JPH11151617A - Generating discharge machining method and device - Google Patents

Generating discharge machining method and device

Info

Publication number
JPH11151617A
JPH11151617A JP33645097A JP33645097A JPH11151617A JP H11151617 A JPH11151617 A JP H11151617A JP 33645097 A JP33645097 A JP 33645097A JP 33645097 A JP33645097 A JP 33645097A JP H11151617 A JPH11151617 A JP H11151617A
Authority
JP
Japan
Prior art keywords
pipe electrode
workpiece
pipe
electrode
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33645097A
Other languages
Japanese (ja)
Inventor
Akinobu Takeuchi
昭伸 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33645097A priority Critical patent/JPH11151617A/en
Publication of JPH11151617A publication Critical patent/JPH11151617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To use a relatively thick pipe electrode, and to improve the accuracy of the side surface machining. SOLUTION: As a pipe electrode 14 rotated around the axial center by a rotating means, a material with a large thickness t0 is selected, and a cutting tool 24 is provided movable in the radial direction of the pipe electrode 14, immediately under a ring guide 21 to guide the pipe electrode 14 slidable. When the pipe electrode 14 is moved in the axial direction to a discharge machining position, the outer periphery of the pipe electrode 14 is cut off by the edge 24a of the cutting tool 24, and its thickness t1 is made thinner than the value subtracting the discharge gap δ from the maching allowance s of the side surface of a work 11 (t1 <s-δ), and a discharge is generated between the tip of the pipe electrode 14 made in the thin wall, and the work 11, to cut down the side surface of the work 11 in a layer form, so as to carry out a finish machining of the side surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放電加工に係り、
特にパイプ電極の先端面と被加工物との間に放電を生じ
させて加工を行う創成放電加工方法および装置に関す
る。
The present invention relates to electric discharge machining,
In particular, the present invention relates to a method and apparatus for generating electric discharge by performing electric discharge between a tip end surface of a pipe electrode and a workpiece to perform machining.

【0002】[0002]

【従来の技術】創成放電加工は、図4に示すように、パ
イプ電極1を回転させ、かつその軸に交差する2方向
X,Yへ移動させながら、パイプ電極1と被加工物2と
に電源3から電圧を印加して、パイプ電極1の先端面と
被加工物2との間に放電を生じさせ、一面の加工を終え
るごとに、パイプ電極1をその軸方向Zへ所定距離だけ
送って加工を繰返し、被加工物2を層状に掘下げて、所
望の輪郭と深さとを有する穴4を創成する加工方法であ
る。なお、この放電加工に際しては、パイプ電極1の内
部を通じてその先端に加工液を高圧で送るようにしてい
る(矢印A)。
2. Description of the Related Art As shown in FIG. 4, the electric discharge machining is carried out by rotating a pipe electrode 1 and moving the pipe electrode 1 in two directions X and Y intersecting the axis thereof, so that the pipe electrode 1 and a workpiece 2 are connected to each other. A voltage is applied from the power supply 3 to generate a discharge between the tip end surface of the pipe electrode 1 and the workpiece 2, and the pipe electrode 1 is sent a predetermined distance in the axial direction Z each time one surface is finished. This is a processing method in which the workpiece 2 is dug down in layers to create a hole 4 having a desired contour and depth. At the time of this electric discharge machining, a machining fluid is sent at a high pressure to the tip through the inside of the pipe electrode 1 (arrow A).

【0003】ところで、この種の創成放電加工では、加
工能率の向上を図るため、初期段階では供給電流を高く
して荒加工を行い、最終段階では供給電流を下げて仕上
加工を行うようにしている。この場合、図5に示すよ
うに、被加工物2に創成された穴4′の底面4aは高精
度に仕上がるが、その側面はきわめて面粗さが粗いもの
となる。そこで、通常は、同じくに示すように、創成
すべき穴の側面4bに対して所定の取り代sを残して深
さ方向の加工を行った後、同図に示すように、パイプ
電極1を軸方向Zへ順次送りながら取り代s分を除去す
る、いわゆる側面仕上加工を行って、所望の面精度を有
する穴4を創成するようにしていた。
In this type of electric discharge machining, in order to improve machining efficiency, rough machining is performed by increasing the supply current in an initial stage, and finishing is performed by decreasing the supply current in a final stage. I have. In this case, as shown in FIG. 5, the bottom surface 4a of the hole 4 'formed in the workpiece 2 is finished with high precision, but the side surface thereof is extremely rough. Therefore, usually, as shown in the same manner, after the side surface 4b of the hole to be created is processed in the depth direction while leaving a predetermined allowance s, the pipe electrode 1 is removed as shown in FIG. A so-called side surface finishing process is performed in which the machining allowance s is removed while being sequentially fed in the axial direction Z, thereby creating a hole 4 having a desired surface accuracy.

【0004】しかるに、上記した側面仕上加工によれ
ば、図6に示すように、取り代sがパイプ電極1の肉厚
tと放電ギャップδとを加算した値より小さい場合(s
<t+δ)、パイプ電極1の先端面の消耗量が半径方向
で不均一となり、創成された穴4の内面4aの形状精度
が悪化するばかりか、場合によってパイプ電極1の内周
側に非消耗部分1aが残り、側面を仕上加工することが
不可能になるという問題があった。このため、特開平9
−108945号公報に記載の放電加工方法では、パイ
プ電極1として、前記取り代sと同様かそれより薄い肉
厚tを有するものを選択し(s≧t)、パイプ電極の異
常消耗を未然に防止するように配慮していた。
However, according to the above-mentioned side surface finishing, as shown in FIG. 6, when the allowance s is smaller than the value obtained by adding the wall thickness t of the pipe electrode 1 and the discharge gap δ (s
<T + δ), the amount of wear on the tip end surface of the pipe electrode 1 becomes non-uniform in the radial direction, and not only the shape accuracy of the inner surface 4a of the created hole 4 is deteriorated, but also the inner peripheral side of the pipe electrode 1 is not consumed in some cases There is a problem that the portion 1a remains and it becomes impossible to finish the side surface. For this reason, Japanese Patent Application Laid-Open
In the electric discharge machining method described in JP-A-108945, a pipe electrode 1 having a thickness t similar to or smaller than the above-mentioned allowance s is selected (s ≧ t) to prevent abnormal consumption of the pipe electrode. Care was taken to prevent it.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
たようにパイプ電極1として、取り代s以下の肉厚tを
有するものを選択する場合、取り代sによっては選択す
るパイプ電極1が著しく薄肉となり、その剛性が不足し
て、パイプ電極1を支持し回転移動させる機構へのパイ
プ電極の高精度取付けが困難になり、一般的に薄肉パイ
プの真円度、真直度が悪いこともあって、パイプ電極に
大きな回転振れが生じ、被加工物の側面を精度良く仕上
加工することはきわめて困難になる、という問題があっ
た。
However, as described above, when selecting a pipe electrode 1 having a thickness t less than the allowance s, the selected pipe electrode 1 becomes extremely thin depending on the allowance s. Insufficient rigidity makes it difficult to attach the pipe electrode to the mechanism for supporting and rotating the pipe electrode 1 with high precision, and the roundness and straightness of the thin pipe are generally poor. There is a problem that large rotational runout occurs in the pipe electrode, and it is extremely difficult to finish the side surface of the workpiece with high accuracy.

【0006】本発明は、上記従来の問題点に鑑みてなさ
れたもので、その課題とするところは、パイプ電極の肉
厚を放電加工位置の手前で薄肉化することにより比較的
厚肉のパイプ電極の使用を可能にし、もって加工精度の
向上に大きく寄与する創成放電加工方法および装置を提
供することになる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has as its object to reduce the thickness of the pipe electrode before the electric discharge machining position so that a relatively thick pipe can be formed. The present invention provides a method and apparatus for generating electric discharge, which enables the use of electrodes and greatly contributes to improvement of machining accuracy.

【0007】[0007]

【発明が解決しようとする課題】上記課題を解決するた
め、本発明の方法は、パイプ電極をその軸中心に回転さ
せながら、その軸に交差する方向および軸方向へ移動さ
せ、該パイプ電極の先端面と被加工物との間に放電を生
じさせて、被加工物の側面を仕上加工する創成放電加工
方法において、前記パイプ電極を軸方向へ移動させる途
中で、外周加工によりその肉厚を被加工物に対する取り
代以下に減じるようにしたことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the method of the present invention is to rotate a pipe electrode around its axis while moving the pipe electrode in a direction intersecting the axis and in an axial direction. In the generating electric discharge machining method of generating a discharge between the tip end surface and the workpiece and finishing the side surface of the workpiece, in the middle of moving the pipe electrode in the axial direction, the wall thickness is reduced by peripheral machining. It is characterized in that it is reduced to less than the allowance for the workpiece.

【0008】また、上記課題を解決するための本発明の
装置は、パイプ電極を支持しその軸中心に回転させる回
転手段と、該回転手段をこれに支持したパイプ電極の軸
に交差する方向および軸方向へ移動させる移動手段と、
前記パイプ電極と被加工物との間に電圧を印加する電源
とを備え、前記パイプ電極の回転移動によりその先端面
と被加工物との間に放電を生じさせて側面加工を行う創
成放電加工装置において、前記移動手段に、前記パイプ
電極の軸方向移動に応じてその外周を加工する加工手段
を支持させる構成としたことを特徴とする。
Further, according to the present invention, there is provided an apparatus for supporting a pipe electrode for rotating the pipe electrode about its axis, a direction intersecting the axis of the pipe electrode supported on the pipe electrode, and Moving means for moving in the axial direction;
A power source for applying a voltage between the pipe electrode and the workpiece, generating electric discharge between a tip surface of the pipe electrode and the workpiece by rotating the pipe electrode to perform side machining. The apparatus is characterized in that the moving means supports a processing means for processing the outer periphery of the pipe electrode in accordance with the axial movement of the pipe electrode.

【0009】上記のように構成した創成放電加工方法お
よび装置においては、パイプ電極を軸方向へ移動させる
途中で、移動手段に支持させた加工手段によりその外周
加工を行い、肉厚を減じるので、使用するパイプ電極と
しては、比較的厚肉で剛性の高いものを選択することが
でき、このパイプ電極を支持し回転させる回転手段への
高精度取付けが可能になり、パイプ自体の真円度、真直
度が高まることと相まって、その回転振れが抑制され
る。
In the electric discharge machining method and apparatus constructed as described above, while the pipe electrode is moved in the axial direction, the outer periphery is processed by the processing means supported by the moving means to reduce the wall thickness. As the pipe electrode to be used, a relatively thick and highly rigid one can be selected, and it is possible to mount the pipe electrode on a rotating means for supporting and rotating the pipe electrode with high accuracy, and to realize the roundness of the pipe itself, In combination with the increase in straightness, the rotational runout is suppressed.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基いて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0011】図2は、本発明にかゝる創成放電加工装置
の全体的構造を示したものである。同図において、10
は加工テーブルで、その上面には被加工物11を位置決
め載置するベース12を内装した加工槽13と、パイプ
電極14を鉛直状態で支持しその軸中心に回転させる回
転装置(回転手段)15を介してパイプ電極14を放電
加工位置に移動させる移動装置(移動手段)16と、パ
イプ電極14と被加工物11との間に電圧を印加する電
源(図示略)とが配設されている。
FIG. 2 shows the overall structure of the electric discharge machining apparatus according to the present invention. In the figure, 10
Is a processing table, on the upper surface of which is a processing tank 13 in which a base 12 for positioning and mounting the workpiece 11 is mounted, and a rotating device (rotating means) 15 for supporting the pipe electrode 14 in a vertical state and rotating it around its axis. A moving device (moving means) 16 for moving the pipe electrode 14 to the electric discharge machining position via the power supply and a power supply (not shown) for applying a voltage between the pipe electrode 14 and the workpiece 11 are provided. .

【0012】移動装置16は、加工テーブル10上に紙
面に垂直方向Xへ移動可能に配設された支柱17と、こ
の支柱17の上端部に前記X方向に直交する水平方向Y
へ移動可能に装着された横スライド部材18と、前記回
転装置15を支持し横スライド部材18の先端部に上下
方向(パイプ電極14の軸方向)Zへ移動可能に装着さ
れた縦スライド部材19とを備えている。これら支柱1
7、横スライド部材18および縦スライド部材19は、
数値制御装置(NC装置)により制御される各独立の駆
動手段(図示略)によって移動させられるようになって
おり、これらの移動によりパイプ電極14は、前記加工
槽13内のベース12上に載置された被加工物11に対
する所定の放電加工位置へ移動する。なお、加工槽13
内には加工液20が収納されており、この加工液20
は、図示を略す循環ポンプの運転により前記回転装置1
5を通じてパイプ電極14内へ圧送されると共に、該パ
イプ電極14を通じて加工槽13内へ戻されるようにな
っている。
The moving device 16 includes a column 17 movably disposed on the processing table 10 in a direction X perpendicular to the plane of the drawing, and an upper end of the column 17 in a horizontal direction Y orthogonal to the X direction.
And a vertical slide member 19 that supports the rotating device 15 and that is mounted on the tip of the horizontal slide member 18 so as to be movable in the vertical direction (the axial direction of the pipe electrode 14) Z. And These pillars 1
7, the horizontal slide member 18 and the vertical slide member 19
The pipe electrodes 14 are moved by independent driving means (not shown) controlled by a numerical controller (NC device), and the pipe electrodes 14 are mounted on the base 12 in the processing tank 13 by these movements. It moves to a predetermined electric discharge machining position for the placed workpiece 11. In addition, the processing tank 13
A processing fluid 20 is stored in the inside of the processing fluid 20.
Is operated by a circulating pump (not shown).
5 and is fed back into the processing tank 13 through the pipe electrode 14.

【0013】こゝで、上記移動装置16の横スライド部
材18には、パイプ電極14を摺動可能に挿通させるリ
ングガイド21を下側片22aに有するL字形のブラケ
ット22が脱着自在に取付けられている。前記リングガ
イド21は、回転装置15のスピンドル15aにパイプ
電極14を支持させる際の姿勢制御(心合せ)、並びに
回転装置15によりパイプ電極14を回転させた際の振
れ防止の役割をなすもので、ブラケット22は、被加工
物11に近い箇所にリングガイド21を位置させるよう
にその取付高さが調整されている。
An L-shaped bracket 22 having a ring guide 21 on a lower piece 22a for slidably inserting the pipe electrode 14 is detachably attached to the horizontal slide member 18 of the moving device 16. ing. The ring guide 21 plays a role of controlling the posture (centering) when supporting the pipe electrode 14 on the spindle 15 a of the rotating device 15 and preventing the vibration when the rotating device 15 rotates the pipe electrode 14. The mounting height of the bracket 22 is adjusted so that the ring guide 21 is located near the workpiece 11.

【0014】一方、上記ブラケット22の下側片22a
の下面には、リングガイド21を挿通して下方へ延ばさ
れたパイプ電極14の外周を加工する加工装置23が配
設されている。加工装置23は、こゝでは図1に示すよ
うに、先端に切刃24aを有する切削工具24と、この
切削工具24を支持しパイプ電極14の半径方向へ矢印
Aのように進退動させる送り手段25とを1つのユニッ
トとして、このユニットをパイプ電極14の円周方向へ
等配して3つ備えた構成となっている。しかして、各ユ
ニットの送り手段25は、前記NC装置により同期して
制御されるようになっており、この制御により各切削工
具24は所定の加工位置に同期して前進し、その切刃2
4aを、回転装置15により回転させられ、かつ縦スラ
イド部材19により軸方向移動させられているパイプ電
極14の外周に切込ませて、パイプ電極14の外周を所
定深さにわたって削除する。
On the other hand, the lower piece 22a of the bracket 22
A processing device 23 for processing the outer periphery of the pipe electrode 14 extending downward through the ring guide 21 is disposed on the lower surface of the pipe electrode 14. As shown in FIG. 1, the processing device 23 includes a cutting tool 24 having a cutting blade 24 a at a tip thereof, and a feed for supporting the cutting tool 24 and moving the cutting tool 24 in the radial direction of the pipe electrode 14 as indicated by an arrow A. The unit 25 is provided as one unit, and three such units are arranged in the circumferential direction of the pipe electrode 14. The feed means 25 of each unit is controlled synchronously by the NC device. With this control, each cutting tool 24 advances in synchronization with a predetermined machining position, and its cutting edge 2
4a is cut into the outer periphery of the pipe electrode 14 rotated by the rotating device 15 and moved in the axial direction by the vertical slide member 19, and the outer periphery of the pipe electrode 14 is deleted over a predetermined depth.

【0015】以下、上記のように構成した創成放電加工
装置による放電加工方法について説明する。本実施の形
態は、予め底面加工により被加工物2に創成された穴
4′(図2)の内面(側面)を仕上加工しようとするも
のであるが、この側面仕上加工に際しては、図1に示す
ように、パイプ電極14として、取り代sよりも十分大
きな肉厚t0 を有する(t0 >s)もの、すなわち剛性
の高いものを選択し、これを回転装置15のスピンドル
15aに所定の突出し長さとなるように支持させる。な
お、この時、パイプ電極14は、その先端部がリングガ
イド21からわずか下方へ突出するように位置決めされ
る。このようにパイプ電極14として厚肉で剛性の高い
ものを選択することにより、回転装置15のスピンドル
15aにパイプ電極14を支持させる際、パイプ電極1
4に変形が生じることはなく、その取付精度は向上す
る。
Hereinafter, an electric discharge machining method using the generating electric discharge machine configured as described above will be described. In the present embodiment, the inner surface (side surface) of a hole 4 '(FIG. 2) formed in the workpiece 2 in advance by bottom surface processing is to be finished. as shown in, predetermined as a pipe electrode 14 has a large wall thickness t 0 sufficiently than cash s taken (t 0> s) shall, i.e. select a high rigidity, it to the spindle 15a of the rotating device 15 Is supported so as to have a projection length. At this time, the pipe electrode 14 is positioned such that its tip end projects slightly downward from the ring guide 21. By selecting a thick and highly rigid material for the pipe electrode 14 as described above, when the pipe electrode 14 is supported by the spindle 15a of the rotating device 15, the pipe electrode 1
No deformation occurs in 4 and its mounting accuracy is improved.

【0016】上記準備完了後、装置を起動すると、先ず
NC装置からの指令で支柱17と横スライド部材18と
が移動し、回転装置15がX,Yの2方向へ水平移動し
て、加工槽11内の被加工物11の上方の所定位置にパ
イプ電極14が位置決めされる。次に、同じくNC装置
からの指令で回転装置15が作動してパイプ電極14が
回転し、続いて縦スライド部材19が下降してパイプ電
極14がその軸方向Zへ送られる。この時、加工装置2
3の複数の切削工具24は、対応する送り手段25の作
動で所定の前進位置に位置決めされており、前記パイプ
電極14の回転下降に応じてその外周が切削工具24の
切刃24aにより所定深さにわたって削除され、これに
より、パイプ電極14の先端部は、取り代sからギャッ
プδを差引いた値よりも小さな肉厚t1 (t1 <s−
δ)を有するものとなる。本実施の形態では、このパイ
プ電極14の外周加工(切削)をリングガイド21の直
下で行うようにし、しかも、円周方向に等配した3つの
切削工具24で行うようにしているので、加工中、パイ
プ電極14に回転振れが発生することはなく、その外周
は均一に削除される。また、加工液20中での切削加工
となるため、切削熱によって切削工具24が早期に損耗
したり、あるいは切削されたパイプ電極14が熱変形を
起すこともない。
After the preparation is completed, when the apparatus is started, first, the support 17 and the horizontal slide member 18 move in accordance with a command from the NC apparatus, and the rotating apparatus 15 moves horizontally in the two directions of X and Y to form a processing tank. The pipe electrode 14 is positioned at a predetermined position above the workpiece 11 in the pipe 11. Next, the rotating device 15 operates in response to a command from the NC device to rotate the pipe electrode 14, and then the vertical slide member 19 descends to feed the pipe electrode 14 in the axial direction Z thereof. At this time, the processing device 2
The plurality of cutting tools 24 are positioned at a predetermined forward position by the operation of the corresponding feeding means 25, and the outer periphery thereof is formed at a predetermined depth by the cutting blade 24 a of the cutting tool 24 in response to the rotation of the pipe electrode 14. As a result, the tip portion of the pipe electrode 14 has a thickness t 1 (t 1 <s−) smaller than a value obtained by subtracting the gap δ from the allowance s.
δ). In the present embodiment, the outer periphery processing (cutting) of the pipe electrode 14 is performed directly below the ring guide 21 and is performed by three cutting tools 24 equally arranged in the circumferential direction. During the rotation, no rotational vibration occurs in the pipe electrode 14, and the outer periphery thereof is uniformly deleted. In addition, since the cutting is performed in the working fluid 20, the cutting tool 24 is not worn out early by the cutting heat, or the cut pipe electrode 14 is not thermally deformed.

【0017】このようして薄肉となったパイプ電極14
の先端部が被加工物11に接近し、パイプ電極14の先
端と被加工物11との間に放電が発生し、この位置でパ
イプ電極14の下降が停止される。次に、パイプ電極1
4は、NC装置からの指令で支柱17と横スライド部材
18とが移動することにより、被加工物11の孔4′の
内周に沿って一周させられ、これにより、一層分の側面
加工が完了する。なお、回転装置15には、パイプ電極
14の消耗に応じて軸方向送りをかける補正送り機構
(図示略)が内蔵されており、前記放電加工中は、例え
ば電気量の変化からパイプ電極14の消耗程度が判断さ
れて、随時補正送りがなされるようになっている。側面
加工は、パイプ電極14をその軸方向Zへ順次送りなが
ら層状に繰返えされ、被加工物11の穴4′の内面の全
加工が完了する。しかして、パイプ電極14は、回転装
置15とリングガイド21との間が厚肉高剛性となって
いるので、前記放電加工中、パイプ電極14の回転振れ
が抑えられる。これと共に、放電に関与するパイプ電極
14の先端部は取り代sよりも薄い肉厚t1 となってい
るので、その先端面が異常消耗することはなく、これに
より被加工物11の穴内面は高精度に仕上げられるよう
になる。
The pipe electrode 14 thus thinned
Of the pipe electrode 14 approaches the workpiece 11, a discharge is generated between the tip of the pipe electrode 14 and the workpiece 11, and the lowering of the pipe electrode 14 is stopped at this position. Next, pipe electrode 1
When the support 17 and the horizontal slide member 18 move in accordance with a command from the NC device, the work 4 makes one round along the inner circumference of the hole 4 ′ of the workpiece 11. Complete. The rotating device 15 has a built-in correction feed mechanism (not shown) for feeding the pipe electrode 14 in the axial direction in accordance with the consumption of the pipe electrode 14. The degree of wear is determined, and correction feeding is performed at any time. The side surface processing is repeated in layers while sequentially feeding the pipe electrode 14 in the axial direction Z, and the entire processing of the inner surface of the hole 4 ′ of the workpiece 11 is completed. Since the pipe electrode 14 has a thick wall and high rigidity between the rotating device 15 and the ring guide 21, rotation deflection of the pipe electrode 14 during the electric discharge machining is suppressed. At the same time, the tip of the pipe electrode 14 involved in the discharge has a thickness t 1 smaller than the allowance s, so that the tip does not wear out abnormally. Can be finished with high precision.

【0018】なお、上記実施の形態において、パイプ電
極14の外周を加工する加工装置23として切削工具2
4を備えものを用いたが、この加工装置23の種類、構
造は任意であり、例えば図3に示すように、切削工具2
4に代えて、電極棒26を備えたものとすることができ
る。この場合は、この電極棒26に対して電源27から
電圧を印加し、電極部26の先端とパイプ電極14との
間に放電を生じさせて外周加工を行うが、この放電を利
用した外周加工によれば、上記切削による方式と異って
加工反力が生じないので、電極棒26を1つだけ用意す
れば良い。
In the above embodiment, the cutting tool 2 is used as the processing device 23 for processing the outer periphery of the pipe electrode 14.
4, but the type and structure of the processing device 23 are arbitrary. For example, as shown in FIG.
Instead of 4, an electrode rod 26 may be provided. In this case, a voltage is applied from the power supply 27 to the electrode rod 26 to generate a discharge between the tip of the electrode portion 26 and the pipe electrode 14 to perform the outer peripheral machining. According to the method, unlike the above-described cutting method, no processing reaction force is generated, so that only one electrode rod 26 needs to be prepared.

【0019】こゝで、本装置は、加工装置23の切削工
具24または電極棒26を大きく後退させることによ
り、厚肉のパイプ電極14をそのまゝ被加工物11の底
面加工(穴4′の加工)に用いることができ、したがっ
て、底面加工と側面加工とに共用することができて、設
備の二重投資となることはない。
In this apparatus, the cutting tool 24 or the electrode rod 26 of the processing apparatus 23 is largely retracted so that the thick pipe electrode 14 can be directly processed into the bottom surface of the workpiece 11 (hole 4 '). ), And therefore can be used for both bottom processing and side processing, and there is no double investment in equipment.

【0020】[0020]

【発明の効果】以上、説明したように、本発明にかゝる
創成放電加工方法および装置によれば、パイプ電極の肉
厚を放電加工位置の手前で薄肉化するようにしているの
で、比較的厚肉のパイプ電極の使用が可能になり、パイ
プ電極の回転振れを可能的に抑制することができて、側
面加工を高精度に行うことができる。また、本発明にか
ゝる装置によれば、パイプ電極を支持する回転手段を移
動させる既存の移動手段に、パイプ電極の外周を加工す
る加工手段を持たせるだけなので、底面加工と側面加工
とに共用することができ、設備の二重投資になることは
なく、その利用価値は高いものがある。
As described above, according to the electric discharge machining method and apparatus according to the present invention, the thickness of the pipe electrode is reduced before the electric discharge machining position. This makes it possible to use a thick pipe electrode, suppresses rotational deflection of the pipe electrode as much as possible, and performs side processing with high precision. Further, according to the apparatus according to the present invention, the existing moving means for moving the rotating means for supporting the pipe electrode is merely provided with the processing means for processing the outer periphery of the pipe electrode. Can be shared, and there is no double investment of equipment, and there are some that have high utility value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかゝる創成放電加工方法の一つの実施
状況を示す断面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a generating electric discharge machining method according to the present invention.

【図2】本発明にかゝる創成放電加工装置の全体的構造
を一部断面として示す側面図である。
FIG. 2 is a side view showing a partial cross section of the overall structure of the electric discharge machine according to the present invention.

【図3】本発明にかゝる創成放電加工方法の他の実施状
況を示す断面図である。
FIG. 3 is a sectional view showing another embodiment of the electric discharge machining method according to the present invention.

【図4】創成放電加工の一般的な実施状況を示す模式図
である。
FIG. 4 is a schematic view showing a general implementation state of the electric discharge machining.

【図5】創成放電加工による底面加工と側面加工との実
施状況を順を追って示す模式図である。
FIG. 5 is a schematic diagram showing the state of implementation of bottom surface processing and side surface processing by generating electric discharge machining in order.

【図6】従来の側面加工における不具合例を示す断面図
である。
FIG. 6 is a cross-sectional view showing an example of a defect in conventional side processing.

【符号の説明】[Explanation of symbols]

11 被加工物 13 加工槽 14 パイプ電極 15 回転装置(回転手段) 16 移動装置(移動手段) 23 加工装置(加工手段) DESCRIPTION OF SYMBOLS 11 Workpiece 13 Processing tank 14 Pipe electrode 15 Rotation apparatus (rotation means) 16 Moving apparatus (movement means) 23 Processing apparatus (processing means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 パイプ電極をその軸中心に回転させなが
ら、その軸に交差する方向および軸方向へ移動させ、該
パイプ電極の先端面と被加工物との間に放電を生じさせ
て、被加工物の側面を仕上加工する創成放電加工方法に
おいて、前記パイプ電極を軸方向へ移動させる途中で、
外周加工によりその肉厚を被加工物に対する取り代以下
に減じることを特徴とする創成放電加工方法。
1. A pipe electrode is rotated in a direction intersecting with its axis and in an axial direction while rotating the pipe electrode about its axis, so that a discharge is generated between a tip end surface of the pipe electrode and a workpiece, and In the generating electric discharge machining method of finishing the side surface of the workpiece, while moving the pipe electrode in the axial direction,
A method of generating electrical discharge machining, wherein the thickness is reduced to a value equal to or less than an allowance for a workpiece by outer peripheral machining.
【請求項2】 パイプ電極を支持しその軸中心に回転さ
せる回転手段と、該回転手段をこれに支持したパイプ電
極の軸に交差する方向および軸方向へ移動させる移動手
段と、前記パイプ電極と被加工物との間に電圧を印加す
る電源とを備え、前記パイプ電極の回転移動によりその
先端面と被加工物との間に放電を生じさせて側面加工を
行う創成放電加工装置において、前記移動手段に、前記
パイプ電極の軸方向移動に応じてその外周を加工する加
工手段を支持させたことを特徴とする創成放電加工装
置。
2. A rotating means for supporting a pipe electrode and rotating it about its axis, a moving means for moving the rotating means in a direction intersecting with the axis of the pipe electrode supported thereon and in an axial direction, A power supply for applying a voltage between the workpiece and the workpiece, wherein the rotation of the pipe electrode generates a discharge between the tip surface and the workpiece to perform side machining, and the generation electric discharge machining apparatus, The electric discharge machining apparatus according to claim 1, wherein the moving means supports a processing means for processing an outer periphery of the pipe electrode in accordance with an axial movement of the pipe electrode.
JP33645097A 1997-11-20 1997-11-20 Generating discharge machining method and device Pending JPH11151617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33645097A JPH11151617A (en) 1997-11-20 1997-11-20 Generating discharge machining method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33645097A JPH11151617A (en) 1997-11-20 1997-11-20 Generating discharge machining method and device

Publications (1)

Publication Number Publication Date
JPH11151617A true JPH11151617A (en) 1999-06-08

Family

ID=18299270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33645097A Pending JPH11151617A (en) 1997-11-20 1997-11-20 Generating discharge machining method and device

Country Status (1)

Country Link
JP (1) JPH11151617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156631A (en) * 2010-02-02 2011-08-18 Nihon Univ Method of machining micro tool, and micro tool
JP2012045652A (en) * 2010-08-25 2012-03-08 Nihon Univ Method of machining method of electric discharge machining electrode, and the electric discharge machining electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156631A (en) * 2010-02-02 2011-08-18 Nihon Univ Method of machining micro tool, and micro tool
JP2012045652A (en) * 2010-08-25 2012-03-08 Nihon Univ Method of machining method of electric discharge machining electrode, and the electric discharge machining electrode

Similar Documents

Publication Publication Date Title
EP1621287B1 (en) Method and apparatus for grinding cams with a re-entrant surface
US20040168288A1 (en) Compound fabrication process and apparatus
JPS59169720A (en) Machining center for electric machining
US20090001053A1 (en) Rough maching method and electroerosion tool performing the same
JP2004058227A (en) Tool selection method and control device in numerically controlled lathe
WO1986001315A1 (en) Numerical control system
US9789555B2 (en) Electrical discharge machining method and electrode-guide position setting device
JPH11151617A (en) Generating discharge machining method and device
JP2019042901A (en) Processing device and processing method using the same
JP2532582B2 (en) Electrode tool fixing device
JP4261493B2 (en) Dressing device, grinding device, dressing method, and numerical control program
JP2009142915A (en) Machine tool and machining method using the same
JP3482331B2 (en) Finishing method
US5200591A (en) Electric discharge contour machining method
CN209647779U (en) Electric spark machine tool and production line including the electric spark machine tool
JPH1148072A (en) Machine tool
KR101133598B1 (en) The glass processing apparatus for touch screen panel
CN112091234A (en) Numerical control cutting method for arc surface
JP2004090203A (en) Roots rotor machining method and machining device
JP2002254232A (en) Cutting method by rotary tool
US3688075A (en) Mechanical/nonmechanical machining center
JPH09160623A (en) Numerical controller for working workpiece
JP2838657B2 (en) Press die processing method
JP7085076B1 (en) Machine tools, control methods, and control programs
JPS60127923A (en) Wire-cut electric discharge machine