JP2012046061A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2012046061A
JP2012046061A JP2010189546A JP2010189546A JP2012046061A JP 2012046061 A JP2012046061 A JP 2012046061A JP 2010189546 A JP2010189546 A JP 2010189546A JP 2010189546 A JP2010189546 A JP 2010189546A JP 2012046061 A JP2012046061 A JP 2012046061A
Authority
JP
Japan
Prior art keywords
tire
belt
width direction
cord
reinforcing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010189546A
Other languages
Japanese (ja)
Other versions
JP5639415B2 (en
Inventor
Naoto Oda
直人 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010189546A priority Critical patent/JP5639415B2/en
Publication of JP2012046061A publication Critical patent/JP2012046061A/en
Application granted granted Critical
Publication of JP5639415B2 publication Critical patent/JP5639415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C9/2204Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre obtained by circumferentially narrow strip winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/2266Density of the cords in width direction
    • B60C2009/2271Density of the cords in width direction with variable density

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of reducing passage noise during vehicle traveling while flat spot performance and high-speed durability performance are secured.SOLUTION: In the pneumatic tire 10, a belt 12 is disposed in a tread forming position on the outside in the tire radial direction of a carcass 11, and a belt reinforcing layer 13 is formed by spirally winding a cord in the tire circumferential direction on the outside in the tire radial direction of the belt 12. The cord winding density of the belt reinforcing layer 13 is formed lower in the center in the tire width direction than the end in the tire width direction, and a distance in the tire radial direction from the surface of the belt 12 to the surface of the tread 14 is formed longer in the center in the tire width direction than in the end in the tire width direction.

Description

この発明は、空気入りタイヤに関し、特に、カーカスを覆ってベルト層及びベルト補強層を有する空気入りタイヤに関する。   The present invention relates to a pneumatic tire, and more particularly, to a pneumatic tire having a belt layer and a belt reinforcing layer covering a carcass.

従来、カーカスと、ベルト層と、ベルト層のタイヤ半径方向外側に小巾の帯状プライをベルト層の全幅にわたって螺旋巻きすることにより形成されたバンドプライからなるバンド層(ベルト補強層)とを備えた「空気入りラジアルタイヤ」(特許文献1参照)が知られている。この「空気入りラジアルタイヤ」においては、通過騒音と転がり抵抗を悪化させることなくロードノイズを低減するために、帯状プライの巻き付けピッチをトレッドの中央部と外側部で変更している。   Conventionally, a carcass, a belt layer, and a band layer (belt reinforcement layer) made of a band ply formed by spirally winding a belt-shaped ply with a small width over the entire width of the belt layer on the outer side in the tire radial direction of the belt layer. Further, a “pneumatic radial tire” (see Patent Document 1) is known. In this “pneumatic radial tire”, the winding pitch of the belt-like ply is changed between the central portion and the outer portion of the tread in order to reduce road noise without deteriorating passing noise and rolling resistance.

ところで、空気入りタイヤにおいて、フラットスポット性能を高めるためには、即ち、タイヤ外周面の路面との接地部分が、例えば、駐車や保管等により平面状に変形してしまうフラットスポットを起こり難くするためには、ベルトのタイヤ周方向剛性を高める必要があるため、従来の「空気入りラジアルタイヤ」においては、バンド層を形成する帯状プライを、帯状プライの幅の1.0倍のピッチでタイヤ周方向に螺旋状に巻き付けていた。   By the way, in a pneumatic tire, in order to improve the flat spot performance, that is, in order to make it difficult to generate a flat spot in which the ground contact portion with the road surface of the tire outer peripheral surface is deformed into a flat shape due to, for example, parking or storage. Therefore, in the conventional “pneumatic radial tire”, the belt-like ply forming the band layer is arranged at a pitch of 1.0 times the width of the belt-like ply. It was spirally wound in the direction.

特開2003−182307号公報JP 2003-182307 A

しかしながら、帯状プライをタイヤ周方向に螺旋状に巻回することによりバンド層を形成して、ベルトのタイヤ周方向剛性を高めた場合、ベルトのタイヤ周方向の変形が抑制されることによって、タイヤ外周面の路面との接地幅が増大することになる。タイヤ外周面の路面との接地幅が増大すると、タイヤと路面との間で形成される音場特性の悪化を招くことになり、その結果、車両走行時における通過騒音(車外騒音)の増大化が避けられない。   However, when the belt layer is formed by spirally winding the belt-like ply in the tire circumferential direction to increase the tire circumferential rigidity of the belt, the deformation of the belt in the tire circumferential direction is suppressed, so that the tire The contact width between the outer peripheral surface and the road surface is increased. If the contact width between the tire outer peripheral surface and the road surface increases, the sound field characteristic formed between the tire and the road surface will be deteriorated, and as a result, the passing noise (external vehicle noise) will increase during vehicle travel. Is inevitable.

そこで、タイヤ外周面の路面との接地幅の増大を抑制するためには、バンドコードをタイヤ周方向に螺旋状に巻回して形成したバンドプライのタイヤ周方向剛性を低下させる必要があるが、バンドプライ全体の剛性を低下させると、トレッドの外側部(トレッドショルダー部)に必要な剛性も確保することができなくなって、高速耐久性能の低下をもたらすことになる。このため、必要とするフラットスポット性能と高速耐久性能を確保したまま、車両走行時の通過騒音を低減することができなかった。   Therefore, in order to suppress an increase in the contact width with the road surface of the tire outer peripheral surface, it is necessary to reduce the tire circumferential rigidity of the band ply formed by spirally winding the band cord in the tire circumferential direction. If the rigidity of the entire band ply is lowered, the rigidity necessary for the outer portion (tread shoulder portion) of the tread cannot be ensured, and the high-speed durability performance is lowered. For this reason, it has been impossible to reduce the passing noise when the vehicle is running while ensuring the required flat spot performance and high-speed durability performance.

