JP2012045652A - Method of machining method of electric discharge machining electrode, and the electric discharge machining electrode - Google Patents

Method of machining method of electric discharge machining electrode, and the electric discharge machining electrode Download PDF

Info

Publication number
JP2012045652A
JP2012045652A JP2010188518A JP2010188518A JP2012045652A JP 2012045652 A JP2012045652 A JP 2012045652A JP 2010188518 A JP2010188518 A JP 2010188518A JP 2010188518 A JP2010188518 A JP 2010188518A JP 2012045652 A JP2012045652 A JP 2012045652A
Authority
JP
Japan
Prior art keywords
electrode
electric discharge
discharge machining
machining
machining electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010188518A
Other languages
Japanese (ja)
Inventor
Kazuki Ri
李  和樹
Kozo Yamada
高三 山田
Koichi Miura
浩一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2010188518A priority Critical patent/JP2012045652A/en
Publication of JP2012045652A publication Critical patent/JP2012045652A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an electric discharge machining electrode which is easy to center an electrode part with respect to a gripped part, can form an electric discharge electrode with high machining accuracy, and also can easily emit machining swarf when electric-discharge-machining a fine hole, a fine groove or the like.SOLUTION: A base end 11 of a rodlike workpiece W0 to be the gripped part 3 of the electric discharge machining electrode 1 is held by a chuck, and the leading edge 15 of the rodlike workpiece W0 is turned by a cutting tool 19 which is given an area forming a negative approaching angle on a lateral cutting edge 19b while suppressing thrust force, to form the fine electrode part 5 for electric discharge. A recess 9 for emitting the machining swarf is formed on an outer peripheral surface 7 of the electrode part 5.

Description

本発明は、放電加工電極の加工方法及び放電加工電極に関する。   The present invention relates to an electric discharge machining electrode machining method and an electric discharge machining electrode.

従来、放電加工電極の製造方法として特許文献1に記載のものがある。この方法は、図24のように、棒状電極本体101を放電加工、電解加工、切削加工、研削加工等により均一径の微細軸として形成し、この棒状電極本体101の外周部を除去成形が容易な材料のクラッド材103によって被覆し複合構造電極105を形成する。   Conventionally, there is a method described in Patent Document 1 as a method of manufacturing an electric discharge machining electrode. In this method, as shown in FIG. 24, the rod-shaped electrode main body 101 is formed as a fine axis having a uniform diameter by electric discharge machining, electrolytic machining, cutting, grinding, etc., and the outer peripheral portion of the rod-shaped electrode main body 101 is easily removed and molded. The composite structure electrode 105 is formed by covering with a clad material 103 made of a new material.

クラッド材103としては、例えば棒状電極本体101の材料よりも融点あるいは昇華点の低い低融点の金属、金属粉末、プラスチック樹脂、透明プラスチック、光硬化樹脂、あるいは低昇華温度材料が用いられている。   As the clad material 103, for example, a low melting point metal, metal powder, plastic resin, transparent plastic, photo-curing resin, or low sublimation temperature material having a melting point or sublimation point lower than that of the material of the rod-shaped electrode body 101 is used.

この複合構造電極105のクラッド材103の一部を除去して棒状電極本体101を必要長さに露出させて微細な放電加工電極100を製造する。   A part of the clad material 103 of the composite structure electrode 105 is removed to expose the rod-shaped electrode body 101 to a necessary length, and the fine electric discharge machining electrode 100 is manufactured.

この放電加工電極100では、把持して軸芯周りに回転させつつ微細穴や微細溝を放電加工するとき、クラッド材103の部分が被把持部として機能する。   In the electric discharge machining electrode 100, when the fine hole or the fine groove is subjected to electric discharge machining while being gripped and rotated around the axis, the portion of the clad material 103 functions as a grasped portion.

しかし、かかる製造方法では、棒状電極本体101にクラッド材103を被覆させるものであるため、被把持部として機能するクラッド材103の部分と棒状電極本体101の電極部との芯出しが困難であった。   However, in this manufacturing method, since the rod-shaped electrode body 101 is coated with the clad material 103, it is difficult to center the portion of the clad material 103 that functions as the gripped portion and the electrode portion of the rod-shaped electrode body 101. It was.

このため、従来の方法によって製造された放電加工電極100では、微細穴や微細溝の加工精度に限界があった。   For this reason, in the electric discharge machining electrode 100 manufactured by the conventional method, there was a limit to the machining accuracy of the fine holes and the fine grooves.

また、放電加工電極100は、切削が進むにつれて微細穴等内に電極部が進入していくため、電極部と微細穴等との間の僅かな隙間から加工屑を適切に排出させることができなかった。   Further, since the electrode part enters the fine hole and the like as the cutting progresses, the electric discharge machining electrode 100 can appropriately discharge the machining waste from a slight gap between the electrode part and the fine hole and the like. There wasn't.

このため、電極部は、微細穴等内に滞留した加工屑によって正常な放電が妨害され、加工時に激しい消耗を伴っていた。   For this reason, the normal discharge was disturbed by the processing waste staying in the fine hole or the like, and the electrode portion was severely consumed during processing.

一方、電極部の消耗を避けるには、放電加工電極100に軸周り回転と共に被加工物に対する近接離反移動を繰り返し行わせて加工屑の除去を行う必要があり、手間がかかるという問題があった。   On the other hand, in order to avoid the consumption of the electrode part, it is necessary to cause the electric discharge machining electrode 100 to repeatedly move close to and away from the workpiece while rotating around the axis, and it is necessary to remove the machining waste. .

特開2009−202320号公報JP 2009-202320 A

解決しようとする問題点は、被把持部に対する電極部の芯出しが困難であり加工精度の高い放電加工電極を形成できなかったと共に、微細穴や微細溝等の放電加工時に加工屑を容易に排出可能な放電加工電極を形成できなかった点である。   The problem to be solved is that it is difficult to center the electrode part with respect to the gripped part, and it is difficult to form an electric discharge machining electrode with high machining accuracy. This is the point that an electric discharge machining electrode that can be discharged could not be formed.

本発明は、被把持部に対する電極部の芯出しが容易であり加工精度の高い放電加工電極を形成すると共に微細穴や微細溝等の放電加工時に加工屑を容易に排出可能な放電加工電極を形成するために、放電加工電極の被把持部となる棒状ワークの基端部をチャックに保持させ、前記棒状ワークの先端部を、横切れ刃に負のアプローチ角をなす部分を与えた切削工具により背分力を抑制しながら旋削して微細な放電用の電極部を形成し、前記電極部の外周面に、加工屑排出用の凹部を形成することを主な特徴とする。   The present invention provides an electric discharge machining electrode that can easily center an electrode portion with respect to a gripped portion and can form an electric discharge machining electrode with high machining accuracy and can easily discharge machining waste during electric discharge machining such as a fine hole or a fine groove. In order to form, the base end portion of the rod-shaped workpiece, which is the gripped portion of the electric discharge machining electrode, is held by the chuck, and the tip portion of the rod-shaped workpiece is cut by a cutting tool that gives the side cutting edge a portion that forms a negative approach angle. The main feature is that a fine discharge electrode part is formed by turning while suppressing the back component force, and a recess for discharging machining waste is formed on the outer peripheral surface of the electrode part.

また、本発明は、棒状ワークの基端部をチャックに保持させ、前記棒状ワークの先端部を、横切れ刃に負のアプローチ角をなす部分を与えた切削工具により背分力を抑制して旋削しながら微細な放電用の電極部を形成する放電加工電極の加工方法であって、前記棒状ワークは、前記基端部及び先端部間に放電加工電極の被把持部を形成するための被把持部加工部を備え、前記棒状ワークの先端部及び被把持部加工部を前記旋削加工で共に加工し前記被把持部に対し前記電極部を同芯に形成し、前記電極部の外周面に、加工屑排出用の凹部を形成することを主な特徴とする。   Further, the present invention provides a method in which the base end portion of the rod-shaped workpiece is held by a chuck, and the tip portion of the rod-shaped workpiece is turned with a back cutting force suppressed by a cutting tool provided with a portion that forms a negative approach angle on the side cutting edge. An electric discharge machining electrode machining method for forming a fine electric discharge electrode portion while the rod-shaped workpiece is grasped to form a grasped portion of the electric discharge machining electrode between the proximal end portion and the distal end portion. Part processing part, the tip part of the rod-like workpiece and the gripped part processing part are both processed by the turning process, the electrode part is formed concentrically with the gripped part, and the outer peripheral surface of the electrode part is The main feature is to form a recess for discharging machining waste.

本発明は、棒状ワークの基端部をチャックに把持させたまま旋削加工を行うことで、放電加工電極の被把持部に対して電極部を容易に同芯に形成することができ、加工精度の高い放電加工電極を形成することができる。   In the present invention, turning is performed with the base end of the rod-shaped workpiece held by the chuck, so that the electrode portion can be easily formed concentrically with the gripped portion of the electric discharge machining electrode. High electrical discharge machining electrode can be formed.

また、本発明では、電極部の外周面に凹部を設けることで、放電加工時の加工屑を容易に排出できる放電加工電極を形成することができる。   Moreover, in this invention, the electrical discharge machining electrode which can discharge | emit the processing waste at the time of electrical discharge machining can be formed by providing a recessed part in the outer peripheral surface of an electrode part.

