水蒸気透過性評価用セル。
(2)前記水蒸気不透過層における金属層が、少なくとも2種類の金属層で構成されるものである第(1)項に記載の水蒸気透過性評価用セル。
(3)前記水蒸気不透過層における金属層が、金属合金で構成されるものである第(1)項又は第(2)項に記載の水蒸気透過性評価用セル。
(4)前記水と化学反応して腐食物を生じる金属からなる腐食性金属層は、アルカリ土類金属又はアルカリ金属を含むものである第(1)項〜第(3)項のいずれか1項に記載の水蒸気透過性評価用セル。
(5)第(1)項〜第(4)項のいずれか1項に記載の水蒸気透過性評価用セルを用いて、前記評価用セルを加湿処理し、水と化学反応して腐食物を生じる腐食性金属層の腐食状態を評価することにより、試験片の水蒸気透過性を評価する、水蒸気透過性評価方法。
(6)前記腐食状態の評価は、試験片と接する、水と化学反応して腐食物を生じる腐食性金属層の表面を直接観察することにより、試験片の欠陥部を評価するものである、第(5)項に記載の水蒸気透過性評価方法。
(7)前記腐食状態の評価は、さらに、水と反応して腐食物を生じる腐食性金属層における腐食物の面積と腐食物の厚みから算出される金属腐食物の体積から、試験片を透過し
た水分量を定量するものである、第(6)項に記載の水蒸気透過性評価方法。
That is, the present invention provides the water vapor permeability evaluation cell described in the following items (1) to ( 4 ) and the water vapor permeability evaluation method described in the following items ( 5 ) to ( 7 ). Composed.
(1) Evaluation of water vapor permeability in which a test piece includes a corrosive metal layer made of a metal that chemically reacts with water to produce a corrosive substance, and a water vapor impermeable layer having a metal layer made of a metal that does not transmit water vapor. The water vapor impervious layer has a metal layer made of a metal that does not transmit water vapor and a crack prevention buffer layer made of an alkaline earth metal, the corrosive metal layer, A cell for evaluating water vapor permeability , comprising a laminated structure in which a metal layer, the anti-cracking buffer layer , and the metal layer are laminated in this order.
( 2 ) The water vapor permeability evaluation cell according to item (1), wherein the metal layer in the water vapor impermeable layer is composed of at least two types of metal layers.
( 3 ) The water vapor permeability evaluation cell according to (1) or ( 2 ), wherein the metal layer in the water vapor impermeable layer is composed of a metal alloy.
( 4 ) The corrosive metal layer made of a metal that chemically reacts with water to generate a corrosive substance contains any one of alkaline earth metal or alkali metal in any one of items (1) to ( 3 ). The cell for water vapor permeability evaluation described.
( 5 ) Using the water vapor permeability evaluation cell according to any one of the items (1) to ( 4 ), the evaluation cell is humidified, and chemically reacted with water to produce a corrosive substance. A method for evaluating water vapor permeability, wherein the water vapor permeability of a test piece is evaluated by evaluating the corrosion state of a resulting corrosive metal layer.
( 6 ) The evaluation of the corrosion state is to evaluate the defect portion of the test piece by directly observing the surface of the corrosive metal layer which is in contact with the test piece and chemically reacts with water to generate a corrosive substance. The method for evaluating water vapor permeability according to item ( 5 ).
( 7 ) The evaluation of the corrosion state further passes through the test piece from the volume of the corroded metal calculated from the corroded metal area and the corroded metal thickness in the corrosive metal layer that reacts with water to produce corrosive. The method for evaluating water vapor permeability according to item ( 6 ), wherein the moisture content is quantified.
本発明の水蒸気透過性評価セルによれば、水蒸気透過性を評価する試験片の水蒸気透過性評価において、セルの割れを防止することが可能であり、より高い信頼性を有する評価結果が得られる。水蒸気透過性評価セル及び水蒸気透過性評価方法に関するものである。 According to the water vapor permeability evaluation cell of the present invention, it is possible to prevent cracking of the cell in the water vapor permeability evaluation of a test piece for evaluating water vapor permeability, and an evaluation result having higher reliability can be obtained. . The present invention relates to a water vapor permeability evaluation cell and a water vapor permeability evaluation method.
本発明は、試験片に、水と化学反応して腐食物を生じる金属からなる腐食性金属層と、水蒸気を透過しない金属からなる金属層を有する水蒸気不透過層とを備えた、水蒸気透過性評価に用いる評価用セルであって、前記水蒸気不透過層は、水蒸気を透過しない金属からなる金属層と、アルカリ土類金属からなる割れ防止緩衝層を有する積層構造を備えたものであることを特徴とする水蒸気透過性評価用セルであり、水蒸気を透過しない金属からなる金属層の割れ防止用の緩衝層を有することにより、評価用セルの割れを防止することが可能となり、より評価の信頼性を向上させることができるものである。また、本発明の水蒸気透過性評価用セルは、前記水蒸気不透過層が、水蒸気不透過金属層ともう一つの水蒸気不透過金属層の間に、割れ防止緩衝層であるアルカリ土類金属層をサンドイッチ状とする積層構造を構成することにより、評価用セルの割れ防止効果をより発現しやすくするものである。 The present invention comprises a test piece comprising a corrosive metal layer made of a metal that chemically reacts with water to produce a corrosive substance and a water vapor impermeable layer having a metal layer made of a metal that does not transmit water vapor. An evaluation cell used for evaluation, wherein the water vapor impermeable layer has a laminated structure having a metal layer made of a metal that does not transmit water vapor and a crack prevention buffer layer made of an alkaline earth metal. It is a water vapor permeability evaluation cell characterized by having a buffer layer for preventing cracking of a metal layer made of a metal that does not transmit water vapor. It is possible to improve the property. In the water vapor permeability evaluation cell of the present invention, the water vapor impermeable layer includes an alkaline earth metal layer that is a crack prevention buffer layer between the water vapor impermeable metal layer and another water vapor impermeable metal layer. By constituting a laminated structure having a sandwich shape, the effect of preventing cracking of the evaluation cell is more easily exhibited.