この発明の目的は、コード配列した帯状プライをタイヤ周方向に螺旋状に巻き付けて形成したベルト補強層において必要とするフラットスポット性能と高速耐久性能を確保したまま、車両走行時の通過騒音を低減することができる空気入りタイヤを提供することである。   The object of the present invention is to reduce the passing noise when the vehicle is running while ensuring the flat spot performance and the high-speed durability performance required for the belt reinforcement layer formed by winding the cord-shaped belt-like ply spirally in the tire circumferential direction. It is to provide a pneumatic tire that can.

上記目的を達成するため、この発明に係る空気入りタイヤは、カーカスのタイヤ径方向外側のトレッド形成位置にベルトを配置し、前記ベルトのタイヤ径方向外側に、コードをタイヤ周方向に螺旋状に巻回してベルト補強層を形成した空気入りタイヤにおいて、前記ベルト補強層の前記コードの巻回密度は、タイヤ幅方向端部に比べタイヤ幅方向中央部の方が低く形成され、前記ベルトのタイヤ径方向最外側表面からトレッド表面までのタイヤ径方向距離は、タイヤ幅方向中央部の方がタイヤ幅方向端部より長く形成されている。ベルト補強層は、コードを配列した帯状ベルトのピッチを変化させて巻回することにより、コードの巻回密度(単位幅当たりの本数)を変化させている。
また、この発明の他の態様に係る空気入りタイヤは、前記ベルト補強層の前記タイヤ幅方向端部が、前記コードをタイヤ径方向に重ねた二層構造を有している。
In order to achieve the above object, a pneumatic tire according to the present invention has a belt disposed at a tread formation position on the outer side in the tire radial direction of the carcass, and a cord is spirally formed in the tire circumferential direction on the outer side in the tire radial direction of the belt. In the pneumatic tire in which the belt reinforcing layer is formed by winding, the winding density of the cord of the belt reinforcing layer is formed lower in the center portion in the tire width direction than in the end portion in the tire width direction. The distance in the tire radial direction from the radially outermost surface to the tread surface is longer at the tire width direction center than at the tire width direction end. The belt reinforcement layer is wound by changing the pitch of the belt in which the cords are arranged, thereby changing the winding density (number per unit width) of the cords.
In the pneumatic tire according to another aspect of the present invention, the end portion in the tire width direction of the belt reinforcing layer has a two-layer structure in which the cords are stacked in the tire radial direction.

また、この発明の他の態様に係る空気入りタイヤは、前記ベルト補強層が、高弾性フィラメントと低弾性フィラメントとを撚り合わせた複合コードからなる。
また、この発明の他の態様に係る空気入りタイヤは、前記複合コードが、荷重−伸び曲線の原点から変曲点に至る低弾性域と変曲点を越える高弾性域とを有し、タイヤ内部でのコード長に対する伸張率が前記変曲点における伸び以下である。ここで、タイヤ内部は、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、或いはETRTOに規定される「INFLATION PRESSURES」の状態にある。なお、変曲点を越えるのは高速走行時である。
また、この発明の他の態様に係る空気入りタイヤは、前記ベルト補強層の加硫時拡張率が、タイヤ幅方向端部に比べタイヤ幅方向中央部の方が大きい。
In the pneumatic tire according to another aspect of the present invention, the belt reinforcing layer is composed of a composite cord in which a high elastic filament and a low elastic filament are twisted together.
In the pneumatic tire according to another aspect of the present invention, the composite cord has a low elastic region from the origin of the load-elongation curve to the inflection point and a high elastic region beyond the inflection point. The elongation ratio with respect to the inner cord length is equal to or less than the elongation at the inflection point. Here, the inside of the tire is in the state of “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO. . The inflection point is exceeded during high speed driving.
Further, in the pneumatic tire according to another aspect of the present invention, the expansion ratio at the time of vulcanization of the belt reinforcing layer is larger in the center portion in the tire width direction than in the end portion in the tire width direction.

この発明に係る空気入りタイヤによれば、ベルト補強層のコードの巻回密度は、タイヤ幅方向端部に比べタイヤ幅方向中央部の方が低く形成され、ベルトのタイヤ径方向最外側表面からトレッド表面までのタイヤ径方向距離は、タイヤ幅方向中央部の方がタイヤ幅方向端部より長く形成されているので、コードをタイヤ周方向に螺旋状に巻回して形成したベルト補強層において必要とするフラットスポット性能と高速耐久性能を確保したまま、車両走行時の通過騒音を低減することができる。   According to the pneumatic tire according to the present invention, the winding density of the cord of the belt reinforcing layer is formed lower in the tire width direction center than in the tire width direction end, and from the outermost surface of the belt in the tire radial direction. Since the distance in the tire radial direction to the tread surface is longer at the center in the tire width direction than at the end in the tire width direction, it is necessary for the belt reinforcement layer formed by spirally winding the cord in the tire circumferential direction. It is possible to reduce the passing noise during traveling of the vehicle while ensuring the flat spot performance and the high speed durability performance.

また、この発明の他の態様に係る空気入りタイヤによれば、ベルト補強層のタイヤ幅方向端部が、コードをタイヤ径方向に重ねた二層構造を有するので、トレッドショルダー部の張力を高めて十分な張力を確保することができ、十分な高速耐久性を備えることができる。
また、この発明の他の態様に係る空気入りタイヤによれば、ベルト補強層の加硫時拡張率が、タイヤ幅方向端部に比べタイヤ幅方向中央部の方が大きいので、フラットスポット性能と高速耐久性能を確保したまま、車両走行時の通過騒音を低減することがより的確に実現できる。
Further, according to the pneumatic tire according to another aspect of the present invention, the end of the belt reinforcing layer in the tire width direction has a two-layer structure in which the cords are stacked in the tire radial direction, so that the tension of the tread shoulder portion is increased. Sufficient tension can be secured, and sufficient high-speed durability can be provided.
Further, according to the pneumatic tire according to another aspect of the present invention, the expansion ratio at the time of vulcanization of the belt reinforcing layer is larger in the center portion in the tire width direction than in the end portion in the tire width direction, so that the flat spot performance and It is possible to more accurately achieve the reduction of passing noise during vehicle travel while ensuring high-speed durability performance.