放電加工電極の加工方法を示す説明図である(実施例1)。It is explanatory drawing which shows the processing method of an electrical discharge machining electrode (Example 1). 放電加工電極の加工方法を示す説明図である(実施例1)。It is explanatory drawing which shows the processing method of an electrical discharge machining electrode (Example 1). 放電加工電極の半製品の要部斜視図である(実施例1)。It is a principal part perspective view of the semi-finished product of an electrical discharge machining electrode (Example 1). 切削工具の一例を示す要部平面図である(実施例1)。It is a principal part top view which shows an example of a cutting tool (Example 1). 切削工具の他の例を示す要部平面図である(実施例1)。It is a principal part top view which shows the other example of the cutting tool (Example 1). 背分力の値を示すグラフである(実施例1)。It is a graph which shows the value of back component force (Example 1). 背分力の値を示すグラフである(実施例1)。It is a graph which shows the value of back component force (Example 1). 凹部の加工方法の概略斜視図である(実施例1)。It is a schematic perspective view of the processing method of a recessed part (Example 1). 図8の加工方法による凹部を備えた電極部を示す斜視図である(実施例1)。FIG. 9 is a perspective view showing an electrode portion having a recess formed by the processing method of FIG. 8 (Example 1). 図9の電極部を示す側面図である(実施例1)。FIG. 10 is a side view showing the electrode part of FIG. 9 (Example 1). 図9の電極部を示す正面図である(実施例1)。FIG. 10 is a front view showing the electrode part of FIG. 9 (Example 1). 放電加工電極の他の加工方法を示す説明図である(実施例1)。It is explanatory drawing which shows the other processing method of an electrical discharge machining electrode (Example 1). 図12の加工方法によって形成された放電加工電極の電極部を示す斜視図である(実施例1)。It is a perspective view which shows the electrode part of the electrical discharge machining electrode formed by the processing method of FIG. 12 (Example 1). 放電加工電極の他の加工方法を示す説明図である(実施例1)。It is explanatory drawing which shows the other processing method of an electrical discharge machining electrode (Example 1). 図14の加工方法によって形成された放電加工電極の電極部を示す斜視図である(実施例1)。It is a perspective view which shows the electrode part of the electrical discharge machining electrode formed by the processing method of FIG. 14 (Example 1). 放電加工された微細穴を示す断面図である(実施例1)。(Example 1) which is sectional drawing which shows the micro hole by which electric discharge machining was carried out. 変形例に係る放電加工電極の電極部を示す正面図である(実施例1)。It is a front view which shows the electrode part of the electrical discharge machining electrode which concerns on a modification (Example 1). 凹部の加工方法を示す概略側面図である(実施例2)。It is a schematic side view which shows the processing method of a recessed part (Example 2). 図18の加工方法による凹部を備えた電極部を示す斜視図である(実施例2)。It is a perspective view which shows the electrode part provided with the recessed part by the processing method of FIG. 18 (Example 2). 変形例に係る放電加工電極の電極部を示す正面図である(実施例3)。It is a front view which shows the electrode part of the electrical discharge machining electrode which concerns on a modification (Example 3). 凹部の加工方法を示す概略側面図である(実施例3)。It is a schematic side view which shows the processing method of a recessed part (Example 3). 図21の加工方法による凹部を備えた電極部を示す斜視図である(実施例3)。(Example 3) which is a perspective view which shows the electrode part provided with the recessed part by the processing method of FIG. 変形例に係る放電加工電極の電極部を示す正面図である(実施例3)。It is a front view which shows the electrode part of the electrical discharge machining electrode which concerns on a modification (Example 3). 放電加工電極の製造方法を概略的に示すもので、(a)は、棒状電極本体をクラッド材によって被覆した複合構造電極の概略的断面図、(b)は、(a)の複合構造電極を加工機械の把持部で把持した状態の概略的断面図、(c)は、(b)の複合構造電極のクラッド材の一部を除去した状態の概略的断面図、(d)は、(c)のピーリング過程が終了して製造された放電加工電極の概略的斜視図である(従来例)。1 schematically shows a method of manufacturing an electric discharge machining electrode, wherein (a) is a schematic cross-sectional view of a composite structure electrode in which a rod-shaped electrode body is covered with a clad material, and (b) is a composite structure electrode of (a). (C) is a schematic cross-sectional view of a state where a part of the clad material of the composite structure electrode in (b) is removed, and (d) is a schematic cross-sectional view of (c). It is a schematic perspective view of the electrical discharge machining electrode manufactured by finishing the peeling process of FIG.

被把持部に対する電極部の芯出しが容易であり加工精度の高い放電加工電極を形成すると共に微細穴や微細溝等の放電加工時に加工屑を容易に排出可能な放電加工電極を形成するという目的を、棒状ワークの基端部をチャックに把持させたまま少なくとも電極部の旋削加工を行い、電極部に加工屑排出用の凹部を形成することで実現した。   The purpose is to form an electric discharge machining electrode that can easily center the electrode portion with respect to the gripped portion and has high machining accuracy, and that can easily discharge machining scraps during electric discharge machining such as fine holes and grooves. This was realized by turning at least the electrode part while holding the base end part of the bar-shaped workpiece by the chuck, and forming a recess for discharging the machining waste in the electrode part.

[放電加工電極の加工方法]
図1及び図2は、本実施例に係る放電加工電極の加工方法を示す説明図である。
[Electrical discharge machining method]
1 and 2 are explanatory views showing a method of processing an electrical discharge machining electrode according to the present embodiment.

図1は、棒状ワークの基端部が放電加工電極の被把持部となる場合の加工方法、図2は、被把持部も共に加工する加工方法を示す。   FIG. 1 shows a processing method in which the base end portion of the rod-shaped workpiece becomes a gripped portion of the electric discharge machining electrode, and FIG. 2 shows a processing method for processing both the gripped portion.

本実施例の放電加工電極1の加工方法では、図1及び図2のように、まず棒状ワークW0,Wから被把持部3及び電極部5を備えた放電加工電極1の半製品T1(図3参照)を形成し、その後電極部5の外周面7に加工屑排出用の凹部9を形成する。
(半製品の加工形成)
図1の加工方法では、まず、例えば断面円形の棒状ワークW0の基端部11を、旋盤のチャック13に保持させる。なお、棒状ワークW0は、加工前の外郭を二点鎖線で追記してある。
In the machining method of the electric discharge machining electrode 1 of the present embodiment, as shown in FIGS. 1 and 2, first, a semi-finished product T1 of the electric discharge machining electrode 1 including the gripped portion 3 and the electrode portion 5 from the rod-like workpieces W0 and W (see FIG. 3), and then a recess 9 for discharging the machining waste is formed on the outer peripheral surface 7 of the electrode portion 5.
(Processing and forming of semi-finished products)
In the processing method of FIG. 1, first, for example, the base end portion 11 of the rod-shaped workpiece W0 having a circular cross section is held by a chuck 13 of a lathe. In addition, the rod-shaped workpiece | work W0 has added the outline before a process with the dashed-two dotted line.

次いで、棒状ワークW0の先端部15に、後述する横切れ刃に負のアプローチ角をなす部分を与えた切削工具としてのバイトにより、背分力を抑制しながら旋削して微細な電極部5を加工形成する。なお、バイトは、予めバイト台に取り付けて用いられる。   Next, the fine electrode portion 5 is machined by turning while suppressing the back force by a cutting tool as a cutting tool in which the side cutting edge, which will be described later, is provided with a portion that forms a negative approach angle at the distal end portion 15 of the rod-like workpiece W0. Form. The byte is used by being attached to the byte table in advance.

この旋削加工は、切込み量t0で棒状ワークW0の先端部15から長さL0の範囲で行い、被把持部3となる基端部11に対し電極部5を同芯に形成する。切込み量t0は、例えば後述のバイト19(図4)又はバイト21(図5)等により旋削加工することができる。   This turning process is performed within a range of the length L0 from the distal end portion 15 of the rod-shaped workpiece W0 with a cutting amount t0, and the electrode portion 5 is formed concentrically with the base end portion 11 serving as the gripped portion 3. The cutting amount t0 can be turned with, for example, a cutting tool 19 (FIG. 4) or a cutting tool 21 (FIG. 5) described later.

図2の加工方法でも、まず、例えば断面円形の棒状ワークWの基端部11を旋盤のチャック13に保持させる。なお、棒状ワークWは、前記同様加工前の外郭を二点鎖線で追記してある。   Also in the processing method of FIG. 2, first, for example, the base end portion 11 of the rod-like workpiece W having a circular cross section is held by the chuck 13 of the lathe. In addition, the rod-shaped workpiece W is additionally written with a two-dot chain line in the outline before processing as described above.

棒状ワークWは、基端部11及び先端部15間に被把持部加工部17を備えている。被把持部加工部17は、放電加工電極として使用するときに把持される被把持部3を形成するための部分である。被把持部加工部17は、長さHを有している。   The rod-shaped workpiece W includes a gripped portion processing portion 17 between the proximal end portion 11 and the distal end portion 15. The gripped portion processing portion 17 is a portion for forming the gripped portion 3 that is gripped when used as an electric discharge machining electrode. The gripped portion processing portion 17 has a length H.

次いで、棒状ワークWの先端部15及び被把持部加工部17を、バイトによる旋削加工で共に加工し被把持部3に対し電極部5を同芯に形成する。   Next, the tip portion 15 of the bar-shaped workpiece W and the gripped portion processing portion 17 are both processed by turning with a cutting tool to form the electrode portion 5 concentrically with the gripped portion 3.

棒状ワークWの先端部15及び被把持部加工部17の間では、被把持部加工部17を先に旋削加工する。この旋削加工は、切込み量t1で先端部15から長さL1の範囲で行い、被把持部3を形成する。次に先端部15の旋削加工を行う。この旋削加工は、切込み量t2で先端部15の長さL2の範囲で行い、電極部5を形成する。   Between the distal end portion 15 of the rod-shaped workpiece W and the gripped portion processing portion 17, the gripped portion processing portion 17 is turned first. This turning process is performed within the range of the length L1 from the tip 15 with a cutting amount t1, and the gripped portion 3 is formed. Next, the tip portion 15 is turned. This turning process is performed within the range of the length L2 of the tip portion 15 with the cutting amount t2, and the electrode portion 5 is formed.

なお、図2の切込み量t2は、図1の切込み量t0と同一であり、図2の長さL2は、図1の長さL0と同一である。但し、これらの関係は、図3の説明上同一としているのであり、図1及び図2において、それぞれ異なる切込み量、長さを選択し、旋削しても良いことはもちろんである。   The cut amount t2 in FIG. 2 is the same as the cut amount t0 in FIG. 1, and the length L2 in FIG. 2 is the same as the length L0 in FIG. However, these relations are the same in the description of FIG. 3, and of course, different cutting amounts and lengths may be selected and turned in FIGS. 1 and 2.

切込み量t1は、例えば後述のバイト19(図4)により旋削加工し、切込み量t2は、後述のバイト21(図5)により旋削加工することができる。但し、バイトの形状設計によって単一のバイトにより切込み量t1,t2に対応させることもできる。   The cutting amount t1 can be turned by, for example, a later-described cutting tool 19 (FIG. 4), and the cutting amount t2 can be turned by a later-described cutting tool 21 (FIG. 5). However, the cutting amounts t1 and t2 can be made to correspond to a single cutting tool according to the shape design of the cutting tool.

なお、図2の加工方法では、後述する凹部9を加工形成した後にラインCでカットする。   In the processing method of FIG. 2, a concave portion 9 described later is processed and formed, and then cut along line C.

図3は、放電加工電極の半製品の要部斜視図である。   FIG. 3 is a perspective view of an essential part of a semi-finished product of an electric discharge machining electrode.

図3の半製品T1は、図1又は図2の加工方法によって形成され、凹部9の形成前のものである。この半製品T1は、放電加工時等に把持するための被把持部3と、軸芯方向に均一径の微細軸である電極部5とを備えている。   The semi-finished product T1 of FIG. 3 is formed by the processing method of FIG. 1 or FIG. This semi-finished product T1 includes a gripped portion 3 for gripping during electric discharge machining and the like, and an electrode portion 5 that is a fine shaft having a uniform diameter in the axial direction.

電極部5は、後述のバイト19,21を用いることにより、例えば、直径0.1mm以下、アスペクト比50以上の軸にすることもできる。   The electrode part 5 can also be made into an axis having a diameter of 0.1 mm or less and an aspect ratio of 50 or more, for example, by using tools 19 and 21 described later.

図4及び図5は、旋削工具の一例と他の例とを示す要部平面図、図6及び図7は、各例の背分力の値を示すグラフである。   4 and 5 are main part plan views showing an example of a turning tool and another example, and FIGS. 6 and 7 are graphs showing values of back component force in each example.

図4及び図5の切削工具であるバイト19,21は、例えば本願出願人の先の提案である特開2009−113143号に記載された方法により設計されている。   The cutting tools 19 and 21 which are the cutting tools of FIGS. 4 and 5 are designed by the method described in Japanese Patent Application Laid-Open No. 2009-113143, which was previously proposed by the applicant of the present application, for example.

図4のように、バイト19は、円弧形のノーズ部19aと横切れ刃19bとを備えている。横切れ刃19bは、負のアプローチ角α1(例えば=9°)をなす傾斜部分A1B1と、例えばゼロのアプローチ角β1をなす直線部分B1C1とからなっている。   As shown in FIG. 4, the cutting tool 19 includes an arc-shaped nose portion 19a and a side cutting edge 19b. The side cutting edge 19b includes an inclined portion A1B1 having a negative approach angle α1 (for example, = 9 °) and a straight portion B1C1 having, for example, a zero approach angle β1.

傾斜部分A1B1は、切込み量が例えば0.91mmまでの範囲に対応し、直線部分B1C1は、切込み量が例えば0.91mmを超える範囲に対応する。   The inclined portion A1B1 corresponds to a range in which the cut amount is, for example, 0.91 mm, and the straight portion B1C1 corresponds to a range in which the cut amount exceeds, for example, 0.91 mm.

従って、切削工具であるバイト13には、横切れ刃13bに負のアプローチ角α1をなす傾斜部分A1B1を与えた構成となっている。   Therefore, the cutting tool 13 that is a cutting tool is provided with an inclined portion A1B1 that forms a negative approach angle α1 on the side cutting edge 13b.

図5のように、バイト21は、円弧形のノーズ部21aと横切れ刃21bとを備えている。横切れ刃21bは、正のアプローチ角α2(例えば=5°)をなす第1傾斜部分A2B2と、負のアプローチ角β2(例えば=11°)をなす第2傾斜部分B2C2と、例えばゼロのアプローチ角γをなす直線部分C2D2とからなっている。   As shown in FIG. 5, the cutting tool 21 includes an arc-shaped nose portion 21a and a side cutting edge 21b. The side cutting edge 21b includes a first inclined portion A2B2 forming a positive approach angle α2 (for example, = 5 °), a second inclined portion B2C2 forming a negative approach angle β2 (for example, = 11 °), and a zero approach angle, for example. It consists of a straight line portion C2D2 forming γ.

第1傾斜部分A2B2は、切込み量が、例えば0.65mmまでの範囲に対応し、第2傾斜部分B2C3は、切込み量が0.65mmを超え1.53mmまでの範囲に対応し、直線部分C2D2は、切込み量が1.53mmを超える範囲に対応する。   The first inclined portion A2B2 corresponds to a range in which the cut amount is, for example, up to 0.65 mm, and the second inclined portion B2C3 corresponds to a range in which the cut amount exceeds 0.65 mm to 1.53 mm, and the straight portion C2D2 Corresponds to a range where the cutting depth exceeds 1.53 mm.

従って、切削工具であるバイト15には、横切れ刃15bに負のアプローチ角β2をなす第2傾斜部分B2C2を与えた構成となっている。   Accordingly, the cutting tool 15 that is a cutting tool is provided with a second inclined portion B2C2 that forms a negative approach angle β2 on the side cutting edge 15b.

図4のバイト19を用いた場合は、切込み量に対する背分力の変化が図6のようになる。図6においては、背分力が、当初、切込み量tの増大とともに減少し、t=0.91mmを超えるとゼロとなる。   When the cutting tool 19 of FIG. 4 is used, the change of the back component force with respect to the cutting depth is as shown in FIG. In FIG. 6, the back component force initially decreases with an increase in the cutting depth t, and becomes zero when it exceeds t = 0.91 mm.

図5のバイト21を用いた場合は、切込み量に対する背分力の変化が図7のようになる。   When the cutting tool 21 of FIG. 5 is used, the change of the back component force with respect to the cutting amount is as shown in FIG.

図7においては、背分力が、当初、切込み量tの増大とともにt=0.65mmまで増加し、t=0.65mmを超えてからt=1.53mmまで減少しはじめ、t=1.53mmを超えるとゼロになる。   In FIG. 7, the back component force initially increases to t = 0.65 mm with the increase of the cutting amount t, starts to decrease from t = 0.65 mm to t = 1.53 mm, and t = 1. When it exceeds 53 mm, it becomes zero.

従って、何れのバイト19,21による場合でも、バイト19,21に働く背分力を設定以上の切込み量でゼロにすることができる。ただし、バイトは、多少の配分力が働くものを使用することもできる。   Therefore, in any case of using the cutting tools 19 and 21, the back component force acting on the cutting tools 19 and 21 can be made zero with a cutting amount larger than the set value. However, it is also possible to use a bite that works with some distribution power.

上記のように半製品T1が加工形成された後は、半製品T1の電極部5外周面に加工屑排出用の凹部9を形成する。
(凹部の加工形成)
図8は、本実施例の凹部の加工方法を示す概略側面図である。
After the semi-finished product T1 is processed and formed as described above, a recess 9 for discharging machining waste is formed on the outer peripheral surface of the electrode portion 5 of the semi-finished product T1.
(Processing formation of recesses)
FIG. 8 is a schematic side view showing a method of processing a recess according to this embodiment.

図8の加工方法では、研削砥石23を用いて半製品T1の電極部5の外周面7に凹部9を研削加工する。研削砥石23は、周方向回転自在な円板状に形成され、半製品T1の電極部5の径方向に沿って配置されている。この切削砥石23は、半製品T1の電極部5に対して近接離反自在且つ電極部5の径方向及び軸方向に沿って移動自在に支持されている。   In the processing method of FIG. 8, the recess 9 is ground on the outer peripheral surface 7 of the electrode portion 5 of the semi-finished product T <b> 1 using the grinding wheel 23. The grinding wheel 23 is formed in a disk shape that is freely rotatable in the circumferential direction, and is disposed along the radial direction of the electrode portion 5 of the semi-finished product T1. The cutting grindstone 23 is supported so as to be able to move close to and away from the electrode portion 5 of the semi-finished product T1 and to move along the radial direction and the axial direction of the electrode portion 5.

本加工方法では、研削砥石23を回転させつつ電極部5の外周面7に近接移動により突き当て、電極部5の径方向に移動させる。これを電極部5の軸方向に移動させながら繰り返し行うことで、電極部5の外周面7に研削による凹部9を形成することができる。   In the present processing method, the grinding wheel 23 is rotated and brought into contact with the outer peripheral surface 7 of the electrode portion 5 by proximity movement, and is moved in the radial direction of the electrode portion 5. By repeating this while moving in the axial direction of the electrode part 5, the recessed part 9 by grinding can be formed in the outer peripheral surface 7 of the electrode part 5.

図9〜図11は図8の加工方法による凹部を備えた放電加工電極の要部を示し、図9は斜視図、図10は側面図、図11は正面図である。   9 to 11 show a main part of the electric discharge machining electrode provided with a recess by the machining method of FIG. 8, FIG. 9 is a perspective view, FIG. 10 is a side view, and FIG. 11 is a front view.

図9〜図11のように、本実施例の放電加工電極1は、電極部5の先端側外周面7に凹部9が設けられている。凹部9は、電極部5の基部側を残して先端側が断面弓形に除去された切欠溝からなっている。本実施例の凹部9は、電極部5の先端側の略半分が除去された切欠溝である。ただし、凹部の大きさは、任意であり、電極部5の除去量に応じて変更することが可能である。また、凹部は、電極部5の先端側だけでなく全体にわたって設けることも可能である。
[他の放電加工電極の加工方法]
図12は、放電加工電極の加工方法の他の例を示す説明図である。
As shown in FIGS. 9 to 11, the electric discharge machining electrode 1 of the present embodiment is provided with a recess 9 on the outer peripheral surface 7 on the tip end side of the electrode portion 5. The concave portion 9 is formed of a notch groove in which the distal end side is removed in a cross-sectional arc shape while leaving the base portion side of the electrode portion 5. The concave portion 9 of the present embodiment is a notch groove in which substantially half of the tip side of the electrode portion 5 is removed. However, the size of the concave portion is arbitrary and can be changed according to the amount of removal of the electrode portion 5. Further, the concave portion can be provided not only on the distal end side of the electrode portion 5 but also over the whole.
[Other electrical discharge machining electrode machining methods]
FIG. 12 is an explanatory view showing another example of a method for processing an electric discharge machining electrode.

図12の加工方法は、基本的に図1と同様であり、同一又は対応する構成部分に同符号又は同符号にAを付して重複説明は省略する。   The processing method in FIG. 12 is basically the same as that in FIG. 1, and the same or corresponding components are denoted by the same reference numerals or the same reference signs with A and redundant description is omitted.

すなわち、図12の加工方法では、図2の加工方法に対応し、まず、棒状ワークWの先端部15及び被把持部加工部17をバイトによる旋削加工で共に加工する。これにより、被把持部3に対して段付き形状の電極部5Aを同心に加工し半製品を形成する。   That is, the machining method of FIG. 12 corresponds to the machining method of FIG. 2, and first, the tip portion 15 of the bar-shaped workpiece W and the gripped portion machining portion 17 are both machined by turning with a cutting tool. As a result, the stepped electrode portion 5A is processed concentrically with respect to the gripped portion 3 to form a semi-finished product.

棒状ワークWの先端部15及び被把持部加工部17の間では、被把持部加工部17を切込み量t1で先に旋削加工する。先端部15の旋削加工は、切込み量t3、長さL2の範囲及び切込み量t4、長さL3の範囲で順に行い電極部5Aを先端側が細い段付き形状に形成する。   Between the distal end portion 15 of the rod-shaped workpiece W and the gripped portion processing portion 17, the gripped portion processing portion 17 is first turned with a cutting amount t1. Turning of the tip portion 15 is performed in order in the range of the cut amount t3, the length L2, the cut amount t4, and the length L3 to form the electrode portion 5A in a stepped shape with a thin tip side.

その後、図8の加工方法の適用により、段付き形状の電極部5Aに凹部9Aを加工して放電加工電極1Aを形成することができる。   Thereafter, by applying the machining method of FIG. 8, the recess 9A can be machined into the stepped electrode part 5A to form the electrical discharge machining electrode 1A.

図13は、図12の加工方法によって形成された放電加工電極の電極部を示す斜視図である。   FIG. 13 is a perspective view showing an electrode portion of an electrical discharge machining electrode formed by the machining method of FIG.

図13の放電加工電極1Aは、軸芯方向に異径な微細軸であり、電極部5Aに相対的に大径の基部5Aa及び相対的に小径の先端部5Abを段付き状に備えている。なお、先端部5Abは、直径0.1mm以下にすることができる。   The electric discharge machining electrode 1A of FIG. 13 is a fine shaft having a different diameter in the axial direction, and is provided with a relatively large diameter base portion 5Aa and a relatively small diameter tip portion 5Ab in a stepped shape on the electrode portion 5A. . The tip portion 5Ab can have a diameter of 0.1 mm or less.

電極部5Aの外周面7Aには、凹部9Aが設けられている。すなわち、凹部9Aは、基部5Aa及び先端部5Abの外周面7Aa,7Abに形成された切欠溝からなっている。この凹部9Aは、電極部5Aの先端部5Abから基部5Aaの先端側にかけて延設されている。   A concave portion 9A is provided on the outer peripheral surface 7A of the electrode portion 5A. That is, the concave portion 9A is formed by notched grooves formed in the outer peripheral surfaces 7Aa and 7Ab of the base portion 5Aa and the tip portion 5Ab. The concave portion 9A extends from the distal end portion 5Ab of the electrode portion 5A to the distal end side of the base portion 5Aa.

図14は、放電加工電極の加工方法の他の例を示す説明図である。   FIG. 14 is an explanatory view showing another example of a method for processing an electric discharge machining electrode.

図14の加工方法も、基本的に図1と同様であり、同一又は対応する構成部分に同符号又は同符号にBを付して重複説明は省略する。   The processing method of FIG. 14 is also basically the same as that of FIG. 1, and the same or corresponding components are denoted by the same reference numerals or the same reference numerals B, and redundant description is omitted.

すなわち、図12の加工方法では、まず、棒状ワークWの先端部15及び被把持部加工部17をバイトによる旋削加工で共に加工する。これにより、被把持部3に対してテーパ形状の電極部5Bを同芯に加工し半製品を形成する。   That is, in the processing method of FIG. 12, first, the tip portion 15 of the bar-shaped workpiece W and the gripped portion processing portion 17 are both processed by turning using a cutting tool. Thereby, the tapered electrode portion 5B is processed concentrically with respect to the gripped portion 3, thereby forming a semi-finished product.

棒状ワークWの先端部15及び被把持部加工部17は、被把持部加工部17を切込み量t1で先に旋削加工する。先端部15の加工は、切込み量t5、長さL2の範囲を旋削し、次いで、被把持部3の端部からL2の範囲で送りながら切込み量t6まで切込みを次第に増加させ、テーパ形状の微細軸の電極部5Bを形成する。   The tip portion 15 of the rod-shaped workpiece W and the gripped portion processing portion 17 first turn the gripped portion processed portion 17 with a cutting amount t1. Machining of the tip 15 is performed by turning the range of the incision amount t5 and the length L2, and then gradually increasing the incision to the incision amount t6 while feeding from the end portion of the gripped portion 3 to the range of L2, thereby reducing the taper-shaped fineness. A shaft electrode portion 5B is formed.

その後、図8の加工方法の適用によって、テーパ形状の電極部5Bに凹部9Bを加工して放電加工電極1Bを形成することができる。   Thereafter, by applying the machining method shown in FIG. 8, the electrical discharge machining electrode 1B can be formed by machining the recess 9B into the tapered electrode portion 5B.

図15は、図14の加工方法によって形成された放電加工電極の電極部を示す斜視図である。   FIG. 15 is a perspective view showing an electrode portion of an electrical discharge machining electrode formed by the machining method of FIG.

図15の放電加工電極1Bは、軸芯方向に異径な微細軸であり、電極部5Bがテーパ形状となっている。なお、電極部5Bの基端は、直径0.1mm以下にすることができる。   The electric discharge machining electrode 1B in FIG. 15 is a fine axis having a different diameter in the axial direction, and the electrode portion 5B has a tapered shape. In addition, the base end of the electrode part 5B can be 0.1 mm or less in diameter.

電極部5Bの外周面7Bには、先端側に切欠溝からなる凹部9Bが形成されている。なお、凹部9Bは、電極部5Bのテーパ形状に応じて先端側から基端側へ向けて漸次寸法が大きくなっている。   On the outer peripheral surface 7B of the electrode part 5B, a recess 9B made of a notch groove is formed on the tip side. The concave portion 9B gradually increases in size from the distal end side toward the proximal end side according to the tapered shape of the electrode portion 5B.

なお、放電加工電極1A,1Bの旋削加工では、異なる設計の複数のバイト19,21を用いて行わせることで、異径の電極部5A,5Bをより正確に形成することができる。
[微細穴の放電加工]
図16は、図9、図13及び図15の放電加工電極によって放電加工された微細穴を示す断面図である。
In the turning of the electric discharge machining electrodes 1A and 1B, the electrode portions 5A and 5B having different diameters can be more accurately formed by using a plurality of cutting tools 19 and 21 having different designs.
[Discharge machining of micro holes]
FIG. 16 is a cross-sectional view showing a fine hole that has been subjected to electric discharge machining by the electric discharge machining electrode of FIGS. 9, 13, and 15.

本実施例では、工作物27に均一断面の微細穴29a、段付きの微細穴29b、テーパ形状の微細穴29cを形成する。微細穴29a〜29cの形成には、それぞれ図9の放電加工電極1、図13の放電加工電極1A、図15の放電加工電極1Bが用いられる。   In the present embodiment, a fine hole 29a having a uniform cross section, a stepped fine hole 29b, and a tapered fine hole 29c are formed in the workpiece 27. For the formation of the fine holes 29a to 29c, the electric discharge machining electrode 1 in FIG. 9, the electric discharge machining electrode 1A in FIG. 13, and the electric discharge machining electrode 1B in FIG. 15 are used.

微細穴29a〜29cの加工形成の際には、まず、放電加工電極1,1A,1Bの被把持部3を放電加工機のチャックに把持させる。そして、放電加工電極1,1A,1Bを軸周り回転させながら工作物27に近接移動させ、電極部5,5A,5Bと工作物17との間で放電を行わせる。   When machining the fine holes 29a to 29c, first, the gripped portion 3 of the electric discharge machining electrodes 1, 1A, 1B is held by the chuck of the electric discharge machine. Then, the electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B are moved close to the workpiece 27 while rotating around the axis, and electric discharge is performed between the electrode portions 5, 5 </ b> A, 5 </ b> B and the workpiece 17.

この放電により、工作物27に対して溶融、爆発を繰り返し行い微細穴29a,29b,29cを切削していく。この切削当初の加工屑は、電極部5,5A,5Bと微細穴29a,29b,29cとの間の十分な隙間から排出することができる。   By this discharge, the workpiece 27 is repeatedly melted and exploded to cut the fine holes 29a, 29b, and 29c. The cutting waste at the beginning of cutting can be discharged from a sufficient gap between the electrode parts 5, 5A, 5B and the fine holes 29a, 29b, 29c.

切削が進むにつれて電極部5,5A,5Bが微細穴29a,29b,29c内に進入していく。このとき、電極部5,5A,5Bと微細穴29a,29b,29cとの間には、凹部9,9A,9Bによって加工屑の排出路が形成される。   As the cutting progresses, the electrode portions 5, 5A, 5B enter the fine holes 29a, 29b, 29c. At this time, a machining waste discharge path is formed by the recesses 9, 9A, 9B between the electrode portions 5, 5A, 5B and the micro holes 29a, 29b, 29c.

このため、加工屑は、放電加工による爆発の勢いにより電極部5,5A,5Bの凹部9,9A,9Bを介して排出することができる。   For this reason, the machining waste can be discharged through the recesses 9, 9A, 9B of the electrode portions 5, 5A, 5B due to the explosion of electric discharge machining.

その後、電極部5,5A,5Bが工作物27を貫通すると、工作物27には、電極部5,5A,5Bよりも僅かに大きい径の微細穴29a,29b,29cが形成されることになる。   After that, when the electrode portions 5, 5A, 5B penetrate the workpiece 27, minute holes 29a, 29b, 29c having a slightly larger diameter than the electrode portions 5, 5A, 5B are formed in the workpiece 27. Become.

こうして放電加工電極1,1A,1Bでは、均一径の微細穴29aのみならず、異径の微細穴29b,29cをも容易且つ正確に形成することができる。   Thus, in the electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B, not only fine holes 29 a having a uniform diameter but also fine holes 29 b, 29 c having different diameters can be easily and accurately formed.

特に、棒状ワークW0,Wの基端部をチャックに把持させたまま旋削加工を行うことで被把持部3に対して電極部5,5A,5Bを同芯に形成するため、両者間の芯出しが極めて正確に行われており、微細穴29a,29b,29cの放電加工の精度を確実に向上させることができる。   In particular, the electrodes 5, 5 A, 5 B are formed concentrically with respect to the gripped portion 3 by performing turning while holding the base end portions of the rod-like workpieces W 0, W to the chuck. The extraction is performed extremely accurately, and the accuracy of the electric discharge machining of the fine holes 29a, 29b, 29c can be reliably improved.

また、放電加工電極1,1A,1Bでは、放電加工時の加工屑を排出路となる凹部9,9A,9Bによって容易且つ確実に排出することができるため、加工屑の滞留による電極部5,5A,5Bの消耗を容易且つ確実に抑制することができる。   Further, in the electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B, machining scraps at the time of electric discharge machining can be easily and reliably discharged by the recesses 9, 9 </ b> A, 9 </ b> B serving as discharge paths. The consumption of 5A and 5B can be easily and reliably suppressed.

さらに、放電加工電極1,1A,1Bでは、電極部5,5A,5Bが被把持部3に対して極めて正確に芯出しされているため、凹部9,9A,9Bによる加工屑の排出路を、電極部5,5A,5Bの軸周り回転によって全周にわたって確実に形成することができる。   Furthermore, in the electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B, since the electrode portions 5, 5 </ b> A, 5 </ b> B are centered very accurately with respect to the gripped portion 3, a machining waste discharge path by the concave portions 9, 9 </ b> A, 9 </ b> B is provided. The electrode portions 5, 5 </ b> A, and 5 </ b> B can be reliably formed over the entire circumference by rotating around the axis.

このため、放電加工電極1,1A,1Bでは、加工屑の滞留による電極部5,5A,5Bの消耗を、より確実に抑制することができる。
[実施例1の効果]
本実施例の放電加工電極の加工方法では、放電加工電極1の被把持部3となる棒状ワークW0の基端部11をチャック13に保持させ、棒状ワークW0の先端部15を横切れ刃19b,21bに負のアプローチ角をなす部分を与えたバイト19,21により背分力を抑制しながら旋削して微細な放電用の電極部5を形成し、電極部5の外周面7に加工屑排出用の凹部9を形成する。
For this reason, in the electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B, it is possible to more reliably suppress the consumption of the electrode portions 5, 5 </ b> A, 5 </ b> B due to stagnation of machining waste.
[Effect of Example 1]
In the electric discharge machining electrode machining method of the present embodiment, the base end portion 11 of the rod-like workpiece W0, which becomes the gripped portion 3 of the electric discharge machining electrode 1, is held by the chuck 13, and the tip portion 15 of the rod-like workpiece W0 is moved to the side cutting edge 19b, Turning is performed while suppressing the back force by the tools 19 and 21 provided with a portion having a negative approach angle in 21b to form the electrode part 5 for fine electric discharge, and machining waste is discharged on the outer peripheral surface 7 of the electrode part 5 A recess 9 is formed.

また、本実施例の放電加工電極の加工方法では、棒状ワークWの基端部11をチャック13に保持させ、棒状ワークWの先端部15を横切れ刃19b,21bに負のアプローチ角をなす部分を与えたバイト19,21により背分力を抑制して旋削しながら微細な放電用の電極部5,5A,5Bを形成する放電加工電極1,1A,1Bの加工方法であって、棒状ワークWは、基端部11及び先端部15間に放電加工電極1,1A,1Bの被把持部3を形成するための被把持部加工部17を備え、棒状ワークWの先端部15及び被把持部加工部17を前記旋削加工で共に加工し被把持部3に対し電極部5,5A,5Bを同芯に形成し、電極部5,5A,5Bの外周面7,7A,7Bに加工屑排出用の凹部9,9A,9Bを形成する。   Further, in the electric discharge machining electrode machining method of the present embodiment, the base end portion 11 of the rod-like workpiece W is held by the chuck 13 and the tip portion 15 of the rod-like workpiece W forms a negative approach angle with the horizontal cutting edges 19b and 21b. Is a machining method of electric discharge machining electrodes 1, 1 A, 1 B for forming fine electric discharge electrode portions 5, 5 A, 5 B while turning while suppressing the back component force by means of cutting tools 19, 21. W includes a gripped portion processing portion 17 for forming the gripped portion 3 of the electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B between the base end portion 11 and the tip end portion 15, and the tip portion 15 of the rod-shaped workpiece W and the gripped portion The part machining part 17 is machined together by the above-mentioned turning process, and the electrode parts 5, 5A, 5B are formed concentrically with the gripped part 3, and machining scraps are formed on the outer peripheral surfaces 7, 7A, 7B of the electrode parts 5, 5A, 5B. Concave portions 9, 9A, 9B for discharging are formed.

従って、何れの放電加工電極1,1A,1Bの加工方法でも、棒状ワークの基端部11をチャック13に把持させたまま旋削加工を行うことで、放電加工電極1,1A,1Bの被把持部3に対して電極部5,5A,5Bを容易に同芯に形成することができる。   Therefore, in any machining method of the electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B, the electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B are gripped by performing turning while holding the base end 11 of the rod-shaped workpiece on the chuck 13. The electrode parts 5, 5 </ b> A, 5 </ b> B can be easily formed concentrically with the part 3.

このため、放電加工電極1,1A,1Bの加工方法では、微細穴29a,29b,29cの放電加工の加工精度が高い放電加工電極1,1A,1Bを加工形成することができる。   For this reason, in the machining method of the electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B, the electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B having high machining accuracy of the electric discharge machining of the fine holes 29 a, 29 b, 29 c can be formed.

また、本実施例の放電加工電極1,1A,1Bの加工方法では、電極部5,5A,5Bの外周面7,7A,7Bに加工屑排出用の凹部9,9A,9Bを形成するため、加工屑を容易且つ確実に排出可能な放電加工電極1,1A,1Bを形成することができる。   Further, in the processing method of the electric discharge machining electrodes 1, 1A, 1B of the present embodiment, the concave portions 9, 9A, 9B for discharging the machining waste are formed on the outer peripheral surfaces 7, 7A, 7B of the electrode portions 5, 5A, 5B. The electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B that can easily and reliably discharge the machining waste can be formed.

本実施例の加工方法では、切欠溝からなる凹部9,9A,9Bを電極部5,5A,5Bに加工形成するため、より確実に加工屑を容易且つ確実に排出可能な放電加工電極1,1A,1Bを形成することができる。   In the machining method of the present embodiment, the recesses 9, 9A, 9B made of notch grooves are processed and formed in the electrode portions 5, 5A, 5B. 1A and 1B can be formed.

本実施例の加工方法では、凹部の形成を研削によって行うため、より確実に加工屑を容易且つ確実に排出可能な放電加工電極1,1A,1Bを形成することができる。   In the processing method of the present embodiment, since the recesses are formed by grinding, it is possible to form the electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B that can more reliably and reliably discharge the machining waste.

本実施例の加工方法では、前記バイト19,21に働く背分力を設定以上の切込み量でゼロにするため、より確実に被把持部3に対して電極部5,5A,5Bを同芯に形成することができ、より確実に放電加工の精度を確実に向上させることが可能な放電加工電極1,1A,1Bを加工形成することができる。   In the processing method of the present embodiment, the back component force acting on the cutting tools 19 and 21 is made zero with the cut amount greater than the set value, so that the electrode parts 5, 5 </ b> A, 5 </ b> B are more concentric with the gripped part 3. Thus, the electric discharge machining electrodes 1, 1A, 1B that can improve the electric discharge machining accuracy more reliably can be formed.

本実施例の加工方法では、電極部5,5A,5Bを、軸芯方向に均一径又は異径に形成するため、各種形状の微細穴29a,29b,29cに容易に形成可能な放電加工電極1,1A,1Bを加工形成することができる。   In the processing method of the present embodiment, the electrode portions 5, 5A, 5B are formed to have uniform diameters or different diameters in the axial direction, so that they can be easily formed in the fine holes 29a, 29b, 29c having various shapes. 1, 1A and 1B can be processed and formed.

本実施例の加工方法では、前記旋削加工を異なる設計の複数のバイト19,21を用いて行わせることで電極部5A,5Bを軸芯方向に異径に形成するため、異径の電極部5A,5Bをより正確に形成することができる。   In the machining method of the present embodiment, the electrodes 5A and 5B are formed to have different diameters in the axial direction by performing the turning using a plurality of cutting tools 19 and 21 having different designs. 5A and 5B can be formed more accurately.

本実施例の放電加工電極1,1A,1Bは、被把持部3に対して電極部5,5A,5Bが同芯に形成されているため、被把持部3の回転に対する電極部5,5A,5Bの振れまわりを抑制して、微細穴29a,29b,29cの放電加工の精度を確実に向上させることができる。   In the electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B of the present embodiment, the electrode portions 5, 5 </ b> A, 5 </ b> B are formed concentrically with the gripped portion 3, and therefore the electrode portions 5, 5 </ b> A with respect to the rotation of the gripped portion 3. , 5B can be suppressed, and the accuracy of electric discharge machining of the fine holes 29a, 29b, 29c can be reliably improved.

また、本実施例の放電加工電極1,1A,1Bでは、電極部5,5A,5Bの外周面7,7A,7Bに加工屑排出用の凹部9,9A,9Bを備えているため、加工屑を容易且つ確実に排出させることができ、電極部5,5A,5Bの消耗を抑制することができる。   Further, since the electric discharge machining electrodes 1, 1A, 1B of the present embodiment are provided with the recesses 9, 9A, 9B for discharging the machining waste on the outer peripheral surfaces 7, 7A, 7B of the electrode portions 5, 5A, 5B, Waste can be easily and reliably discharged, and consumption of the electrode parts 5, 5A, 5B can be suppressed.

本実施例の放電加工電極1,1A,1Bは、電極部5,5A,5Bが軸芯方向に均一径又は異径な微細軸であるため、各種形状の微細穴29a,29b,29cに容易に形成することができる。   The electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B of the present embodiment are easily formed into the fine holes 29 a, 29 b, 29 c of various shapes because the electrode portions 5, 5 </ b> A, 5 </ b> B are fine shafts having a uniform diameter or different diameter in the axial direction. Can be formed.

本実施例の放電加工電極1,1A,1Bは、異形の微細軸である電極部5A,5Bが段付きの微細軸、テーパ形状の微細軸の何れかであるため、各種形状である段付き形状、テーパ形状の微細穴29b,29cを容易に形成することができる。   The electric discharge machining electrodes 1, 1 </ b> A, 1 </ b> B of the present embodiment are stepped in various shapes because the electrode portions 5 </ b> A, 5 </ b> B, which are irregularly shaped fine axes, are either stepped fine axes or tapered fine axes. The fine holes 29b and 29c having a tapered shape can be easily formed.

図17は、変形例に係る放電加工電極の電極部を示す正面図である。本変形例は、切欠溝からなる凹部9Cを周方向に複数設けたものである。本変形例では、4つの凹部9Cが90度毎に設けられている。ただし、凹部の数は、任意であり、凹部の大きさ等に応じて変更することが可能である。   FIG. 17 is a front view showing an electrode portion of an electric discharge machining electrode according to a modification. In this modification, a plurality of recesses 9C each formed of a notch groove are provided in the circumferential direction. In this modification, four recesses 9C are provided every 90 degrees. However, the number of the recesses is arbitrary and can be changed according to the size of the recesses.

複数の凹部9Cの形成は、半製品T1を周方向に所定角度回転させ、研削砥石23との対向位置をずらしながら上記実施例同様にして順次凹部9Cの形成を行えばよい。   The plurality of recesses 9C may be formed by sequentially rotating the semi-finished product T1 by a predetermined angle in the circumferential direction and sequentially forming the recesses 9C in the same manner as in the above embodiment while shifting the position facing the grinding wheel 23.

かかる変形例においても、上記実施例1と同様の作用効果を奏することができる。加えて、本変形例では、凹部9Cが電極部5Cの周方向に複数形成されるため、より容易且つ確実に加工屑を排出することができ電極部5Cの消耗を抑制することができる。   Also in this modified example, the same effects as those of the first embodiment can be obtained. In addition, in the present modification, a plurality of the concave portions 9C are formed in the circumferential direction of the electrode portion 5C, so that the machining waste can be discharged more easily and reliably, and consumption of the electrode portion 5C can be suppressed.

図18は本発明の実施例2に係り凹部の加工方法を示す概略側面図、図19は図18の加工方法による凹部を備えた電極部を示す斜視図である。なお、本実施例は、基本構成が上記実施例1と共通しているため、対応する構成部分には同符号或いは同符号にDを付して詳細な説明を省略する。   FIG. 18 is a schematic side view showing a method of processing a recess according to the second embodiment of the present invention, and FIG. 19 is a perspective view showing an electrode portion having a recess by the processing method of FIG. Since the basic configuration of the present embodiment is the same as that of the first embodiment, the corresponding components are denoted by the same reference numerals or the same reference numerals with Ds and detailed description thereof is omitted.

本実施例では、図18のように、マイクロ・エンド・ミル26を用いて半製品T1の電極部5Dの外周面7Dに凹部9Dを切削加工する。マイクロ・エンド・ミル26は、先端側に向けて漸次先細りとなる柱状に形成されている。このマイクロ・エンド・ミル26の先端部には、切削刃28が設けられている。切削刃28は、集束イオンビーム等によって形成されている。   In this embodiment, as shown in FIG. 18, a recess 9D is cut on the outer peripheral surface 7D of the electrode portion 5D of the semi-finished product T1 using a micro end mill 26. The micro end mill 26 is formed in a columnar shape that gradually tapers toward the tip side. A cutting blade 28 is provided at the tip of the micro end mill 26. The cutting blade 28 is formed by a focused ion beam or the like.

このマイクロ・エンド・ミル26は、半製品T1の電極部5に対して近接離反自在且つ電極部5の軸方向に沿って移動自在に支持されている。   The micro end mill 26 is supported so as to be movable toward and away from the electrode portion 5 of the semi-finished product T1 and movable along the axial direction of the electrode portion 5.

本実施例の加工方法では、マイクロ・エンド・ミル26を軸周り回転させつつ電極部5D先端の外周面7Dに近接移動により突き当て、電極部5Dの基端側に向けて移動させる。これにより、電極部5Dの外周面7Dには、切削による凹部9Dが形成される。   In the processing method of the present embodiment, the micro end mill 26 is abutted against the outer peripheral surface 7D at the distal end of the electrode portion 5D while rotating around the axis, and is moved toward the proximal end side of the electrode portion 5D. Thereby, the recessed part 9D by cutting is formed in the outer peripheral surface 7D of electrode part 5D.

こうして、本実施例の放電加工電極の加工方法では、図19のように、半製品T1の電極部5Dに断面楔状の凹溝からなる凹部9Dを直線状に加工形成し、完成品としての放電加工電極1Dを得ることができる。   Thus, in the machining method of the electric discharge machining electrode of the present embodiment, as shown in FIG. 19, the concave portion 9D made of a concave groove having a wedge-shaped cross section is formed linearly on the electrode portion 5D of the semi-finished product T1, and the electric discharge as a finished product is performed. The processed electrode 1D can be obtained.

なお、上記加工方法の際に半製品T1を回転させれば、螺旋状の溝からなる凹部9Dを加工形成することもできる。   In addition, if the semi-finished product T1 is rotated during the above-described processing method, the concave portion 9D formed of a spiral groove can be formed.

本実施例によれば、凹部9Dを切削加工した場合でも、上記実施例1と同様の作用効果を奏することができる。加えて、本実施例では、マイクロ・エンド・ミル26によって凹部9Dを切削加工するため、凹部9Dの形状の自由度を向上することができる。   According to this embodiment, even when the recess 9D is cut, the same effects as those of the first embodiment can be obtained. In addition, in this embodiment, since the recess 9D is cut by the micro end mill 26, the degree of freedom of the shape of the recess 9D can be improved.

図20は、変形例に係る放電加工電極の電極部を示す正面図である。本変形例は、凹部9Eを周方向に複数設けたものである。本変形例では、2つの凹部9Eが180度毎に設けられている。ただし、凹部の数は、任意であり、凹部の大きさ等に応じて変更することが可能である。   FIG. 20 is a front view showing an electrode portion of an electric discharge machining electrode according to a modification. In this modification, a plurality of recesses 9E are provided in the circumferential direction. In this modification, two recesses 9E are provided every 180 degrees. However, the number of the recesses is arbitrary and can be changed according to the size of the recesses.

複数の凹部9Eの形成は、半製品T1を周方向に所定角度回転させ、マイクロ・エンド・ミル26との対向位置をずらしながら上記実施例同様にして順次凹部9Eの形成を行えばよい。   In order to form the plurality of recesses 9E, the semi-finished product T1 is rotated by a predetermined angle in the circumferential direction, and the recesses 9E may be sequentially formed in the same manner as in the above embodiment while shifting the position facing the micro end mill 26.

かかる変形例においても、上記実施例2と同様の作用効果を奏することができるのに加え、凹部9Eが電極部5Eの周方向に複数形成されるため、より容易且つ確実に加工屑を排出することができ電極部5Eの消耗を抑制することができる。   Also in this modification, in addition to having the same effect as the second embodiment, a plurality of the recesses 9E are formed in the circumferential direction of the electrode portion 5E, so that the processing waste is more easily and reliably discharged. It is possible to suppress the consumption of the electrode part 5E.

図21は本発明の実施例3に係り凹部の加工方法を示す概略側面図、図22は図21の加工方法による凹部を備えた電極部を示す斜視図である。なお、本実施例は、基本構成が上記実施例1と共通しているため、対応する構成部分には同符号或いは同符号にFを付して詳細な説明を省略する。   FIG. 21 is a schematic side view showing a method of processing a recess according to the third embodiment of the present invention, and FIG. 22 is a perspective view showing an electrode portion having a recess by the processing method of FIG. Since the basic configuration of the present embodiment is the same as that of the first embodiment, the corresponding components are denoted by the same reference numerals or the same reference numerals F, and detailed description thereof is omitted.

本実施例の加工方法では、図21のように、レーザー照射部25を用いて半製品T1の電極部5Fの外周面7Fに凹部9Fをレーザー加工する。レーザー照射部25は、半製品T1の電極部5Fの軸方向に沿って移動自在に支持されると共に電極部5Fの外周面7Fに向けてレーザー照射可能となっている。   In the processing method of the present embodiment, as shown in FIG. 21, the recess 9 </ b> F is laser processed on the outer peripheral surface 7 </ b> F of the electrode portion 5 </ b> F of the semi-finished product T <b> 1 using the laser irradiation unit 25. The laser irradiation part 25 is supported so as to be movable along the axial direction of the electrode part 5F of the semi-finished product T1, and is capable of laser irradiation toward the outer peripheral surface 7F of the electrode part 5F.

この加工方法では、レーザー照射部25を半製品T1の電極部5F先端上に配置し、この状態でレーザーを照射しながら電極部5Fの基端側にレーザー照射部25を移動させる。これにより、電極部5Fの外周面7Fには、レーザー照射による凹部9Fが形成される。   In this processing method, the laser irradiation unit 25 is disposed on the tip of the electrode unit 5F of the semi-finished product T1, and the laser irradiation unit 25 is moved to the base end side of the electrode unit 5F while irradiating the laser in this state. Thereby, the recessed part 9F by laser irradiation is formed in the outer peripheral surface 7F of the electrode part 5F.

その後、半製品T1を周方向に所定角度回転させ、レーザー照射部25との対向位置をずらしながら上記同様にして順次凹部9Fの形成を行う。   Thereafter, the semi-finished product T1 is rotated by a predetermined angle in the circumferential direction, and the concave portions 9F are sequentially formed in the same manner as described above while shifting the position facing the laser irradiation unit 25.

この結果、本実施例の加工方法では、図22のように、半製品T1の電極部5Fに直線状の凹部9Fを周方向に複数加工形成し、完成品としての放電加工電極1Fを得ることができる。   As a result, in the processing method of the present embodiment, as shown in FIG. 22, a plurality of linear recesses 9F are formed in the circumferential direction on the electrode portion 5F of the semi-finished product T1 to obtain the electric discharge machining electrode 1F as a finished product. Can do.

本実施例の放電加工電極1Fは、4つの凹部9Fが90度毎に設けられている。ただし、凹部の数は、任意であり、凹部の大きさ等に応じて変更することが可能である。各凹部9Fは、その内面が凹曲面からなる凹溝となっている。   In the electric discharge machining electrode 1F of this embodiment, four concave portions 9F are provided every 90 degrees. However, the number of the recesses is arbitrary and can be changed according to the size of the recesses. Each concave portion 9F is a concave groove whose inner surface is a concave curved surface.

なお、上記加工方法の際に半製品T1を回転させれば、螺旋状の溝からなる複数の凹部9Fを加工形成することもできる。   In addition, if the semi-finished product T1 is rotated during the above-described processing method, a plurality of concave portions 9F formed of spiral grooves can be processed and formed.

本実施例によれば、レーザー照射によって凹部9Fを形成しても、上記実施例1及びその変形例と同様の作用効果を奏することができる。   According to the present embodiment, even if the concave portion 9F is formed by laser irradiation, the same effects as those of the first embodiment and the modified example can be obtained.

図23は、変形例に係る放電加工電極の電極部を示す正面図である。本変形例は、凹部9Gの数を減少させたものである。すなわち、本変形例では、2つの凹部9Gが180度毎に設けられている。   FIG. 23 is a front view showing an electrode portion of an electric discharge machining electrode according to a modification. In this modification, the number of recesses 9G is reduced. That is, in this modification, two concave portions 9G are provided every 180 degrees.

かかる変形例においても、上記実施例3と同様の作用効果を奏することができる。   Also in this modified example, the same effects as those of the third embodiment can be obtained.

1 放電加工電極
3 被把持部
5 電極部
9 凹部
11 棒状ワークの基端部
13 チャック
15 棒状ワークの先端部
17 被把持部加工部
19,21 バイト(切削工具)
19b,21b 横切れ刃
t0〜t6 切込み量
W0,W 棒状ワーク
α1,α2,β1,β2,γ アプローチ角
DESCRIPTION OF SYMBOLS 1 Electric discharge machining electrode 3 Grasping part 5 Electrode part 9 Recessed part 11 Rod end base end part 13 Chuck 15 Rod end part 17 Grasping part processing part 19, 21 Bit (cutting tool)
19b, 21b Horizontal cutting edges t0 to t6 Cutting depths W0, W Bar-shaped workpiece α1, α2, β1, β2, γ Approach angle

Claims (10)

放電加工電極の被把持部となる棒状ワークの基端部をチャックに保持させ、
前記棒状ワークの先端部を、横切れ刃に負のアプローチ角をなす部分を与えた切削工具により背分力を抑制しながら旋削して微細な放電用の電極部を形成し、
前記電極部の外周面に、加工屑排出用の凹部を形成する、
ことを特徴とする放電加工電極の加工方法。
Hold the base end of the rod-shaped workpiece that is the gripped part of the EDM electrode on the chuck,
Turning the tip of the rod-shaped workpiece while suppressing the back force with a cutting tool that gives a part that forms a negative approach angle to the horizontal cutting edge to form a fine discharge electrode part,
On the outer peripheral surface of the electrode part, a recess for discharging machining waste is formed.
A method for machining an electric discharge machining electrode.
棒状ワークの基端部をチャックに保持させ、
前記棒状ワークの先端部を、横切れ刃に負のアプローチ角をなす部分を与えた切削工具により背分力を抑制して旋削しながら微細な放電用の電極部を形成する放電加工電極の加工方法であって、
前記棒状ワークは、前記基端部及び先端部間に放電加工電極の被把持部を形成するための被把持部加工部を備え、
前記棒状ワークの先端部及び被把持部加工部を前記旋削加工で共に加工し前記被把持部に対し前記電極部を同芯に形成し、
前記電極部の外周面に、加工屑排出用の凹部を形成する、
ことを特徴とする放電加工電極の加工方法。
Hold the base end of the rod-shaped workpiece on the chuck,
A machining method of an electric discharge machining electrode for forming a fine electric discharge electrode portion while turning the tip portion of the rod-shaped workpiece while suppressing a back force with a cutting tool provided with a portion having a negative approach angle on a horizontal cutting edge Because
The rod-shaped workpiece includes a gripped portion processing portion for forming a gripped portion of an electric discharge machining electrode between the base end portion and the distal end portion,
The tip of the rod-shaped workpiece and the gripped portion processed portion are both processed by the turning process, and the electrode portion is formed concentrically with respect to the gripped portion,
On the outer peripheral surface of the electrode part, a recess for discharging machining waste is formed.
A method for machining an electric discharge machining electrode.
請求項1又は2記載の放電加工電極の加工方法であって、
前記凹部は、前記凹溝又は切欠溝である、
ことを特徴とする放電加工電極の加工方法。
A method for machining an electric discharge machining electrode according to claim 1 or 2,
The concave portion is the concave groove or notched groove.
A method for machining an electric discharge machining electrode.
請求項3記載の放電加工電極の加工方法であって、
前記凹部は、前記電極部の周方向に複数形成される、
ことを特徴とする放電加工電極の加工方法。
A method for machining an electric discharge machining electrode according to claim 3,
A plurality of the recesses are formed in the circumferential direction of the electrode part.
A method for machining an electric discharge machining electrode.
請求項1〜4の何れかに記載の放電加工電極の加工方法であって、
前記凹部の形成は、研削、レーザー照射、又は切削によって行われる、
ことを特徴とする放電加工電極の加工方法。
It is the processing method of the electric discharge machining electrode in any one of Claims 1-4,
The formation of the recess is performed by grinding, laser irradiation, or cutting.
A method for machining an electric discharge machining electrode.
請求項1〜5の何れかに記載の放電加工電極の加工方法であって、
前記切削工具に働く背分力を設定以上の切込み量でゼロにする、
ことを特徴とする放電加工電極の加工方法。
It is the processing method of the electric discharge machining electrode in any one of Claims 1-5,
The back component force acting on the cutting tool is set to zero with a cutting amount that is greater than or equal to the setting,
A method for machining an electric discharge machining electrode.
請求項1〜6の何れかに記載の放電加工電極の加工方法であって、
前記電極部を、軸芯方向に均一径又は異径に形成する、
ことを特徴とする放電加工電極の加工方法。
It is a processing method of the electric discharge machining electrode in any one of Claims 1-6,
The electrode portion is formed with a uniform diameter or a different diameter in the axial direction.
A method for machining an electric discharge machining electrode.
請求項7記載の放電加工電極の加工方法であって、
前記旋削加工を、異なる設計の複数の切削工具を用いて行わせることにより前記電極部を軸芯方向に異径に形成する、
ことを特徴とする放電加工電極の加工方法。
A method for machining an electric discharge machining electrode according to claim 7,
Forming the electrode portion with a different diameter in the axial direction by causing the turning to be performed using a plurality of cutting tools of different designs;
A method for machining an electric discharge machining electrode.
請求項7又は8記載の放電加工電極の加工方法により形成された放電加工電極であって、
前記電極部は、軸芯方向に均一径又は異径な微細軸である、
ことを特徴とする放電加工電極。
An electric discharge machining electrode formed by the electric discharge machining electrode machining method according to claim 7 or 8,
The electrode part is a fine axis having a uniform diameter or a different diameter in the axial direction.
An electrical discharge machining electrode.
請求項9記載の放電加工電極であって、
前記異径の微細軸は、段付きの微細軸、テーパ形状の微細軸の何れかである、
ことを特徴とする放電加工電極。
The electric discharge machining electrode according to claim 9,
The different diameter micro-axis is either a stepped micro-axis or a tapered micro-axis.
An electrical discharge machining electrode.
JP2010188518A 2010-08-25 2010-08-25 Method of machining method of electric discharge machining electrode, and the electric discharge machining electrode Pending JP2012045652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010188518A JP2012045652A (en) 2010-08-25 2010-08-25 Method of machining method of electric discharge machining electrode, and the electric discharge machining electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010188518A JP2012045652A (en) 2010-08-25 2010-08-25 Method of machining method of electric discharge machining electrode, and the electric discharge machining electrode

Publications (1)

Publication Number Publication Date
JP2012045652A true JP2012045652A (en) 2012-03-08

Family

ID=45901139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010188518A Pending JP2012045652A (en) 2010-08-25 2010-08-25 Method of machining method of electric discharge machining electrode, and the electric discharge machining electrode

Country Status (1)

Country Link
JP (1) JP2012045652A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106975810A (en) * 2017-04-17 2017-07-25 成都鸿源航空动力制造有限公司 A kind of part multi-angle hole processing method based on spark erosion technique
KR20210048805A (en) * 2019-10-24 2021-05-04 이수희 Method For Producing Micron Scale Pin Of Electrodeposition Drill
CN114952306A (en) * 2022-06-21 2022-08-30 河南省优普密封科技有限公司 Machining process for 0.25mm glue inlet hole of liquid mold
CN115070360A (en) * 2022-07-21 2022-09-20 北京健源科兴机械加工有限公司 Processing method for ultra-long slender rod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976123A (en) * 1995-09-12 1997-03-25 Kaijo Corp Electric discharge tool electrode and electric discharge machine using it
JPH11151617A (en) * 1997-11-20 1999-06-08 Toyota Motor Corp Generating discharge machining method and device
JP2009113143A (en) * 2007-11-05 2009-05-28 Univ Nihon Method and system for designing shape of cutware

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976123A (en) * 1995-09-12 1997-03-25 Kaijo Corp Electric discharge tool electrode and electric discharge machine using it
JPH11151617A (en) * 1997-11-20 1999-06-08 Toyota Motor Corp Generating discharge machining method and device
JP2009113143A (en) * 2007-11-05 2009-05-28 Univ Nihon Method and system for designing shape of cutware

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106975810A (en) * 2017-04-17 2017-07-25 成都鸿源航空动力制造有限公司 A kind of part multi-angle hole processing method based on spark erosion technique
KR20210048805A (en) * 2019-10-24 2021-05-04 이수희 Method For Producing Micron Scale Pin Of Electrodeposition Drill
KR102322314B1 (en) * 2019-10-24 2021-11-04 이수희 Method For Producing Micron Scale Pin Of Electrodeposition Drill
CN114952306A (en) * 2022-06-21 2022-08-30 河南省优普密封科技有限公司 Machining process for 0.25mm glue inlet hole of liquid mold
CN115070360A (en) * 2022-07-21 2022-09-20 北京健源科兴机械加工有限公司 Processing method for ultra-long slender rod
CN115070360B (en) * 2022-07-21 2024-01-26 北京健源科兴机械加工有限公司 Processing method for ultra-long slender rod

Similar Documents

Publication Publication Date Title
JP5764181B2 (en) Hard film coated cutting tool
US9463531B2 (en) Three-dimensional surface shaping of rotary cutting tool edges with lasers
JP2012045652A (en) Method of machining method of electric discharge machining electrode, and the electric discharge machining electrode
Egashira et al. Microcutting using a micro turn-milling machine
CN111390505B (en) Method for machining roller by adopting nine-shaft machine tool and roller produced by method
JP6980320B2 (en) Laser machining method of workpiece and manufacturing method of cutting tool
CN107900629A (en) A kind of processing technology of head Whole PC D drill bits
CN106112083B (en) A kind of deep hole end face annular groove forming-tool
JP5459667B2 (en) Micro tool processing method and micro tool
JP2010046733A (en) Thread milling cutter
CN107020486A (en) A kind of processing method of welded type lengthened reamer
CN207188851U (en) With the top cutter of evagination
JP2013139066A (en) Method and apparatus for manufacturing impeller
CN105710426B (en) A kind of processing method of large size semi-precise milling cutter for concave groove
CN112621128A (en) Method and tool for machining stepped high-precision small-diameter deep-hole shell
JP2016155178A (en) Rotary tool and manufacturing method thereof
JP5939687B2 (en) Cutting tools
CN218168923U (en) PCD reamer for multi-section hole machining
JP2019188488A (en) Polygon cutter unit and machine tool
KR20220112468A (en) Method for manufacturing taper drill reamer
JP2008161999A (en) Cutting tool
Ojha et al. Design of College Logo using Hand Injection Moulding process
KURIYAMA et al. 2104 Cutting of Nanoscale-Diameter Micropins
JP2015006704A (en) Cutting tool
EP3653167A1 (en) Method for producing dental fitting bodies and workpiece for this purpose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140916