また、本発明は、上記水蒸気透過性評価用セルを用いて、前記評価用セルを加湿処理し、水と化学反応して腐食物を生じる腐食性金属層の腐食状態を評価することにより、試験片の水蒸気透過性を評価することができるものである。水蒸気透過性の評価においては、加湿処理により、水蒸気透過性評価用セルに組み込んだ水蒸気透過性を評価する試験片が水蒸気を透過する場合、水蒸気が、前記水と化学反応して腐食物を生じる腐食性金属層に到達し、該腐食性金属層が腐食反応を起こし腐食物を生成することから、ここで生成した腐食物を評価するものである。さらに詳しい評価として、該腐食物の体積を算出することにより、試験片を透過した水分量を定量して水蒸気透過率を得ることができるものである。 Further, the present invention uses the above-mentioned water vapor permeability evaluation cell, humidifies the evaluation cell, and evaluates the corrosion state of the corrosive metal layer that chemically reacts with water to generate a corrosive substance. The water vapor permeability of the piece can be evaluated. In the evaluation of water vapor permeability, when a test piece for evaluating water vapor permeability incorporated in a water vapor permeability evaluation cell permeates water vapor, the water vapor chemically reacts with the water to generate corrosives. The corrosive metal layer is reached, and the corrosive metal layer undergoes a corrosion reaction to generate a corrosive substance. Therefore, the generated corrosive substance is evaluated. As a more detailed evaluation, by calculating the volume of the corrosive substance, the amount of water permeated through the test piece can be quantified to obtain the water vapor transmission rate.
本発明の水蒸気透過性評価用セルの構造について、図面を用いて、その一例を説明する。
図1は、本発明の水蒸気透過性を評価する試験片と、水と化学反応して腐食物を生じる金属からなる腐食性金属層(以下、腐食性金属層)と、水蒸気を透過しない金属からなる金属層を有する水蒸気不透過層(以下、水蒸気不透過層)とを備え、水蒸気不透過層が、水蒸気を透過しない金属からなる金属層(以下、水蒸気不透過金属層)と水蒸気不透過金属層の割れ防止緩衝層(以下、割れ防止緩衝層)を有する積層構造を備えた評価用セルの一例を示す模式図である。
An example of the structure of the water vapor permeability evaluation cell of the present invention will be described with reference to the drawings.
FIG. 1 shows a test piece for evaluating water vapor permeability of the present invention, a corrosive metal layer (hereinafter referred to as a corrosive metal layer) made of a metal that chemically reacts with water to generate a corrosive substance, and a metal that does not transmit water vapor. And a water vapor impermeable layer (hereinafter referred to as a water vapor impermeable layer), wherein the water vapor impermeable layer comprises a metal layer that does not transmit water vapor (hereinafter referred to as a water vapor impermeable metal layer) and a water vapor impermeable metal. It is a schematic diagram which shows an example of the cell for evaluation provided with the laminated structure which has a crack prevention buffer layer (henceforth a crack prevention buffer layer) of a layer.
本発明の評価用セルは、フィルムなどの水蒸気透過性を評価する試験片1の評価面の所定の位置に、腐食性金属層2が設けられ、次いで、水蒸気不透過層6が設けられている。水蒸気不透過層6は、腐食性金属層2を覆うように、第一の水蒸気不透過金属層3が設けられ、さらに第一の水蒸気不透過金属層3を覆うように、割れ防止緩衝層4が設けられ、さらに割れ防止緩衝層4を覆うように、第二の水蒸気不透過金属層5が設けられた積層構造を有するものである。なお、水蒸気不透過層の構造は、2つの水蒸気不透過金属層の間に、割れ防止緩衝層を備えた積層構造を示したが、図面の構造に限られるものではないが、水蒸気不透過金属層は、1種又は2種以上の金属層であっても良い。 In the evaluation cell of the present invention, the corrosive metal layer 2 is provided at a predetermined position on the evaluation surface of the test piece 1 for evaluating water vapor permeability such as a film, and then the water vapor impermeable layer 6 is provided. . The water vapor impermeable layer 6 is provided with a first water vapor impermeable metal layer 3 so as to cover the corrosive metal layer 2, and further a crack preventing buffer layer 4 so as to cover the first water vapor impermeable metal layer 3. And a laminated structure in which the second water vapor impermeable metal layer 5 is provided so as to cover the crack preventing buffer layer 4. The structure of the water vapor impermeable layer is a laminated structure having a crack preventing buffer layer between the two water vapor impermeable metal layers, but is not limited to the structure shown in the drawing. The layer may be one type or two or more types of metal layers.
本発明の評価に用いる試験片としては、フィルム状、シート状、板状あるいはブロック状などの形状を有するものを用いることができる。本発明の水蒸気透過性評価には、一般的に、食品や電子部品などに用いられる単層もしくは複合防湿フィルムやシート、金属蒸着膜、建材用防水シート、組立部品などが適用される。 As a test piece used for the evaluation of the present invention, one having a film shape, a sheet shape, a plate shape, a block shape or the like can be used. In the water vapor permeability evaluation of the present invention, a single-layer or composite moisture-proof film or sheet used for food or electronic parts, a metal vapor-deposited film, a waterproof sheet for building materials, an assembly part, or the like is generally applied.
次に、本発明の評価用セルの作り方の例について、上記構造の一例を用いて説明する。
まず、水蒸気透過性を評価する試験片1を用意し、該試験片の評価する面、通常は水蒸気を接触させる面の反対側の面の所定の位置に、水と化学反応して腐食物を生じる金属を用いて、蒸着法などの方法により、腐食性金属層2を形成することができる。次いで、水蒸気不透過層6を形成するが、まず、上記試験片上の腐食性金属層2を覆うように、水蒸気を透過しない金属を用いて、蒸着法などの方法により第一の水蒸気不透過金属層3を形成することができる。
Next, an example of how to make the evaluation cell of the present invention will be described using an example of the above structure.
First, a test piece 1 for evaluating water vapor permeability is prepared, and a corrosive substance is chemically reacted with water at a predetermined position on the surface to be evaluated of the test piece, usually the surface opposite to the surface in contact with water vapor. Using the resulting metal, the corrosive metal layer 2 can be formed by a method such as vapor deposition. Next, a water vapor impermeable layer 6 is formed. First, a first water vapor impermeable metal is formed by a method such as vapor deposition using a metal that does not transmit water vapor so as to cover the corrosive metal layer 2 on the test piece. Layer 3 can be formed.
次いで、上記第一の水蒸気不透過金属層3を覆うように、アルカリ土類金属を用いて、上記同様にして蒸着法により、割れ防止緩衝金属層4を形成し、さらに上記割れ防止緩衝層4を覆うように、水蒸気を透過しない金属を用いて、上記同様にして蒸着法により、第二の水蒸気不透過金属層5を形成することで水蒸気不透過層6を形成することができる。 Next, a crack-preventing buffer metal layer 4 is formed by vapor deposition in the same manner as described above using an alkaline earth metal so as to cover the first water vapor-impermeable metal layer 3, and the crack-preventing buffer layer 4 is further formed. The water vapor impermeable layer 6 can be formed by forming the second water vapor impermeable metal layer 5 by vapor deposition in the same manner as described above using a metal that does not transmit water vapor so as to cover the surface.
次いで、上記で得られた、腐食性金属層2と水蒸気不透過層6が形成された試験片1において、水蒸気に暴露される際に、少なくとも腐食性金属層2と水蒸気不透過層6が水蒸気に接触することがないように、水蒸気接触面以外の部分を、樹脂、ガラス、金属等により封止を行い、評価用セルを得ることができる。 Next, in the test piece 1 in which the corrosive metal layer 2 and the water vapor impermeable layer 6 obtained above are formed, at least when the corrosive metal layer 2 and the water vapor impermeable layer 6 are exposed to water vapor, In order not to come into contact with the surface, portions other than the water vapor contact surface are sealed with resin, glass, metal, or the like, whereby an evaluation cell can be obtained.
上記水と化学反応して腐食物を生じる金属としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム及びフランシウムなどのアルカリ金属、マグネシウム、カルシウム、ストロンチウム、バリウム及びラジウムなどのアルカリ土類金属、さらにはアルミニウム、鉄及び鉛などのイオン化傾向の高い金属が挙げられる。これらの中でも、アルカリ土類金属又はアルカリ金属が好ましく、より好ましくはアルカリ土類金属であり、これらの中でも、バリウム又はカルシウムが好ましい。また、これらの金属の粒子径としては、1〜5mm程度のものを用いることができる。 Examples of the metal that generates a corrosive substance by chemically reacting with water include alkali metals such as lithium, sodium, potassium, rubidium, cesium and francium, alkaline earth metals such as magnesium, calcium, strontium, barium and radium, and Includes metals having a high ionization tendency such as aluminum, iron and lead. Among these, an alkaline earth metal or an alkali metal is preferable, an alkaline earth metal is more preferable, and among these, barium or calcium is preferable. Moreover, as a particle diameter of these metals, the thing about 1-5 mm can be used.
上記腐食性金属層を作製する方法としては、例えば、真空蒸着法、スパッタリング蒸着法、イオプレーテイング法等の公知の蒸着法を用いることができる。
上記腐食性金属層の厚みとしては、30nm〜500nmが好ましく、それぞれの腐食性金属層の厚みは同じであっても異なっていても良い。
As a method for producing the corrosive metal layer, for example, a known vapor deposition method such as a vacuum vapor deposition method, a sputtering vapor deposition method, or an ioplating method can be used.
The thickness of the corrosive metal layer is preferably 30 nm to 500 nm, and the thickness of each corrosive metal layer may be the same or different.
上記水蒸気を透過しない金属としては、水蒸気を透過しない、かつ、水と化学反応して腐食物を生じない金属であればよく、アルミニウム、亜鉛、錫、インジウム、鉛、銀及び銅などの金属が挙げられ、これらの金属を含む合金であっても良い。これらの中でも、アルミニウム及び銀が好ましい。これらの金属は、水蒸気不透過層において、異なる金属を用いることができる。 The metal that does not transmit water vapor may be any metal that does not transmit water vapor and that does not chemically react with water to produce a corrosive substance, such as aluminum, zinc, tin, indium, lead, silver, and copper. An alloy containing these metals may be used. Among these, aluminum and silver are preferable. As these metals, different metals can be used in the water vapor impermeable layer.
上記割れ防止緩衝層に用いるアルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム及びラジウムなどが挙げられる。これらの中でも、バリウム又はカルシウムが好ましい。また、割れ防止緩衝層に、水と化学反応して腐食物を生じる金属を用いることで、水蒸気不透過層の割れを確認することもできる。 Examples of the alkaline earth metal used for the anti-cracking buffer layer include magnesium, calcium, strontium, barium, and radium. Among these, barium or calcium is preferable. Moreover, the crack of a water vapor | steam impermeable layer can also be confirmed by using the metal which chemically reacts with water and produces a corrosive substance for a crack prevention buffer layer.