この発明の一実施の形態に係る空気入りタイヤの構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the pneumatic tire which concerns on one embodiment of this invention. ハイブリッドレイヤーベルト構造における加硫時拡張変化時のベルト拡張率の計算方法を説明する断面説明図である。It is a cross-sectional explanatory drawing explaining the calculation method of the belt expansion rate at the time of the expansion change at the time of vulcanization in a hybrid layer belt structure.

以下、この発明を実施するための形態について図面を参照して説明する。
図1は、この発明の一実施の形態に係る空気入りタイヤの構成を模式的に示す説明図である。図1に示すように、空気入りタイヤ10は、ラジアル構造のカーカス11、カーカス11のタイヤ径方向外側に配置されたベルト12、ベルト12のタイヤ径方向外側に配置されたベルト補強層13、及びベルト補強層13のタイヤ径方向外側に配置された、タイヤ踏面となるトレッド14を有している。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view schematically showing a configuration of a pneumatic tire according to an embodiment of the present invention. As shown in FIG. 1, a pneumatic tire 10 includes a radial structure carcass 11, a belt 12 disposed on the outer side in the tire radial direction of the carcass 11, a belt reinforcing layer 13 disposed on the outer side in the tire radial direction of the belt 12, and A tread 14 serving as a tire tread is disposed outside the belt reinforcing layer 13 in the tire radial direction.

カーカス11は、環状構造を有する左右一対のビードコア(図示しない)間にトロイダル状に架け渡されてタイヤの骨格を構成しており、ベルト12は、タイヤクラウン部においてカーカス11のタイヤ半径方向に重なる少なくとも2枚(一例として、第1ベルト12aと第2ベルト12bを図示)のベルト層から構成されている。
ベルト補強層13は、高弾性繊維(高弾性フィラメント)と低弾性繊維(低弾性フィラメント)を撚り合わせた複合コード(コード幅が約6mm)を、タイヤ周方向に連続して螺旋状に巻回することにより形成されている。高弾性繊維としては、例えば、芳香族ポリアミド繊維が、低弾性繊維としては、例えば、ナイロン繊維が、それぞれ用いられ、複合コードは、例えば、ゴム被覆したシート状に形成されて帯状ベルトになる。
The carcass 11 is constructed in a toroidal shape between a pair of left and right bead cores (not shown) having an annular structure to constitute a tire skeleton, and the belt 12 overlaps the tire radius direction of the carcass 11 at the tire crown. At least two belt layers (for example, the first belt 12a and the second belt 12b are illustrated) are configured.
The belt reinforcing layer 13 is formed by continuously winding a composite cord (cord width: about 6 mm) in which a high elastic fiber (high elastic filament) and a low elastic fiber (low elastic filament) are twisted in a spiral shape in the tire circumferential direction. It is formed by doing. As the high elastic fiber, for example, an aromatic polyamide fiber is used, and as the low elastic fiber, for example, a nylon fiber is used, and the composite cord is formed in a rubber-coated sheet shape to form a belt belt.

この複合コードは、荷重−伸び曲線の原点から変曲点に至る低弾性域と、変曲点を越える高弾性域とを有しており、この変曲点におけるコードの伸びが2〜7%であると共に、タイヤ内部が、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、或いはETRTOに規定される「INFLATION PRESSURES」の状態でのコード長に対する伸張率が、変曲点におけるコードの伸び(2〜7%)以下である。   This composite cord has a low elastic region from the origin of the load-elongation curve to the inflection point and a high elastic region exceeding the inflection point, and the elongation of the cord at the inflection point is 2 to 7%. In addition, the inside of the tire is in the state of “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO. The elongation ratio with respect to the cord length is equal to or less than the elongation (2 to 7%) of the cord at the inflection point.

また、ベルト補強層13は、帯状ベルトをタイヤ周方向に螺旋状に巻回する際の巻回ピッチが、複合コードの幅(コード幅)の1.0〜1.1倍である高密度部と、巻回ピッチが、コード幅の1.4〜1.7倍である低密度部の、タイヤ幅方向における巻回ピッチの密度が異なる二種類の領域により形成されている。つまり、帯状ベルトの巻回ピッチがコード幅の1.0〜1.1倍である高密度部のタイヤ幅方向長さ(高密度部幅W1)は、ベルト補強層13のタイヤ幅方向全域の長さ、即ち、全ベルト幅Wに対し16〜28%の範囲であるベルト端部に設定されている。ベルト補強層13の高密度部の一部となる、高密度部のタイヤ幅方向外側部分は、複合コードがタイヤ径方向に重なる、下部ベルト13aと上部ベルト13bからなる二層構造に形成され、タイヤ径方向外側の上部ベルト13bのベルト幅W2は、全ベルト幅Wに対して5〜16%の範囲に設定されている。   The belt reinforcing layer 13 is a high-density portion in which the winding pitch when the belt-like belt is spirally wound in the tire circumferential direction is 1.0 to 1.1 times the width of the composite cord (cord width). And, the winding pitch is formed of two types of regions having different winding pitch densities in the tire width direction in the low density portion having a cord width of 1.4 to 1.7 times the cord width. That is, the length in the tire width direction (high density portion width W1) of the high density portion in which the winding pitch of the belt-like belt is 1.0 to 1.1 times the cord width is the entire region of the belt reinforcing layer 13 in the tire width direction. The belt end is set to a length, that is, a range of 16 to 28% of the entire belt width W. The outer portion in the tire width direction of the high-density portion, which is a part of the high-density portion of the belt reinforcing layer 13, is formed in a two-layer structure including a lower belt 13a and an upper belt 13b in which the composite cord overlaps in the tire radial direction. The belt width W2 of the upper belt 13b on the outer side in the tire radial direction is set to a range of 5 to 16% with respect to the total belt width W.

従って、ベルト補強層13のタイヤ幅方向中央部(タイヤ赤道CL近傍)上では、ベルト端部であるタイヤ幅方向端部(トレッドショルダー部)に比べて、コード幅に対する、複合コードをタイヤ周方向に一周巻いた後のタイヤ幅方向への移動量が大きくなる。   Therefore, on the central portion of the belt reinforcing layer 13 in the tire width direction (near the tire equator CL), the composite cord with respect to the cord width is arranged in the tire circumferential direction as compared with the end portion in the tire width direction (tread shoulder portion) that is the belt end portion. The amount of movement in the tire width direction after one turn is increased.

また、ベルト12が2枚のベルト層から構成されている場合、第1ベルト12aのタイヤ径方向外側に重なる第2ベルト12bのタイヤ幅方向端部における補強層加硫時拡張率を0.5〜0.95%、ベルト12のタイヤ幅方向中央部(タイヤ赤道CL)における補強層加硫時拡張率を1.5〜1.8%未満(従来は、1.8〜2.2%)とする。補強層加硫時拡張率とは、空気入りタイヤ10の製造過程において未加硫タイヤを加硫用モールドにより加硫する際の、ベルト補強層13の拡張率である。   Further, when the belt 12 is constituted by two belt layers, the expansion rate at the time of reinforcing layer vulcanization at the end portion in the tire width direction of the second belt 12b overlapping the outer side in the tire radial direction of the first belt 12a is 0.5. ~ 0.95%, expansion rate at the time of reinforcing layer vulcanization at the center of the belt 12 in the tire width direction (tire equator CL) is less than 1.5 to 1.8% (previously 1.8 to 2.2%) And The expansion rate at the time of vulcanization layer vulcanization is the expansion rate of the belt reinforcement layer 13 when an unvulcanized tire is vulcanized by a vulcanization mold in the manufacturing process of the pneumatic tire 10.

また、タイヤ幅方向中央部(タイヤ赤道CL)におけるベルト12のタイヤ径方向最外側表面からトレッド14の表面までのタイヤ径方向距離を、ベルト補強層13を形成する複合コードのタイヤ幅方向への移動量が切り替わる場所、即ち、巻回ピッチが高密度部から低密度部へと切り替わる場所であるタイヤ幅方向端部における、ベルト12のタイヤ径方向最外側表面からトレッド14の表面までのタイヤ径方向距離の1.2〜1.8倍になるようにする。
このように、タイヤ幅方向中央部(タイヤ赤道CL)のトレッド14の厚みを従来に比べて厚くすることにより、タイヤ幅方向中央部におけるベルト補強層13の加硫時拡張率が従来に比べて低下し、タイヤ幅方向中央部の複合コードの張力が従来に比べて低下することになる。
In addition, the distance in the tire radial direction from the outermost surface in the tire radial direction of the belt 12 to the surface of the tread 14 in the tire width direction central portion (tire equator CL) is determined in the tire width direction of the composite cord forming the belt reinforcing layer 13. The tire diameter from the outermost surface in the tire radial direction of the belt 12 to the surface of the tread 14 at the end portion in the tire width direction where the movement amount is switched, that is, where the winding pitch is switched from the high density portion to the low density portion. The distance is 1.2 to 1.8 times the directional distance.
Thus, by increasing the thickness of the tread 14 at the center in the tire width direction (tire equator CL) as compared with the conventional one, the expansion rate during vulcanization of the belt reinforcing layer 13 at the center in the tire width direction is higher than before. As a result, the tension of the composite cord in the center portion in the tire width direction is lowered as compared with the conventional case.

これは、タイヤ幅方向中央部におけるタイヤ径方向距離がタイヤ幅方向端部におけるタイヤ径方向距離の1.2倍未満では、タイヤ幅方向中央部におけるベルト補強層13の加硫時拡張率を1.5〜1.8%未満とした場合の、タイヤ幅方向端部におけるベルト補強層13の加硫時拡張率0.5%以上を確保することが困難であり、タイヤ幅方向中央部におけるタイヤ径方向距離がタイヤ幅方向端部におけるタイヤ径方向距離の1.8倍を越えると、タイヤ幅方向中央部におけるベルト補強層13の加硫時拡張率を1.5〜1.8%未満とした場合の、タイヤ幅方向端部におけるベルト補強層13の加硫時拡張率0.95%以下を確保することが困難であるからである。ここで、加硫時拡張率0.5%以上とするのは、加硫時拡張率0.5%未満ではショルダー部の剛性が確保できないので、高速耐久性を確保することができないためであり、加硫時拡張率0.95%以下とするのは、加硫時拡張率0.95%を超えると製造上の問題が発生するためである。   When the distance in the tire radial direction at the center in the tire width direction is less than 1.2 times the distance in the tire radial direction at the end in the tire width direction, the expansion ratio during vulcanization of the belt reinforcing layer 13 in the center in the tire width direction is 1. When it is less than 5 to 1.8%, it is difficult to secure an expansion rate of 0.5% or more of the belt reinforcing layer 13 at the end portion in the tire width direction at the time of vulcanization. When the radial distance exceeds 1.8 times the distance in the tire radial direction at the end in the tire width direction, the vulcanization expansion rate of the belt reinforcing layer 13 in the center in the tire width direction is less than 1.5 to 1.8%. This is because it is difficult to ensure an expansion rate of 0.95% or less during vulcanization of the belt reinforcing layer 13 at the end in the tire width direction. Here, the reason why the expansion rate during vulcanization is 0.5% or more is that if the expansion rate during vulcanization is less than 0.5%, the rigidity of the shoulder portion cannot be secured, so that high-speed durability cannot be secured. The reason why the expansion rate during vulcanization is 0.95% or less is that if the expansion rate during vulcanization exceeds 0.95%, problems in production occur.

なお、コード応力は、従来の空気入りタイヤが80.7〜112.6N/mm2 であったのに対し、この発明に係る空気入りタイヤ10は48.4〜80.7N/mm2 未満である。
このように、巻回ピッチが複合コード幅の1.0〜1.1倍である高密度部を設けたのは、高密度部を二層構造にしたので、巻回ピッチを複合コード幅の1.0倍未満にしなくても高速耐久性を確保することができるためであり、一方、巻回ピッチを複合コード幅の1.1倍を越えると、ショルダー部における張力確保の効果が小さくなって高速耐久性が低下するためである。
The cord stress is 80.7 to 112.6 N / mm 2 in the conventional pneumatic tire, whereas the pneumatic tire 10 according to the present invention is less than 48.4 to 80.7 N / mm 2 in the cord stress. is there.
As described above, the high-density portion having a winding pitch of 1.0 to 1.1 times the composite cord width is provided with a double-layer structure, so that the winding pitch is equal to the composite cord width. This is because high-speed durability can be ensured even if it is not less than 1.0 times. On the other hand, if the winding pitch exceeds 1.1 times the composite cord width, the effect of securing the tension at the shoulder portion is reduced. This is because the high-speed durability decreases.

また、巻回ピッチが複合コード幅の1.4〜1.7倍である低密度部を設けたのは、巻回ピッチが複合コード幅の1.4倍未満では、ベルト補強層13のタイヤ幅方向中央部における張力低下の効果が小さく、一方、巻回ピッチが複合コード幅の1.7倍を越えると、複合コードのコード間隙間にエアが入る虞があり、エアが入ってしまうと不良品になってしまうからである。   In addition, the low density portion having a winding pitch of 1.4 to 1.7 times the composite cord width is provided because the tire of the belt reinforcing layer 13 is provided when the winding pitch is less than 1.4 times the composite cord width. When the winding pitch exceeds 1.7 times the composite cord width, air may enter between the cord gaps of the composite cord. This is because it becomes a defective product.

また、ベルト補強層13の高密度部のタイヤ幅方向長さ(高密度部幅W1)を全ベルト幅Wに対し16〜28%の範囲にしたのは、全ベルト幅Wの16%未満では、トレッドショルダー部における張力確保の効果が小さくなって高速耐久性が低下するためであり、全ベルト幅Wの28%を越えると、低密度部における張力低下の効果が小さくなって、タイヤ外周面の路面との接地幅を低下させる効果が十分得られないからである。   The length of the high-density portion of the belt reinforcing layer 13 in the tire width direction (high-density portion width W1) is in the range of 16 to 28% of the total belt width W when it is less than 16% of the total belt width W. This is because the effect of securing the tension in the tread shoulder portion is reduced and the high-speed durability is lowered. When the belt width exceeds 28% of the total belt width W, the effect of lowering the tension in the low-density portion is reduced, and the tire outer peripheral surface. This is because the effect of reducing the contact width with the road surface cannot be sufficiently obtained.

また、ベルト補強層13の一部となる、高密度部の複合コードが、タイヤ径方向に重なる二層構造に形成され、上部ベルト13bのベルト幅W2が、全ベルト幅Wに対して5〜16%の範囲に設定されているのは、上部ベルト13bのベルト幅W2が、全ベルト幅Wの5%未満では、トレッドショルダー部における張力確保の効果が小さくなって高速耐久性が低下するためであり、全ベルト幅Wの16%を越えると、低密度部における張力低下の効果が小さくなって、タイヤ外周面の路面との接地幅を低下させる効果が十分得られないからである。   Further, the composite cord of the high density portion, which is a part of the belt reinforcing layer 13, is formed in a two-layer structure overlapping in the tire radial direction, and the belt width W2 of the upper belt 13b is 5 to 5 with respect to the total belt width W. The range of 16% is set because if the belt width W2 of the upper belt 13b is less than 5% of the total belt width W, the effect of securing the tension in the tread shoulder portion is reduced and the high-speed durability is lowered. If the belt width exceeds 16% of the total belt width W, the effect of lowering the tension in the low density portion is reduced, and the effect of lowering the contact width with the road surface of the tire outer peripheral surface cannot be sufficiently obtained.

また、ベルト12を構成する第2ベルト12bのタイヤ幅方向端部、即ち、トレッドショルダー部における補強層加硫時拡張率を0.5〜0.95%とするのは、補強層加硫時拡張率が0.5%未満では、トレッドショルダー部における張力確保の効果が小さいため高速耐久性を十分確保することができず、補強層加硫時拡張率が0.95%を越えると、ベルト−プライ間のコードタッチやベルトにおける凹凸の発生等、タイヤ製造上の不都合が生じるからである。   Further, the expansion rate at the time of reinforcing layer vulcanization at the end portion in the tire width direction of the second belt 12b constituting the belt 12, that is, the tread shoulder portion, is 0.5 to 0.95% when the reinforcing layer is vulcanized. If the expansion rate is less than 0.5%, the effect of securing the tension in the tread shoulder portion is small, so high-speed durability cannot be sufficiently ensured. If the expansion rate exceeds 0.95% when the reinforcing layer is vulcanized, the belt This is because there are inconveniences in tire manufacturing, such as cord touch between plies and unevenness in the belt.

ベルト12のタイヤ幅方向中央部、即ち、トレッドセンター(タイヤ赤道CL)部における補強層加硫時拡張率を1.5〜1.8%未満とするのは、補強層加硫時拡張率が1.5%未満では、フラットスポット性能を十分確保することができず、補強層加硫時拡張率が1.8%以上だと、ベルト12のタイヤ幅方向中央部におけるベルトの張力を低下させることによる効果が少なく、通過騒音の改良ができないためである。   The expansion rate at the time of reinforcing layer vulcanization in the center portion of the belt 12 in the tire width direction, that is, the tread center (tire equator CL) is 1.5 to less than 1.8%. If it is less than 1.5%, sufficient flat spot performance cannot be ensured, and if the expansion rate during reinforcement layer vulcanization is 1.8% or more, the belt tension at the center in the tire width direction of the belt 12 is lowered. This is because there are few effects and the passage noise cannot be improved.

なお、トレッドショルダー部に位置するベルトの補強層加硫時拡張率については、通常、ホイールに設けた、空気圧低下時のビード外れを防止するためのハンプ(突起)位置で計算するが、空気入りタイヤ10のように物性の異なる二種類のベルトからなるハイブリッド(HYBRID)レイヤーベルト構造の場合、コードタッチが発生し易い第2ベルト12bの端部eにおいて計算する。   The expansion rate during vulcanization of the reinforcing layer of the belt located on the tread shoulder is usually calculated at the hump (protrusion) position on the wheel to prevent bead detachment when the air pressure drops. In the case of a hybrid (HYBRID) layer belt structure including two types of belts having different physical properties such as the tire 10, the calculation is performed at the end portion e of the second belt 12b where the cord touch is likely to occur.

図2は、ハイブリッドレイヤーベルト構造における加硫時拡張変化時のベルト拡張率の計算方法を説明する断面説明図である。図2に示すように、ハイブリッドレイヤーベルト構造における、トレッドセンター部及びトレッドショルダー部(第2ベルト12b端部e)のベルト拡張率は、以下に示す式により計算する。
センター部ベルト拡張率
=((モールド内径a−タイヤ赤道CLベルト上寸法b×2)×φ/BT周−1)
ショルダー部ベルト拡張率
=((モールド内径a−(第2ベルト12b端モールド落ち寸法c+第2ベルト12b端ベルト上寸法d)×2)×φ/BT周−1)
ここで、φは円周率、BT周はベルトを貼るドラムの周長である。
FIG. 2 is a cross-sectional explanatory view for explaining a method of calculating the belt expansion rate at the time of vulcanization expansion change in the hybrid layer belt structure. As shown in FIG. 2, the belt expansion rate of the tread center portion and the tread shoulder portion (second belt 12b end portion e) in the hybrid layer belt structure is calculated by the following equation.
Center part belt expansion ratio = ((mold inner diameter a−tire equator CL belt upper dimension b × 2) × φ / BT circumference−1)
Shoulder belt expansion ratio = ((mold inner diameter a− (second belt 12b end mold drop dimension c + second belt 12b end belt upper dimension d) × 2) × φ / BT circumference−1)
Here, φ is the circumference ratio, and BT circumference is the circumference of the drum to which the belt is attached.

このように、ベルト補強層13のタイヤ幅方向端部(トレッドショルダー部)の高密度部を二層に形成したことにより、トレッドショルダー部の張力を高めて十分な張力を確保することができるので、必要とするフラットスポット性能と高速耐久性を備えることができる。また、ベルト補強層13のタイヤ幅方向中央部(タイヤ赤道CL部)に低密度部を形成することにより、タイヤ幅方向中央部の張力を低下させることで、ベルト補強層13のベルト周方向への変形を促し、タイヤ外周面の路面との接地幅が増大してしまうのを抑制して、騒音を低減することができる。   As described above, since the high-density portion of the end portion (tread shoulder portion) in the tire width direction of the belt reinforcing layer 13 is formed in two layers, the tension of the tread shoulder portion can be increased and sufficient tension can be secured. The required flat spot performance and high-speed durability can be provided. Further, by forming a low density portion in the center portion in the tire width direction (tire equator CL portion) of the belt reinforcing layer 13, by reducing the tension in the center portion in the tire width direction, the belt reinforcing layer 13 in the belt circumferential direction. The deformation of the tire is promoted, and the contact width between the tire outer peripheral surface and the road surface is suppressed from increasing, and noise can be reduced.

次に、表1の仕様に基づく空気入りタイヤ10における高速耐久性能、フラットスポット性能、及び騒音性能についてテストし、従来のタイヤと比較した。
空気入りタイヤ10と従来のタイヤは、タイヤサイズが295/30ZR20であり、空気入りタイヤ10は、低密度部の巻回ピッチを従来のタイヤの巻回ピッチの1.5倍とし、高密度部の幅(W1)を従来のタイヤの21%とし、ベルト中央部補強層加硫時拡張率を従来のタイヤの2.20%に対して1.80%とした(表1参照)。
Next, the pneumatic tire 10 based on the specifications in Table 1 was tested for high speed durability performance, flat spot performance, and noise performance, and compared with a conventional tire.
The pneumatic tire 10 and the conventional tire have a tire size of 295 / 30ZR20, and the pneumatic tire 10 has a winding pitch of the low density portion set to 1.5 times the winding pitch of the conventional tire, and a high density portion. The width (W1) of the conventional tire was 21%, and the expansion ratio at the time of vulcanization of the belt center reinforcing layer was 1.80% compared to 2.20% of the conventional tire (see Table 1).

Figure 2012046061
Figure 2012046061

この空気入りタイヤ10及び従来のタイヤを、タイヤサイズに応じてJATMA(社団法人 日本自動車タイヤ協会)規格で規定された適用リムへ組み付けてタイヤ組立体(車輪)を形成し、リム幅が11J−20、内圧が260kPa、荷重が4.95kN、キャンバー角度が2.5°の条件の下、一定速度で所定時間維持する段階的な速度ステップにより、高速耐久性能を比較した(表2参照)。   The pneumatic tire 10 and the conventional tire are assembled to an applicable rim defined by JATMA (Japan Automobile Tire Association) standard according to the tire size to form a tire assembly (wheel), and the rim width is 11 J- The high-speed durability performance was compared by a stepped speed step maintained at a constant speed for a predetermined time under the conditions of 20, internal pressure of 260 kPa, load of 4.95 kN, and camber angle of 2.5 ° (see Table 2).

Figure 2012046061
Figure 2012046061

また、この空気入りタイヤ10及び従来のタイヤを、タイヤサイズに応じてJATMA規格で規定された適用リムへ組み付けてタイヤ組立体(車輪)を形成し、リム幅が11J−20、内圧が220kPa、荷重が5.0kNの条件の下、速度を20km/hから105km/h、更に150km/hへと段階的に上昇させた後、150km/hから105km/h、更に20km/hへと段階的に下降させ、続けて、20km/hから一気に150km/hへと上昇させた後、150km/hから一気に0km/hへと下降させ、一定時間0km/hを維持した後、0km/hから20km/h、更に105km/hへと段階的に上昇させた後、一定時間105km/hを維持した後、105km/hから20km/h、更に0km/hへと段階的に下降させた速度ステップにより、フラットスポット性能を比較した。   Further, the pneumatic tire 10 and the conventional tire are assembled to an applicable rim defined by the JATMA standard according to the tire size to form a tire assembly (wheel), the rim width is 11J-20, the internal pressure is 220 kPa, Under the condition that the load is 5.0 kmN, the speed is increased stepwise from 20 km / h to 105 km / h and further to 150 km / h and then stepped from 150 km / h to 105 km / h and further to 20 km / h. And then continuously increased from 20 km / h to 150 km / h, then decreased from 150 km / h to 0 km / h at a stretch and maintained at 0 km / h for a certain period of time, then from 0 km / h to 20 km / H, further increased stepwise to 105 km / h, then maintained at a constant time of 105 km / h, then from 105 km / h to 20 km / h, further to 0 km / h The speed steps stepwise lowered, and compared the performance against the flat spot.

更に、この空気入りタイヤ10及び従来のタイヤのタイヤ組立体(車輪)を形成し、リム幅が11J−20、内圧が220kPa、荷重が5.0kN、速度が60km/hの条件の下、騒音を比較した(表3参照)。   Further, a tire assembly (wheel) of this pneumatic tire 10 and a conventional tire is formed, and noise is obtained under the conditions of a rim width of 11J-20, an internal pressure of 220 kPa, a load of 5.0 kN, and a speed of 60 km / h. Were compared (see Table 3).

Figure 2012046061
Figure 2012046061

上記試験を行った結果を表4に示す。
表4に示すように、この発明に係る空気入りタイヤ10は、ベルト補強層を備えたラジアル構造を有する空気入りタイヤにあって、従来のタイヤと同様の高速耐久性能及びフラットスポット性能を確保しつつ、騒音については、従来のタイヤに比べて2ポイントの改善効果、即ち、車両走行時の通過騒音を低減することが確認できた。
Table 4 shows the results of the above test.
As shown in Table 4, the pneumatic tire 10 according to the present invention is a pneumatic tire having a radial structure including a belt reinforcing layer, and ensures high-speed durability performance and flat spot performance similar to those of conventional tires. On the other hand, with respect to noise, it was confirmed that the improvement effect of 2 points compared with the conventional tire, that is, the passing noise during vehicle running was reduced.

Figure 2012046061
Figure 2012046061

この発明によれば、コードをタイヤ周方向に螺旋状に巻回して形成したベルト補強層において必要とするフラットスポット性能と高速耐久性能を確保したまま、車両走行時の通過騒音を低減することができるので、カーカスを覆ってベルト層及びベルト補強層を有する空気入りタイヤに最適である。   According to the present invention, it is possible to reduce the passing noise during traveling of the vehicle while ensuring the flat spot performance and the high-speed durability performance required in the belt reinforcing layer formed by spirally winding the cord in the tire circumferential direction. Therefore, it is suitable for a pneumatic tire having a belt layer and a belt reinforcing layer covering the carcass.

10 空気入りタイヤ
11 カーカス
12 ベルト
12a 第1ベルト
12b 第2ベルト
13 ベルト補強層
13a 下部ベルト
13b 上部ベルト
14 トレッド
CL タイヤ赤道
W 全ベルト幅
W1,W2 ベルト幅
a モールド内径
b タイヤ赤道ベルト上寸法
c 第2ベルト端モールド落ち寸法
d 第2ベルト端ベルト上寸法
e 端部
DESCRIPTION OF SYMBOLS 10 Pneumatic tire 11 Carcass 12 Belt 12a 1st belt 12b 2nd belt 13 Belt reinforcement layer 13a Lower belt 13b Upper belt 14 Tread CL Tire equator W Full belt width W1, W2 Belt width a Mold inner diameter b Tire equator belt upper dimension c Second belt end mold drop dimension d Second belt end belt upper dimension e End

Claims (5)

カーカスのタイヤ径方向外側のトレッド形成位置にベルトを配置し、前記ベルトのタイヤ径方向外側に、コードをタイヤ周方向に螺旋状に巻回してベルト補強層を形成した空気入りタイヤにおいて、
前記ベルト補強層の前記コードの巻回密度は、タイヤ幅方向端部に比べタイヤ幅方向中央部の方が低く形成され、
前記ベルトのタイヤ径方向最外側表面からトレッド表面までのタイヤ径方向距離は、タイヤ幅方向中央部の方がタイヤ幅方向端部より長く形成されていることを特徴とする空気入りタイヤ。
In a pneumatic tire in which a belt is disposed at a tread formation position on the outer side in the tire radial direction of the carcass, and a belt reinforcing layer is formed by spirally winding a cord in the tire circumferential direction on the outer side in the tire radial direction of the belt.
The winding density of the cord of the belt reinforcement layer is formed lower in the tire width direction center than in the tire width direction end,
The pneumatic tire is characterized in that the distance in the tire radial direction from the outermost surface in the tire radial direction of the belt to the tread surface is longer at the center in the tire width direction than at the end in the tire width direction.
前記ベルト補強層の前記タイヤ幅方向端部は、前記コードをタイヤ径方向に重ねた二層構造を有することを特徴とする請求項1に記載の空気入りタイヤ。   2. The pneumatic tire according to claim 1, wherein the end portion in the tire width direction of the belt reinforcing layer has a two-layer structure in which the cords are stacked in a tire radial direction. 前記ベルト補強層が、高弾性フィラメントと低弾性フィラメントとを撚り合わせた複合コードからなることを特徴とする請求項1または2に記載の空気入りタイヤ。   The pneumatic tire according to claim 1 or 2, wherein the belt reinforcing layer is made of a composite cord in which a high elastic filament and a low elastic filament are twisted together. 前記複合コードは、荷重−伸び曲線の原点から変曲点に至る低弾性域と変曲点を越える高弾性域とを有し、タイヤ内部でのコード長に対する伸張率が前記変曲点における伸び以下であることを特徴とする請求項1〜3のいずれか一項に記載の空気入りタイヤ。   The composite cord has a low elastic region extending from the origin of the load-elongation curve to the inflection point and a high elastic region exceeding the inflection point, and the elongation ratio with respect to the cord length inside the tire is the elongation at the inflection point. The pneumatic tire according to any one of claims 1 to 3, wherein: 前記ベルト補強層の加硫時拡張率は、タイヤ幅方向端部に比べタイヤ幅方向中央部の方が大きいことを特徴とする請求項1〜4のいずれか一項に記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 4, wherein an expansion rate during vulcanization of the belt reinforcing layer is larger in a tire width direction central portion than in a tire width direction end portion.
JP2010189546A 2010-08-26 2010-08-26 Pneumatic tire Expired - Fee Related JP5639415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010189546A JP5639415B2 (en) 2010-08-26 2010-08-26 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010189546A JP5639415B2 (en) 2010-08-26 2010-08-26 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2012046061A true JP2012046061A (en) 2012-03-08
JP5639415B2 JP5639415B2 (en) 2014-12-10

Family

ID=45901452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010189546A Expired - Fee Related JP5639415B2 (en) 2010-08-26 2010-08-26 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5639415B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220755A (en) * 2012-04-17 2013-10-28 Bridgestone Corp Pneumatic radial tire and method of manufacturing the same
JP2013227013A (en) * 2012-04-26 2013-11-07 Goodyear Tire & Rubber Co:The Pneumatic tire
JP2014151479A (en) * 2013-02-06 2014-08-25 Bridgestone Corp Manufacturing method for tyre
JP2015058901A (en) * 2013-09-20 2015-03-30 東洋ゴム工業株式会社 Pneumatic tire
JP2015089703A (en) * 2013-11-05 2015-05-11 東洋ゴム工業株式会社 Pneumatic tire
WO2016204010A1 (en) * 2015-06-17 2016-12-22 株式会社ブリヂストン Tire
EP3351406A2 (en) 2017-01-24 2018-07-25 Sumitomo Rubber Industries, Ltd. Pneumatic tire
WO2020013210A1 (en) * 2018-07-11 2020-01-16 住友ゴム工業株式会社 Heavy-duty pneumatic tire and manufacturing method thereof
CN113950417A (en) * 2019-06-18 2022-01-18 株式会社普利司通 Tyre for vehicle wheels
EP3960497A1 (en) * 2020-08-27 2022-03-02 Sumitomo Rubber Industries, Ltd. Tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001063310A (en) * 1999-07-07 2001-03-13 Soc De Technol Michelin Tire with travel noise performance improved
JP2003182307A (en) * 2001-12-18 2003-07-03 Sumitomo Rubber Ind Ltd Pneumatic radial tire
JP2006335159A (en) * 2005-05-31 2006-12-14 Bridgestone Corp Pneumatic tire
JP2007307976A (en) * 2006-05-17 2007-11-29 Bridgestone Corp Pneumatic tire and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001063310A (en) * 1999-07-07 2001-03-13 Soc De Technol Michelin Tire with travel noise performance improved
JP2003182307A (en) * 2001-12-18 2003-07-03 Sumitomo Rubber Ind Ltd Pneumatic radial tire
JP2006335159A (en) * 2005-05-31 2006-12-14 Bridgestone Corp Pneumatic tire
JP2007307976A (en) * 2006-05-17 2007-11-29 Bridgestone Corp Pneumatic tire and its manufacturing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220755A (en) * 2012-04-17 2013-10-28 Bridgestone Corp Pneumatic radial tire and method of manufacturing the same
JP2013227013A (en) * 2012-04-26 2013-11-07 Goodyear Tire & Rubber Co:The Pneumatic tire
JP2014151479A (en) * 2013-02-06 2014-08-25 Bridgestone Corp Manufacturing method for tyre
JP2015058901A (en) * 2013-09-20 2015-03-30 東洋ゴム工業株式会社 Pneumatic tire
JP2015089703A (en) * 2013-11-05 2015-05-11 東洋ゴム工業株式会社 Pneumatic tire
JP2017007376A (en) * 2015-06-17 2017-01-12 株式会社ブリヂストン tire
WO2016204010A1 (en) * 2015-06-17 2016-12-22 株式会社ブリヂストン Tire
EP3351406A2 (en) 2017-01-24 2018-07-25 Sumitomo Rubber Industries, Ltd. Pneumatic tire
US10894444B2 (en) 2017-01-24 2021-01-19 Sumitomo Rubber Industries Ltd. Pneumatic tire
WO2020013210A1 (en) * 2018-07-11 2020-01-16 住友ゴム工業株式会社 Heavy-duty pneumatic tire and manufacturing method thereof
JPWO2020013210A1 (en) * 2018-07-11 2021-07-15 住友ゴム工業株式会社 Pneumatic tires for heavy loads and their manufacturing methods
JP7251548B2 (en) 2018-07-11 2023-04-04 住友ゴム工業株式会社 Heavy duty pneumatic tire and manufacturing method thereof
CN113950417A (en) * 2019-06-18 2022-01-18 株式会社普利司通 Tyre for vehicle wheels
CN113950417B (en) * 2019-06-18 2023-08-25 株式会社普利司通 Tire with a tire body
EP3960497A1 (en) * 2020-08-27 2022-03-02 Sumitomo Rubber Industries, Ltd. Tire

Also Published As

Publication number Publication date
JP5639415B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5639415B2 (en) Pneumatic tire
JP4918948B1 (en) Pneumatic tire
JP6537496B2 (en) Pneumatic tire
JP6516726B2 (en) Pneumatic tire
JP6554957B2 (en) Heavy duty pneumatic tire
KR101274462B1 (en) Pneumatic tire
JP6442228B2 (en) Pneumatic tires for passenger cars
JP5342366B2 (en) Pneumatic tire
US11312190B2 (en) Pneumatic tire
JP5294396B2 (en) Pneumatic radial tire
JP2019142395A (en) Pneumatic tire
US11554615B2 (en) Pneumatic tire
JP2011162023A (en) Pneumatic tire
US20200361251A1 (en) Pneumatic Tire
JP6959118B2 (en) Pneumatic tires
JP2017222209A (en) Pneumatic tire
JP4537517B2 (en) Manufacturing method of pneumatic radial tire
JP2013071368A (en) Method for manufacturing pneumatic tire and pneumatic tire
JP5115019B2 (en) Pneumatic tire and method for manufacturing pneumatic tire
JP2013099905A (en) Method for forming belt reinforcing layer base material and pneumatic tire
JP5013522B2 (en) Pneumatic radial tire
JP5792999B2 (en) Manufacturing method of pneumatic radial tire
JP5084255B2 (en) Manufacturing method of pneumatic radial tire
WO2019244771A1 (en) Pneumatic tyre
JP2006213180A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141024

R150 Certificate of patent or registration of utility model

Ref document number: 5639415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees