JP2012045760A - Biaxially-oriented laminated polyester film - Google Patents

Biaxially-oriented laminated polyester film Download PDF

Info

Publication number
JP2012045760A
JP2012045760A JP2010188303A JP2010188303A JP2012045760A JP 2012045760 A JP2012045760 A JP 2012045760A JP 2010188303 A JP2010188303 A JP 2010188303A JP 2010188303 A JP2010188303 A JP 2010188303A JP 2012045760 A JP2012045760 A JP 2012045760A
Authority
JP
Japan
Prior art keywords
film
layer
polyester
laminated
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010188303A
Other languages
Japanese (ja)
Other versions
JP5495326B2 (en
Inventor
Yoshitaka Tanaka
良敬 田中
Makoto Iida
真 飯田
Takeshi Ishida
剛 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2010188303A priority Critical patent/JP5495326B2/en
Publication of JP2012045760A publication Critical patent/JP2012045760A/en
Application granted granted Critical
Publication of JP5495326B2 publication Critical patent/JP5495326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biaxially-oriented laminated polyester film which is excellent in dimensional stability and can be used as a support for a magnetic recording medium.SOLUTION: The biaxially-oriented laminated polyester film is obtained by laminating a film layer B comprising polyester B having one selected from the group comprising ethyleneterephthalate and ethylene-2,6-naphthalenedicarboxylate as a main repeating unit on at least one face of a film layer A comprising polyester A having trimethylene-2,6-naphthalenedicarboxylate as a main repeating unit. The ratio of Young's modulus in the film formation direction of the biaxially-oriented laminated polyester film to that in the width direction thereof is within the range of 1.6-3.5.

Description

本発明は、環境変化、特に温・湿度変化に対して優れた寸法安定性を発現するポリエステルフィルムに関し、特にデジタルデータなどの高密度記録メディアのベースフィルムに適した二軸配向積層ポリエステルフィルムに関する。   The present invention relates to a polyester film that exhibits excellent dimensional stability against environmental changes, particularly temperature and humidity changes, and more particularly to a biaxially oriented laminated polyester film suitable for a base film for high-density recording media such as digital data.

ポリエステルフィルムは、優れた機械的特性、熱的特性および化学的特性とを有することから、各種用途に用いられており、特に寸法安定に優れることからデジタルビデオ用テープやコンピュータのバックアップ用テープ(以後、データテープという)など磁気記録媒体のベースフィルムとして用いられている。   Polyester film has excellent mechanical properties, thermal properties, and chemical properties, so it is used in various applications. Especially, it has excellent dimensional stability. Used as a base film for magnetic recording media.

このデータテープは、近年記録密度の高密度化が進み、トラックの幅が非常に狭くなってきている。その結果、データテープの走行または保存の間に生じるわずかな熱的・力学的寸法変化や、データを記録する際と読み取る際の温湿度環境の違いにより、データを読み取る磁気ヘッドとトラックの位置とがずれてしまい、データの再生不良を引き起こす問題点が生じてきた。従って、高密度記録に対応するデータテープには、温湿度といった環境変化や走行時にかかる張力などの応力に対して高い寸法安定性が要求されている。特に記録方式がリニア記録方式のデータテープでは、データテープの幅方向により高い寸法安定性が要求されている。   In recent years, the recording density of this data tape has been increased, and the width of the track has become very narrow. As a result, due to slight thermal and mechanical dimensional changes that occur during the running or storage of data tape and the difference in temperature and humidity environment when recording and reading data, This causes a problem that causes data reproduction failure. Therefore, data tapes compatible with high-density recording are required to have high dimensional stability against environmental changes such as temperature and humidity and stresses such as tension applied during running. In particular, in a data tape in which the recording method is a linear recording method, higher dimensional stability is required in the width direction of the data tape.

このような、データテープのベースフィルムに用いるフィルムの素材としては、ポリエチレンテレフタレート(以下、PETと称することがある。)やポリエチレン−2,6−ナフタレンジカルボキシレート(以下、PENと称することがある。)が用いられてきた。しかし、高密度記録のデータテープに求められる寸法安定性の要求はますます厳しくなっており、それだけでは不十分となってきている。   Such a film material used for the base film of the data tape is sometimes referred to as polyethylene terephthalate (hereinafter sometimes referred to as PET) or polyethylene-2,6-naphthalenedicarboxylate (hereinafter referred to as PEN). .) Have been used. However, the demand for dimensional stability required for high-density recording data tapes is becoming stricter and it is not enough.

一方で、PETやPENのほかに、ポリエステル素材として、ポリトリメチレン−2,6−ナフタレンジカルボキシレート(以下、PTNと称することがある)が知られている。例えば、特許文献1では、PTNの配向フィルムを感熱孔版用途に用いることが提案されている。また、特許文献2および3では、PTNの配向フィルムが良好なガスバリア性および耐光性を持つことが提案されている。しかしながら、これら特許文献1〜3の実施例に具体的に開示されたフィルムを追試してみると、湿度膨張係数が従来のPETやPENと同等程度のものでしかなかった。   On the other hand, in addition to PET and PEN, polytrimethylene-2,6-naphthalenedicarboxylate (hereinafter sometimes referred to as PTN) is known as a polyester material. For example, Patent Document 1 proposes to use an oriented film of PTN for heat-sensitive stencil applications. Patent Documents 2 and 3 propose that the oriented film of PTN has good gas barrier properties and light resistance. However, when the films specifically disclosed in the examples of Patent Documents 1 to 3 were reexamined, the humidity expansion coefficient was only comparable to that of conventional PET and PEN.

また、特許文献4では、2,6−ポリトリメチレンナフタレート、2,6−ポリテトラメチレンナフタレート、2,6−ポリペンタメチレンナフタレート、及び2,6−ポリヘキサメチレンナフタレートのいずれかからなるフィルムを磁気記録媒体のベースフィルムに用いることが提案されている。また、その実施例の湿度膨張係数を見ると、幅方向のヤング率が9GPaのPENを用いた場合が6.8ppm/%RHで、幅方向のヤング率を11GPaまで高めた2,6−ポリテトラメチレンナフタレートや2,6−ポリヘキサメチレンナフタレートを用いた場合が5.9〜6.4ppm/%RHとある。そして、ポリエステルフィルムの場合、その方向のヤング率が高いほど、分子鎖がその方向に揃っていて湿度膨張係数が低くなる傾向にあることを勘案すると、特許文献4の実施例からは、同程度のヤング率ならPENと、そのグリコール成分の炭素数を変更したものとでは湿度膨張係数はほとんど変わらないことが理解される。なお、特許文献4は、具体的に2,6−ポリトリメチレンナフタレートでの確認はされていない。   In Patent Document 4, any one of 2,6-polytrimethylene naphthalate, 2,6-polytetramethylene naphthalate, 2,6-polypentamethylene naphthalate, and 2,6-polyhexamethylene naphthalate is used. It has been proposed to use a film made of the above as a base film of a magnetic recording medium. Further, when the humidity expansion coefficient of the example is seen, it is 6.8 ppm /% RH in the case where PEN having a Young's modulus in the width direction of 9 GPa is used, and 2,6-poly which has increased the Young's modulus in the width direction to 11 GPa. The case where tetramethylene naphthalate or 2,6-polyhexamethylene naphthalate is used is 5.9 to 6.4 ppm /% RH. In the case of a polyester film, considering that the higher the Young's modulus in that direction, the molecular chains are aligned in that direction and the humidity expansion coefficient tends to be lower. It is understood that the coefficient of humidity expansion hardly changes between the PEN and the glycol component whose carbon number is changed. In addition, Patent Document 4 does not specifically confirm 2,6-polytrimethylene naphthalate.

特開2001−213947号公報JP 2001-213947 A 特開2001−038866号公報Japanese Patent Laid-Open No. 2001-038866 特開2000−017159号公報Japanese Patent Laid-Open No. 2000-0117159 特開2007−287312号公報JP 2007-287312 A

本発明の課題は、PETやPENからなるフィルムが有する温度変化に対する優れた寸法安定性とヤング率などの機械的特性を具備しつつ、さらに優れた湿度変化に対する寸法安定性をも発現できる、特にデータストレージなどの磁気テープのベースフィルムに適したポリエステルフィルムを提供することにある。   The problem of the present invention is that the film made of PET or PEN has excellent dimensional stability with respect to temperature change and mechanical properties such as Young's modulus, and can also exhibit further excellent dimensional stability against humidity change. An object of the present invention is to provide a polyester film suitable for a magnetic tape base film for data storage or the like.

本発明者らは、上記課題を解決しようと鋭意研究したところ、PETやPENとほとんど湿度膨張係数について変わらないと思われていたポリトリメチレン−2,6−ナフタレンジカルボキシレートを、高度に配向させることで、その方向の湿度膨張係数をPETやPENに比べて極めて小さくできることを見出した。   As a result of diligent research to solve the above problems, the present inventors highly oriented polytrimethylene-2,6-naphthalenedicarboxylate, which was thought to be almost the same in terms of humidity expansion coefficient as PET and PEN. As a result, it was found that the humidity expansion coefficient in that direction can be made extremely small compared to PET and PEN.

しかしながら、PTNのフィルムはPETやPENに比べ小さな湿度膨張係数を発現できるものの、ヤング率などが低下しやすく、また温度膨張係数なども非常に大きくなりやすいという問題があった。   However, although the PTN film can express a smaller coefficient of humidity expansion than PET and PEN, there are problems that the Young's modulus and the like are likely to decrease and the temperature coefficient of expansion tends to be very large.

そこで、本発明者らは、PTNの高度に配向させた方向に極めて小さな湿度膨張係数を発現できる特性を活かしつつ、幅方向および製膜方向のヤング率を向上させるべくさらに研究した結果、エチレンテレフタレートまたはエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするポリエステルと積層し、かつフィルムの製膜方向と幅方向のヤング率の比を極めて大きくすることで、特定の方向に温度膨張係数と湿度膨張係数が小さく、しかも実用上必要な機械的特性を有する二軸配向積層ポリエステルフィルムが得られることを見出し、本発明に到達した。   Accordingly, the present inventors have further studied to improve the Young's modulus in the width direction and the film forming direction while taking advantage of the characteristic that a very small humidity expansion coefficient can be expressed in the highly oriented direction of PTN. As a result, ethylene terephthalate Alternatively, by laminating with a polyester having ethylene-2,6-naphthalenedicarboxylate as the main repeating unit, and increasing the ratio of Young's modulus in the film forming direction and the width direction of the film, the temperature expansion coefficient in a specific direction The present inventors have found that a biaxially oriented laminated polyester film having a low humidity expansion coefficient and practically necessary mechanical properties can be obtained.

かくして本発明によれば、トリメチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするポリエステルAからなるフィルム層Aと、その少なくとも片面にエチレンテレフタレートおよびエチレン−2,6−ナフタレンジカルボキシレートからなる群より選ばれる1種を主たる繰り返し単位とするポリエステルBからなるフィルム層Bとが積層された積層フィルムであって、フィルムの製膜方向と幅方向のヤング率の比が1.6〜3.5の範囲である二軸配向積層ポリエステルフィルムが提供される。   Thus, according to the present invention, film layer A composed of polyester A having trimethylene-2,6-naphthalenedicarboxylate as the main repeating unit, and ethylene terephthalate and ethylene-2,6-naphthalenedicarboxylate on at least one side thereof. A laminated film in which a film layer B made of polyester B having a main repeating unit selected from the group consisting of the above-mentioned groups is laminated, and the ratio of the Young's modulus in the film forming direction to the width direction is 1.6 to 3 A biaxially oriented laminated polyester film in the range of .5 is provided.

また、本発明によれば、本発明の好ましい態様として、全フィルム層Aの合計厚みと全フィルム層Bの合計厚みの比が、1:5〜5:1の範囲であること、フィルム層Bのガラス転移温度(TgB)が、フィルム層Aのガラス転移温度(TgA)よりも10〜30℃の範囲で高いこと、フィルムの製膜方向と幅方向のいずれかのヤング率が、5〜13GPaの範囲にあること、フィルムの幅方向のヤング率が5〜13GPaの範囲にあり、磁気記録媒体のベースフィルムに用いられることのいずれかを具備する二軸配向積層ポリエステルフィルムも提供される。   According to the present invention, as a preferred embodiment of the present invention, the ratio of the total thickness of all film layers A to the total thickness of all film layers B is in the range of 1: 5 to 5: 1, film layer B The glass transition temperature (TgB) of the film is higher in the range of 10 to 30 ° C. than the glass transition temperature (TgA) of the film layer A, and the Young's modulus in either the film forming direction or the width direction of the film is 5 to 13 GPa. There is also provided a biaxially oriented laminated polyester film having any of the following: a film having a Young's modulus in the width direction of 5 to 13 GPa and being used for a base film of a magnetic recording medium.

従来のPETやPENからなるフィルムに比べ、温度変化に対する優れた寸法安定性とヤング率などの機械的特性を具備しつつ、さらに目的とする方向により優れた湿度変化に対する寸法安定性を具備させることができる。そのため、データストレージなどの磁気テープのベースフィルムに極めて好適なポリエステルフィルムを提供することができる。   Compared to conventional PET and PEN films, it has excellent dimensional stability against temperature changes and mechanical properties such as Young's modulus, and more excellent dimensional stability against humidity changes in the intended direction. Can do. Therefore, it is possible to provide a polyester film that is extremely suitable for a base film of a magnetic tape such as data storage.

本発明におけるポリエステルAは、トリメチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするポリエステルである。ここでいう「主たる」とは、全繰り返し単位のモル数を基準として、80モル%以上を意味する。本発明におけるポリエステルAは、本発明の目的を損なわない範囲で、それ自体公知の共重合成分を共重合しても良い。共重合する場合は、通常全酸成分のモル数を基準として、20モル%以下、更に10モル%以下が好ましい。   Polyester A in the present invention is a polyester having trimethylene-2,6-naphthalenedicarboxylate as a main repeating unit. Here, “main” means 80 mol% or more based on the number of moles of all repeating units. Polyester A in the present invention may be copolymerized with a known copolymer component as long as the object of the present invention is not impaired. In the case of copolymerization, it is usually preferably 20 mol% or less, more preferably 10 mol% or less, based on the number of moles of all acid components.

また、本発明におけるフィルム層Aは、上記ポリエステルAを主成分とし、本発明の目的を損なわない範囲で、ポリエステルAのほかに、他の樹脂や機能剤などを、フィルム層Aの重量を基準として、20重量%以下、さらに10重量%以下の範囲で含有させてもよい。特に、磁気記録媒体のベースフィルムに好適に用いられてきたPENに比べ、PTNはガラス転移温度(以下Tgと称する場合がある)が低くなりやすいので、例えばポリエーテルイミドなどガラス転移温度を高められるような成分を共重合したり、ブレンドしたりすることは好ましい。ポリエーテルイミドをブレンドする場合は、フィルム層Aの重量を基準として、0.05重量%以上20重量%以下が好ましく、特に0.05重量%以上10重量%以下、さらに0.05重量%以上5重量%以下が特に好ましい。上記上限を超えると非晶性のポリエーテルイミドのために延伸性が著しく低下する。また上記下限以下ではポリエーテルイミドのTgを高める効果を十分に発揮できなくなる。   In addition, the film layer A in the present invention is based on the weight of the film layer A, in addition to the polyester A, based on the weight of the film layer A, as long as the polyester A is the main component and does not impair the purpose of the present invention. The content may be 20% by weight or less, and further 10% by weight or less. In particular, compared with PEN that has been suitably used for a base film of a magnetic recording medium, PTN tends to have a low glass transition temperature (hereinafter sometimes referred to as Tg), so that the glass transition temperature such as polyetherimide can be increased. It is preferable to copolymerize or blend such components. When blending polyetherimide, it is preferably 0.05% by weight or more and 20% by weight or less, particularly 0.05% by weight or more and 10% by weight or less, more preferably 0.05% by weight or more, based on the weight of the film layer A. 5% by weight or less is particularly preferable. When the above upper limit is exceeded, stretchability is significantly reduced due to amorphous polyetherimide. Moreover, if it is below the above lower limit, the effect of increasing the Tg of the polyetherimide cannot be sufficiently exhibited.

本発明におけるポリエステルAの固有粘度(I.V.)は、0.5〜1.2dl/g、さらに0.6〜1.0dl/g、特に0.6〜0.8gl/gの範囲にあることが好ましい。I.V.が下限より下回ると、PTNのフィルム製膜において結晶化が問題になり、均一な延伸が困難になる。他方、I.V.が上限を超えると、高分子鎖の絡み合いにより延伸時の応力が大きすぎて、均一な延伸が困難になる。このような好ましい範囲のI.V.を有するPTNは、溶融重合および固相重合法によるI.V.調整によって合成可能となる。   The intrinsic viscosity (IV) of the polyester A in the present invention is in the range of 0.5 to 1.2 dl / g, more preferably 0.6 to 1.0 dl / g, particularly 0.6 to 0.8 dl / g. Preferably there is. I. V. Is less than the lower limit, crystallization becomes a problem in film formation of PTN, and uniform stretching becomes difficult. On the other hand, I.I. V. When the value exceeds the upper limit, the stress at the time of stretching is too large due to the entanglement of polymer chains, and uniform stretching becomes difficult. Such a preferred range of I.V. V. PTN having I.I. is obtained by melt polymerization and solid state polymerization. V. It can be synthesized by adjustment.

本発明におけるポリエステルBは、エチレンテレフタレートおよびエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするポリエステルである。ここでいう「主たる」とは、全繰り返し単位のモル数を基準として、80モル%以上であることが好ましい。本発明におけるポリエステルBは、本発明の目的を損なわない範囲で、それ自体公知の共重合成分を共重合しても良い。特に、より環境変化に対する寸法安定性を向上させる観点から、国際公開2008/096612号パンフレットに記載された6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、6,6’−(トリメチレンジオキシ)ジ−2−ナフトエ酸成分および6,6’−(ブチレンジオキシ)ジ−2−ナフトエ酸成分などを共重合することは好ましい態様である。なお、共重合する場合は、通常全酸成分のモル数を基準として、20モル%以下、更に10モル%以下が好ましい。   The polyester B in the present invention is a polyester having ethylene terephthalate and ethylene-2,6-naphthalenedicarboxylate as main repeating units. The term “main” as used herein is preferably 80 mol% or more based on the number of moles of all repeating units. Polyester B in the present invention may be copolymerized with a known copolymer component as long as the object of the present invention is not impaired. In particular, from the viewpoint of improving the dimensional stability against environmental changes, the 6,6 ′-(ethylenedioxy) di-2-naphthoic acid component described in the pamphlet of International Publication No. 2008/096612, 6,6 ′-( Copolymerizing a trimethylenedioxy) di-2-naphthoic acid component and a 6,6 ′-(butylenedioxy) di-2-naphthoic acid component is a preferred embodiment. In the case of copolymerization, it is usually preferably 20 mol% or less, more preferably 10 mol% or less, based on the number of moles of all acid components.

また、本発明におけるフィルム層Bは、上記ポリエステルBを主成分とし、本発明の目的を損なわない範囲で、ポリエステルBのほかに、他の樹脂やそれ自体公知の機能剤などを、フィルム層Aの重量を基準として、20重量%以下、さらに10重量%以下の範囲で含有させてもよい。特に、後述のPTNを一方向に高度に配向させやすいことから、フィルム層Bのガラス転移温度(TgB)は、フィルム層Aのガラス転移温度(TgA)よりも高いことが好ましく、例えばポリエーテルイミドなどガラス転移温度を高められるような成分を共重合したり、ブレンドしたりすることは好ましい。ポリエーテルイミドをブレンドする場合は、フィルム層Bの重量を基準として、0.05重量%以上20重量%以下が好ましく、特に0.05重量%以上10重量%以下、さらに0.05重量%以上5重量%以下が特に好ましい。上記上限を超えると非晶性のポリエーテルイミドのために延伸性が著しく低下する。また上記下限以下ではポリエーテルイミドのTgを高める効果を十分に発揮できなくなる。   In addition, the film layer B in the present invention contains the above polyester B as a main component and, in addition to the polyester B, other resins or functional agents known per se are added to the film layer A as long as the object of the present invention is not impaired. May be contained in the range of 20% by weight or less, further 10% by weight or less, based on the weight of In particular, the glass transition temperature (TgB) of the film layer B is preferably higher than the glass transition temperature (TgA) of the film layer A because, for example, the below-described PTN is easily highly oriented in one direction. It is preferable to copolymerize or blend components that can increase the glass transition temperature. When blending polyetherimide, it is preferably 0.05% by weight or more and 20% by weight or less, particularly 0.05% by weight or more and 10% by weight or less, more preferably 0.05% by weight or more, based on the weight of the film layer B. 5% by weight or less is particularly preferable. When the above upper limit is exceeded, stretchability is significantly reduced due to amorphous polyetherimide. Moreover, if it is below the above lower limit, the effect of increasing the Tg of the polyetherimide cannot be sufficiently exhibited.

本発明におけるポリエステルBの固有粘度(I.V.)は、0.5〜1.2dl/g、さらに0.6〜1.0dl/g、特に0.6〜0.8gl/gの範囲にあることが好ましい。I.V.が下限より下回ると、ポリエステルBのフィルム製膜において結晶化が問題になり、均一な延伸が困難になる。他方、I.V.が上限を超えると、高分子鎖の絡み合いにより延伸時の応力が大きすぎて、均一な延伸が困難になる。このような好ましい範囲のI.V.を有するポリエステルBは、溶融重合および固相重合法によるI.V.調整によって合成可能となる。   The intrinsic viscosity (IV) of the polyester B in the present invention is in the range of 0.5 to 1.2 dl / g, more preferably 0.6 to 1.0 dl / g, particularly 0.6 to 0.8 dl / g. Preferably there is. I. V. Is less than the lower limit, crystallization becomes a problem in film formation of polyester B, and uniform stretching becomes difficult. On the other hand, I.I. V. When the value exceeds the upper limit, the stress at the time of stretching is too large due to the entanglement of polymer chains, and uniform stretching becomes difficult. Such a preferred range of I.V. V. Polyester B having an I.V. V. It can be synthesized by adjustment.

ところで、本発明の二軸配向積層ポリエステルフィルムは、前述のポリエステルAからなるフィルム層Aと、その少なくとも片面に前述のポリエステルBからなるフィルム層Bとを積層し、フィルムの製膜方向と幅方向のヤング率の比を1.6〜3.5という範囲にしたことを特徴とする。すなわち、フィルム層Aによって湿度膨張係数を低減し、他方フィルム層Bによって、ヤング率などの機械的特性の低下と温度膨張係数の増大とを抑制できたものである。また、単純にこれらのフィルム層AとBとを積層しただけでは、両フィルム層のよいところと悪いところとをそれぞれ足し合わせただけでしかないが、さらにフィルムの製膜方向と幅方向のヤング率の比を1.6〜3.5という範囲にすることで、ヤング率の高い方向について、温度膨張係数を低く抑えつつ、湿度膨張係数を小さくできたのである。そのため、ヤング率の比が上記下限未満では、特定の方向に温度膨張係数と湿度膨張係数とをともに小さくすることは困難になり、他方上限を超えると、ヤング率などの機械的特性を両方向に具備させるのが困難になる。好ましいフィルムの製膜方向と幅方向のヤング率の比は、1.8〜3.2、さらに2.0〜3.0の範囲である。   By the way, the biaxially oriented laminated polyester film of the present invention is obtained by laminating the film layer A made of the above-mentioned polyester A and the film layer B made of the above-mentioned polyester B on at least one surface thereof, and the film forming direction and the width direction of the film. The ratio of the Young's modulus is in the range of 1.6 to 3.5. That is, the humidity expansion coefficient is reduced by the film layer A, and the decrease in mechanical properties such as Young's modulus and the increase in the temperature expansion coefficient can be suppressed by the film layer B. In addition, simply laminating these film layers A and B only adds together the good and bad points of both film layers. By setting the ratio of the ratios in the range of 1.6 to 3.5, the humidity expansion coefficient could be reduced while keeping the temperature expansion coefficient low in the direction of higher Young's modulus. Therefore, if the ratio of Young's modulus is less than the above lower limit, it becomes difficult to reduce both the temperature expansion coefficient and the humidity expansion coefficient in a specific direction, while if it exceeds the upper limit, mechanical properties such as Young's modulus are increased in both directions. It becomes difficult to provide. The ratio of the Young's modulus in the film forming direction and the width direction of the preferred film is in the range of 1.8 to 3.2, and more preferably 2.0 to 3.0.

また、具体的なフィルムの製膜方向と幅方向のヤング率としては、ヤング率の高い方向が、その方向の温度膨張係数と湿度膨張係数とを低くしやすい点から、4.0〜13.0GPaの範囲、さらに6.0〜12.0GPaの範囲にあることが好ましい。他方、ヤング率の低い方向は、その方向の機械的特性を実用に耐えうるように維持しつつ、それに直交する方向の温度膨張係数と湿度膨張係数とを低くしやすい点から2.0〜8.0GPa、さらに3.0〜7.0GPaの範囲にあることが好ましい。   Further, as the Young's modulus in the film forming direction and the width direction of the specific film, the direction in which the Young's modulus is high tends to lower the temperature expansion coefficient and the humidity expansion coefficient in that direction, so that 4.0-13. It is preferably in the range of 0 GPa, more preferably in the range of 6.0 to 12.0 GPa. On the other hand, the direction where the Young's modulus is low is 2.0 to 8 from the viewpoint that it is easy to lower the temperature expansion coefficient and the humidity expansion coefficient in the direction perpendicular to the direction while maintaining the mechanical properties in that direction so that it can withstand practical use. It is preferably in the range of 0.0 GPa, more preferably 3.0 to 7.0 GPa.

なお、これらのヤング率の関係は、温度膨張係数や湿度膨張係数が小さくしたい方向が、その用途で求められる方向になるように調整すればよい。例えば、磁気記録媒体のベースフィルム、特に磁気テープのベースフィルムに用いられる場合、フィルムの幅方向がヤング率の高い方向で、そのヤング率が5〜13GPaの範囲にあることが好ましい。   Note that the relationship between these Young's moduli may be adjusted so that the direction in which the temperature expansion coefficient and the humidity expansion coefficient are desired to be reduced is the direction required for the application. For example, when used for a base film of a magnetic recording medium, particularly a base film of a magnetic tape, it is preferable that the width direction of the film is a direction with a high Young's modulus and the Young's modulus is in the range of 5 to 13 GPa.

また、前述のとおり、フィルム層Aによって湿度膨張係数を低減し、フィルム層Bによってヤング率などの機械的特性を維持することから、全フィルム層Aの合計厚みと全フィルム層Bの合計厚みの比は、1:5〜5:1の範囲であることが好ましい。さらに好ましい全フィルム層Aの合計厚みと全フィルム層Bの合計厚みの比は、1:2〜2:1の範囲である。   Moreover, as described above, the film layer A reduces the humidity expansion coefficient and the film layer B maintains the mechanical properties such as Young's modulus. Therefore, the total thickness of all the film layers A and the total thickness of all the film layers B The ratio is preferably in the range of 1: 5 to 5: 1. A more preferable ratio of the total thickness of all film layers A to the total thickness of all film layers B is in the range of 1: 2 to 2: 1.

ところで、一般的にフィルム面内に極めて高度に分子鎖が配向された方向を存在させることで、フィルムの当該方向における湿度膨張係数を低くできるが、ポリエステルAはこうした高度に配向された方向において、ポリエステルBに比べてより湿度膨張係数を極めて小さくでき、驚くべきことに負の湿度膨張係数にすることも可能である。そのため、フィルム層Bでヤング率などの機械的特性を維持しつつ、一方向にフィルム層Aの分子鎖をより高度に配向させることが必要である。そのため、前述のようなヤング率の比の関係を具備させなければならないが、さらにフィルム層Bのガラス転移温度B(TgB)は、フィルム層Aのガラス転移温度(TgA)よりも、10〜50℃高いことが、よりフィルム層Aの配向を一方向に高度に配向させやすいことから好ましい。これは、TgBがTgAよりも高いことで、例えば幅方向にフィルム層Aをより高度に配向させつつ、製膜方向と幅方向にフィルム層Bを配向させようとしたとき、製膜方向の延伸温度を高くしつつ、幅方向の延伸温度を低くするような条件を採用することで、フィルム層Bは両方向にある程度配向させつつ、フィルム層Aは幅方向に優先的に配向するような条件が採用できるからである。他方、フィルム層Bのガラス転移温度が上記上限より高い高分子の場合、フィルム層Aのガラス転移温度との差が大きくなりすぎるため、フィルムを延伸した際にフィルム層Aの分子鎖が配向しない状態で延伸される現象(流動延伸)が生じてしまう。そのような観点から、好ましいTgB−TgAは15〜45℃、さらに20〜40℃の範囲である。なお、製膜方向にフィルム層Aをより高度に配向させたい場合は、製膜方向の延伸温度を低くし、幅方向の延伸温度を高くすればよいことは容易に理解されるはずである。   By the way, in general, the presence of a direction in which molecular chains are extremely highly oriented in the plane of the film can reduce the coefficient of humidity expansion in the direction of the film, but polyester A is in such a highly oriented direction. Compared to polyester B, the humidity expansion coefficient can be made extremely small, and surprisingly a negative humidity expansion coefficient can be obtained. Therefore, it is necessary to highly orient the molecular chains of the film layer A in one direction while maintaining the mechanical properties such as Young's modulus in the film layer B. Therefore, the relationship of the Young's modulus ratio as described above must be provided, and the glass transition temperature B (TgB) of the film layer B is 10 to 50 higher than the glass transition temperature (TgA) of the film layer A. A high temperature is preferable because the orientation of the film layer A can be highly oriented in one direction. This is because TgB is higher than TgA. For example, when the film layer B is oriented in the film forming direction and the width direction while the film layer A is more highly oriented in the width direction, the film layer is stretched in the film forming direction. By adopting conditions that increase the temperature and lower the stretching temperature in the width direction, the film layer B is oriented to some extent in both directions while the film layer A is preferentially oriented in the width direction. This is because it can be adopted. On the other hand, in the case of a polymer having a glass transition temperature of the film layer B higher than the above upper limit, the difference from the glass transition temperature of the film layer A becomes too large, so that the molecular chain of the film layer A is not oriented when the film is stretched. A phenomenon of stretching in a state (fluid stretching) occurs. From such a viewpoint, preferable TgB-TgA is in the range of 15 to 45 ° C, and further 20 to 40 ° C. In addition, it should be easily understood that when the film layer A is more highly oriented in the film forming direction, it is only necessary to lower the stretching temperature in the film forming direction and increase the stretching temperature in the width direction.

そのような観点から、フィルム層Bはエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするポリエステルか、エチレンテレフタレートを主たる繰り返し単位とするポリエステルにポリエーテルイミドなどガラス転移温度を高くするような成分を共重合またはブレンドしたものが好ましい。   From such a viewpoint, the film layer B is made to increase the glass transition temperature such as polyetherimide to polyester having ethylene-2,6-naphthalenedicarboxylate as the main repeating unit or polyester having ethylene terephthalate as the main repeating unit. Those obtained by copolymerizing or blending various components are preferred.

つぎに、本発明の二軸配向積層ポリエステルフィルムの好ましい態様について、さらに詳述する。
本発明におけるフィルム層Aは、DSCで測定したガラス転移温度が、70℃以上、さらに75℃以上であることが、耐熱性や寸法安定性の点から好ましい。このようなガラス転移温度は、ガラス転移温度を下げるような成分の割合を制御することで調整できる。なお、通常副生物の少ないホモのPTNであれば、ガラス転移温度は80℃程度であり、よりガラス転移温度の高いものとするには、前述のようにポリエーテルイミドなど、Tgをあげる目的でそれ自体公知の他の共重合成分を共重合したり、ブレンドしたりしても良い。なお、仮にフィルム層Aの重量を基準として、20重量%のポリエーテルイミドをPTNにブレンドすると、動的粘弾性を測定した場合の損失正接において、Tgを約25%高温にすることが可能である。
Next, a preferred embodiment of the biaxially oriented laminated polyester film of the present invention will be described in detail.
The film layer A in the present invention preferably has a glass transition temperature measured by DSC of 70 ° C. or higher, more preferably 75 ° C. or higher from the viewpoint of heat resistance and dimensional stability. Such a glass transition temperature can be adjusted by controlling the ratio of components that lower the glass transition temperature. In addition, in the case of homo PTN with usually few by-products, the glass transition temperature is about 80 ° C. In order to achieve a higher glass transition temperature, as described above, for the purpose of increasing Tg, such as polyetherimide. Other copolymer components known per se may be copolymerized or blended. If 20 wt% of polyetherimide is blended with PTN based on the weight of film layer A, Tg can be increased by about 25% at the loss tangent when dynamic viscoelasticity is measured. is there.

また、本発明におけるPTNは、DSCで測定した融点が、190〜230℃の範囲、さらに190〜225℃の範囲、特に195〜225℃の範囲にあることが製膜性の点から好ましい。融点が上記上限を越えると、溶融押出して成形する際に、流動性が劣り、吐出などが不均一化しやすくなるため生産性は悪化する。一方で、上記下限未満になると、製膜性は優れるものの、芳香族ポリエステルの持つ機械的特性などは損なわれやすくなる。   Further, the PTN in the present invention preferably has a melting point measured by DSC in the range of 190 to 230 ° C., more preferably in the range of 190 to 225 ° C., particularly in the range of 195 to 225 ° C. from the viewpoint of film forming property. When the melting point exceeds the above upper limit, when melt extrusion is performed, the fluidity is inferior, and the discharge tends to be non-uniform, so that the productivity is deteriorated. On the other hand, when it is less than the above lower limit, although the film-forming property is excellent, the mechanical properties and the like of the aromatic polyester are easily impaired.

本発明の二軸配向積層ポリエステルフィルムは、フィルム層A(A層)とフィルム層B(B層)とを有していればよく、それらをA層/B層として積層した2層フィルム、A(B)層/B(A)層/A(B)層として積層した3層フィルム、A(B)層/B(A)層/A(B)層/B(A)層として積層した4層フィルム、A(B)層/B(A)層/A(B)層/B(A)層/A(B)層/として積層した5層フィルム、さらにそれらの層数を増やした多層フィルムであってもよいし、本発明の効果を損なわない範囲で、他のフィルム層やコーティング層などを積層したものでも良い。例えば、本発明の二軸配向積層ポリエステルフィルムの表面に厚み1〜50nmの水溶性または水分散性高分子、あるいは溶剤可溶性高分子などからなるコーティング層を積層することは好ましい態様である。特に、本発明の二軸配向積層ポリエステルフィルムは、フィルム層AとBとで、組成の異なるポリエステルを用いており、各層の配向に違いが生じることから、延伸性を高めやすく、また剥離や配向差によるカールを抑えやすいことから、合計のフィルム層の層数が8層以上の多層フィルムであることが好ましく、特に10〜1000層、さらに20〜200層の多層フィルムであることが好ましい。なお、前述の全フィルム層Aの合計厚みと全フィルム層Bの合計厚みは、このように複数のフィルム層AやBがある場合に、それらの厚みを合計したものである。   The biaxially oriented laminated polyester film of the present invention only needs to have a film layer A (A layer) and a film layer B (B layer), and a two-layer film obtained by laminating them as an A layer / B layer, A (B) 3 layer film laminated as layer / B (A) layer / A (B) layer, 4 laminated as A (B) layer / B (A) layer / A (B) layer / B (A) layer Layer film, 5-layer film laminated as A (B) layer / B (A) layer / A (B) layer / B (A) layer / A (B) layer /, and multilayer film with more layers It is also possible to use a laminate of other film layers, coating layers, etc., as long as the effects of the present invention are not impaired. For example, it is a preferable embodiment to laminate a coating layer made of a water-soluble or water-dispersible polymer having a thickness of 1 to 50 nm or a solvent-soluble polymer on the surface of the biaxially oriented laminated polyester film of the present invention. In particular, the biaxially oriented laminated polyester film of the present invention uses polyesters having different compositions between the film layers A and B, and the orientation of each layer is different. Since it is easy to suppress curl due to the difference, the total number of film layers is preferably a multilayer film having 8 or more layers, particularly a multilayer film having 10 to 1000 layers, more preferably 20 to 200 layers. In addition, the total thickness of all the above-mentioned film layers A and the total thickness of all the film layers B total those thickness, when there exist several film layers A and B in this way.

ところで、本発明の二軸配向積層ポリエステルフィルムは、平滑性と層構成を簡便に調整しやすいことから、表裏で表面粗さが異なる積層構造であることが好ましい。特に、磁気記録媒体の走行耐久性や、磁気ヘッドとの走行性の良化、あるいは、巻き取り性などハンドリング性の向上のため、表面粗さが粗い側の表面を構成するフィルム層は不活性粒子を含有させることが好ましい。なお、本発明でいう不活性粒子とは、無機または有機の粒子で、フィルムを形成するポリマー中で本発明の効果を損なうような化学的反応を起こさないものをいう。また、磁気記録テープのベースフィルムに用いるときは、記録特性を損なうような電磁気的影響を与えないものであることが好ましい。このような不活性粒子としては、それ自体公知のものを好適に使用でき、例えば球状シリカ粒子、球状の架橋ポリスチレン粒子、球状のシリコーン粒子などが好適に挙げられる。   By the way, since the biaxially oriented laminated polyester film of the present invention is easy to adjust the smoothness and the layer structure, it is preferable that the biaxially oriented laminated polyester film has a laminated structure having different surface roughnesses on the front and back sides. In particular, the film layer constituting the surface having a rough surface is inactive to improve the running durability of the magnetic recording medium, the running property with the magnetic head, or the handling property such as the winding property. It is preferable to contain particles. The inert particles referred to in the present invention are inorganic or organic particles that do not cause a chemical reaction that impairs the effects of the present invention in the polymer forming the film. Further, when used for a base film of a magnetic recording tape, it is preferable that it does not give an electromagnetic influence that impairs recording characteristics. As such inert particles, those known per se can be preferably used. For example, spherical silica particles, spherical crosslinked polystyrene particles, spherical silicone particles and the like can be preferably mentioned.

本発明の二軸配向積層ポリエステルフィルムに含有させる不活性粒子の好ましい平均粒径および含有量は、用途やフィルムの積層構造によって異なるが、例えば磁気記録テープのベースフィルムに用いる場合、以下のようなものが好ましい。   The preferred average particle size and content of the inert particles contained in the biaxially oriented laminated polyester film of the present invention vary depending on the use and the laminated structure of the film. For example, when used for a base film of a magnetic recording tape, the following Those are preferred.

まず、磁性層側の表面のフィルム層に含有させる不活性粒子の平均粒径は、0.005〜0.5μmが好ましく、より好ましくは、0.01〜0.3μm、さらに好ましくは0.03〜0.2μm、最も好ましくは0.05〜0.15μmである。含有量は、磁性層側の表面のフィルム層の重量を基準として、0.001〜1重量%が好ましく、より好ましくは0.005〜0.5重量%、さらに好ましくは0.01〜0.3重量%、最も好ましくは0.01〜0.2重量%である。一方、磁性層を形成しない側の表面のフィルム層に含有させる不活性粒子は、2種類以上のサイズの異なる不活性粒子(不活性粒子1と2)を用いることが好ましい。そのため、不活性粒子1の平均粒径は、0.05〜2μmが好ましく、より好ましくは、0.1〜1μm、さらに好ましくは0.2〜0.6μmである。また、不活性粒子2の平均粒経は、0.01〜0.3μmが好ましく、さらに好ましくは0.03〜0.2μm、最も好ましくは0.05〜0.15μmである。また、不活性粒子1の含有量は、磁性層を形成しない側の表面のフィルム層の重量を基準として、0.001〜1重量%が好ましく、より好ましくは0.005〜0.5重量%、さらに好ましくは0.01〜0.3重量%、最も好ましくは0.02〜0.2重量%である。また、不活性粒子2の含有量は、磁性層を形成しない側の表面のフィルム層の重量を基準として、0.001〜1重量%が好ましく、より好ましくは0.005〜0.5重量%、さらに好ましくは0.01〜0.3重量%、最も好ましくは0.02〜0.2重量%である。   First, the average particle diameter of the inert particles contained in the film layer on the magnetic layer side is preferably 0.005 to 0.5 μm, more preferably 0.01 to 0.3 μm, and still more preferably 0.03. It is -0.2 micrometer, Most preferably, it is 0.05-0.15 micrometer. The content is preferably 0.001 to 1% by weight, more preferably 0.005 to 0.5% by weight, and still more preferably 0.01 to 0. 0% by weight based on the weight of the film layer on the surface on the magnetic layer side. 3% by weight, most preferably 0.01-0.2% by weight. On the other hand, it is preferable to use two or more kinds of inert particles (inactive particles 1 and 2) having different sizes as the inert particles to be included in the film layer on the surface on which the magnetic layer is not formed. Therefore, the average particle diameter of the inert particles 1 is preferably 0.05 to 2 μm, more preferably 0.1 to 1 μm, and still more preferably 0.2 to 0.6 μm. The average particle size of the inert particles 2 is preferably 0.01 to 0.3 μm, more preferably 0.03 to 0.2 μm, and most preferably 0.05 to 0.15 μm. Further, the content of the inert particles 1 is preferably 0.001 to 1% by weight, more preferably 0.005 to 0.5% by weight, based on the weight of the film layer on the surface on which the magnetic layer is not formed. More preferably, it is 0.01 to 0.3% by weight, and most preferably 0.02 to 0.2% by weight. Further, the content of the inert particles 2 is preferably 0.001 to 1% by weight, more preferably 0.005 to 0.5% by weight, based on the weight of the film layer on the surface on which the magnetic layer is not formed. More preferably, it is 0.01 to 0.3% by weight, and most preferably 0.02 to 0.2% by weight.

また、本発明の二軸配向積層ポリエステルフィルムは、磁気記録媒体のベースフィルムに用いる場合、磁性層を形成する側の表面にあるフィルム層は、0.5μm以上、さらに1.0μm以上の厚みを有することが、他のフィルム層に含有される不活性粒子による突き上げによる表面の平坦性低下を抑えやすいことから好ましい。なお、本発明の二軸配向積層フィルムの厚みは、用いる用途に応じて適宜選択すればよく、特に制限されないが、磁気記録媒体のベースフィルムに用いる場合、3〜6μm、さらに3.5〜5μm、特に4〜4.8μmの間にあることが好ましい。   When the biaxially oriented laminated polyester film of the present invention is used as a base film of a magnetic recording medium, the film layer on the surface on which the magnetic layer is formed has a thickness of 0.5 μm or more, and further 1.0 μm or more. It is preferable to have it because it is easy to suppress a decrease in surface flatness due to push-up by inert particles contained in other film layers. In addition, the thickness of the biaxially oriented laminated film of the present invention may be appropriately selected according to the use to be used, and is not particularly limited. In particular, it is preferably between 4 and 4.8 μm.

本発明の二軸配向積層ポリエステルフィルムは、本発明の効果を損なわない範囲で、熱安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、顔料、染料、脂肪酸エステル、ワックスなどの有機滑剤などが添加されていてもよい。   The biaxially oriented laminated polyester film of the present invention is a range that does not impair the effects of the present invention, such as heat stabilizer, antioxidant, ultraviolet absorber, antistatic agent, flame retardant, pigment, dye, fatty acid ester, wax, etc. An organic lubricant or the like may be added.

つづいて、本発明の二軸配向積層ポリエステルフィルムの製膜方法について説明するが、本発明はこの方法に制限されるものではない。
まず、本発明の二軸配向積層ポリエステルフィルムを製造するためのポリエステルAおよびポリエステルBは、それ自体公知の方法で製造できる。具体的には、PTNの場合、2,6−ナフタレンジカルボン酸もしくはその低級アルキルエステルとトリメチレングリコールとを、エステル化反応もしくはエステル交換反応させて、さらに所望の固有粘度になるまで重縮合反応させればよい。この際、エステル化反応、エステル交換反応または重縮合反応の反応速度を高めるために、それ自体公知の触媒を好適に使用でき、固相重合などを用いても良い。
Next, the method for producing a biaxially oriented laminated polyester film of the present invention will be described, but the present invention is not limited to this method.
First, polyester A and polyester B for producing the biaxially oriented laminated polyester film of the present invention can be produced by a method known per se. Specifically, in the case of PTN, 2,6-naphthalenedicarboxylic acid or its lower alkyl ester and trimethylene glycol are subjected to an esterification reaction or a transesterification reaction, and a polycondensation reaction is performed until a desired intrinsic viscosity is obtained. Just do it. In this case, in order to increase the reaction rate of the esterification reaction, transesterification reaction or polycondensation reaction, a catalyst known per se can be suitably used, and solid phase polymerization or the like may be used.

また、本発明の二軸配向積層ポリエステルフィルムを製造するため、ポリエステルBにPENを用いた場合、PENはそれ自体公知の方法で製造できる。具体的には、2,6−ナフタレンジカルボン酸もしくはその低級アルキルエステルとエチレングリコールとを、エステル化反応もしくはエステル交換反応させて、さらに所望の固有粘度になるまで重縮合反応させればよい。この際、エステル化反応、エステル交換反応または重縮合反応の反応速度を高めるために、それ自体公知の触媒を好適に使用できる。   Further, when PEN is used for polyester B to produce the biaxially oriented laminated polyester film of the present invention, PEN can be produced by a method known per se. Specifically, 2,6-naphthalenedicarboxylic acid or a lower alkyl ester thereof and ethylene glycol may be subjected to an esterification reaction or a transesterification reaction, and a polycondensation reaction is performed until a desired intrinsic viscosity is obtained. In this case, a catalyst known per se can be suitably used in order to increase the reaction rate of the esterification reaction, transesterification reaction or polycondensation reaction.

このようにして得られたポリエステルAおよびポリエステルB、さらに必要に応じてそれらに不活性粒子やポリエーテルイミドなど加え、溶融状態でフィードブロックにてそれらを積層し、ダイからシート状に回転している冷却ドラム上に押出し、未延伸積層シートを作成する。   Polyester A and polyester B obtained in this way, and if necessary, add inert particles, polyetherimide, etc. to them, laminate them in a molten state in a feed block, and rotate from die to sheet Extruded onto a cooling drum, and an unstretched laminated sheet is prepared.

そして、得られた未延伸積層シートを、製膜方向(または幅方向)にフィルム層Aのガラス転移温度(Tg)+20℃以上からTg+70℃以下、さらに好ましくはTg+50℃〜Tg+70℃の範囲で、2.0〜4.0倍、さらに好ましくは2.5〜3.5の延伸倍率で延伸を行ない、その後、幅方向(または製膜方向)に、フィルム層AのTg+70℃を上限とした範囲で、3.0〜7.0倍、さらに好ましくは4.0〜6.0の延伸倍率で延伸を行なえばよい。このような延伸方向によって延伸温度に違いを持たせることで、フィルム層Aを幅方向(または製膜方向)に配向させることが可能であり、幅方向の湿度膨張係数および高弾性率が奏される。なお、詳細な延伸条件は、実際に目的とする湿度膨張係数およびヤング率が決まれば、それに応じてその方向により高い延伸倍率の条件で延伸をしたり、延伸温度を低くすること、またはそれと直交する方向の延伸倍率を低くしたり、延伸温度を低くするなどして、湿度膨張係数を低くしたり、ヤング率を高めたりといった調整ができる。   And in the film forming direction (or width direction) of the obtained unstretched laminated sheet, the glass transition temperature (Tg) of the film layer A + 20 ° C. to Tg + 70 ° C., more preferably Tg + 50 ° C. to Tg + 70 ° C. Stretching is performed at a stretching ratio of 2.0 to 4.0 times, more preferably 2.5 to 3.5, and then, in the width direction (or film forming direction), a range with the upper limit of Tg + 70 ° C. of the film layer A Thus, stretching may be performed at a stretching ratio of 3.0 to 7.0 times, more preferably 4.0 to 6.0. By making the stretching temperature different depending on the stretching direction, it is possible to orient the film layer A in the width direction (or the film forming direction), and the humidity expansion coefficient and the high elastic modulus in the width direction are exhibited. The In addition, if the specific expansion coefficient and Young's modulus are actually determined, the detailed stretching conditions can be stretched under a condition of a higher stretching ratio in that direction, the stretching temperature can be lowered, or orthogonal to it. It is possible to make adjustments such as lowering the coefficient of humidity expansion and increasing the Young's modulus by lowering the stretching ratio in the direction of stretching or lowering the stretching temperature.

もちろん、本発明の二軸配向積層ポリエステルフィルムは、上述のような延伸工程を経た後、弛緩、定長もしくは緊張化で、熱固定処理を行うことが好ましく、その温度は160〜180℃の温度で熱固定処理を行うことが、その後の寸法安定性をより高められることから好ましい。   Of course, the biaxially oriented laminated polyester film of the present invention is preferably subjected to heat setting treatment by relaxation, constant length or tension after undergoing the stretching process as described above, and the temperature is 160 to 180 ° C. It is preferable to perform the heat setting process at, since the subsequent dimensional stability can be further improved.

このようにして得られた本発明の二軸配向積層ポリエステルフィルムは、目的とする方向の湿度膨張係数を極めて低いものとすることができ、例えばリニア記録方式のデータテープのベースフィルムに用いれば、磁気ヘッドとの湿度変化による幅方向のトラックの位置がずれる、いわゆるトラックズレによるエラーが極めて低いデータテープとすることができる。   The biaxially oriented laminated polyester film of the present invention thus obtained can have a very low humidity expansion coefficient in the intended direction. For example, when used for a base film of a linear recording data tape, A data tape in which the position of the track in the width direction is shifted due to a change in humidity with the magnetic head, that is, an error due to so-called track deviation is extremely low.

なお、このようなデータテープは、本発明の二軸配向積層ポリエステルフィルムの一方の面に、磁性層を形成するための磁性層用塗液を塗布および乾燥することで製造できる。もちろん、必要に応じて、ベースフィルムと磁性層との間に、磁性層の厚みを薄くするための非磁性層を形成したり、磁性層を形成しない側に、データテープとしたときの走行性を向上させるためのバックコート層を形成したりしても良い。   Such a data tape can be manufactured by applying and drying a magnetic layer coating liquid for forming a magnetic layer on one surface of the biaxially oriented laminated polyester film of the present invention. Of course, if necessary, a non-magnetic layer for reducing the thickness of the magnetic layer is formed between the base film and the magnetic layer, or the running property when a data tape is formed on the side where the magnetic layer is not formed. A back coat layer may be formed to improve the resistance.

次の実施例に基づき、本発明の実施形態を説明する。
<測定方法>
(1)固有粘度(I.V.)
得られたポリエステルの固有粘度は、35℃でのオルソクロロフェノールを溶媒として用いて測定した。
Based on the following examples, embodiments of the present invention will be described.
<Measurement method>
(1) Intrinsic viscosity (IV)
The intrinsic viscosity of the obtained polyester was measured using orthochlorophenol at 35 ° C. as a solvent.

(2)ガラス転移温度および融点
ガラス転移温度および融点はDSC(TAインスツルメンツ株式会社製、商品名:Thermal analyst2100)により試料量10mg、昇温速度20℃/minで測定した。
(2) Glass transition temperature and melting point The glass transition temperature and melting point were measured by DSC (TA Instruments Co., Ltd., trade name: Thermal analyst 2100) at a sample amount of 10 mg and a heating rate of 20 ° C./min.

(3)ヤング率
得られた配向フィルムを試料巾10mm、長さ15cmで切り取り、チャック間100mm、引張速度10mm/分、チャート速度500mm/分の条件で万能引張試験装置(東洋ボールドウィン製、商品名:テンシロン)にて引っ張る。得られた荷重―伸び曲線の立ち上がり部の接線よりヤング率を計算する。
(3) Young's modulus The obtained oriented film was cut out with a sample width of 10 mm and a length of 15 cm, and a universal tensile testing device (trade name, manufactured by Toyo Baldwin, under the conditions of 100 mm between chucks, 10 mm / min tensile speed, 500 mm / min chart speed) : Tensilon). The Young's modulus is calculated from the tangent of the rising portion of the obtained load-elongation curve.

(4)温度膨張係数(αt)
得られた二軸配向フィルムを幅方向が測定方向となるように長さ12mm、幅5mmに切り出し、真空理工製TMA3000にセットし、窒素雰囲気下(0%RH)、60℃で30分前処理し、その後室温まで降温させる。その後25℃から70℃まで2℃/minで昇温して、各温度でのサンプル長を測定し、次式より温度膨張係数を算出する。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値を用いた。
αt={(L60−L40)}/(L40×△T)}+0.5
ここで、上記式中のL40は40℃のときのサンプル長(mm)、L60は60℃のときのサンプル長(mm)、△Tは20(=60−40)℃、0.5は石英ガラスの温度膨張係数(×ppm/℃)である。
(4) Temperature expansion coefficient (αt)
The obtained biaxially oriented film was cut into a length of 12 mm and a width of 5 mm so that the width direction would be the measurement direction, set in TMA3000 manufactured by Vacuum Riko, and pretreated at 60 ° C. for 30 minutes in a nitrogen atmosphere (0% RH). Then, the temperature is lowered to room temperature. Thereafter, the temperature is raised from 25 ° C. to 70 ° C. at 2 ° C./min, the sample length at each temperature is measured, and the temperature expansion coefficient is calculated from the following equation. In addition, the measurement direction is the longitudinal direction of the sample cut out, the measurement was performed 5 times, and the average value was used.
αt = {(L 60 −L 40 )} / (L 40 × ΔT)} + 0.5
Here, L 40 in the above formula is the sample length (mm) at 40 ° C., L 60 is the sample length (mm) at 60 ° C., ΔT is 20 (= 60-40) ° C., 0.5 Is the coefficient of thermal expansion (× ppm / ° C.) of quartz glass.

(5)湿度膨張係数(αh)
得られた配向フィルムを幅方向が測定方向となるように長さ12mm、幅5mmに切り出し、真空理工製TMA3000にセットし、30℃の窒素雰囲気下で、湿度20%RHと湿度80%RHにおけるそれぞれのサンプルの長さを測定し、次式にて湿度膨張係数を算出する。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値をαhとした。
αh=(L80−L20)/(L80×△H)
ここで、上記式中のL20は20%RHのときのサンプル長(mm)、L80は80%RHのときのサンプル長(mm)、△H:60(=80−20)%RHである。
(5) Humidity expansion coefficient (αh)
The obtained oriented film was cut into a length of 12 mm and a width of 5 mm so that the width direction was the measurement direction, set in TMA3000 manufactured by Vacuum Riko, and in a nitrogen atmosphere at 30 ° C., at a humidity of 20% RH and a humidity of 80% RH. The length of each sample is measured, and the humidity expansion coefficient is calculated by the following formula. In addition, the measurement direction is the longitudinal direction of the cut out sample, the measurement was performed 5 times, and the average value was αh.
αh = (L 80 −L 20 ) / (L 80 × ΔH)
Here, L 20 in the above formula is a sample length (mm) when 20% RH, L 80 is a sample length (mm) when 80% RH, ΔH: 60 (= 80-20)% RH is there.

(6)二軸配向積層ポリエステルフィルムおよび各フィルム層の厚み
積層フィルムを層間の空気を排除しながら10枚重ね、JIS規格のC2151に準拠し、(株)ミツトヨ製ダイヤルゲージMDC−25Sを用いて、10枚重ね法にて厚みを測定し、1枚当りのフィルム厚みを計算する。この測定を10回繰り返して、その平均値を1枚あたりの積層フィルムの全体の厚みとした。
一方、フィルム層(A)およびフィルム層(B)の厚みは、フィルムの小片をエポキシ樹脂にて固定成形し、ミクロトームにて約60nmの厚みの超薄切片(フィルムの製膜方向および厚み方向に平行に切断する)を作成する。この超薄切片の試料を透過型電子顕微鏡(日立製作所製H−800型)にて観察し、その境界からフィルム層(A)とBの厚みを求めた。
(6) Biaxially oriented laminated polyester film and thickness of each film layer 10 layers of laminated film are removed while excluding air between layers, and conforming to JIS standard C2151, using a dial gauge MDC-25S manufactured by Mitutoyo Corporation. The thickness is measured by a 10-sheet superposition method, and the film thickness per sheet is calculated. This measurement was repeated 10 times, and the average value was taken as the total thickness of the laminated film per sheet.
On the other hand, the thicknesses of the film layer (A) and the film layer (B) were obtained by fixing a small piece of film with an epoxy resin and using a microtome with an ultrathin slice having a thickness of about 60 nm (in the film forming direction and thickness direction). Cut in parallel). The sample of this ultrathin section was observed with a transmission electron microscope (H-800 type manufactured by Hitachi, Ltd.), and the thicknesses of the film layers (A) and B were determined from the boundary.

(7)不活性粒子の平均粒径
添加する不活性粒子の平均粒径および相対標準偏差は、JIS Z8823−1に準拠する遠心沈降法で得られる粒度分布から得られる数平均値を平均粒径とした。
(7) Average particle diameter of inert particles The average particle diameter and relative standard deviation of the inert particles to be added are the average particle diameter obtained from the particle size distribution obtained by the centrifugal sedimentation method according to JIS Z8823-1. It was.

[実施例1]
2,6−ナフタレンジカルボン酸ジメチル100重量部と1,3−プロパンジオール60重量部およびテトラブチルチタネート0.08重量部を使用し、エステル交換反応を行った。次いで高真空下で重縮合反応を行ない、固有粘度が0.62dl/g、ガラス転移温度が81℃のポリトリメチレン−2,6−ナフタレンジカルボキシレート(PTN−1)を得た。
2,6−ナフタレンジカルボン酸ジメチルとエチレングリコールでエステル交換反応を行ない、次いで高真空下で重縮合反応を行ない、固有粘度が0.63dl/g、ガラス転移温度が117℃のポリエチレン−2,6−ナフタレンジカルボキシレート(PEN−1)を得た。
上記原料を十分乾燥した後、2台の押出機に供給し、PTN−1は260℃で溶融押出し、PEN−1は300℃で溶融押出して、49層のフィードブロックで溶融樹脂を積層させたのち、静電印加キャスト法を用いて表面温度50℃のキャスティングドラムにて冷却固化し、未延伸フィルムを作製した。このとき、PEN−1とPTN−1の流量を、表1に示す厚さ比になるように調整し、PTN−1を24層に、PEN−1を25層にそれぞれ均等に分け、両表面層がPEN−1からなるフィルム層になるように溶融状態で交互に積層した。この未延伸フィルムを、115℃の予熱ロールを通して、延伸温度を130℃で製膜方向に2.0倍延伸し、つづいて製膜方向に直交する方向(幅方向に)に延伸温度130℃で5.8倍の倍率で逐次二軸延伸をした後、一旦冷却し、160℃で熱処理を施した。こうして延伸された厚み10μmの二軸配向フィルムをワインダーで巻き取り、PTNとPENからなる積層配向ポリエステルフィルムを得た。
得られた積層配向ポリエステルフィルムの特性を表1に示す。
[Example 1]
Transesterification was carried out using 100 parts by weight of dimethyl 2,6-naphthalenedicarboxylate, 60 parts by weight of 1,3-propanediol and 0.08 parts by weight of tetrabutyl titanate. Subsequently, a polycondensation reaction was performed under high vacuum to obtain polytrimethylene-2,6-naphthalenedicarboxylate (PTN-1) having an intrinsic viscosity of 0.62 dl / g and a glass transition temperature of 81 ° C.
Polyester-2,6 having a transesterification reaction with dimethyl 2,6-naphthalenedicarboxylate and ethylene glycol, followed by a polycondensation reaction under high vacuum, an intrinsic viscosity of 0.63 dl / g, and a glass transition temperature of 117 ° C. -Naphthalene dicarboxylate (PEN-1) was obtained.
After sufficiently drying the raw material, it was supplied to two extruders, PTN-1 was melt-extruded at 260 ° C., PEN-1 was melt-extruded at 300 ° C., and the molten resin was laminated with a 49-layer feed block. After that, it was cooled and solidified with a casting drum having a surface temperature of 50 ° C. by using an electrostatic application casting method to produce an unstretched film. At this time, the flow rates of PEN-1 and PTN-1 were adjusted to the thickness ratio shown in Table 1, and PTN-1 was equally divided into 24 layers and PEN-1 was divided into 25 layers. The layers were alternately laminated in a molten state so as to be film layers made of PEN-1. This unstretched film is stretched 2.0 times in the film-forming direction at a stretching temperature of 130 ° C. through a preheating roll at 115 ° C., and subsequently stretched at a temperature of 130 ° C. in the direction perpendicular to the film-forming direction (in the width direction) After sequentially biaxially stretching at a magnification of 5.8 times, it was once cooled and heat-treated at 160 ° C. The stretched biaxially oriented film having a thickness of 10 μm was wound with a winder to obtain a laminated oriented polyester film made of PTN and PEN.
Table 1 shows the properties of the obtained laminated oriented polyester film.

[実施例2]
幅方向の延伸温度を130℃から140℃に変更し、幅方向の延伸倍率を4.8倍に変更して、厚みを10μmになるように調整したほかは、実施例1と同様にして積層配向ポリエステルフィルムを得た。
得られた積層配向フィルムの特性を表1に示す。
[Example 2]
Lamination was performed in the same manner as in Example 1 except that the stretching temperature in the width direction was changed from 130 ° C. to 140 ° C., the stretching ratio in the width direction was changed to 4.8 times, and the thickness was adjusted to 10 μm. An oriented polyester film was obtained.
Table 1 shows the characteristics of the obtained laminated alignment film.

[実施例3]
製膜方向の延伸温度を130℃から145℃に変更し、幅方向の延伸温度を130℃から135℃に変更し、製膜方向の延伸倍率を2.0倍から3.0倍、幅方向の延伸倍率5.8倍から4.5倍に変更して、厚みを10μmになるように調整したほかは、実施例1と同様にして積層配向ポリエステルフィルムを得た。
得られた積層配向フィルムの特性を表1に示す。
[Example 3]
The stretching temperature in the film forming direction was changed from 130 ° C. to 145 ° C., the stretching temperature in the width direction was changed from 130 ° C. to 135 ° C., and the stretching ratio in the film forming direction was changed from 2.0 times to 3.0 times in the width direction. A laminated oriented polyester film was obtained in the same manner as in Example 1 except that the draw ratio was changed from 5.8 times to 4.5 times and the thickness was adjusted to 10 μm.
Table 1 shows the characteristics of the obtained laminated alignment film.

[実施例4]
幅方向の延伸倍率5.8倍から5.0倍に変更して、厚みを10μmになるように調整したほかは、実施例1と同様にして積層配向ポリエステルフィルムを得た。
得られた積層配向フィルムの特性を表1に示す。
[Example 4]
A laminated oriented polyester film was obtained in the same manner as in Example 1 except that the draw ratio in the width direction was changed from 5.8 times to 5.0 times and the thickness was adjusted to 10 μm.
Table 1 shows the characteristics of the obtained laminated alignment film.

[実施例5]
表1に示す厚み比になるようにPTN−1とPEN−1の流量を調整し、幅方向の延伸温度を140℃、延伸倍率を5.4倍に変更して、厚みを10μmになるように調整したほかは、実施例1と同様にして積層配向ポリエステルフィルムを得た。 得られた積層配向ポリエステルフィルムの特性を表1に示す。
[Example 5]
Adjust the flow rate of PTN-1 and PEN-1 to the thickness ratio shown in Table 1, change the stretching temperature in the width direction to 140 ° C., and the stretching ratio to 5.4 times, so that the thickness becomes 10 μm. A laminated oriented polyester film was obtained in the same manner as in Example 1 except that it was adjusted. Table 1 shows the properties of the obtained laminated oriented polyester film.

[実施例6]
表1に示す厚み比になるようにPTN−1とPEN−1の流量を調整し、幅方向の延伸温度を140℃、延伸倍率を5.3倍に変更して、厚みを10μmになるように調整したほかは、実施例1と同様にして積層配向ポリエステルフィルムを得た。
[Example 6]
Adjust the flow rate of PTN-1 and PEN-1 to the thickness ratio shown in Table 1, change the stretching temperature in the width direction to 140 ° C., and the stretching ratio to 5.3 times so that the thickness becomes 10 μm. A laminated oriented polyester film was obtained in the same manner as in Example 1 except that it was adjusted.

[実施例7]
製膜方向の延伸倍率を2.0倍から3.5倍、幅方向の延伸倍率5.3倍から5.8倍に変更して、厚みを10μmになるように調整したほかは、実施例6と同様にして積層配向ポリエステルフィルムを得た。
得られた積層配向フィルムの特性を表1に示す。
[Example 7]
Example except that the draw ratio in the film forming direction was changed from 2.0 times to 3.5 times, the draw ratio in the width direction was changed from 5.3 times to 5.8 times, and the thickness was adjusted to 10 μm. In the same manner as in Example 6, a laminated oriented polyester film was obtained.
Table 1 shows the characteristics of the obtained laminated alignment film.

[実施例8]
実施例1で作成したPTN−1とPEN−1とを十分乾燥した後、2台の押出機に供給し、PTN−1は260℃で溶融押出し、PEN−1は300℃で溶融押出して、2層のフィードブロックで溶融樹脂を積層させたのち、静電印加キャスト法を用いて表面温度50℃のキャスティングドラムにて冷却固化し、未延伸フィルムを作製した。このときPEN−1とPTN−1の流量は表1に示す厚み比になるように調整した。この未延伸フィルムを、115℃の予熱ロールを通して、延伸温度を130℃で製膜方向に2.0倍延伸し、つづいて幅方向に延伸温度125℃で5.3倍の倍率で逐次二軸延伸をした後、一旦冷却し、160℃で熱処理を施した。こうして延伸された厚み10μmの二軸配向フィルムをワインダーで巻き取り、PTNとPENからなる積層配向ポリエステルフィルムを得た。
得られた積層配向ポリエステルフィルムの特性を表1に示す。
[Example 8]
PTN-1 and PEN-1 prepared in Example 1 were sufficiently dried and then supplied to two extruders. PTN-1 was melt extruded at 260 ° C, PEN-1 was melt extruded at 300 ° C, After laminating the molten resin with a two-layer feed block, it was cooled and solidified with a casting drum having a surface temperature of 50 ° C. using an electrostatic application casting method to produce an unstretched film. At this time, the flow rates of PEN-1 and PTN-1 were adjusted to the thickness ratio shown in Table 1. This unstretched film is passed through a preheating roll at 115 ° C., stretched 2.0 times in the film forming direction at a stretching temperature of 130 ° C., and successively biaxially stretched in the width direction at a stretching temperature of 125 ° C. at a magnification of 5.3 times After extending | stretching, it once cooled and heat-processed at 160 degreeC. The stretched biaxially oriented film having a thickness of 10 μm was wound with a winder to obtain a laminated oriented polyester film made of PTN and PEN.
Table 1 shows the properties of the obtained laminated oriented polyester film.

[実施例9]
製膜方向の延伸温度を130℃から140℃に変え、幅方向の延伸倍率5.3倍から5.4倍に変更して、厚みを10μmになるように調整したほかは、実施例8と同様にして積層配向ポリエステルフィルムを得た。
得られた積層配向フィルムの特性を表1に示す。
[Example 9]
Except for changing the stretching temperature in the film forming direction from 130 ° C. to 140 ° C., changing the stretching ratio in the width direction from 5.3 times to 5.4 times, and adjusting the thickness to 10 μm, Example 8 and Similarly, a laminated oriented polyester film was obtained.
Table 1 shows the characteristics of the obtained laminated alignment film.

[実施例10]
製膜方向の延伸温度を130℃から140℃に変え、幅方向の延伸温度を125℃から150℃に変更し、延伸倍率5.3倍から5.2倍に変更して、厚みを10μmになるように調整したほかは、実施例8と同様にして積層配向ポリエステルフィルムを得た。
得られた積層配向フィルムの特性を表1に示す。
[Example 10]
The stretching temperature in the film forming direction is changed from 130 ° C. to 140 ° C., the stretching temperature in the width direction is changed from 125 ° C. to 150 ° C., the stretching ratio is changed from 5.3 times to 5.2 times, and the thickness is changed to 10 μm. A laminated oriented polyester film was obtained in the same manner as in Example 8, except that the adjustment was made.
Table 1 shows the characteristics of the obtained laminated alignment film.

[実施例11]
幅方向の延伸温度を125℃から150℃に変更し、延伸倍率5.3倍から5.4倍に変更して、厚みを10μmになるように調整したほかは、実施例8と同様にして積層配向ポリエステルフィルムを得た。
得られた積層配向フィルムの特性を表1に示す。
[Example 11]
The same as in Example 8, except that the stretching temperature in the width direction was changed from 125 ° C. to 150 ° C., the stretching ratio was changed from 5.3 times to 5.4 times, and the thickness was adjusted to 10 μm. A laminated oriented polyester film was obtained.
Table 1 shows the characteristics of the obtained laminated alignment film.

[実施例12]
実施例1で作成したPTN−1とPEN−1とを十分乾燥した後、2台の押出機に供給し、PTNは260℃で溶融押出し、PENは300℃で溶融押出して、3層のフィードブロックで溶融樹脂を積層させたのち、静電印加キャスト法を用いて表面温度50℃のキャスティングドラムにて冷却固化し、未延伸フィルムを作製した。このときPEN−1とPTN−1の流量は、表1に示す厚み比になるように調整し、PTN−1からなるフィルム層の両面に同じ厚みのPEN−1からなるフィルム層が位置するように積層した。この未延伸フィルムを、115℃の予熱ロールを通して、延伸温度を135℃で製膜方向に2.0倍延伸し、つづいて幅方向に延伸温度135℃で6.0倍の倍率で逐次二軸延伸をした後、一旦冷却し、160℃で熱処理を施した。こうして延伸された厚み10μmの二軸配向フィルムをワインダーで巻き取り、PTNとPENからなる積層配向ポリエステルフィルムを得た。
得られた積層配向ポリエステルフィルムの特性を表1に示す。
[Example 12]
PTN-1 and PEN-1 prepared in Example 1 are sufficiently dried and then supplied to two extruders. PTN is melt-extruded at 260 ° C., PEN is melt-extruded at 300 ° C., and three layers are fed. After laminating the molten resin in the block, it was cooled and solidified with a casting drum having a surface temperature of 50 ° C. using an electrostatic application casting method to produce an unstretched film. At this time, the flow rates of PEN-1 and PTN-1 are adjusted so as to have the thickness ratio shown in Table 1, so that the film layer made of PEN-1 having the same thickness is positioned on both sides of the film layer made of PTN-1. Laminated. This unstretched film is passed through a preheating roll at 115 ° C., stretched 2.0 times in the film forming direction at a stretching temperature of 135 ° C., and then continuously biaxially at a stretching temperature of 135 ° C. and a magnification of 6.0 times in the width direction. After extending | stretching, it once cooled and heat-processed at 160 degreeC. The stretched biaxially oriented film having a thickness of 10 μm was wound with a winder to obtain a laminated oriented polyester film made of PTN and PEN.
Table 1 shows the properties of the obtained laminated oriented polyester film.

[実施例13]
テレフタル酸ジメチルとエチレングリコールでエステル交換反応を行ない、次いで高真空下で重縮合反応を行ない、固有粘度が0.59dl/g、ガラス転移温度が78℃のポリエチレンテレフタレート(PET−1)を得た。
そして、実施例1で作成したPTN−1と上記PET−1とを十分乾燥した後、2台の押出機に供給し、PTN−1は260℃で溶融押出し、PET−1は280℃で溶融押出して、3層のフィードブロックで溶融樹脂を積層させたのち、静電印加キャスト法を用いて表面温度50℃のキャスティングドラムにて冷却固化し、未延伸フィルムを作製した。このときPET−1とPTN−1の流量は、表1に示す厚み比となるように調整し、PTN−1からなるフィルム層の両面に同じ厚みのPET−1からなるフィルム層が位置するように積層した。この未延伸フィルムを、90℃の予熱ロールを通して、延伸温度を100℃で製膜方向に2.0倍延伸し、つづいて製膜方向に直交する方向(幅方向に)に延伸温度110℃で5.0倍の倍率で逐次二軸延伸をした後、一旦冷却し、160℃で熱処理を施した。こうして延伸された厚み10μmの二軸配向フィルムをワインダーで巻き取り、PTNとPETからなる積層配向ポリエステルフィルムを得た。
得られた積層配向ポリエステルフィルムの特性を表1に示す。
[Example 13]
Transesterification was performed with dimethyl terephthalate and ethylene glycol, followed by polycondensation under high vacuum to obtain polyethylene terephthalate (PET-1) having an intrinsic viscosity of 0.59 dl / g and a glass transition temperature of 78 ° C. .
And after fully drying PTN-1 created in Example 1 and the above PET-1, it is supplied to two extruders, PTN-1 is melt-extruded at 260 ° C., and PET-1 is melted at 280 ° C. After extruding and laminating the molten resin with a three-layer feed block, it was cooled and solidified with a casting drum having a surface temperature of 50 ° C. by using an electrostatic application casting method to produce an unstretched film. At this time, the flow rate of PET-1 and PTN-1 is adjusted so as to be the thickness ratio shown in Table 1, and the film layer made of PET-1 having the same thickness is positioned on both surfaces of the film layer made of PTN-1. Laminated. This unstretched film is stretched 2.0 times in the film forming direction at a stretching temperature of 100 ° C. through a preheating roll of 90 ° C., and subsequently stretched at 110 ° C. in the direction perpendicular to the film forming direction (in the width direction). After sequentially biaxial stretching at a magnification of 5.0 times, it was once cooled and heat-treated at 160 ° C. The stretched biaxially oriented film having a thickness of 10 μm was wound up with a winder to obtain a laminated oriented polyester film made of PTN and PET.
Table 1 shows the properties of the obtained laminated oriented polyester film.

[実施例14]
実施例1で作成したPTN−1と実施例13で作成したPET−1とを十分乾燥した後、2台の押出機に供給し、PTNは260℃で溶融押出し、PETは280℃で溶融押出して、49層のフィードブロックで溶融樹脂を積層させたのち、静電印加キャスト法を用いて表面温度50℃のキャスティングドラムにて冷却固化し、未延伸フィルムを作製した。このとき、PET−1とPTN−1の流量を、表1に示す厚さ比になるように調整し、PTN−1を24層に、PET−1を25層にそれぞれ均等に分け、両表面層がPET−1からなるフィルム層になるように溶融状態で交互に積層した。この未延伸フィルムを、90℃の予熱ロールを通して、延伸温度を100℃で製膜方向に3.0倍延伸し、つづいて幅方向に延伸温度110℃で5.5倍の倍率で逐次二軸延伸をした後、一旦冷却し、160℃で熱処理を施した。こうして延伸された厚み10μmの二軸配向フィルムをワインダーで巻き取り、PTNとPETからなる積層配向ポリエステルフィルムを得た。
得られた積層配向ポリエステルフィルムの特性を表1に示す。
[Example 14]
PTN-1 prepared in Example 1 and PET-1 prepared in Example 13 were sufficiently dried and then supplied to two extruders. PTN was melt extruded at 260 ° C, and PET was melt extruded at 280 ° C. Then, after laminating the molten resin with 49 layers of feed blocks, it was cooled and solidified with a casting drum having a surface temperature of 50 ° C. by using an electrostatic application casting method to produce an unstretched film. At this time, the flow rates of PET-1 and PTN-1 were adjusted so as to have the thickness ratio shown in Table 1, and PTN-1 was divided into 24 layers and PET-1 was divided into 25 layers. The layers were alternately laminated in a molten state so as to be film layers made of PET-1. This unstretched film is stretched 3.0 times in the film forming direction at a stretching temperature of 100 ° C. through a preheating roll of 90 ° C., and then successively biaxially at a stretching temperature of 110 ° C. and a magnification of 5.5 times in the width direction. After extending | stretching, it once cooled and heat-processed at 160 degreeC. The stretched biaxially oriented film having a thickness of 10 μm was wound up with a winder to obtain a laminated oriented polyester film made of PTN and PET.
Table 1 shows the properties of the obtained laminated oriented polyester film.

[実施例15]
実施例13で作成したPET−1に、組成物の重量を基準として、5重量%となるようにポリエーテルイミド(GE社製ウルテム1010(ガラス転移温度:215℃))をブレンドして、(PET−2)を作成した。
そして、実施例1で作成したPTN−1と上記PET−2とを十分乾燥した後、2台の押出機に供給し、PTN−1は260℃で溶融押出し、PET−2は280℃で溶融押出して、49層のフィードブロックで溶融樹脂を積層させたのち、静電印加キャスト法を用いて表面温度50℃のキャスティングドラムにて冷却固化し、未延伸フィルムを作製した。このとき、PET−2とPTN−1の流量を、表1に示す厚さ比になるように調整し、PTN−1を24層に、PET−2を25層にそれぞれ均等に分け、両表面層がPET−2からなるフィルム層になるように溶融状態で交互に積層した。この未延伸フィルムを、90℃の予熱ロールを通して、延伸温度を100℃で製膜方向に3.0倍延伸し、つづいて幅方向に延伸温度110℃で5.5倍の倍率で逐次二軸延伸をした後、一旦冷却し、160℃で熱処理を施した。こうして延伸された厚み10μmの二軸配向フィルムをワインダーで巻き取り、PTNとPET組成物からなる積層配向ポリエステルフィルムを得た。
得られた積層配向ポリエステルフィルムの特性を表1に示す。
[Example 15]
PET-1 prepared in Example 13 was blended with polyetherimide (GE ULTEM 1010 (glass transition temperature: 215 ° C.)) so as to be 5% by weight based on the weight of the composition. PET-2) was prepared.
And after fully drying PTN-1 created in Example 1 and the above PET-2, it is supplied to two extruders, PTN-1 is melt-extruded at 260 ° C., and PET-2 is melted at 280 ° C. After extruding and laminating the molten resin with a 49-layer feed block, it was cooled and solidified with a casting drum having a surface temperature of 50 ° C. using an electrostatic application casting method to produce an unstretched film. At this time, the flow rates of PET-2 and PTN-1 were adjusted so that the thickness ratio shown in Table 1 was obtained, and PTN-1 was divided into 24 layers and PET-2 was divided into 25 layers. The layers were alternately laminated in a molten state so as to be film layers made of PET-2. This unstretched film is stretched 3.0 times in the film forming direction at a stretching temperature of 100 ° C. through a preheating roll of 90 ° C., and then successively biaxially at a stretching temperature of 110 ° C. and a magnification of 5.5 times in the width direction. After extending | stretching, it once cooled and heat-processed at 160 degreeC. The stretched biaxially oriented film having a thickness of 10 μm was wound up with a winder to obtain a laminated oriented polyester film made of PTN and a PET composition.
Table 1 shows the properties of the obtained laminated oriented polyester film.

[実施例16]
2,6−ナフタレンジカルボン酸ジメチルと6,6’−(エチレンレンジオキシ)ジ−2−ナフトエ酸ジエチルエステルとエチレングリコールとでエステル交換反応を行ない、次いで高真空下で重縮合反応を行ない、固有粘度が0.63dl/gの6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分を全酸成分の70モル%となるように共重合したPEN−2を得た。このPEN−2をPEN−1と6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分が全酸成分の15モル%となるようにブレンドして、ガラス転移温度が114℃のPEN−3を作成した。
実施例1で作成したPTN−1と上記PEN−3とを十分乾燥した後、2台の押出機に供給し、PTN−1は260℃で溶融押出し、PEN−3は300℃で溶融押出して、49層のフィードブロックで溶融樹脂を積層させたのち、静電印加キャスト法を用いて表面温度50℃のキャスティングドラムにて冷却固化し、未延伸フィルムを作製した。このとき、PEN−3とPTN−1の流量を、表1に示す厚さ比になるように調整し、PTN−1を24層に、PEN−3を25層にそれぞれ均等に分け、両表面層がPET−2からなるフィルム層になるように溶融状態で交互に積層した。この未延伸フィルムを、115℃の予熱ロールを通して、延伸温度を130℃で製膜方向に2.5倍延伸し、つづいて幅方向に延伸温度130℃で6.0倍の倍率で逐次二軸延伸をした後、一旦冷却し、160℃で熱処理を施した。こうして延伸された厚み10μmの二軸配向フィルムをワインダーで巻き取り、PTNと共重合PENからなる積層配向ポリエステルフィルムを得た。
得られた積層配向ポリエステルフィルムの特性を表1に示す。
[Example 16]
Transesterification is performed with dimethyl 2,6-naphthalenedicarboxylate, 6,6 '-(ethylenedioxy) di-2-naphthoic acid diethyl ester and ethylene glycol, followed by a polycondensation reaction under high vacuum. PEN-2 obtained by copolymerizing a 6,6 ′-(ethylenedioxy) di-2-naphthoic acid component having a viscosity of 0.63 dl / g to 70 mol% of the total acid component was obtained. This PEN-2 was blended with PEN-1 so that the 6,6 ′-(ethylenedioxy) di-2-naphthoic acid component was 15 mol% of the total acid component, and the glass transition temperature was 114 ° C. -3 was created.
PTN-1 prepared in Example 1 and the above PEN-3 are sufficiently dried and then supplied to two extruders. PTN-1 is melt-extruded at 260 ° C, and PEN-3 is melt-extruded at 300 ° C. After laminating the molten resin with a 49-layer feed block, it was cooled and solidified with a casting drum having a surface temperature of 50 ° C. using an electrostatic application casting method to produce an unstretched film. At this time, the flow rates of PEN-3 and PTN-1 were adjusted to the thickness ratio shown in Table 1, and PTN-1 was equally divided into 24 layers and PEN-3 was divided into 25 layers. The layers were alternately laminated in a molten state so as to be film layers made of PET-2. This unstretched film is stretched 2.5 times in the film forming direction at a stretching temperature of 130 ° C. through a preheated roll at 115 ° C., and then continuously biaxially at a stretching temperature of 130 ° C. and a magnification of 6.0 times in the width direction. After extending | stretching, it once cooled and heat-processed at 160 degreeC. The stretched biaxially oriented film having a thickness of 10 μm was wound with a winder to obtain a laminated oriented polyester film composed of PTN and copolymerized PEN.
Table 1 shows the properties of the obtained laminated oriented polyester film.

[比較例1]
実施例1で作成したPTN−1を十分乾燥した後、1台の押出機に供給し、260℃で溶融押出し、静電印加キャスト法を用いて表面温度50℃のキャスティングドラムにて冷却固化し、未延伸フィルムを作製した。このPTN−1の未延伸の単層フィルムを製膜方向に110℃で4.0倍、幅方向に110℃で3.0倍延伸して、一旦冷却し、160℃で熱処理を施した。こうして延伸された厚み10μmの二軸配向フィルムをワインダーで巻き取り、PTNの配向ポリエステルフィルムを得た。
得られた配向フィルムの特性を表1に示す。
[Comparative Example 1]
After sufficiently drying the PTN-1 prepared in Example 1, it is supplied to one extruder, melt-extruded at 260 ° C., and cooled and solidified by a casting drum having a surface temperature of 50 ° C. using an electrostatic application casting method. An unstretched film was produced. This unstretched single layer film of PTN-1 was stretched 4.0 times at 110 ° C. in the film forming direction and 3.0 times at 110 ° C. in the width direction, cooled once, and heat-treated at 160 ° C. The stretched biaxially oriented film having a thickness of 10 μm was wound with a winder to obtain an oriented polyester film of PTN.
The properties of the obtained oriented film are shown in Table 1.

[比較例2]
製膜方向の延伸倍率を2.0倍から3.5倍、幅方向の延伸倍率を5.8倍から4.5倍に変更し、厚みが10μmになるように未延伸フィルムの厚みを調整したほかは、実施例1と同様にしてPTNの二軸配向フィルムを得た。
得られた積層配向フィルムの特性を表1に示す。
[Comparative Example 2]
Change the draw ratio in the film forming direction from 2.0 times to 3.5 times and the width direction draw ratio from 5.8 times to 4.5 times, and adjust the thickness of the unstretched film so that the thickness becomes 10 μm. In the same manner as in Example 1, a biaxially oriented film of PTN was obtained.
Table 1 shows the characteristics of the obtained laminated alignment film.

[比較例3]
製膜方向の延伸温度を130℃から150℃に変更し、製膜方向の延伸倍率を2.0倍から4.0倍、幅方向の延伸倍率5.4倍から4.8倍に変更して、厚みを10μmになるように調整したほかは、実施例8と同様にして積層配向ポリエステルフィルムを得た。
得られた積層配向フィルムの特性を表1に示す。
[Comparative Example 3]
The stretching temperature in the film forming direction was changed from 130 ° C. to 150 ° C., the stretching ratio in the film forming direction was changed from 2.0 times to 4.0 times, and the stretching ratio in the width direction was changed from 5.4 times to 4.8 times. A laminated oriented polyester film was obtained in the same manner as in Example 8, except that the thickness was adjusted to 10 μm.
Table 1 shows the characteristics of the obtained laminated alignment film.

[比較例4]
製膜方向の延伸倍率を2.0倍から3.0倍、幅方向の延伸倍率6.0倍から4.8倍に変更して、厚みを10μmになるように調整したほかは、実施例11と同様にして積層配向ポリエステルフィルムを得た。
得られた積層配向フィルムの特性を表1に示す。
[Comparative Example 4]
Except that the draw ratio in the film forming direction was changed from 2.0 times to 3.0 times, the draw ratio in the width direction was changed from 6.0 times to 4.8 times, and the thickness was adjusted to 10 μm. In the same manner as in Example 11, a laminated oriented polyester film was obtained.
Table 1 shows the characteristics of the obtained laminated alignment film.

[比較例5]
実施例1で作成したPEN−1を十分乾燥した後、1台の押出機に供給し、300℃で溶融押出し、静電印加キャスト法を用いて表面温度50℃のキャスティングドラムにて冷却固化し、未延伸フィルムを作製した。このPEN−1の未延伸の単層フィルムを、製膜方向に150℃で4.0倍、幅方向に145℃で4.0倍延伸して、200℃で熱処理を施した。こうして延伸された厚み10μmの二軸配向フィルムをワインダーで巻き取り、PENの配向ポリエステルフィルムを得た。
得られた配向フィルムの特性を表1に示す。
[Comparative Example 5]
PEN-1 prepared in Example 1 is sufficiently dried, then supplied to one extruder, melt extruded at 300 ° C., and cooled and solidified with a casting drum having a surface temperature of 50 ° C. using an electrostatic application casting method. An unstretched film was produced. This unstretched single-layer film of PEN-1 was stretched 4.0 times at 150 ° C. in the film forming direction and 4.0 times at 145 ° C. in the width direction, and heat-treated at 200 ° C. The stretched biaxially oriented film having a thickness of 10 μm was wound with a winder to obtain an oriented polyester film of PEN.
The properties of the obtained oriented film are shown in Table 1.

[比較例6]
実施例13で作成したPET−1を十分乾燥した後、1台の押出機に供給し、280℃で溶融押出し、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムにて冷却固化し、未延伸フィルムを作製した。このPET−1の未延伸の単層フィルムを、製膜方向に100℃で4.0倍、幅方向に120℃で3.0倍延伸して、200℃で熱処理を施した。こうして延伸された厚み10μmの二軸配向フィルムをワインダーで巻き取り、PETの配向ポリエステルフィルムを得た。
得られた配向フィルムの特性を表1に示す。
[Comparative Example 6]
The PET-1 prepared in Example 13 was sufficiently dried, then supplied to one extruder, melt extruded at 280 ° C., and cooled and solidified with a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method. An unstretched film was produced. This unstretched single-layer film of PET-1 was stretched 4.0 times at 100 ° C. in the film forming direction and 3.0 times at 120 ° C. in the width direction, and heat-treated at 200 ° C. The stretched biaxially oriented film having a thickness of 10 μm was wound up with a winder to obtain an oriented polyester film of PET.
The properties of the obtained oriented film are shown in Table 1.

Figure 2012045760
Figure 2012045760

上記表1中のPTN−1はポリトリメチレン−2,6−ナフタレンジカルボキシレート、PEN−1はポリエチレン−2,6−ナフタレンジカルボキシレート、PET−1はポリエチレンテレフタレート、PET−2はポリエーテルイミドをブレンドしたポリエチレンテレフタレート、PEN−3は6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸を共重合したPEN、MDは製膜方向、TDはフィルムの幅方向を表す。   In Table 1, PTN-1 is polytrimethylene-2,6-naphthalene dicarboxylate, PEN-1 is polyethylene-2,6-naphthalene dicarboxylate, PET-1 is polyethylene terephthalate, and PET-2 is polyether. Polyethylene terephthalate blended with imide, PEN-3 represents PEN copolymerized with 6,6 ′-(alkylenedioxy) di-2-naphthoic acid, MD represents the film forming direction, and TD represents the width direction of the film.

本発明の磁気記録媒体支持体は、特にデータストレージ用の高密度記録の磁気テープに好ましく用いられる。   The magnetic recording medium support of the present invention is preferably used for a magnetic tape for high density recording especially for data storage.

Claims (5)

トリメチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするポリエステルAからなるフィルム層Aと、その少なくとも片面にエチレンテレフタレートおよびエチレン−2,6−ナフタレンジカルボキシレートからなる群より選ばれる1種を主たる繰り返し単位とするポリエステルBからなるフィルム層Bとが積層された積層フィルムであって、フィルムの製膜方向と幅方向のヤング率の比が1.6〜3.5の範囲であることを特徴とする二軸配向積層ポリエステルフィルム。   One kind selected from the group consisting of a film layer A composed of polyester A having trimethylene-2,6-naphthalenedicarboxylate as the main repeating unit and ethylene terephthalate and ethylene-2,6-naphthalenedicarboxylate on at least one side thereof. And a film layer B made of polyester B, the main repeating unit of which is laminated, and the ratio of the Young's modulus in the film forming direction to the width direction of the film is in the range of 1.6 to 3.5. A biaxially oriented laminated polyester film characterized by 全フィルム層Aの合計厚みと全フィルム層Bの合計厚みの比が、1:5〜5:1の範囲である請求項1記載の二軸配向積層ポリエステルフィルム。   The biaxially oriented laminated polyester film according to claim 1, wherein the ratio of the total thickness of all film layers A to the total thickness of all film layers B is in the range of 1: 5 to 5: 1. フィルム層Bのガラス転移温度(TgB)が、フィルム層Aのガラス転移温度(TgA)よりも10〜50℃の範囲で高い請求項1または2のいずれかに記載の二軸配向積層ポリエステルフィルム。   The biaxially oriented laminated polyester film according to claim 1, wherein the glass transition temperature (TgB) of the film layer B is higher in the range of 10 to 50 ° C. than the glass transition temperature (TgA) of the film layer A. フィルムの製膜方向と幅方向のいずれかのヤング率が、5〜13GPaの範囲にある請求項1〜3のいずれかに記載の二軸配向積層ポリエステルフィルム。   The biaxially oriented laminated polyester film according to any one of claims 1 to 3, wherein the Young's modulus in either the film forming direction or the width direction of the film is in the range of 5 to 13 GPa. フィルムの幅方向のヤング率が4〜13GPaの範囲にあり、磁気記録媒体のベースフィルムに用いられる請求項1〜4のいずれかに記載の二軸配向積層ポリエステルフィルム。   The biaxially oriented laminated polyester film according to any one of claims 1 to 4, wherein the Young's modulus in the width direction of the film is in the range of 4 to 13 GPa and used for a base film of a magnetic recording medium.
JP2010188303A 2010-08-25 2010-08-25 Biaxially oriented laminated polyester film Active JP5495326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010188303A JP5495326B2 (en) 2010-08-25 2010-08-25 Biaxially oriented laminated polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010188303A JP5495326B2 (en) 2010-08-25 2010-08-25 Biaxially oriented laminated polyester film

Publications (2)

Publication Number Publication Date
JP2012045760A true JP2012045760A (en) 2012-03-08
JP5495326B2 JP5495326B2 (en) 2014-05-21

Family

ID=45901223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010188303A Active JP5495326B2 (en) 2010-08-25 2010-08-25 Biaxially oriented laminated polyester film

Country Status (1)

Country Link
JP (1) JP5495326B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016024314A (en) * 2014-07-18 2016-02-08 帝人株式会社 Uniaxially oriented multilayer laminate film, polarizing plate comprising the same for liquid crystal display, optical member for liquid crystal display, and liquid crystal display
JP2016024313A (en) * 2014-07-18 2016-02-08 帝人株式会社 Uniaxially oriented multilayer laminate film and optical member comprising the same
JP2020045483A (en) * 2018-09-14 2020-03-26 東洋紡フイルムソリューション株式会社 Polyester composition, polyester film and magnetic recording medium
JP2021030530A (en) * 2019-08-21 2021-03-01 三菱ケミカル株式会社 Laminated stretched film, method for producing laminated stretched film, and packaging material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111923A (en) * 2003-10-10 2005-04-28 Riken Technos Corp Decorative film for steel sheet and laminated decorative sheet for steel sheet
WO2008153188A1 (en) * 2007-06-13 2008-12-18 Teijin Limited Biaxially oriented multilayer film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111923A (en) * 2003-10-10 2005-04-28 Riken Technos Corp Decorative film for steel sheet and laminated decorative sheet for steel sheet
WO2008153188A1 (en) * 2007-06-13 2008-12-18 Teijin Limited Biaxially oriented multilayer film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016024314A (en) * 2014-07-18 2016-02-08 帝人株式会社 Uniaxially oriented multilayer laminate film, polarizing plate comprising the same for liquid crystal display, optical member for liquid crystal display, and liquid crystal display
JP2016024313A (en) * 2014-07-18 2016-02-08 帝人株式会社 Uniaxially oriented multilayer laminate film and optical member comprising the same
JP2020045483A (en) * 2018-09-14 2020-03-26 東洋紡フイルムソリューション株式会社 Polyester composition, polyester film and magnetic recording medium
JP7363236B2 (en) 2018-09-14 2023-10-18 東洋紡株式会社 Polyester compositions, polyester films and magnetic recording media
JP2021030530A (en) * 2019-08-21 2021-03-01 三菱ケミカル株式会社 Laminated stretched film, method for producing laminated stretched film, and packaging material

Also Published As

Publication number Publication date
JP5495326B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5275849B2 (en) Biaxially oriented multilayer laminated polyester film
KR101545371B1 (en) Biaxially oriented multilayer film
JP5495326B2 (en) Biaxially oriented laminated polyester film
JP2010264683A (en) Substrate
JP2011084037A (en) Biaxial orientation multilayer laminate film
JP5763456B2 (en) Biaxially oriented film
JP2010031138A (en) Biaxially oriented film
JP2012171329A (en) Biaxially-oriented polyethylene film roll and method for forming the same
US8431259B2 (en) Copolymerized aromatic polyester, biaxially oriented polyester film, and magnetic recording medium
JP5271124B2 (en) Biaxially oriented multilayer laminated polyester film
JP5373313B2 (en) Biaxially oriented laminated polyester film
JP2010024409A (en) Biaxially oriented polyester film
JP5475543B2 (en) Oriented film
JP5739220B2 (en) Biaxially oriented film
JP5596445B2 (en) Laminated biaxially oriented polyester film for coated magnetic recording tape
JP2010031116A (en) Biaxially oriented polyester film and magnetic recording medium using it
JP4557017B2 (en) Support for magnetic recording medium
JP5623823B2 (en) Oriented film
JP2013103995A (en) Aromatic copolyester, oriented polyester film and magnetic recording medium
JP2019130777A (en) Laminate polyester film and magnetic recording medium
JP5886026B2 (en) Laminated film
JP5833428B2 (en) Method for producing laminated film
JP2010023311A (en) Laminated film and magnetic recording medium
JP2010030116A (en) Biaxially oriented laminated film and magnetic recording medium using the same
JP2000336183A (en) Biaxially oriented polyester film and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130617

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140227

R150 Certificate of patent or registration of utility model

Ref document number: 5495326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250