上記水蒸気不透過層の作製において、水蒸気不透過金属層と割れ防止緩衝金属層を作製する方法としては、上記腐食性金属層を作製する方法と同様な蒸着法を用いることができ、さらには一般的な溶射法を用いることができる。 In the production of the water vapor impermeable layer, the vapor deposition method similar to the method of producing the corrosive metal layer can be used as a method for producing the water vapor impermeable metal layer and the crack-preventing buffer metal layer. A thermal spraying method can be used.
上記水蒸気不透過金属層の厚みとしては、500nm〜20μmが好ましく、それぞれの水蒸気不透過金属層の厚みは同じであっても異なっていても良い。
また、割れ防止緩衝層の厚みとしては、10nm〜800nmが好ましい。
The thickness of the water vapor impermeable metal layer is preferably 500 nm to 20 μm, and the thickness of each water vapor impermeable metal layer may be the same or different.
Moreover, as thickness of a crack prevention buffer layer, 10 nm-800 nm are preferable.
上記水蒸気接触面以外の部分を封止する樹脂としては、評価用セルの水蒸気不透過層の表面を保護するために、評価の際に加湿を行う条件、例えば、温度40±0.5℃、相対湿度90±2%の条件下に、評価用セルを24時間暴露したときに、封止樹脂の質量変化が、暴露面積50cm2で当たり1mg以下である有機物であれば良く、具体例としては、蜜蝋、カルナバ蝋、パラフィン系ワックス等を挙げることができる。 As the resin that seals the portion other than the water vapor contact surface, in order to protect the surface of the water vapor impermeable layer of the evaluation cell, conditions for humidification during the evaluation, for example, a temperature of 40 ± 0.5 ° C., As long as the evaluation cell is exposed for 24 hours under a relative humidity of 90 ± 2%, the mass change of the sealing resin may be an organic substance that is 1 mg or less per exposed area of 50 cm 2. , Beeswax, carnauba wax, paraffin wax and the like.
水蒸気接触面以外の部分の封止を行う方法としては、例えば、蜜蝋とパラフィンとを1:1の割合で溶融混合した樹脂混合物を溶融させ、溶融樹脂として、これを用いて、少なくとも最外層の前記水蒸気不透過金属層(水蒸気不透過層)の露出面の全面を覆うことができるよう、接触させて樹脂層を形成した後、樹脂層を冷却固化させて封止することができる。また、ガラス板や金属板などと、溶融樹脂とを組み合わせて用いることにより、ガラス板や金属板などを樹脂で固定して、腐食性金属層と水蒸気不透過層を封止することもできる。 As a method for sealing a portion other than the water vapor contact surface, for example, a resin mixture in which beeswax and paraffin are melt-mixed at a ratio of 1: 1 is melted and used as a molten resin, and at least the outermost layer is used. After the resin layer is formed by contact so that the entire exposed surface of the water vapor impermeable metal layer (water vapor impermeable layer) can be covered, the resin layer can be cooled and solidified for sealing. Further, by using a combination of a glass plate or a metal plate and a molten resin, the corrosive metal layer and the water vapor impermeable layer can be sealed by fixing the glass plate or the metal plate with a resin.
次に、本発明の水蒸気透過性評価用セルの用い方の例を説明する。
本発明の水蒸気透過性評価用セルを用いて、試験片の水蒸気透過性を評価する方法の例としては、まず、上記評価用セルを用意し、これを水蒸気接触面に水蒸気が触れるように、恒温恒湿槽内に配置して、所定の条件下にて加湿処理を行う。
Next, an example of how to use the water vapor permeability evaluation cell of the present invention will be described.
As an example of a method for evaluating the water vapor permeability of a test piece using the water vapor permeability evaluation cell of the present invention, first, the above evaluation cell is prepared, so that the water vapor contacts the water vapor contact surface, It arrange | positions in a constant temperature and humidity tank, and performs a humidification process on predetermined conditions.
加湿処理条件としては、封止樹脂の融点以下での任意の条件下において行うことが好ましいが、例えば、温度が40±0.5℃で、相対湿度が90±2%で行うことができる。 As the humidification treatment conditions, it is preferable to carry out under arbitrary conditions below the melting point of the sealing resin. For example, the temperature can be 40 ± 0.5 ° C. and the relative humidity can be 90 ± 2%.
このような加湿処理を、測定する時間ごとに行った評価用セルを、それぞれ用意し、腐食性金属層の腐食状態を評価することにより、試験片の水蒸気透過性を評価することができる。また、加湿処理時間を経過するごとに、評価用セルを取り出し腐食性金属層の腐食状態を評価することもできる。 By preparing each cell for evaluation in which such a humidification treatment is performed at every measurement time and evaluating the corrosion state of the corrosive metal layer, the water vapor permeability of the test piece can be evaluated. Further, every time the humidifying treatment time elapses, the evaluation cell can be taken out to evaluate the corrosion state of the corrosive metal layer.
また、このような腐食状態を評価する方法としては、試験片と接する、腐食性金属層の表面を直接観察することにより、試験片の欠陥部(生成腐食物)を評価する方法が挙げられる。さらには、腐食性金属層における腐食物の面積と腐食物の厚みから算出される金属腐食物の体積から、試験片を透過した水分量を定量することができる。 Moreover, as a method of evaluating such a corrosion state, a method of directly evaluating the surface of the corrosive metal layer in contact with the test piece to evaluate a defective portion (generated corrosion product) of the test piece can be mentioned. Furthermore, the amount of moisture that has permeated through the test piece can be quantified from the volume of the corroded metal calculated from the area of the corroded material and the thickness of the corroded metal layer.
上記試験片を透過した水分量の定量法としては、加湿処理により、腐食性金属層は水分と化学反応することで、下記化学式(1)に示すように、価数aの腐食性金属層を構成する金属Mの1モルはaモルの水分と反応し、1モルの金属水酸化物を生成する。
M + aH2O → M(OH)a + (a/2)H2 化学式(1)
As a method of quantifying the amount of water that has passed through the test piece, the corrosive metal layer chemically reacts with moisture by the humidification treatment, so that the corrosive metal layer having a valence of a is represented by the following chemical formula (1). One mole of the constituent metal M reacts with a mole of water to produce one mole of metal hydroxide.
M + aH 2 O → M (OH) a + (a / 2) H 2 chemical formula (1)
このことより、試験片を透過した水分量を1日の単位面積当たりに換算した水蒸気透過度(単位:g/m2/day)として表すことができ、前記水蒸気透過度は、上記加湿処理における、加湿処理時間、水蒸気透過性評価用セルの腐食性金属層の面積、加湿処理後の腐食性金属層に生成した金属腐食物の面積と腐食性金属層の厚み、腐食後の金属水酸化物の密度から、下記数式(1)により算出して求めることができる。
水蒸気透過度=X*18*a*(10000/A)*(24/T) 数式(1)
From this, the water content permeated through the test piece can be expressed as water vapor permeability (unit: g / m 2 / day) converted per unit area per day. , Humidity treatment time, Area of corrosive metal layer of water vapor permeability evaluation cell, Area of corrosive metal layer formed on corrosive metal layer after humidification treatment and thickness of corrosive metal layer, Metal hydroxide after corrosion From the density, it can be calculated by the following formula (1).
Water vapor permeability = X * 18 * a * (10000 / A) * (24 / T) Formula (1)
なお、上記数式(1)中、Tは恒温恒湿処理時間(時間)、Aは腐食性金属層の面積(cm2)、tは腐食性金属層の厚み(cm)、δは腐食性金属層に生成した金属腐食物の面積(cm2)、dは腐食後の金属水酸化物密度(MOH)(g/cm3)、aは腐食性金属層を構成する金属の価数を表し、Xは下記数式(2)で得られる加湿処理により生成する金属腐食物(金属水酸化物)のモル質量(g/mol)を表す。
X=(δ*t*d)/Mw 数式(2)
上記数式(2)中、Mwは腐食性金属層に生成した金属腐食物(金属水酸化物)の分子量(式量)を表し、δ、t及びdは数式(1)中のそれらと同じものを表す。
In the above formula (1), T is constant temperature and humidity treatment time (hours), A is the area (cm 2 ) of the corrosive metal layer, t is the thickness (cm) of the corrosive metal layer, and δ is the corrosive metal. The area (cm 2 ) of the metal corrosive material generated in the layer, d is the metal hydroxide density (MOH) after corrosion (g / cm 3 ), a is the valence of the metal constituting the corrosive metal layer, X represents the molar mass (g / mol) of the metal corrosion product (metal hydroxide) generated by the humidification treatment obtained by the following mathematical formula (2).
X = (δ * t * d) / Mw Formula (2)
In the above formula (2), Mw represents the molecular weight (formula weight) of the metal corrosive (metal hydroxide) generated in the corrosive metal layer, and δ, t, and d are the same as those in the formula (1). Represents.
以下、実施例により本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these examples.
(実施例1)
(1)水蒸気透過性評価用セルの作製
試験片として、ポリエーテルサルホンフィルム(厚み200μm)とSiO2層(無機層、厚み50nm)からなる二層構造を有する水蒸気不透過性フィルムを用意し、試験片の一方の面の中央部に、腐食金属として金属カルシウム(2価)を用いて、真空蒸着装置(日本電子製真空蒸着装置JEE−400)により、面積が2.0mm×2.0mmで、厚み200nmの腐食性金属層を形成した。次いで、前記腐食性金属層の露出面のすべてを覆うように、金属アルミニウムを用いて、上記と同様の真空蒸着により、厚み4μmの第一の水蒸気不透過金属層を形成した。次いで、前記第一の水蒸気不透過金属層の露出面のすべてを覆うように、金属バリウム(2価)を用いて、真空蒸着法により、厚み50nmの割れ防止緩衝金属層を形成した。次いで、割れ防止緩衝金属層の露出面のすべてを覆うように、銀を用いて、真空蒸着法により、厚み1μmの第二の水蒸気不透過金属層を形成した。次いで、蜜蝋(融点60〜62℃)とパラフィン(融点60〜62℃)とを1:1の割合で溶融混合した樹脂を用いて、80℃〜100℃の温度で溶融させたものに、第二の水蒸気不透過金属層を全て覆うように接触させ、樹脂を冷却固化させて封止を行い、水蒸気透過性評価用セルを作製した。なお、試験片のフィルムは、その無機層をスパッタリングにて形成したものを用いた。
Example 1
(1) Preparation of water vapor permeability evaluation cell As a test piece, a water vapor impermeable film having a two-layer structure consisting of a polyethersulfone film (thickness 200 μm) and a SiO 2 layer (inorganic layer, thickness 50 nm) is prepared. In the center of one surface of the test piece, metal calcium (divalent) is used as a corrosive metal, and the area is 2.0 mm × 2.0 mm by a vacuum evaporation apparatus (JEOL-made vacuum evaporation apparatus JEE-400). Thus, a corrosive metal layer having a thickness of 200 nm was formed. Next, a first water vapor impermeable metal layer having a thickness of 4 μm was formed by vacuum vapor deposition similar to the above using metal aluminum so as to cover all of the exposed surface of the corrosive metal layer. Next, a crack-preventing buffer metal layer having a thickness of 50 nm was formed by vacuum deposition using barium metal (divalent) so as to cover all exposed surfaces of the first water vapor impermeable metal layer. Then, a second water vapor impermeable metal layer having a thickness of 1 μm was formed by vacuum deposition using silver so as to cover all of the exposed surface of the anti-cracking metal layer. Next, using a resin in which beeswax (melting point: 60 to 62 ° C.) and paraffin (melting point: 60 to 62 ° C.) were melt-mixed at a ratio of 1: 1, The two water vapor impermeable metal layers were all in contact with each other, the resin was cooled and solidified, and sealed to produce a water vapor permeability evaluation cell. In addition, the film of the test piece used what formed the inorganic layer by sputtering.
(2)水蒸気透過性の評価
上記で得た水蒸気透過性評価用セルを用い、これを40℃、湿度90%の恒温恒湿槽に、300時間載置し、恒温恒湿による処理(加湿処理)を行った。加湿処理後、第一の腐食性金属層における腐食物の生成について、レーザー顕微鏡により、2.0mm×2.0mmの画像を撮影し記録した。腐食した部分は、金属カルシウムが水分と反応し、水酸化カルシウムとなり、撮影すると変色あるいは白色部として観察された。予め、加湿処理前に、上記水蒸気透過性評価用セルの腐食性金属層における腐食物の生成について、レーザー顕微鏡により記録しておいた画像を基準として比較して、恒温恒湿処理500時間での腐食部の総面積を測定した。恒温恒湿度500時間処理後の2.0mm×2.0mmの面積の腐食性金属層に50〜150μm径の腐食が確認でき、腐食総面積は5.1x10−4cm2であった。腐食として観察される水酸化カルシウムの分子量と密度は76.1と2.24g/cm3とであることから、生成した水酸化カルシウムのモル質量は3.00x10−10g/molであった。これらより、水蒸気透過度を求めたところ、2.2×10−4(g/m2/day)であった。尚、腐食部付近を観察したが、水蒸気不透過層に割れは認められず、上記水蒸気透過性評価用セルが正常に機能したことがわかった。
(2) Evaluation of water vapor permeability Using the water vapor permeability evaluation cell obtained above, this was placed in a constant temperature and humidity chamber at 40 ° C and a humidity of 90% for 300 hours and treated by constant temperature and humidity (humidification treatment) ) After the humidification treatment, an image of 2.0 mm × 2.0 mm was taken and recorded with a laser microscope for the generation of corrosive substances in the first corrosive metal layer. In the corroded portion, metallic calcium reacted with moisture to form calcium hydroxide, and when photographed, it was observed as a discolored or white portion. Prior to the humidification treatment, the generation of the corrosive material in the corrosive metal layer of the water vapor permeability evaluation cell was compared with an image recorded by a laser microscope as a reference, and the constant temperature and humidity treatment was performed for 500 hours. The total area of the corroded area was measured. Corrosion having a diameter of 50 to 150 μm was confirmed in the corrosive metal layer having an area of 2.0 mm × 2.0 mm after treatment for 500 hours at constant temperature and humidity, and the total corrosion area was 5.1 × 10 −4 cm 2 . Since the molecular weight and density of calcium hydroxide observed as corrosion were 76.1 and 2.24 g / cm 3 , the molar mass of the produced calcium hydroxide was 3.00 × 10 −10 g / mol. From these, the water vapor transmission rate was determined to be 2.2 × 10 −4 (g / m 2 / day). Although the vicinity of the corroded portion was observed, no crack was observed in the water vapor impermeable layer, and it was found that the water vapor permeability evaluation cell functioned normally.
(実施例2)
(1)水蒸気透過性評価用セルの作製
実施例1において、第二の水蒸気不透過金属層に、第一の水蒸気不透過金属層の形成に用いた金属アルミニウムを用いた以外は、実施例1と同様にして、水蒸気透過性評価用セルを作製した。
(Example 2)
(1) Production of Water Vapor Permeability Evaluation Cell In Example 1, except that the metal aluminum used for forming the first water vapor impermeable metal layer was used for the second water vapor impermeable metal layer. In the same manner, a water vapor permeability evaluation cell was produced.
(2)水蒸気透過性の評価
上記で得た水蒸気透過性評価用セルを用い、実施例1における恒温恒湿槽の載置時間を、300時間から400時間とした以外は、実施例1と同様の操作により水蒸気透過性の評価を行った。
加湿処理後の腐食性金属層における腐食物の生成について確認したところ、変色あるいは白色部となった腐食物である水酸化カルシウムが観察された。恒温恒湿度600時間処理後の2.0mm×2.0mmの面積の腐食性金属層には、60〜160μm径の腐食が確認でき、腐食総面積は5.6×10−4cm2であった。これより算出される水酸化カルシウムのmol質量は3.30×10−10g/molであった。これらより、水蒸気透過度を求めたところ、1.8×10−4(g/m2/day)であった。尚、腐食部付近を観察したが、水蒸気不透過層に割れは認められ認められず、上記水蒸気透過性評価用セルが正常に機能したことがわかった。
(2) Evaluation of water vapor permeability Similar to Example 1 except that the water vapor permeability evaluation cell obtained above was used and the mounting time of the constant temperature and humidity chamber in Example 1 was changed from 300 hours to 400 hours. The water vapor permeability was evaluated by the operation of
As a result of confirming the formation of corrosives in the corrosive metal layer after the humidification treatment, calcium hydroxide, which is a discolored or white corroded corrosive, was observed. Corrosion with a diameter of 60 to 160 μm can be confirmed in the corrosive metal layer having an area of 2.0 mm × 2.0 mm after treatment for 600 hours at constant temperature and humidity, and the total corrosion area is 5.6 × 10 −4 cm 2. It was. The molar mass of calcium hydroxide calculated from this was 3.30 × 10 −10 g / mol. From these, the water vapor transmission rate was determined to be 1.8 × 10 −4 (g / m 2 / day). Although the vicinity of the corroded portion was observed, no cracks were observed in the water vapor impermeable layer, indicating that the water vapor permeability evaluation cell functioned normally.
(実施例3)
(1)蒸気透過性評価用セルの作製
実施例1において、水蒸気不透過性フィルム上に、直径約100μm〜約500μmの異物粒子を付着させた試験片を用いた以外は、実施例1と同様にして、水蒸気透過性評価用セルを作製した。
(Example 3)
(1) Fabrication of vapor permeability evaluation cell In Example 1, except that a test piece in which foreign particles having a diameter of about 100 μm to about 500 μm were adhered to a water vapor impermeable film was used. Thus, a water vapor permeability evaluation cell was produced.
(2)水蒸気透過性の評価
上記で得た水蒸気透過性評価用セルを用い、実施例1における恒温恒湿槽の載置時間を、300時間から450時間とした以外は、実施例1と同様の操作により水蒸気透過性の評価を行った。
加湿処理後の腐食性金属層における腐食物の生成について確認したところ、変色あるいは白色部となった腐食物である水酸化カルシウムが観察された。恒温恒湿度700時間処理後の2.0mm×2.0mmの面積の腐食性金属層には、50〜140μm径の腐食が確認でき、腐食総面積は3.6×10−4cm2であった。これより算出される水酸化カルシウムのmol質量は2.12×10−10g/molであった。これらより、水蒸気透過度を求めたところ、1.0×10−4(g/m2/day)であった。尚、腐食部付近を観察したが、水蒸気不透過層に割れは認められず、上記水蒸気透過性評価用セルが正常に機能したことがわかった。
(2) Evaluation of water vapor permeability Similar to Example 1 except that the water vapor permeability evaluation cell obtained above was used and the time for placing the constant temperature and humidity chamber in Example 1 was changed from 300 hours to 450 hours. The water vapor permeability was evaluated by the operation of
As a result of confirming the formation of corrosives in the corrosive metal layer after the humidification treatment, calcium hydroxide, which is a discolored or white corroded corrosive, was observed. Corrosion with a diameter of 50 to 140 μm can be confirmed in the corrosive metal layer having an area of 2.0 mm × 2.0 mm after being treated for 700 hours at constant temperature and humidity, and the total corrosion area is 3.6 × 10 −4 cm 2. It was. The molar mass of calcium hydroxide calculated from this was 2.12 × 10 −10 g / mol. From these, when the water vapor permeability was determined, it was 1.0 × 10 −4 (g / m 2 / day). Although the vicinity of the corroded portion was observed, no crack was observed in the water vapor impermeable layer, and it was found that the water vapor permeability evaluation cell functioned normally.
(比較例1)
(1)水蒸気透過性評価用セルの作製
実施例1において、水蒸気不透過性フィルム上に、直径約100μm〜約500μmの異物粒子を付着させた試験片を用い、水蒸気不透過層について、割れ防止緩衝金属層と第二の水蒸気不透過金属層を形成しなかった以外は、実施例1と同様にして水蒸気透過性評価用セルを作製した。
(Comparative Example 1)
(1) Production of water vapor permeability evaluation cell In Example 1, using a test piece in which foreign particles having a diameter of about 100 μm to about 500 μm were adhered on a water vapor impermeable film, the water vapor impermeable layer was prevented from cracking. A water vapor permeability evaluation cell was prepared in the same manner as in Example 1 except that the buffer metal layer and the second water vapor impermeable metal layer were not formed.
(2)水蒸気透過性の評価
上記で得た水蒸気透過性評価用セルを用い、実施例1と同様の操作により水蒸気透過性の評価を行った。
加湿処理後の腐食性金属層における腐食物の生成について確認したところ、変色あるいは白色部となった腐食物である水酸化カルシウムが観察された。恒温恒湿度500時間処理後の2.0mm×2.0mmサイズのカルシウム薄膜中に100〜580μm径の腐食が確認でき、腐食総面積は7.5×10−3cm2であった。これより算出される水酸化カルシウムのmol質量は4.42×10−9g/molであった。これらより、水蒸気透過度を求めたところ、3.2×10−3(g/m2/day)であった。なお、腐食部付近を観察したところ、水蒸気不透過層に割れが認められ、水蒸気透過性評価用セルが正常に機能していないことがわかった。
(2) Evaluation of water vapor permeability Water vapor permeability was evaluated by the same operation as in Example 1 using the water vapor permeability evaluation cell obtained above.
As a result of confirming the formation of corrosives in the corrosive metal layer after the humidification treatment, calcium hydroxide, which is a discolored or white corroded corrosive, was observed. Corrosion with a diameter of 100 to 580 μm was confirmed in a 2.0 mm × 2.0 mm size calcium thin film after treatment for 500 hours at constant temperature and humidity, and the total corrosion area was 7.5 × 10 −3 cm 2 . The molar mass of calcium hydroxide calculated from this was 4.42 × 10 −9 g / mol. From these, the water vapor transmission rate was determined to be 3.2 × 10 −3 (g / m 2 / day). When the vicinity of the corroded portion was observed, cracks were observed in the water vapor impermeable layer, and it was found that the water vapor permeability evaluation cell did not function normally.
1 試験片
2 腐食性金属層
3 第一の水蒸気不透過金属層
4 割れ防止緩衝金属層
5 第二の水蒸気不透過金属層
6 水蒸気不透過層
DESCRIPTION OF SYMBOLS 1 Test piece 2 Corrosive metal layer 3 1st water vapor impermeable metal layer 4 Crack prevention buffer metal layer 5 2nd water vapor impermeable metal layer 6 Water vapor impermeable layer
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010143062A JP5581844B2 (en) | 2010-06-23 | 2010-06-23 | Water vapor permeability evaluation cell and water vapor permeability evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010143062A JP5581844B2 (en) | 2010-06-23 | 2010-06-23 | Water vapor permeability evaluation cell and water vapor permeability evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012007954A JP2012007954A (en) | 2012-01-12 |
JP5581844B2 true JP5581844B2 (en) | 2014-09-03 |
Family
ID=45538680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010143062A Active JP5581844B2 (en) | 2010-06-23 | 2010-06-23 | Water vapor permeability evaluation cell and water vapor permeability evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5581844B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013224877A (en) * | 2012-04-23 | 2013-10-31 | Sumitomo Bakelite Co Ltd | Vapor permeability evaluation cell and vapor permeability evaluation method |
JP6635033B2 (en) * | 2014-06-17 | 2020-01-22 | コニカミノルタ株式会社 | Water vapor permeability evaluation method and water vapor permeability evaluation device |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001337084A (en) * | 2000-05-30 | 2001-12-07 | Tokyo Gas Co Ltd | Method for simply evaluating moisture permeability of coating film |
JP2002357533A (en) * | 2001-05-31 | 2002-12-13 | Sony Corp | Method and apparatus for evaluating permeability |
JP3958235B2 (en) * | 2002-04-05 | 2007-08-15 | 住友ベークライト株式会社 | Water vapor barrier evaluation cell and water vapor barrier evaluation method |
JP4470707B2 (en) * | 2003-11-26 | 2010-06-02 | 住友ベークライト株式会社 | Water vapor permeability evaluation method |
JP2005283561A (en) * | 2004-03-04 | 2005-10-13 | Sumitomo Bakelite Co Ltd | Steam permeability measurement device |
JP2006105713A (en) * | 2004-10-04 | 2006-04-20 | Seiko Epson Corp | Method of manufacturing laminate for evaluating gas characteristic, laminate for evaluating gas characteristic, evaluation method and evaluation device |
JP4407466B2 (en) * | 2004-10-25 | 2010-02-03 | 住友ベークライト株式会社 | Water vapor permeability measurement method by calcium corrosion method |
JP2007095462A (en) * | 2005-09-28 | 2007-04-12 | Dainippon Printing Co Ltd | Battery exterior sheet manufacturing method, battery exterior sheet, and battery |
JP4855276B2 (en) * | 2007-01-15 | 2012-01-18 | 株式会社アルバック | Sample stand, sample to be measured, moisture permeability measuring device |
JP2010138600A (en) * | 2008-12-11 | 2010-06-24 | Shimizu Corp | Method for managing compaction of backfilled soil |
JP5369994B2 (en) * | 2009-08-25 | 2013-12-18 | 凸版印刷株式会社 | Water vapor permeability measuring method and apparatus |
-
2010
- 2010-06-23 JP JP2010143062A patent/JP5581844B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012007954A (en) | 2012-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Air sensitivity and degradation evolution of halide solid state electrolytes upon exposure | |
KR100846296B1 (en) | Pouch for packing cell and method for preparing the same | |
KR101296415B1 (en) | Base with film and glass for film formation | |
JP5359575B2 (en) | Water vapor barrier property evaluation unit and water vapor barrier property evaluation method | |
TW200915637A (en) | Low temperature sintering using Sn2+ containing inorganic materials to hermetically seal a device | |
TWI518352B (en) | Radiation detector and manufacturing method thereof | |
EP1880033A2 (en) | High performance alloys with improved metal dusting corrosion resistance | |
JP5581844B2 (en) | Water vapor permeability evaluation cell and water vapor permeability evaluation method | |
WO2000060904A1 (en) | Organic el device | |
JPWO2011062003A1 (en) | Lanthanum oxide target storage method and vacuum sealed lanthanum oxide target | |
JP3958235B2 (en) | Water vapor barrier evaluation cell and water vapor barrier evaluation method | |
Keppert et al. | The effect of magnesium on the corrosion of hot‐dip galvanized steel in chloride containing environments | |
JP5581893B2 (en) | Water vapor permeability evaluation cell and manufacturing method thereof | |
Keppert et al. | Investigation of the corrosion behavior of Zn-Al-Mg hot-dip galvanized steel in alternating climate tests | |
CN108349047A (en) | Bonding composition | |
JP6614551B2 (en) | Method for manufacturing intermediate material for electronic device, method for manufacturing electronic device, and intermediate material for electronic device | |
JP6149997B1 (en) | Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation | |
JP2004325445A (en) | Scintillator panel, radiation detector, and radiation detection system | |
JP2013088249A (en) | Cell for moisture permeability evaluation and moisture permeability evaluation method | |
JP7238566B2 (en) | Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation | |
JP2013224877A (en) | Vapor permeability evaluation cell and vapor permeability evaluation method | |
JP2018189240A (en) | Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material | |
JP3956623B2 (en) | High water vapor barrier film | |
JPWO2006103739A1 (en) | Insulated container | |
Folgner | Towards understanding the environmental durability and corrosion behavior of protected silver mirrors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130813 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140617 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140630 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5581844 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |