JP2012044489A - Skew adjusting circuit - Google Patents

Skew adjusting circuit Download PDF

Info

Publication number
JP2012044489A
JP2012044489A JP2010184524A JP2010184524A JP2012044489A JP 2012044489 A JP2012044489 A JP 2012044489A JP 2010184524 A JP2010184524 A JP 2010184524A JP 2010184524 A JP2010184524 A JP 2010184524A JP 2012044489 A JP2012044489 A JP 2012044489A
Authority
JP
Japan
Prior art keywords
skew
delay
circuit
signals
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010184524A
Other languages
Japanese (ja)
Other versions
JP5549474B2 (en
Inventor
Atsushi Ito
篤志 伊藤
Susumu Kojima
進 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2010184524A priority Critical patent/JP5549474B2/en
Priority to US13/179,326 priority patent/US8856578B2/en
Publication of JP2012044489A publication Critical patent/JP2012044489A/en
Application granted granted Critical
Publication of JP5549474B2 publication Critical patent/JP5549474B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pulse Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a skew adjusting circuit that can supply skew fitted to the operation state of LSI, etc. to plural signals.SOLUTION: A delay adjusting circuit is provided to an integrated circuit having first and second signal lines through which first and second signals are transmitted, first and second buffer circuits to which the first and second signals transmitted through the first and second signal lines are input, and has first and second delay circuits provided at the respective front stages of the first and second buffer circuits, a skew measuring circuit for measuring skew between the first and second signals, and a delay adjusting circuit for determining delay amounts of the first and second delay circuits on the basis of the measured skew measured by the skew measuring circuit and setting the determined delay amounts to the first and second delay circuits.

Description

本発明は,スキュー調整回路に関する。   The present invention relates to a skew adjustment circuit.

集積回路装置(LSI)は,複数の信号を外部のLSIにまたは内部の他のマクロに出力する出力バッファを有する。例えば,複数ビットのデータバスの信号線は,基準クロックに応答してフリップフロップなどの複数のラッチ回路にラッチされ,ラッチ回路の出力がそれぞれ対応する出力バッファを経由して出力される。複数の信号が同時にLレベルからHレベルに変化すると,複数の出力バッファの電源配線に大きな電流が流れ電源ノイズを発生する。逆に,複数の信号が同時にHレベルからLレベルに変化すると,複数の出力バッファのグランド配線に大きな電流が流れグランドノイズを発生する。このようなノイズは同時スイッチングノイズ(SSN:Simultaneous Switching Noise)と称され,特に,駆動能力が大きい複数の出力バッファが同時に同じ方向にスイッチングした時に大きなノイズになる。   An integrated circuit device (LSI) has an output buffer that outputs a plurality of signals to an external LSI or to another internal macro. For example, a signal line of a data bus of a plurality of bits is latched by a plurality of latch circuits such as flip-flops in response to a reference clock, and an output of the latch circuit is output via a corresponding output buffer. When a plurality of signals change from the L level to the H level at the same time, a large current flows through the power supply wirings of the plurality of output buffers to generate power supply noise. Conversely, when a plurality of signals simultaneously change from the H level to the L level, a large current flows through the ground wiring of the plurality of output buffers, thereby generating ground noise. Such noise is called simultaneous switching noise (SSN), and becomes particularly large when a plurality of output buffers having a large driving capability are simultaneously switched in the same direction.

このような同時スイッチングノイズを抑制する方法が,特許文献1,2,3に記載されている。いずれも,複数の信号にあらかじめ決められた遅延を加えて複数の信号にスキューを発生させ同時スイッチングを抑制しようとしている。   Patent Documents 1, 2, and 3 describe methods for suppressing such simultaneous switching noise. In either case, a predetermined delay is added to a plurality of signals to cause skew in the plurality of signals to suppress simultaneous switching.

特開2007−129601号公報JP 2007-129601 A 特開2004−334271号公報JP 2004-334271 A 特開平9−181593号公報JP-A-9-181593

しかしながら,複数の信号の出力のタイミングは様々な要因で変化するので,あらかじめ決められた遅延を加えるだけでは同時スイッチングによるノイズを適切に抑制できない場合がある。   However, since the output timing of a plurality of signals varies depending on various factors, there are cases where noise due to simultaneous switching cannot be suppressed appropriately only by adding a predetermined delay.

たとえば,LSIの動作環境によってLSI内の動作速度が異なり内部の信号のタイミングが異なるので,出力信号に固定的な遅延回路を挿入する方法では適切に同時スイッチングノイズを低減できない場合がある。また,LSIの出力信号を受信する外部のLSIにおけるACスペック,例えば入力のセットアップタイムとホールドタイムなど,は,LSIによって異なるが,出力信号に固定的な遅延を挿入する方法では,そのACスペックを満足できない場合がある。   For example, since the operation speed in the LSI differs depending on the operating environment of the LSI and the timing of the internal signal differs, there may be a case where simultaneous switching noise cannot be appropriately reduced by a method in which a fixed delay circuit is inserted into the output signal. In addition, AC specifications in an external LSI that receives an LSI output signal, such as input setup time and hold time, differ depending on the LSI. However, in the method of inserting a fixed delay in an output signal, the AC spec. You may not be satisfied.

そこで,本発明の目的は,LSIの動作状態などに適合したスキューを複数の信号に与えることができるスキュー調整回路を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a skew adjustment circuit that can provide a plurality of signals with a skew adapted to the operating state of an LSI.

スキュー調整回路の第1の側面は,第1及び第2の信号をそれぞれ伝播する第1及び第2の信号線と,前記第1及び第2の信号線を伝播する第1及び第2の信号がそれぞれ入力される第1及び第2のバッファ回路とを有する集積回路に設けられるスキュー調整回路であって,
前記第1及び第2のバッファ回路の前段にそれぞれ設けられた第1及び第2の遅延回路と,
前記第1及び第2の信号の間のスキューを測定するスキュー測定回路と,
前記スキュー測定回路が測定した測定スキューに基づいて前記第1,第2の遅延回路の遅延量を決定し,当該決定した遅延量を前記第1,第2の遅延回路に設定する遅延調整回路とを有する。
The first aspect of the skew adjustment circuit includes first and second signal lines that propagate the first and second signals, respectively, and first and second signals that propagate through the first and second signal lines. Is a skew adjustment circuit provided in an integrated circuit having first and second buffer circuits, respectively,
First and second delay circuits respectively provided in front stages of the first and second buffer circuits;
A skew measuring circuit for measuring a skew between the first and second signals;
A delay adjustment circuit that determines a delay amount of the first and second delay circuits based on the measured skew measured by the skew measurement circuit, and sets the determined delay amounts in the first and second delay circuits; Have

第1の側面によれば,複数の信号線で発生したスキューを測定し,その測定スキューに基づき決定した遅延量で各信号線の信号を遅延させて目標とする適切なスキューを発生させるので,同時スイッチングノイズを適切に抑制することができる。   According to the first aspect, the skew generated in a plurality of signal lines is measured, and the target skew is generated by delaying the signal of each signal line by the delay amount determined based on the measured skew. Simultaneous switching noise can be appropriately suppressed.

本実施の形態におけるスキュー調整回路を有する集積回路装置を示す図である。It is a figure which shows the integrated circuit device which has the skew adjustment circuit in this Embodiment. 図1のスキュー調整回路10によるスキュー調整の概略を示す信号波形図である。FIG. 2 is a signal waveform diagram illustrating an outline of skew adjustment by the skew adjustment circuit 10 of FIG. 1. 第1の実施の形態におけるスキュー調整回路を示す図である。It is a figure which shows the skew adjustment circuit in 1st Embodiment. 信号変化監視回路25内のセレクタ26を示す図である。2 is a diagram showing a selector 26 in the signal change monitoring circuit 25. FIG. 信号変化監視回路25内のスキュー測定回路28を示す図である。2 is a diagram showing a skew measurement circuit 28 in the signal change monitoring circuit 25. FIG. スキュー調整回路10内の遅延調整回路35を示す図である。2 is a diagram illustrating a delay adjustment circuit 35 in the skew adjustment circuit 10. FIG. 目標スキュー値ROM45の構成を示す図である。It is a figure which shows the structure of target skew value ROM45. 本実施の形態における測定スキューデータと目標スキューデータとの関係を示す図である。It is a figure which shows the relationship between the measurement skew data and target skew data in this Embodiment. スキュー調整回路の動作フローチャートの図である。It is a figure of the operation | movement flowchart of a skew adjustment circuit. スキュー調整回路の動作例を示すタイミングチャート図である。It is a timing chart figure which shows the operation example of a skew adjustment circuit. 遅延回路と,そのタップ値と遅延量との関係とを示す図である。It is a figure which shows a delay circuit and the relationship between the tap value and delay amount. 許容遅延量を説明する図である。It is a figure explaining the allowable delay amount. 第1の実施の形態におけるスキュー調整回路の第1の変型例を示す図である。It is a figure which shows the 1st modification of the skew adjustment circuit in 1st Embodiment. 動作状態監視回路50の一例を示す図である。2 is a diagram illustrating an example of an operation state monitoring circuit 50. FIG. 目標スキュー値ROMの具体例を示す図である。It is a figure which shows the specific example of target skew value ROM. 第1の実施の形態におけるスキュー調整回路の第2の変型例を示す図である。It is a figure which shows the 2nd modification of the skew adjustment circuit in 1st Embodiment. 第1の実施の形態の第2の変型例における遅延調整回路を示す図であるIt is a figure which shows the delay adjustment circuit in the 2nd modification of 1st Embodiment. RAM75の構成例を示す図である。3 is a diagram illustrating a configuration example of a RAM 75. FIG. 調整すべき遅延設定値について説明する図である。It is a figure explaining the delay setting value which should be adjusted. 調整すべき遅延設定値について説明する図である。It is a figure explaining the delay setting value which should be adjusted. 第1の実施の形態におけるスキュー調整回路の第3の変型例を示す図である。It is a figure which shows the 3rd modification of the skew adjustment circuit in 1st Embodiment. RAM75の具体例を示す図である。3 is a diagram illustrating a specific example of a RAM 75. FIG. 第2の実施の形態におけるスキュー調整回路の図である。It is a figure of the skew adjustment circuit in 2nd Embodiment. 遅延量ROM45の具体例を示す図である。6 is a diagram illustrating a specific example of a delay amount ROM 45. FIG. 本実施の形態における遅延設定値演算回路381の演算1を示す図である。It is a figure which shows the calculation 1 of the delay setting value calculating circuit 381 in this Embodiment. 本実施の形態における遅延設定値演算回路381の演算2を示す図である。It is a figure which shows the calculation 2 of the delay setting value calculating circuit 381 in this Embodiment. 本実施の形態における遅延設定値演算回路381の演算2を示す図である。It is a figure which shows the calculation 2 of the delay setting value calculating circuit 381 in this Embodiment. 本実施の形態における遅延設定値演算回路381の演算2を示す図である。It is a figure which shows the calculation 2 of the delay setting value calculating circuit 381 in this Embodiment. 第2の実施の形態におけるスキュー調整回路の第1の変形例を示す図である。It is a figure which shows the 1st modification of the skew adjustment circuit in 2nd Embodiment. 遅延量ROM45の具体例を示す図である。6 is a diagram illustrating a specific example of a delay amount ROM 45. FIG. 第2の実施の形態におけるスキュー調整回路の第2の変形例を示す図である。It is a figure which shows the 2nd modification of the skew adjustment circuit in 2nd Embodiment. 第2の実施の形態におけるスキュー調整回路の第3の変形例を示す図である。It is a figure which shows the 3rd modification of the skew adjustment circuit in 2nd Embodiment. 図3のスキュー調整回路の変型例を示す図である。It is a figure which shows the modification of the skew adjustment circuit of FIG.

図1は,本実施の形態におけるスキュー調整回路を有する集積回路装置を示す図である。図1には,LSIの出力部分の回路が示されている。図1において,複数のデータ信号Data#1〜Data#Nが,クロックCLKに応答して複数のフリップフロップFF#1〜FF#Nにラッチされる。ラッチされた複数のデータ信号は,出力バッファOB_1〜OB_Nを介して,出力データ信号O_Data#1〜O_Data#Nとして外部の他のLSIにまたは内部の他のマクロに出力される。   FIG. 1 is a diagram illustrating an integrated circuit device having a skew adjustment circuit according to the present embodiment. FIG. 1 shows a circuit of an output portion of the LSI. In FIG. 1, a plurality of data signals Data # 1 to Data # N are latched by a plurality of flip-flops FF # 1 to FF # N in response to a clock CLK. The plurality of latched data signals are output as output data signals O_Data # 1 to O_Data # N to other external LSIs or to other internal macros via the output buffers OB_1 to OB_N.

データ信号Data#1〜Data#Nが,複数のフリップフロップと出力バッファとの間の信号配線をそれぞれ伝播する。そして,データ信号が出力バッファに入力すると,データ信号のLレベルからHレベルへの変化(Rise)またはHレベルからLレベルへの変化(Fall)に応答して,出力バッファが出力端子を駆動する。その時,出力バッファOB_1〜OB_Nに接続されている電源VDDやグランドVSSには駆動電流が流れる。   Data signals Data # 1 to Data # N propagate through signal wirings between the plurality of flip-flops and the output buffer, respectively. When the data signal is input to the output buffer, the output buffer drives the output terminal in response to the change from the L level to the H level (Rise) or the change from the H level to the L level (Fall). . At that time, a drive current flows through the power supply VDD and the ground VSS connected to the output buffers OB_1 to OB_N.

各出力バッファOB_1〜OB_Nに供給されるデータ信号の変化のタイミングが一致する場合,複数の出力バッファが同時に駆動動作を行う。その場合,データ信号の変化が全て同じまたは多数のデータ信号の変化が同じ場合,出力バッファの同時駆動動作により,電源VDDやグランドVSSに大電流が流れ,電源ノイズまたはグランドノイズを発生する。   When the timings of changes of the data signals supplied to the output buffers OB_1 to OB_N match, a plurality of output buffers perform the driving operation simultaneously. In that case, if all the changes in the data signal are the same or the changes in many data signals are the same, a large current flows through the power supply VDD and the ground VSS due to the simultaneous drive operation of the output buffer, generating power supply noise or ground noise.

そこで,図1では,スキュー調整回路10が,各信号配線を伝播してきたデータ信号の変化の数やタイミングを監視し,検出した信号変化本数やタイミングに応じて,各信号配線の遅延量を決定する。そして,出力バッファOB_1〜OB_Nの直前に設けられた遅延回路DL_1〜DL_Nの遅延量を,その決定した遅延量に設定して,複数の出力バッファOB_1〜OB_Nでの駆動動作のタイミングができるだけ一致しないようにする。   Therefore, in FIG. 1, the skew adjustment circuit 10 monitors the number and timing of changes in the data signal propagated through each signal wiring, and determines the delay amount of each signal wiring according to the detected number and timing of signal changes. To do. Then, the delay amount of the delay circuits DL_1 to DL_N provided immediately before the output buffers OB_1 to OB_N is set to the determined delay amount, and the timings of the driving operations in the plurality of output buffers OB_1 to OB_N do not match as much as possible. Like that.

また,スキュー調整回路10は,LSIの動作状態,(プロセス条件,電圧条件,温度条件)の変化を監視し,その動作状態に応じて最適な遅延量を決定する。また,この遅延量は,出力データ信号O_Data#1〜O_Data#Nを入力する他のLSIのACスペック,例えばセットアップタイムなどに適合した遅延量が選ばれる。出力データ信号O_Data#1〜O_Data#Nを入力する他のマクロについても,同様にそのACスペックに適合させることもできる。   Further, the skew adjustment circuit 10 monitors changes in the operation state of the LSI (process condition, voltage condition, temperature condition), and determines an optimum delay amount according to the operation state. In addition, as the delay amount, a delay amount suitable for the AC specifications of other LSIs to which the output data signals O_Data # 1 to O_Data # N are input, for example, the setup time is selected. Other macros that receive the output data signals O_Data # 1 to O_Data # N can be similarly adapted to the AC specifications.

図2は,図1のスキュー調整回路10によるスキュー調整の概略を示す信号波形図である。図1において,クロックCLKに応答して,複数のフリップフロップFF#1〜FF#Nがデータ信号Data#1〜Data#Nをラッチする。図2の例では,このラッチタイミングが一致している。スキュー調整回路は,フリップフロップFF#1〜FF#Nの出力の変化を監視し,図2に示されるように全てのまたは多くの信号配線において信号変化が検出された場合は,遅延回路の遅延量Delay#1〜Delay#Nを適切に制御して,出力バッファOB_1〜OB_Nに入力するデータ信号FF#1_Q〜FF#N_Qに適切なスキューを発生させる。   FIG. 2 is a signal waveform diagram showing an outline of skew adjustment by the skew adjustment circuit 10 of FIG. In FIG. 1, in response to a clock CLK, a plurality of flip-flops FF # 1 to FF # N latch data signals Data # 1 to Data # N. In the example of FIG. 2, the latch timings coincide. The skew adjustment circuit monitors changes in the outputs of the flip-flops FF # 1 to FF # N, and if signal changes are detected in all or many signal wirings as shown in FIG. The amount Delay # 1 to Delay # N is appropriately controlled to generate an appropriate skew in the data signals FF # 1_Q to FF # N_Q input to the output buffers OB_1 to OB_N.

このように,スキュー調整回路10は,信号配線に設けた遅延回路の遅延量を調整することにより,伝搬してきたデータ信号のタイミングをずらして適切なスキューを持たせる。その結果,出力バッファによる同時スイッチング動作による同時スイッチングノイズを抑制する。   In this way, the skew adjustment circuit 10 adjusts the delay amount of the delay circuit provided in the signal wiring, thereby shifting the timing of the propagated data signal to have an appropriate skew. As a result, the simultaneous switching noise due to the simultaneous switching operation by the output buffer is suppressed.

[第1の実施の形態]
図3は,第1の実施の形態におけるスキュー調整回路を示す図である。図3には,LSIの出力部の構成が示され,2本のデータ信号Data_A,Data_Bを基準クロックRef_CLKに応答してラッチする最終段フリップフロップ1と,そのフリップフロップ1の出力端子Qにそれぞれ接続された2本の信号線SL_A〜SL_Bと,信号線をそれぞれ伝搬する信号SG_A〜SG_Bを入力し外部の他のLSIにまたはLSI内部の他のマクロに出力する出力バッファOB_A〜OB_Bとを有する。図中,出力バッファOB_A〜OB_Bには,信号を出力するバッファ回路に加えて,信号を入力する入力バッファも示されている。つまり,図中に示されたOB_A〜OB_Bは入出力バッファである。
[First Embodiment]
FIG. 3 is a diagram illustrating the skew adjustment circuit according to the first embodiment. FIG. 3 shows the configuration of the output section of the LSI. The final stage flip-flop 1 that latches the two data signals Data_A and Data_B in response to the reference clock Ref_CLK, and the output terminal Q of the flip-flop 1 respectively. It has two connected signal lines SL_A to SL_B and output buffers OB_A to OB_B for inputting signals SG_A to SG_B propagating through the signal lines and outputting them to other external LSIs or to other macros inside the LSIs . In the figure, output buffers OB_A to OB_B also show input buffers for inputting signals in addition to buffer circuits for outputting signals. That is, OB_A to OB_B shown in the figure are input / output buffers.

スキュー調整回路10において,2本の信号線SL_A〜SL_Bには,出力バッファOB_A〜OB_Bの直前に遅延回路DL_A〜DL_Bが設けられている。前述のとおり,この遅延回路の遅延量を調整することで,信号線SL_A〜SL_Bを伝搬する信号SG_A〜SG_Bに適切なスキューを発生させる。それにより,出力バッファでのスイッチングタイミングをずらして同時スイッチングによるノイズの発生を抑制する。   In the skew adjustment circuit 10, two signal lines SL_A to SL_B are provided with delay circuits DL_A to DL_B immediately before the output buffers OB_A to OB_B. As described above, by adjusting the delay amount of the delay circuit, an appropriate skew is generated in the signals SG_A to SG_B propagating through the signal lines SL_A to SL_B. This suppresses the generation of noise due to simultaneous switching by shifting the switching timing in the output buffer.

制御イネーブル信号Cnt_ENは,図示しない回路により生成されるが,スキュー調整回路のシステムのイニシャライズ動作において,安定したシステムクロックが入力され安定した内部の基準クロックRef_CLKが生成されると,制御イネーブル信号Cnt_ENはHレベルになる。この制御イネーブル信号Cnt_EN=Hに応答して,スキュー調整回路10のスキュー調整動作が始まる。   The control enable signal Cnt_EN is generated by a circuit (not shown). However, when a stable system clock is input and a stable internal reference clock Ref_CLK is generated in the initialization operation of the system of the skew adjustment circuit, the control enable signal Cnt_EN is Become H level. In response to the control enable signal Cnt_EN = H, the skew adjustment operation of the skew adjustment circuit 10 starts.

制御イネーブル信号Cnt_ENは,上位のシステムからイネーブル状態(Hレベル)とデセーブル状態(Lレベル)に制御されるよう構成することができる。このような構成にすることで,電源起動時などのイニシャライズ動作後に自動的にスキュー調整回路を動作させてスキュー調整した後に,スキュー調整回路の動作を停止させることができる。また,LSIの温度が上昇したときに制御イネーブル信号Cnt_ENをイネーブル状態に制御して,スキュー調整を行い,その後でセーブル状態に制御することもできる。このようにスキュー調整回路の動作と停止を制御することで無駄な消費電流の発生を回避することができる。   The control enable signal Cnt_EN can be configured to be controlled from an upper system to an enable state (H level) and a disable state (L level). With this configuration, the skew adjustment circuit can be stopped after the skew adjustment circuit is automatically operated and the skew adjustment is performed after the initialization operation such as when the power is turned on. In addition, when the temperature of the LSI rises, the control enable signal Cnt_EN can be controlled to be in an enable state, skew adjustment can be performed, and then the disable state can be controlled. By controlling the operation and stop of the skew adjustment circuit in this way, it is possible to avoid generation of useless current consumption.

スキュー調整回路10は,2本の信号線を伝搬する信号SG_A〜SG_BのLレベルからHレベルへのレベル変化(Rise)またはHレベルからLレベルへのレベル変化(Fall)における信号間のスキューを監視する信号変化監視回路25を有する。この信号間のスキューが小さいとまたはゼロだと,出力バッファでの同時スイッチングによる電源ノイズやグランドノイズの原因となる。   The skew adjustment circuit 10 determines the skew between signals in the level change (Rise) from the L level to the H level or the level change (Fall) from the H level to the L level of the signals SG_A to SG_B propagating through the two signal lines. A signal change monitoring circuit 25 for monitoring is provided. If the skew between the signals is small or zero, it causes power supply noise and ground noise due to simultaneous switching in the output buffer.

信号変化監視回路25は,第1,第2の信号線SL_A,SL_Bを伝搬する第1,第2の信号SG_A, SG_Bを,データおよびクロックのいずれかに選択するセレクタ26と,前記セレクタ26が出力するデータ及びクロックの間のスキューを測定するスキュー測定回路28とを有する。後述するスキュー測定回路の構成は,データよりクロックが早いことを前提にしてスキューを測定する。したがって,スキュー測定回路28は,第1,第2の信号の一方をデータとして他方をクロックとしてスキューを測定し,何らかのスキューが検出された場合は,そのスキューの値に加えて第1,第2の信号の他方が早いことも検出する。スキュー測定回路は,第1,第2の信号の一方をデータとし他方をクロックとしてスキューを測定し,スキューが検出されない場合は,前記セレクタに前記第1,第2の信号の一方をクロックとして他方をデータとして出力させ,再度スキューを測定する。   The signal change monitoring circuit 25 includes a selector 26 that selects the first and second signals SG_A and SG_B propagating through the first and second signal lines SL_A and SL_B as either data or clock, and the selector 26 And a skew measuring circuit 28 for measuring a skew between data to be output and a clock. The configuration of a skew measurement circuit described later measures skew on the assumption that the clock is earlier than data. Therefore, the skew measurement circuit 28 measures the skew by using one of the first and second signals as data and the other as a clock. If any skew is detected, the skew measurement circuit 28 adds the first and second values in addition to the skew value. It also detects that the other of the signals is early. The skew measuring circuit measures the skew using one of the first and second signals as data and the other as a clock, and if no skew is detected, the skew measurement circuit sends one of the first and second signals as a clock to the other. Is output as data, and the skew is measured again.

スキュー調整回路10は,さらに遅延調整回路35を有し,その遅延調整回路35は,スキュー測定回路28が測定した第1及び第2の信号間のスキュー(測定スキュー)に基づいて,前記第1,第2の遅延回路DL_A,DL_Bの遅延量を決定し,第1,第2の遅延回路DL_A,DL_Bにその決定した遅延量を設定する。第1の実施の形態における遅延調整回路35は,スキュー調整対象の信号線SL_A,SL_Bを伝搬する第1,第2の信号SG_A,SG_Bに対する目標スキューを格納するROM45を参照し,その読み出した目標スキューとスキュー測定回路28が測定した測定スキューとの差分を,遅延回路DL_A,DL_Bの遅延量として決定し,それら遅延回路にその決定した遅延量を設定する。   The skew adjustment circuit 10 further includes a delay adjustment circuit 35. The delay adjustment circuit 35 is based on the skew (measurement skew) between the first and second signals measured by the skew measurement circuit 28. The delay amounts of the second delay circuits DL_A and DL_B are determined, and the determined delay amounts are set in the first and second delay circuits DL_A and DL_B. The delay adjustment circuit 35 in the first embodiment refers to the ROM 45 that stores the target skew for the first and second signals SG_A and SG_B propagating through the signal lines SL_A and SL_B that are skew adjustment targets, and the read target The difference between the skew and the measured skew measured by the skew measurement circuit 28 is determined as the delay amount of the delay circuits DL_A and DL_B, and the determined delay amount is set in these delay circuits.

図33は,図3のスキュー調整回路の変型例を示す図である。この変型例では,データData_A,Data_Bと同様に,データData_Xを最終段フリップフロップ1が基準クロックRef_CLKに同期して取り込み,データData_A,Data_Bの信号線SL_A,SL_Bと同じ長さの信号線を伝搬させて信号変化関し回路25に入力している。データData_Xを取り込む基準クロックRef_CLKのタイミングと,最終段フリップフロップ1から信号変化監視回路25までの信号線とが異なるが,データData_A,Data_Bと同等のスキューを測定することができる。このようにスキュー測定精度は,図3よりも劣るが,データData_Xを2つのフリップフロップでラッチしているので,信号変化監視回路25には,2つの信号がスキューを持つ同じ立ち上がりエッジで入力する。そのため,スキュー測定はデータData_A,Data_Bを利用する場合よりも容易になる。   FIG. 33 is a diagram showing a modified example of the skew adjustment circuit of FIG. In this modified example, similarly to the data Data_A and Data_B, the final data flip-flop 1 captures the data Data_X in synchronization with the reference clock Ref_CLK and propagates the signal lines having the same length as the signal lines SL_A and SL_B of the data Data_A and Data_B The signal change is input to the circuit 25. Although the timing of the reference clock Ref_CLK for capturing the data Data_X and the signal line from the final stage flip-flop 1 to the signal change monitoring circuit 25 are different, a skew equivalent to the data Data_A and Data_B can be measured. Thus, although the skew measurement accuracy is inferior to that of FIG. 3, since the data Data_X is latched by two flip-flops, two signals are input to the signal change monitoring circuit 25 at the same rising edge having skew. . Therefore, skew measurement is easier than using data Data_A and Data_B.

図4は,信号変化監視回路25内のセレクタ26を示す図である。セレクタ26は,スキュー調整対象の1対の信号線SL_A,SL_Bの信号のいずれか一方をデータに他方をクロックに選択してスキュー測定回路28に出力する。スキュー測定回路28がデータがクロックより早いなどの理由で適切にスキューを検出できない場合は,セレクタ26は,上記信号線SL_A,SL_Bの信号を入れ替えて,上記一方をクロックに他方をデータに選択してスキュー測定回路28に出力する。その場合,入れ替えたことを示すセカンドフラグ2nd_Flagを「1」にして,スキュー測定回路28に通知する。これによりスキュー測定回路28は,セカンドフラグ2nd_Flagを参照することで,第1,第2の信号SG_A,SG_Bのいずれがデータとしてまたはクロックとして出力されたかを判別することができる。   FIG. 4 is a diagram showing the selector 26 in the signal change monitoring circuit 25. The selector 26 selects one of the signals of the pair of signal lines SL_A and SL_B to be skew adjusted as data and the other as a clock and outputs the selected data to the skew measuring circuit 28. If the skew measurement circuit 28 cannot detect the skew appropriately because the data is earlier than the clock, the selector 26 replaces the signals of the signal lines SL_A and SL_B, and selects the one as the clock and the other as the data. To the skew measurement circuit 28. In this case, the second flag 2nd_Flag indicating the replacement is set to “1” and notified to the skew measurement circuit 28. Thus, the skew measurement circuit 28 can determine which of the first and second signals SG_A and SG_B is output as data or a clock by referring to the second flag 2nd_Flag.

セレクタ26は,セカンドフラグ2nd_Flagに基づいて信号線SL_A,SL_Bの信号SG_A,SG_Bのいずれか一方をデータ277に選択し,いずれか他方をクロック278に選択するセレクタ261,262を有する。さらに,セレクタ26は,信号SG_A,SG_Bが共に「0」(Lレベル)を検出するアンドゲート263と,制御イネーブル信号Cnt_ENが「1」(Hレベル)になった後基準クロックRef_CLKに応答して,両信号SG_A,SG_Bが共に立ち上がることを検出し,同時立ち上がり検出信号S_ENを「1」にする同時立ち上がり検出回路267を有する。また,セカンドフラグ2nd_Flagとリニューフラグrenew_Flagを生成するフラグ生成回路268と,1回目のスキュー測定時と2回目のスキュー測定時に同時立ち上がり検出信号S_ENに基づいてリニューイネーブル信号renew_ENを生成するANDゲート274,275,ORゲート276とを有する。また遅延調整回路35から,スキューの測定結果dcba_reg(a)と,更新完了信号renew_compとが供給され,これらの信号に基づいて1回目のスキュー測定と2回目のスキュー測定に対応した制御信号renew_EN,2nd_Flag,renew_Flagが生成される。これらの具体的な動作は,後に詳述する。   The selector 26 includes selectors 261 and 262 that select one of the signals SG_A and SG_B of the signal lines SL_A and SL_B as the data 277 and the other as the clock 278 based on the second flag 2nd_Flag. Further, the selector 26 responds to the reference clock Ref_CLK after the AND gate 263 that detects both the signals SG_A and SG_B are “0” (L level) and the control enable signal Cnt_EN is “1” (H level). , A simultaneous rise detection circuit 267 that detects that both signals SG_A and SG_B rise together and sets the simultaneous rise detection signal S_EN to “1”. In addition, a flag generation circuit 268 that generates a second flag 2nd_Flag and a renew_flag renew_Flag, and an AND gate 274 that generates a renew enable signal renew_EN based on the simultaneous rise detection signal S_EN at the first skew measurement and the second skew measurement. 275, an OR gate 276. Further, a skew measurement result dcba_reg (a) and an update completion signal renew_comp are supplied from the delay adjustment circuit 35. Based on these signals, a control signal renew_EN corresponding to the first skew measurement and the second skew measurement, 2nd_Flag and renew_Flag are generated. These specific operations will be described in detail later.

図5は,信号変化監視回路25内のスキュー測定回路28を示す図である。図5(A)に示されるとおり,スキュー測定回路28は,データ277よりクロック278が早いタイミングを有することを前提にして両信号間のスキューを測定する。   FIG. 5 is a diagram showing the skew measurement circuit 28 in the signal change monitoring circuit 25. As shown in FIG. 5A, the skew measurement circuit 28 measures the skew between both signals on the assumption that the clock 278 has a timing earlier than the data 277.

図5(B)はスキュー測定回路28を示し,図5(C)はその回路の動作を示す信号波形を示す。スキュー測定回路28は,データ277をそれぞれのデータ入力端子Dに入力する複数のラッチ回路281〜284と,クロック278を遅延させながらラッチ回路のクロック端子に入力するクロック供給回路285とを有する。クロック供給回路285は,複数のバッファを有し,各ノードの信号X,Y,Zがラッチ回路282,283,284のクロック端子に入力される。   FIG. 5B shows the skew measurement circuit 28, and FIG. 5C shows a signal waveform indicating the operation of the circuit. The skew measurement circuit 28 includes a plurality of latch circuits 281 to 284 that input data 277 to each data input terminal D, and a clock supply circuit 285 that inputs the clock 278 to the clock terminal of the latch circuit while delaying the clock 278. The clock supply circuit 285 has a plurality of buffers, and signals X, Y, and Z of each node are input to the clock terminals of the latch circuits 282, 283, and 284.

図5(C)に示されるとおり,両信号SG_A,SG_Bのいずれかであるクロック278とデータ277間のスキューは,ラッチ回路281〜284のデータ出力Qが出力する測定スキューデータ286(dcba)として出力される。図5(C)の例では,測定スキューデータdcba=1100である。この測定スキューデータdcbaは,ゼロが多いほどスキュー値が大きいことを意味する。したがって,測定スキューデータdcba=1100のときのほうが,dcba=1000の時よりもスキュー値が小さくなっている。このように測定スキューデータdcbaの大小関係が,スキュー値の大小関係と逆になっていることは,後述する遅延調整回路において留意されるべきである。   As shown in FIG. 5C, the skew between the clock 278 that is one of both signals SG_A and SG_B and the data 277 is measured skew data 286 (dcba) output from the data output Q of the latch circuits 281 to 284. Is output. In the example of FIG. 5C, the measured skew data dcba = 1100. This measured skew data dcba means that the greater the zero, the greater the skew value. Therefore, the skew value is smaller when measured skew data dcba = 1100 than when dcba = 1000. It should be noted in the delay adjustment circuit described later that the magnitude relation of the measured skew data dcba is opposite to the magnitude relation of the skew value.

図6は,スキュー調整回路10内の遅延調整回路35を示す図である。測定スキューデータdcbaを保持する測定スキュー保持レジスタ351,352と,目標スキュー値格納ROM45から読み出した目標スキュー値と,測定スキュー保持レジスタ352の測定スキュー値とを比較し,それらの差分を検出するスキュー比較回路355と,検出された差分が遅延として設定される遅延設定レジスタ362とを有する。この遅延設定レジスタ362に設定された遅延量に基づいて,遅延回路DL_A,DL_Bは両信号SG_A,SG_Bを遅延させて,適切なスキューを発生させる。また,遅延調整回路35は,リニューイネーブル信号renew_ENに応答してタイミング信号を生成するタイミング生成回路353と,目標スキュー値ROM45へのアドレスを管理するアドレス管理テーブル363と,読み出しデータR_dataをラッチするラッチ回路354とを有する。また,スキュー比較回路355内の差分検出は,排他的論理和回路357と差分カウンタ358とで行われる。   FIG. 6 is a diagram showing the delay adjustment circuit 35 in the skew adjustment circuit 10. Measurement skew holding registers 351 and 352 for holding measured skew data dcba, a target skew value read from the target skew value storage ROM 45 and a measured skew value of the measurement skew holding register 352 are compared, and a skew for detecting a difference between them is detected. The comparison circuit 355 includes a delay setting register 362 in which the detected difference is set as a delay. Based on the delay amount set in the delay setting register 362, the delay circuits DL_A and DL_B delay both signals SG_A and SG_B to generate an appropriate skew. The delay adjustment circuit 35 also includes a timing generation circuit 353 that generates a timing signal in response to the renewal enable signal renew_EN, an address management table 363 that manages an address to the target skew value ROM 45, and a latch that latches read data R_data. Circuit 354. The difference detection in the skew comparison circuit 355 is performed by the exclusive OR circuit 357 and the difference counter 358.

図7は,目標スキュー値ROM45の構成を示す図である。アドレスは,同時動作する信号グループであってスキュー調整対象の信号グループGrと,信号対の組み合わせとであり,それに対応するデータは,目標スキュー値である。この目標スキュー値は,測定スキューデータと同様の形式であり,図5のスキュー測定回路が出力する形式のデータn−dcbaである。したがって,測定スキュー値とその測定スキューデータdcbaと同様に,目標スキュー値とROM内の目標スキューデータn-dcbaとは大小関係が逆になる。   FIG. 7 is a diagram showing the configuration of the target skew value ROM 45. The address is a signal group that simultaneously operates and is a signal group Gr to be skew-adjusted and a combination of signal pairs, and the corresponding data is a target skew value. This target skew value is in the same format as the measured skew data, and is data n-dcba in the format output by the skew measurement circuit in FIG. Therefore, similarly to the measured skew value and the measured skew data dcba, the target skew value and the target skew data n-dcba in the ROM have a reversed magnitude relationship.

図8は,本実施の形態における測定スキューデータと目標スキューデータとの関係を示す図である。前述のとおり,スキュー測定回路28が出力する測定スキューデータdcbaの値は,測定スキューの大小関係とは逆の関係になる。同様に,ROM45から出力される目標スキューデータdcbaの値も,目標スキューの大小関係とは逆の関係になる。図8に示される例では,測定スキューデータdcba=1000に対して,目標スキューデータdcba=1100である。図8中の波形から理解できるとおり,測定スキューよりも目標スキューのほうが小さい。ただし,データ同士の比較では測定スキューデータdcba=1000<目標スキューデータdcba=1100となっている。   FIG. 8 is a diagram showing a relationship between measured skew data and target skew data in the present embodiment. As described above, the value of the measured skew data dcba output from the skew measuring circuit 28 is opposite to the magnitude relationship of the measured skew. Similarly, the value of the target skew data dcba output from the ROM 45 is opposite to the target skew magnitude relationship. In the example shown in FIG. 8, the target skew data dcba = 1100 with respect to the measured skew data dcba = 1000. As can be understood from the waveform in FIG. 8, the target skew is smaller than the measured skew. However, in the comparison between the data, the measured skew data dcba = 1000 <target skew data dcba = 1100.

図9は,スキュー調整回路の動作フローチャートの図である。この動作フローチャートにしたがって図4〜図6のスキュー調整動作の概略を説明する。まず,スキュー調整回路のシステムのイニシャライズ動作において,安定したシステムクロックが入力され安定した内部の基準クロックRef_CLKが生成されると,制御イネーブル信号Cnt_ENはHレベルになる(S10)。この制御イネーブル信号Cnt_EN=Hに応答して,スキュー調整回路10のスキュー調整動作が始まる。   FIG. 9 is an operation flowchart of the skew adjustment circuit. The outline of the skew adjustment operation of FIGS. 4 to 6 will be described according to this operation flowchart. First, in the initialization operation of the system of the skew adjustment circuit, when a stable system clock is input and a stable internal reference clock Ref_CLK is generated, the control enable signal Cnt_EN becomes H level (S10). In response to the control enable signal Cnt_EN = H, the skew adjustment operation of the skew adjustment circuit 10 starts.

セレクタ26は,1回目のスキュー測定か否かに応じて,1回目であれば信号SG_Aをデータに信号SG_Bをクロックに設定する(S14)。また,2回目であれば信号SG_Aをクロックに信号SG_Bをデータに設定する(S16)。具体的には,1回目であればセカンドフラグ2nd_Flag=0となり,図4のセレクタ261,262が信号SG_Aをデータ277に信号SG_Bをクロック278にそれぞれ選択する。2回目であればセカンドフラグ2nd_Flag=1となり,上記と逆の選択をする。   The selector 26 sets the signal SG_A as data and the signal SG_B as clock according to whether or not the first skew measurement is made (S14). If it is the second time, the signal SG_A is set to the clock and the signal SG_B is set to the data (S16). Specifically, in the first time, the second flag 2nd_Flag = 0, and the selectors 261 and 262 in FIG. 4 select the signal SG_A as the data 277 and the signal SG_B as the clock 278, respectively. If it is the second time, the second flag 2nd_Flag = 1 and the selection opposite to the above is performed.

同時立ち上がり検出回路267が,信号SG_AとSG_Bの立ち上がり変化を検出すると,同時立ち上がり検出信号S_ENを「1」にする(S18)。すなわち,アンドゲート263が両信号SG_AとSG_BのLレベルを検出し,ラッチ回路264が基準クロックRef_CLKに応答してそれをラッチし,その後アンドゲート265が両信号SG_AとSG_BのHレベルを検出するとラッチ回路266が次の基準クロックRef_CLKに応答してそれをラッチし,同時立ち上がり検出信号S_EN=1になる。   When the simultaneous rise detection circuit 267 detects the rise change of the signals SG_A and SG_B, the simultaneous rise detection signal S_EN is set to “1” (S18). That is, when the AND gate 263 detects the L level of both signals SG_A and SG_B, the latch circuit 264 latches it in response to the reference clock Ref_CLK, and then the AND gate 265 detects the H level of both signals SG_A and SG_B. The latch circuit 266 latches it in response to the next reference clock Ref_CLK, and the simultaneous rise detection signal S_EN = 1.

前回のスキュー調整が完了した時点で,更新完了信号renew_comp=1によりセカンドフラグ2nd_Flag=0,リニューフラグrenew_Flag=0にリセットされている。そして,1回目のスキュー測定の場合,既にスキュー測定回路28が測定した測定スキューデータdcbaを格納する測定スキュー保持レジスタ351の保持データdcba_regの最下位データdcba_reg(a)がdcba_reg(a)=0であれば,アンドゲート274がS_EN=1に応答してリニューイネーブル信号renew_EN=1にする。または,2回目のスキュー測定の場合,保持データdcba_reg(a)に係わらずアンドゲート275がS_EN=1に応答してリニューイネーブル信号renew_EN=1にする。   When the previous skew adjustment is completed, the second flag 2nd_Flag = 0 and the renew flag renew_Flag = 0 are reset by the update completion signal renew_comp = 1. In the case of the first skew measurement, the least significant data dcba_reg (a) of the retained data dcba_reg in the measurement skew retaining register 351 that stores the measured skew data dcba measured by the skew measuring circuit 28 is dcba_reg (a) = 0. If there is, the AND gate 274 sets the renew enable signal renew_EN = 1 in response to S_EN = 1. Alternatively, in the case of the second skew measurement, the AND gate 275 sets the renew enable signal renew_EN = 1 in response to S_EN = 1 regardless of the retained data dcba_reg (a).

図9にもどり,スキュー測定回路28により検出される測定スキューデータdcba=1111の場合は(S20),2回目のスキュー測定に移行する(S22)。1回目の測定で測定スキューデータdcba≠1111の場合,または2回目のスキュー測定時であれば,測定スキューデータdcbaがリニューイネーブル信号renew_EN=1に応答して測定スキュー保持レジスタ352がそのデータを保持する。   Returning to FIG. 9, when the measured skew data dcba = 1111 detected by the skew measurement circuit 28 (S20), the process proceeds to the second skew measurement (S22). If the measured skew data dcba ≠ 1111 in the first measurement, or if the second skew measurement, the measured skew data dcba holds the data in response to the renew enable signal renew_EN = 1. To do.

1回目,2回目のスキュー測定においてリニューイネーブル信号renew_EN=1になると,図6の遅延調整回路35が動作を開始し,スキュー比較回路355が,ROM45から読み出した目標スキュー値と保持している測定スキュー値とを比較し,その差分を演算する(S28)。さらに,スキュー比較回路355内の判別ユニット359が,セカンドフラグ2nd_Flagと比較結果S356とに基づいて,セレクタ360,361の選択信号を生成する。また,XOR357と差分カウンタ358が測定スキューデータと目標スキューデータの「0」の数の差をカウントし,差分値を求める。この差分値S358は,セレクタ360,361を介して,遅延設定レジスタ362に遅延回路の遅延量に対応するタップ値として設定される(S30)。   When the renew enable signal renew_EN = 1 in the first and second skew measurements, the delay adjustment circuit 35 in FIG. 6 starts to operate, and the skew comparison circuit 355 holds the target skew value read from the ROM 45. The skew value is compared and the difference is calculated (S28). Further, the determination unit 359 in the skew comparison circuit 355 generates selection signals for the selectors 360 and 361 based on the second flag 2nd_Flag and the comparison result S356. Further, the XOR 357 and the difference counter 358 count the difference between the numbers of “0” between the measured skew data and the target skew data, and obtain a difference value. The difference value S358 is set as a tap value corresponding to the delay amount of the delay circuit in the delay setting register 362 via the selectors 360 and 361 (S30).

遅延設定レジスタ362は,リニューイネーブル信号renew_EN=1に応答してリセットされ,インバータ363の出力である基準クロックRef_CLKの180°位相のタイミングで,差分値がセットされる。   The delay setting register 362 is reset in response to the renewal enable signal renew_EN = 1, and the difference value is set at the timing of the 180 ° phase of the reference clock Ref_CLK that is the output of the inverter 363.

判別ユニット359の論理値表が図6中に示されている。これによれば,1回目のスキュー測定時において(2nd_Flag=0),測定スキューデータdcba<目標スキューデータdcbaの場合,つまり測定スキュー>目標スキューの場合は,図8の場合であり,タイミングが早い信号SG_B側に差分を遅延量として設定し,タイミングが遅い信号SG_A側には遅延量ゼロに設定する。不等号が逆の場合は,上記と逆に,タイミングが早い信号SG_B側に遅延量ゼロを設定し,タイミングが遅い信号SG_A側に差分量を遅延量として設定する。2回目のスキュー測定時においては(2nd_Flag=1),信号SG_A,SG_Bが逆の関係になる。   A logical value table of the discrimination unit 359 is shown in FIG. According to this, at the time of the first skew measurement (2nd_Flag = 0), the case of measured skew data dcba <target skew data dcba, that is, the case of measured skew> target skew is the case of FIG. The difference is set as the delay amount on the signal SG_B side, and the delay amount is set to zero on the late signal SG_A side. When the inequality sign is reversed, contrary to the above, the delay amount zero is set on the signal SG_B side with earlier timing, and the difference amount is set as the delay amount on the signal SG_A side with later timing. In the second skew measurement (2nd_Flag = 1), the signals SG_A and SG_B have an opposite relationship.

図10は,スキュー調整回路の動作例を示すタイミングチャート図である。この動作例では,最初のスキュー調整では1回目のスキュー測定でスキューが測定されて遅延回路の遅延量が設定され,次のスキュー調整では1回目のスキュー測定ではスキューが測定できず(dcba=1111)2回目のスキュー測定でスキューが測定される。   FIG. 10 is a timing chart illustrating an operation example of the skew adjustment circuit. In this operation example, in the first skew adjustment, the skew is measured in the first skew measurement and the delay amount of the delay circuit is set. In the next skew adjustment, the skew cannot be measured in the first skew measurement (dcba = 1111). ) Skew is measured in the second skew measurement.

時間t0では既にイニシャライズが完了し,制御イネーブル信号cnt_EN=1になっている。また,前回の遅延量設定完了に伴い更新完了信号renew_comp=1によりセレクタ回路26内のラッチ回路272,273はリセットされ,2nd_Flag=0,renew_Flag=0になっている。   At time t0, initialization has already been completed and the control enable signal cnt_EN = 1. Also, the latch circuits 272 and 273 in the selector circuit 26 are reset by the update completion signal renew_comp = 1 with the completion of the previous delay amount setting, and 2nd_Flag = 0 and renew_Flag = 0.

時間t1でデータ信号A,Bが共に立ち上がると,同時立ち上がり検出回路267でLL_Flag=1になり,時間t2で基準クロックRef_CLKの立ち上がりに応答して同時イネーブル信号S_EN=1になる。スキュー測定回路28は常時2つの信号のスキュー差を測定しており,時間t2で保持されているデータは,測定スキューデータdcba_reg=1100,dcba_reg(a)=0であるので,アンドゲート274によりリニューイネーブル信号renew_EN=1になる。dcba_reg(a)=0は信号BがAより早いタイミングであることを意味し,1回目の測定が適切に行われたことを意味する。   When the data signals A and B both rise at time t1, the simultaneous rise detection circuit 267 sets LL_Flag = 1, and at time t2, the simultaneous enable signal S_EN = 1 changes in response to the rise of the reference clock Ref_CLK. The skew measurement circuit 28 always measures the skew difference between the two signals, and the data held at time t2 is the measured skew data dcba_reg = 1100 and dcba_reg (a) = 0. The enable signal renew_EN = 1. dcba_reg (a) = 0 means that the timing of the signal B is earlier than that of A, and means that the first measurement is properly performed.

そして,時間t3で,このrenew_EN=1に応答して,測定スキュー保持レジスタ352がdcba_reg=1100をラッチし,同時にフラグ生成回路268内のアンドゲート270の出力=1によりラッチ回路273がリニューフラグrenew_Flag=1にする。   At time t3, in response to renew_EN = 1, the measurement skew holding register 352 latches dcba_reg = 1100, and at the same time, the output of the AND gate 270 in the flag generation circuit 268 = 1, and the latch circuit 273 causes the renew flag renew_Flag. Set to = 1.

図6の遅延調整回路35内のタイミング生成回路353では,リニューフラグrenew_Flag=1により,時間t5でROM45に出力イネーブル信号xOE=0が生成され,アドレス管理テーブル363から信号A,Bの組み合わせを示すアドレスが出力され,時間t7にてROM45内の目標スキューデータR_dataが読み出される。   In the timing generation circuit 353 in the delay adjustment circuit 35 of FIG. 6, the output enable signal xOE = 0 is generated in the ROM 45 at time t5 by the renew flag renew_Flag = 1, and the combination of the signals A and B from the address management table 363 is shown. The address is output, and the target skew data R_data in the ROM 45 is read at time t7.

その後は,遅延調整回路35内のスキュー比較回路355が比較動作と差分カウント動作を行い,更新完了信号renew_comp=1のタイミングで,遅延設定レジスタ362に差分に対応する遅延量が判別ユニットの判別信号に応じて設定される。これにより,最初のスキュー調整が完了する。   After that, the skew comparison circuit 355 in the delay adjustment circuit 35 performs the comparison operation and the difference count operation, and the delay amount corresponding to the difference is stored in the delay setting register 362 at the timing of the update completion signal renew_comp = 1. Is set according to Thereby, the first skew adjustment is completed.

次に,時間t10での信号A,Bの立ち上がりを検出し,時間t11で同時立ち上がり検出信号S_EN=1となる。しかし,最初のスキュー調整中を示すリニューフラグrenew_Flag=1により,セレクタ内のアンドゲート274,275はリニューイネーブル信号renew_ENを「1」にしない。   Next, the rise of the signals A and B at time t10 is detected, and the simultaneous rise detection signal S_EN = 1 is set at time t11. However, due to the renew flag renew_Flag = 1 indicating that the first skew adjustment is in progress, the AND gates 274 and 275 in the selector do not set the renew enable signal renew_EN to “1”.

次の,時間t13で信号A,Bの立ち上がりを検出し,時間t14で同時立ち上がり検出信号S_EN=1となり1回目のスキュー測定が行われるが,測定スキューデータdcba_reg(a)=1であるため,セレクタのアンドゲート274の出力は「0」のままでリニューイネーブル信号renew_ENを「1」にしない。そして,時間t15で測定スキューデータdcba_reg(a)=1により基準クロックRef_CLKに応答して,セレクタ26のアンドゲート269によりラッチ回路272が「1」をロードしてセカンドフラグ2nd_Flag=1にする。これで2回目のスキュー測定が始まる。   Next, at the time t13, the rising edges of the signals A and B are detected. At the time t14, the simultaneous rising edge detection signal S_EN = 1 and the first skew measurement is performed. However, since the measured skew data dcba_reg (a) = 1, The output of the AND gate 274 of the selector remains “0” and the renew enable signal renew_EN is not set to “1”. At time t15, in response to the reference clock Ref_CLK by the measured skew data dcba_reg (a) = 1, the latch circuit 272 loads “1” by the AND gate 269 of the selector 26 to set the second flag 2nd_Flag = 1. This starts the second skew measurement.

時間t18で信号A,Bの立ち上がりを検出し,時間t19で同時立ち上がり検出信号S_EN=1となり,セレクタ26のアンドゲート275によりリニューイネーブル信号renew_EN=1になり,アンドゲート271とラッチ回路273により時間t20の次の基準クロックRef_CLKに応答してリニューフラグrenew_Flag=1になる。これにより,遅延制御回路35は,2回目の測定スキューデータと,ROM45から読み出した目標スキューデータとに基づいて,遅延量を設定する。この遅延量の設定動作は,前述したのと同じである。   The rise of the signals A and B is detected at time t18, the simultaneous rise detection signal S_EN = 1 at time t19, the renew enable signal renew_EN = 1 by the AND gate 275 of the selector 26, and the time by the AND gate 271 and the latch circuit 273. In response to the next reference clock Ref_CLK at t20, the renew flag renew_Flag = 1. Thereby, the delay control circuit 35 sets the delay amount based on the second measurement skew data and the target skew data read from the ROM 45. This delay amount setting operation is the same as described above.

図11は,遅延回路と,そのタップ値と遅延量との関係とを示す図である。遅延回路DL_#は,入力するデータ信号Dataを遅延させる複数のバッファからなるバッファ群313と,バッファ群313内の複数のノードを設定コードS_CODEに基づいて選択するセレクタ315とを有する。図11中には,セレクタのタップ値と設定コードS_CODEとの対応表が示され,設定コードS_CODEが小さいほど,つまりタップ値が小さいほど,遅延回路DL_#により挿入される遅延量が小さく,逆の場合は遅延量が多くなる。8つの遅延回路DL_0〜DL_7に対する各4ビットの設定コード S_CODE が,図6の遅延量設定レジスタ361に設定される。   FIG. 11 is a diagram illustrating the delay circuit and the relationship between the tap value and the delay amount. The delay circuit DL_ # includes a buffer group 313 including a plurality of buffers for delaying the input data signal Data, and a selector 315 that selects a plurality of nodes in the buffer group 313 based on the setting code S_CODE. FIG. 11 shows a correspondence table between the tap value of the selector and the setting code S_CODE. The smaller the setting code S_CODE, that is, the smaller the tap value, the smaller the delay amount inserted by the delay circuit DL_ #. In this case, the amount of delay increases. Each 4-bit setting code S_CODE for the eight delay circuits DL_0 to DL_7 is set in the delay amount setting register 361 in FIG.

本実施の形態においては,信号線SL_A,SL_Bの信号の同時変化を検出した場合,その信号のスキューを測定し,各信号線に設けた遅延回路の遅延量を調整して信号間のスキューを適切に調整し,出力バッファによる同時スイッチングを抑制する。ただし,この遅延量は,出力バッファの出力を供給される他のLSIやマクロの入力回路のACスペックに適合した許容遅延量を超えることは許されない。したがって,遅延量ROM内に設定された遅延量は,このACスペックに適合した許容遅延量未満に設定されている。   In the present embodiment, when a simultaneous change in the signals of the signal lines SL_A and SL_B is detected, the skew of the signals is measured, and the delay amount of the delay circuit provided in each signal line is adjusted to reduce the skew between the signals. Adjust appropriately to suppress simultaneous switching by the output buffer. However, this delay amount cannot exceed the allowable delay amount that conforms to the AC specifications of the input circuits of other LSIs or macros that are supplied with the output of the output buffer. Therefore, the delay amount set in the delay amount ROM is set to be less than the allowable delay amount conforming to this AC specification.

図12は,許容遅延量を説明する図である。図中,LSIの内部の基準クロックRef_CLKと,複数のLSIに対するシステムクロックS_CLKとが示されている。これらのクロックは, 同期したクロックであり 同じ周期Tを有するが,図示されるとおり両クロック間には所定の位相差dTが存在する場合がある。   FIG. 12 is a diagram for explaining the allowable delay amount. In the figure, a reference clock Ref_CLK inside the LSI and a system clock S_CLK for a plurality of LSIs are shown. These clocks are synchronized and have the same period T, but there may be a predetermined phase difference dT between the two clocks as shown.

図3において,LSIの出力段では,基準クロックRef_CLKに応答して最終段フリップフロップ1がデータ信号をラッチする。そして,信号線SLと出力バッファOBを経て,データ信号が後段の他のLSIまたは他のマクロに出力される。後段の他のLSIまたは他のマクロの入力回路は,システムクロックS_CLKの立ち上がりエッジで入力信号を取り込むが,入力回路にはセットアップタイムTsとホールドタイムThがACスペックとして決められている。   In FIG. 3, at the output stage of the LSI, the final stage flip-flop 1 latches the data signal in response to the reference clock Ref_CLK. Then, the data signal is output to another LSI or other macro in the subsequent stage through the signal line SL and the output buffer OB. The other LSI or other macro input circuit in the subsequent stage takes in the input signal at the rising edge of the system clock S_CLK, and the setup time Ts and hold time Th are determined as AC specifications for the input circuit.

図12中には,データAとデータBについて,最終段フリップフロップからの出力遅延と出力バッファの遅延の和TOxと,セットアップタイムTsを満たす許容遅延値が示されている。出力側での遅延値TOxは,プロセス条件や温度条件,電源電圧などによりばらつきが発生するので,最大値と最小値が存在する。したがって,データA,Bについてそれぞれ遅延値TOxが最大の場合と最少の場合とが示されている。   In FIG. 12, for data A and data B, the sum TOx of the output delay from the final stage flip-flop and the delay of the output buffer and the allowable delay value satisfying the setup time Ts are shown. The delay value TOx on the output side varies depending on the process conditions, temperature conditions, power supply voltage, etc., so there are maximum and minimum values. Therefore, the cases where the delay values TOx are the maximum and the minimum are respectively shown for the data A and B.

セットアップタイムTsを満たす許容される遅延値は,データA,Bそれぞれ次の通りである。
データA=T-T0a_max-Ts+dT
データB=T-T0b_max-Ts+dT
そして,データBの遅延値TOxのほうが大きいので,データBの許容遅延値のほうが小さい。よって,このデータBの許容遅延値未満の遅延量が遅延量ROM45に設定される。その結果,スキュー調整された出力信号が,後段のLSIやマクロの入力回路にそのセットアップタイムTsを満たすタイミングで供給されることが保証される。
The allowable delay values that satisfy the setup time Ts are as follows for the data A and B, respectively.
Data A = T-T0a_max-Ts + dT
Data B = T-T0b_max-Ts + dT
Since the delay value TOx of data B is larger, the allowable delay value of data B is smaller. Therefore, a delay amount less than the allowable delay value of the data B is set in the delay amount ROM 45. As a result, it is guaranteed that the skew-adjusted output signal is supplied to the subsequent LSI or macro input circuit at a timing that satisfies the setup time Ts.

上記のスキュー測定回路28は,2つの信号SG_A,SG_Bのいずれかをクロック,いずれかをデータに選択してスキューを測定するが,スキュー測定回路28内に図5に示したスキュー測定回路を2組設けることで,2つの信号SG_A,SG_Bのいずれが早いタイミングであっても,両信号間のスキューを同時に測定することができる。その場合は,両スキュー測定回路の測定結果dcbaを参照すれば,いずれの信号のタイミングが早いかも検出可能である。本実施の形態のスキュー調整回路はそのように2組のスキュー測定回路を有してもよい。   The skew measuring circuit 28 measures the skew by selecting one of the two signals SG_A and SG_B as a clock and one of them as data. The skew measuring circuit 28 includes two skew measuring circuits shown in FIG. By providing them, the skew between the two signals can be measured at the same time, regardless of which of the two signals SG_A and SG_B is early. In that case, it is possible to detect which signal timing is earlier by referring to the measurement result dcba of both skew measurement circuits. The skew adjustment circuit of the present embodiment may have two sets of skew measurement circuits as described above.

[第1の実施の形態(2)]
図13は,第1の実施の形態におけるスキュー調整回路の第1の変型例を示す図である。図3のスキュー調整回路10との相違点は,動作状態監視回路50を有することと,目標スキュー値ROM45が,スキュー調整対象信号グループGrとスキュー調整対象信号対に加えて,動作状態監視回路50が検出する動作速度とに対応する目標スキュー値を格納していることである。遅延回路DL_A,DL_Bは図11と同じであり,セレクタ26は図4と同じであり,スキュー測定回路28は図5と同じであり,遅延調整回路35も図6と同じである。ただし,遅延調整回路35内のアドレス管理テーブル363は,動作状態監視回路50からの動作速度もアドレスに加える。
[First Embodiment (2)]
FIG. 13 is a diagram illustrating a first modification of the skew adjustment circuit according to the first embodiment. 3 is different from the skew adjustment circuit 10 of FIG. 3 in that it has an operation state monitoring circuit 50 and that the target skew value ROM 45 is added to the skew adjustment target signal group Gr and the skew adjustment target signal pair. The target skew value corresponding to the operation speed detected by is stored. The delay circuits DL_A and DL_B are the same as in FIG. 11, the selector 26 is the same as in FIG. 4, the skew measurement circuit 28 is the same as in FIG. 5, and the delay adjustment circuit 35 is also the same as in FIG. However, the address management table 363 in the delay adjustment circuit 35 also adds the operation speed from the operation state monitoring circuit 50 to the address.

この変型例では,動作状態監視回路50が,動作状態(プロセス条件,温度条件,電圧条件のばらつき)によって生じるLSI内のゲートの速度変化を監視し,その速度が高速の場合の動作状態信号Fastと,典型的な場合の動作状態信号Typicalと,低速の場合の動作状態信号Slowとを出力する。そして,この動作速度に対応して,ROM45は目標スキュー値を格納しているので,動作状態に適した遅延量を遅延回路に設定することができる。   In this modified example, the operation state monitoring circuit 50 monitors the change in the gate speed in the LSI caused by the operation state (process condition, temperature condition, voltage condition variation), and the operation state signal Fast when the speed is high. And an operation state signal Typical in a typical case and an operation state signal Slow in a low speed are output. Since the ROM 45 stores the target skew value corresponding to this operation speed, a delay amount suitable for the operation state can be set in the delay circuit.

具体的には,典型的な速度の場合の遅延量に比べると,高速の場合は遅延回路DL内の遅延量をより多くし,つまり遅延バッファの数を増やし,絶対的な遅延時間,つまり絶対的なスキューの大きさを典型的な速度の場合と同等にする。逆に,低速の場合は遅延回路DL内の遅延量をより少なくして,つまり遅延バッファの数を減らし,絶対的な遅延時間,つまり絶対的なスキューの大きさを典型的な速度の場合と同等にする。   Specifically, compared to the delay amount at a typical speed, the delay amount in the delay circuit DL is increased at a high speed, that is, the number of delay buffers is increased, and the absolute delay time, that is, the absolute delay time is increased. The amount of skew is equivalent to that of a typical speed. On the other hand, when the speed is low, the delay amount in the delay circuit DL is reduced, that is, the number of delay buffers is reduced, and the absolute delay time, that is, the absolute skew is set to a typical speed. Make equal.

動作速度が高速になったり低速になったりとばらつく原因は,第1にデバイス製造時の狙い値に対して生じる製造ばらつきなどのプロセス条件,,第2に電源電圧が高いか低いか,第3に温度が高いか低いかなどである。前述のとおり,遅延回路の遅延量は,同時スイッチングノイズ低減のための適切なスキューを与える値であって,許容遅延量未満の値に設定される必要がある。したがって,動作速度のばらつきに対応して,遅延回路の遅延バッファの数を変更することが望ましい。   The reasons why the operating speed varies depending on whether the operating speed is high or low are, first, process conditions such as manufacturing variations caused by the target value at the time of manufacturing the device, second, whether the power supply voltage is high or low, Whether the temperature is high or low. As described above, the delay amount of the delay circuit is a value that gives an appropriate skew for simultaneous switching noise reduction and needs to be set to a value less than the allowable delay amount. Therefore, it is desirable to change the number of delay buffers in the delay circuit in accordance with the variation in operation speed.

図14は,動作状態監視回路50の一例を示す図である。動作状態監視回路は,位相0°のクロックCLK0を遅延して位相90°のクロックCLK90を出力する遅延回路501と,2つのクロックCLK0,CLK90の位相差を検出し,その位相差が90°になるように遅延回路の遅延制御信号507を生成する遅延制御回路503とを有する。遅延回路501は,例えば図11に示した遅延回路と同等の構成である。したがって,遅延制御信号507は,LSIのゲート速度が高速であればより多くのバッファを伝搬した信号を選択する制御信号になり,低速であればより少ないバッファを伝搬した信号を選択する制御信号になる。図14の例では,この遅延制御信号507がデコーダ505でデコードされ,3種類の動作状態信号Fast,Typical,Slowに変換される。   FIG. 14 is a diagram illustrating an example of the operation state monitoring circuit 50. The operation state monitoring circuit detects the phase difference between the delay circuit 501 that delays the clock CLK0 having the phase 0 ° and outputs the clock CLK90 having the phase 90 °, and the two clocks CLK0 and CLK90, and the phase difference is 90 °. A delay control circuit 503 for generating a delay control signal 507 for the delay circuit. The delay circuit 501 has the same configuration as the delay circuit shown in FIG. Therefore, the delay control signal 507 is a control signal that selects a signal that has propagated more buffers if the LSI gate speed is high, and a control signal that selects a signal that has propagated less buffers if the gate speed of the LSI is low. Become. In the example of FIG. 14, the delay control signal 507 is decoded by the decoder 505 and converted into three kinds of operation state signals Fast, Typical, and Slow.

図6の遅延調整回路35に示されるとおり,本実施の形態では,動作状態監視回路50が出力する動作状態信号がアドレス管理テーブル363にも出力される。遅延調整回路35は,ROM45を参照する時のアドレスとして,スキュー調整対象信号グループGrとスキュー調整対象信号対に加えて,動作状態信号Fast,Typical,Slowを使用する。   As shown in the delay adjustment circuit 35 of FIG. 6, in this embodiment, the operation state signal output from the operation state monitoring circuit 50 is also output to the address management table 363. The delay adjustment circuit 35 uses the operation state signals Fast, Typical, and Slow as an address when referring to the ROM 45 in addition to the skew adjustment target signal group Gr and the skew adjustment target signal pair.

図15は,目標スキュー値ROM45の具体例を示す図である。このROM45の場合,アドレスとしてスキュー調整対象信号グループGrとスキュー調整対象信号対に加えて,動作状態信号Fast,Typical,Slowを有する。そして,データとしては信号対の目標となる目標スキューデータn-dcbaである。つまり,図7のデータが,動作状態信号Fast,Typical,Slowそれぞれに対して格納されている。   FIG. 15 is a diagram showing a specific example of the target skew value ROM 45. In the case of the ROM 45, in addition to the skew adjustment target signal group Gr and the skew adjustment target signal pair, the operation state signals Fast, Typical, and Slow are included as addresses. The data is target skew data n-dcba, which is the target of the signal pair. That is, the data of FIG. 7 is stored for each of the operation state signals Fast, Typical, and Slow.

ただし,図15に示されるとおり,動作状態が高速Fastの場合の目標スキューデータは,典型速度Typicalの場合よりも「0」が多く設定され,低速Slowの場合の目標スキューデータは,典型速度Typicalの場合よりも「0」が少なく設定されている。つまり,絶対的な目標スキューは動作速度にかかわらずほぼ一定になるようにされている。この遅延量ROM45を参照することで,動作状態に対応した適切な目標スキューデータを,遅延調整回路に読み出すことができる。   However, as shown in FIG. 15, the target skew data when the operation state is the high speed Fast is set to “0” more than the case of the typical speed Typical, and the target skew data when the operation state is the low speed Slow is the typical speed Typical. “0” is set to be smaller than in the case of. That is, the absolute target skew is made almost constant regardless of the operation speed. By referring to the delay amount ROM 45, appropriate target skew data corresponding to the operation state can be read out to the delay adjustment circuit.

ROM45は,書換可能なメモリであってもよい。書換可能なメモリであれば,最適な目標スキュー値をそのLSIの動作環境,例えば出力信号を入力する他のLSIのACスペックなど,に対応して書き換えることができ,最適なスキュー調整が可能である。   The ROM 45 may be a rewritable memory. If it is a rewritable memory, the optimal target skew value can be rewritten according to the operating environment of the LSI, for example, the AC specifications of other LSIs that input output signals, and optimal skew adjustment is possible. is there.

[第1の実施の形態(3)]
図16は,第1の実施の形態におけるスキュー調整回路の第2の変型例を示す図である。スキュー調整回路10は,図3と同様に,セレクタ26とスキュー測定回路28を有する信号変化監視回路25と,遅延調整回路37と,遅延回路DL_A,DL_Bとを有する。信号変化監視回路25のセレクタ26とスキュー測定回路28は図4,5の構成と同じであり,遅延回路も図11と同じである。
[First Embodiment (3)]
FIG. 16 is a diagram illustrating a second modification of the skew adjustment circuit according to the first embodiment. As in FIG. 3, the skew adjustment circuit 10 includes a signal change monitoring circuit 25 having a selector 26 and a skew measurement circuit 28, a delay adjustment circuit 37, and delay circuits DL_A and DL_B. The selector 26 and the skew measuring circuit 28 of the signal change monitoring circuit 25 are the same as those shown in FIGS. 4 and 5, and the delay circuit is also the same as that shown in FIG.

ただし,図3と異なり,測定スキューに応じた調整すべき遅延量が,LSIの外部に設けられたRAM75に格納され,そのRAM75内の調整すべき遅延量の設定は,外部のCPUによって行われる。それに伴って,この第2の変型例の遅延調整回路37は,図6の構成ではなく,図17の構成を有する。また,外部のCPUバスとのインターフェースをとるCPUインターフェース62が設けられ,遅延調整回路37とCPUとのインターフェース動作が行われる。   However, unlike FIG. 3, the delay amount to be adjusted according to the measurement skew is stored in the RAM 75 provided outside the LSI, and the delay amount to be adjusted in the RAM 75 is set by an external CPU. . Accordingly, the delay adjustment circuit 37 of the second modification has the configuration of FIG. 17 instead of the configuration of FIG. In addition, a CPU interface 62 that interfaces with an external CPU bus is provided, and an interface operation between the delay adjustment circuit 37 and the CPU is performed.

なお,CPUは,RAM75に適宜最適な遅延量をダウンロードする。このようにRAM75の遅延量を書換可能にすることで,例えば,出力バッファから出力される信号を入力する他のLSIや他のマクロのACスペックに適合した遅延量を動的に設定することができる。   The CPU downloads the optimum delay amount to the RAM 75 as appropriate. By making the delay amount of the RAM 75 rewritable in this way, for example, it is possible to dynamically set a delay amount that conforms to the AC specifications of other LSIs or other macros that input signals output from the output buffer. it can.

また,RAM75やCPUは,共通のLSI内に設けられていても良い。つまり,LSIがシステムLSIの場合,そのLSI内にはCPUやRAMが設けられているので,それらを利用しても良い。   Further, the RAM 75 and the CPU may be provided in a common LSI. That is, when the LSI is a system LSI, a CPU and a RAM are provided in the LSI, and these may be used.

図17は,第1の実施の形態の第2の変型例における遅延調整回路を示す図である。遅延調整回路37は,測定スキューレジスタ370と,遅延設定値レジスタ371と,遅延設定レジスタ373とを有する。測定スキューレジスタ370には,セレクタ26から供給されるリニューイネーブル信号renew_EN=1がスキュー有効ビットとして保持され,セカンドフラグ2nd_Flagが判定モード信号として保持され,スキュー測定回路28から出力される測定スキューデータが保持される。これらが保持されたときにスキュー有効ビットが有効「1」にされる。   FIG. 17 is a diagram illustrating a delay adjustment circuit according to the second modification of the first embodiment. The delay adjustment circuit 37 includes a measurement skew register 370, a delay setting value register 371, and a delay setting register 373. In the measurement skew register 370, the renew enable signal renew_EN = 1 supplied from the selector 26 is held as a skew valid bit, the second flag 2nd_Flag is held as a determination mode signal, and measurement skew data output from the skew measurement circuit 28 is stored. Retained. When these are held, the skew valid bit is set to valid “1”.

CPUは,測定スキューレジスタ370内のスキュー有効ビットを監視し,有効「1」になった時に,判定モード信号と測定スキューデータとをアドレスにして,RAM75から信号A,Bに対する調整遅延データを読み出し,遅延設定値レジスタ371に格納し,遅延切替ビットを「1」にする。この遅延切替ビット「1」に応答して,遅延設定レジスタ373は,信号Aに対する遅延設定値と信号Bに対する遅延設定値とを,基準クロックRef_CLKの反転タイミングに応答して取り込む。その結果,遅延回路DL_A,DL_Bにその遅延設定値が設定される。また,遅延切替ビット「1」に応答して,測定スキューレジスタ370内のスキュー有効ビットは「0」にクリアされる。   The CPU monitors the skew valid bit in the measurement skew register 370, and when it becomes “1”, reads the adjustment delay data for the signals A and B from the RAM 75 using the judgment mode signal and the measurement skew data as addresses. The delay setting value register 371 stores the delay switching bit to “1”. In response to the delay switching bit “1”, the delay setting register 373 takes in the delay setting value for the signal A and the delay setting value for the signal B in response to the inversion timing of the reference clock Ref_CLK. As a result, the delay setting value is set in the delay circuits DL_A and DL_B. In response to the delay switching bit “1”, the skew valid bit in the measurement skew register 370 is cleared to “0”.

図18は,調整すべき遅延量を格納するRAM75の構成例を示す図である。RAM75のアドレスは,グループGrと,信号組み合わせ情報と,測定スキューデータと,判定モード(1回目または2回目)と,設定すべき信号(設定信号)である。それに対して,データには,設定信号に設定すべき遅延量を示す遅延設定値が格納されている。図中,表の右側に遅延設定値による遅延調整される波形が示されている。   FIG. 18 is a diagram illustrating a configuration example of the RAM 75 that stores the delay amount to be adjusted. The addresses of the RAM 75 are the group Gr, signal combination information, measurement skew data, determination mode (first time or second time), and a signal to be set (setting signal). On the other hand, the data stores a delay setting value indicating the delay amount to be set in the setting signal. The right side of the table shows the waveform for which the delay is adjusted according to the delay setting value.

この遅延設定値は,測定スキューデータに対応して,目標スキューを発生させるために遅延回路DL_A,DL_Bで調整すべき遅延量に対応し,RAM75内のデータは,図11の遅延回路の設定コードS_CODEである。図11に示されるとおり,設定コードS_CODEが小さいほど挿入すべき遅延量が小さい。したがって,RAM75内の遅延設定値は,前述の測定スキューデータと目標スキューデータとの差分に対応する。また,遅延設定値は,判定モードが1回目(1st)か2回目(2nd)かによって,挿入すべき信号がA,B逆になる。   The delay setting value corresponds to the delay amount to be adjusted by the delay circuits DL_A and DL_B in order to generate the target skew corresponding to the measured skew data, and the data in the RAM 75 is the setting code of the delay circuit of FIG. S_CODE. As shown in FIG. 11, the smaller the setting code S_CODE, the smaller the delay amount to be inserted. Therefore, the delay setting value in the RAM 75 corresponds to the difference between the aforementioned measured skew data and target skew data. Also, the delay setting value is that the signals to be inserted are reversed A and B depending on whether the judgment mode is the first (1st) or the second (2nd).

図19,図20は,調整すべき遅延設定値について説明する図である。図19には,スキュー測定回路28に対応して,測定スキューと目標スキューとを示す信号A,Bの波形が示されている。測定スキューデータdcba=1000に対して,目標スキューデータdcba=1100である。したがって,この目標スキューを実現するためには,信号B側に遅延量「1」を挿入し,信号A側には遅延量ゼロでよいことが理解できる。図18のRAM75のデータは,この目標スキューを実現するために必要な遅延量が信号A,Bそれぞれに対して設定すべき遅延回路の設定コードS_CODEである。   19 and 20 are diagrams for explaining delay setting values to be adjusted. FIG. 19 shows waveforms of signals A and B indicating the measured skew and the target skew corresponding to the skew measuring circuit 28. For the measured skew data dcba = 1000, the target skew data dcba = 1100. Therefore, in order to realize this target skew, it can be understood that the delay amount “1” is inserted on the signal B side and the delay amount is zero on the signal A side. The data in the RAM 75 in FIG. 18 is a delay circuit setting code S_CODE to be set for each of the signals A and B, so that the delay amount necessary for realizing the target skew is set.

図20には,RAM75の具体例と遅延回路28の遅延設定値とが示されている。図19に示したような測定スキューと目標スキューの場合は,信号A側には遅延量ゼロ,信号B側には遅延量「1」が挿入されるべきである。よって,RAM75の判定モード「1st」に信号Aに対しては遅延設定値「0000」が,信号Bに対して遅延設定値「0001」が格納されている。その結果,信号A側の遅延回路28には遅延設定値「0000」に対応するタップが選択され,信号B側の遅延回路28には遅延設定値「0001」に対応するタップが選択される。信号B側を遅延量「1」だけ遅延させることにより,信号A,B間のスキューは目標スキューと等しくなる。   FIG. 20 shows a specific example of the RAM 75 and the delay setting value of the delay circuit 28. In the case of the measurement skew and the target skew as shown in FIG. 19, a delay amount of zero should be inserted on the signal A side, and a delay amount “1” should be inserted on the signal B side. Therefore, the delay setting value “0000” is stored for the signal A and the delay setting value “0001” is stored for the signal B in the determination mode “1st” of the RAM 75. As a result, the tap corresponding to the delay setting value “0000” is selected for the delay circuit 28 on the signal A side, and the tap corresponding to the delay setting value “0001” is selected for the delay circuit 28 on the signal B side. By delaying the signal B side by the delay amount “1”, the skew between the signals A and B becomes equal to the target skew.

図18に戻り,判定モード「1st」側には,測定スキューデータdcba=1000の場合に加えて,dcba=1100,dcba=1110の場合の遅延設定値も示されている。測定スキューデータdcba=1100の場合は,信号A,B間には目標スキューが発生しているので,設定すべき遅延設定値は共にゼロである。また,測定スキューデータdcba=1110の場合は,信号Aに挿入すべき遅延量「1」が信号Bに挿入すべき遅延量「0」がそれぞれ遅延設定値として格納されている。判定モード「2nd」の場合は,上記の判定モード「1st」とは信号A,Bが逆の関係になる。   Returning to FIG. 18, the determination mode “1st” side also shows delay setting values in the case of dcba = 1100 and dcba = 1110 in addition to the case of the measured skew data dcba = 1000. In the case of the measured skew data dcba = 1100, since the target skew is generated between the signals A and B, the delay setting values to be set are both zero. In the case of the measured skew data dcba = 1110, the delay amount “1” to be inserted into the signal A and the delay amount “0” to be inserted into the signal B are stored as delay setting values, respectively. In the case of the determination mode “2nd”, the signals A and B have an opposite relationship to the determination mode “1st”.

[第1の実施の形態(4)]
図21は,第1の実施の形態におけるスキュー調整回路の第3の変型例を示す図である。図16のスキュー調整回路10との相違点は,動作状態監視回路50を有することと,RAM75がスキュー調整対象信号グループGrとスキュー調整対象信号対に加えて,動作状態監視回路50が検出する動作速度に対応する調整すべき遅延設定値を格納していることである。遅延回路DL_A,DL_Bは図11と同じであり,セレクタ26は図4と同じであり,スキュー測定回路28は図5と同じであり,遅延調整回路37も図17と同じである。
[First Embodiment (4)]
FIG. 21 is a diagram illustrating a third modification of the skew adjustment circuit according to the first embodiment. 16 differs from the skew adjustment circuit 10 of FIG. 16 in that it has an operation state monitoring circuit 50 and that the RAM 75 detects the operation state monitoring circuit 50 in addition to the skew adjustment target signal group Gr and the skew adjustment target signal pair. The delay setting value to be adjusted corresponding to the speed is stored. The delay circuits DL_A and DL_B are the same as in FIG. 11, the selector 26 is the same as in FIG. 4, the skew measurement circuit 28 is the same as in FIG. 5, and the delay adjustment circuit 37 is also the same as in FIG.

図17に示した遅延調整回路37は,動作状態監視回路50からの動作状態信号を測定スキューレジスタ370に格納する。そして,CPUは,この動作状態信号に基づいて,RAM75内の遅延設定値を読み出し遅延設定値レジスタ371に格納する。なお,CPUが,判定モードと測定スキューデータとに応じた遅延設定値をRAM75から読み出すのは,前述したとおりである。   The delay adjustment circuit 37 illustrated in FIG. 17 stores the operation state signal from the operation state monitoring circuit 50 in the measurement skew register 370. Then, the CPU reads the delay setting value in the RAM 75 and stores it in the delay setting value register 371 based on the operation state signal. As described above, the CPU reads the delay setting value corresponding to the determination mode and the measured skew data from the RAM 75.

図22は,RAM75の具体例を示す図である。この具体例には,図18のメモリ構成例に示した遅延設定値が,動作状態信号Fast, Typical, Slowに対応して格納されている。しかも,動作状態がSlowの場合に比較して,Typical, Fastの場合の遅延設定値はそれぞれ2倍,3倍などになっている。それにより,動作状態にかかわらず,信号A,Bに同じ長さの目標スキューを生成させることができる。   FIG. 22 is a diagram showing a specific example of the RAM 75. In this specific example, the delay set values shown in the memory configuration example of FIG. 18 are stored in correspondence with the operation state signals Fast, Typical, Slow. Moreover, the delay setting values in the case of Typical and Fast are doubled and tripled, respectively, as compared with the case where the operation state is Slow. As a result, the target skews having the same length can be generated in the signals A and B regardless of the operating state.

[第2の実施の形態]
図23は,第2の実施の形態におけるスキュー調整回路の図である。第2の実施の形態のスキュー調整回路は,N本の信号線SL_A〜SL_Nの信号のスキューを測定し,目標のスキューになるように各信号線に設けた遅延回路DL_A〜DL_Nの遅延量を調整する。
[Second Embodiment]
FIG. 23 is a diagram of a skew adjustment circuit according to the second embodiment. The skew adjustment circuit according to the second embodiment measures the signal skew of the N signal lines SL_A to SL_N, and sets the delay amount of the delay circuits DL_A to DL_N provided in each signal line so as to achieve the target skew. adjust.

そのために,スキュー調整回路10は,セレクタ26とスキュー測定回路28を,信号線SL_AとSL_B間,SL_AとSL_C間,さらにSL_Aとそれ以外の信号SL_K(K=D〜N)間のスキューを測定するためにN-1個有する。そして,遅延調整回路38は,調整対象の信号組み合わせに対応する目標スキューをROM45から読み出して,測定スキューと目標スキューとから遅延設定値を演算する遅延設定値演算回路381を有する。さらに,遅延調整回路38は,N本の信号間の目標スキューをROM45から順次読み出すために,アクセス競合が起きないようにラウンドロビン方式での読み出し制御をするROMアクセス競合制御回路382を有する。   Therefore, the skew adjustment circuit 10 measures the skew between the signal lines SL_A and SL_B, between SL_A and SL_C, and between SL_A and other signals SL_K (K = D to N) using the selector 26 and the skew measurement circuit 28. To have N-1 pieces. The delay adjustment circuit 38 has a delay setting value calculation circuit 381 that reads a target skew corresponding to the signal combination to be adjusted from the ROM 45 and calculates a delay setting value from the measured skew and the target skew. Further, the delay adjustment circuit 38 has a ROM access contention control circuit 382 that performs read control in a round robin manner so that access contention does not occur in order to sequentially read the target skew between the N signals from the ROM 45.

いま仮に,4本の信号線SL_A,B,C,Dに対してスキュー調整する場合を例にして説明する。信号線が4本であるので,セレクタ26,スキュー測定回路28は,3セット必要になる。それぞれのセレクタ26,スキュー測定回路28は,信号A,B間,信号A,C間,信号A,D間のスキューを測定する。遅延調整回路38内の遅延設定値演算回路381は,その測定スキューからどの信号が最も遅いタイミングであるかを特定する。これは,信号A,B間,信号A,C間,信号A,D間の測定スキューとそれが1回目か2回目の判定かの情報から簡単に特定できる。   A case will be described as an example in which skew adjustment is performed for the four signal lines SL_A, B, C, and D. Since there are four signal lines, three sets of selectors 26 and skew measurement circuits 28 are required. Each selector 26 and skew measurement circuit 28 measure the skew between signals A and B, between signals A and C, and between signals A and D. The delay set value calculation circuit 381 in the delay adjustment circuit 38 specifies which signal has the latest timing from the measurement skew. This can be easily identified from the measurement skew between the signals A and B, between the signals A and C, and between the signals A and D and whether the determination is the first time or the second time.

ROM45には,4つの信号A,B,C,Dに対する目標スキューのデータが格納されている。ただし,目標スキューデータは,信号Aが最も早い場合,信号Bが最も早い場合,信号Cが最も早い場合,信号Dが最も早い場合それぞれの目標スキューデータである。そこで,遅延設定値演算回路381が,測定スキューから検出した最も遅いタイミングの信号を最も早くする目標スキューデータをROM45から読み出す。そして,遅延設定値演算回路381は,信号A,B間,信号A,C間,信号A,D間の測定スキューから得られた信号A,B,C,Dのタイミング関係を,ROM45から読み出した目標スキューに調整するために必要な各信号の遅延量を演算し,その調整すべき遅延量を遅延設定値として各遅延回路の遅延設定レジスタ(図17の373)に設定する。   The ROM 45 stores target skew data for the four signals A, B, C, and D. However, the target skew data is the target skew data when the signal A is the earliest, the signal B is the earliest, the signal C is the earliest, and the signal D is the earliest. Therefore, the delay set value calculation circuit 381 reads out the target skew data from the ROM 45 that makes the signal of the latest timing detected from the measurement skew the earliest. Then, the delay set value calculation circuit 381 reads the timing relationship of the signals A, B, C, D obtained from the measurement skew between the signals A, B, between the signals A, C, and between the signals A, D from the ROM 45. The delay amount of each signal necessary for adjusting to the target skew is calculated, and the delay amount to be adjusted is set in the delay setting register (373 in FIG. 17) as a delay setting value.

図24は,ROM45の具体例を示す図である。このROM45のアドレスは,同時動作する信号グループGrと,信号組み合わせと,測定スキューから検出された最も遅い信号(最遅)である。一方,ROM45のデータは,最も遅い信号を最も早いタイミングにする各信号間の目標スキューである。図24には,最も遅い信号Aについてのみ示されているが,実際のデータは,最も遅い信号となるA,B,C,Dの4つの場合それぞれに対して,各信号間の目標スキューを持つ必要がある。   FIG. 24 is a diagram showing a specific example of the ROM 45. The address of the ROM 45 is the signal group Gr that operates simultaneously, the signal combination, and the slowest signal (latest) detected from the measurement skew. On the other hand, the data in the ROM 45 is a target skew between signals that makes the slowest signal the earliest timing. Although only the slowest signal A is shown in FIG. 24, the actual data indicates the target skew between the signals for each of the four cases A, B, C, and D that are the slowest signals. It is necessary to have.

図25は,本実施の形態における遅延設定値演算回路381の演算1を示す図である。演算1は,判定モードと測定スキューとから4本の信号線の信号の順番を検出する。4本の信号の順番は,理論的には24通り存在するが,図35には16通りが示されている。例えば,(a)は判定モードが1st-1st-1stの場合であり,この場合は信号Aが一番遅いことが検出できる。さらに,測定スキューを比較することにより,他の信号B,C,Dの順番がそれぞれ検出できる。(b)(c)(d)の場合も同様である。   FIG. 25 is a diagram showing the calculation 1 of the delay set value calculation circuit 381 in the present embodiment. Calculation 1 detects the order of signals on the four signal lines from the determination mode and the measurement skew. There are theoretically 24 orders of the four signals, but FIG. 35 shows 16 orders. For example, (a) is a case where the determination mode is 1st-1st-1st, and in this case, it can be detected that the signal A is the slowest. Furthermore, the order of the other signals B, C, D can be detected by comparing the measurement skews. The same applies to the cases (b), (c), and (d).

図26,図27,図28は,本実施の形態における遅延設定値演算回路381の演算2を示す図である。演算2は,測定結果から検出した最も遅い信号を最も早くする目標スキューにするための,各信号に挿入すべき遅延量を演算する。測定スキューから4つの信号のタイミング関係が分かっているので,その4つの信号のうち最も遅い信号を,目標スキューでは最も早い信号にするようにする。この場合,最も遅かった信号には調整遅延量はゼロが設定され,残りの信号には目標スキューになるように必要な調整遅延量が簡単に演算できる。   FIG. 26, FIG. 27, and FIG. 28 are diagrams showing the calculation 2 of the delay set value calculation circuit 381 in the present embodiment. Calculation 2 calculates the delay amount to be inserted into each signal so that the slowest signal detected from the measurement result becomes the target skew that makes the earliest. Since the timing relationship of the four signals is known from the measurement skew, the slowest signal among the four signals is made the fastest signal at the target skew. In this case, the adjustment delay amount is set to zero for the slowest signal, and the necessary adjustment delay amount can be easily calculated so that the remaining signal has the target skew.

図26,図27,図28には,その演算例が示されている。図26の(1)は信号Aが最も遅い場合の各信号の遅延設定値を求める演算式を示す。(1)の右側に測定スキュー結果に基づく信号波形と,目標スキューに基づく信号波形とが示されている。この場合は,信号Aは設定遅延値ゼロである。信号Bには,AB間の測定スキューの「0」の数(遅延量)と,AB間の目標スキューの「0」の数とを加算した遅延量を設定遅延値とする。信号Cには,AC間の測定スキューの「0」の数(遅延量)と,AC間の目標スキューの「0」の数とを加算した遅延量を設定遅延値とする。信号Dには,AD間の測定スキューの「0」の数(遅延量)と,AD間の目標スキューの「0」の数とを加算した遅延量を設定遅延値とする。   26, 27, and 28 show examples of the calculation. (1) in FIG. 26 shows an arithmetic expression for obtaining the delay setting value of each signal when the signal A is the slowest. The signal waveform based on the measurement skew result and the signal waveform based on the target skew are shown on the right side of (1). In this case, the signal A has a set delay value of zero. For the signal B, a delay amount obtained by adding the number of “0” of the measured skew between AB (the amount of delay) and the number of “0” of the target skew between AB is set as the set delay value. For the signal C, a delay amount obtained by adding the number of “0” of the measured skew between ACs (delay amount) and the number of “0” of the target skew between ACs is set as a set delay value. For the signal D, a delay amount obtained by adding the number of “0” of the measured skew between ADs (the delay amount) and the number of “0” of the target skew between the ADs is set as a set delay value.

図27の(2)は信号Bが最も遅い場合の遅延設定値の演算例である。信号Bは設定遅延値ゼロである。そして,残りの信号A,C,Dに設定すべき遅延値は,図中の演算式により求めることができる。   (2) in FIG. 27 is an example of calculating the delay set value when the signal B is the slowest. Signal B has a set delay value of zero. The delay values to be set for the remaining signals A, C, and D can be obtained from the arithmetic expressions in the figure.

まず信号Aは,AB間の測定スキューの「0」の数に,AB間の目標スキューの「0」の数を加算した遅延量を設定遅延値とする。信号Cは,信号A,Cのスキュー関係によって,2種類の演算式を使い分ける必要がある。信号Cより信号Aが遅い場合には,AB間の測定スキューの「0」の数に,AC間の測定スキューの「0」の数を加算し,さらにBC間の目標スキューの「0」の数を加算した遅延量を設定遅延値とする。逆に信号Cより信号Aが早い場合には,AB間の測定スキューの「0」の数から,AC間の測定スキューの「0」の数を減算し,BC間の目標スキューの「0」の数を加算した遅延量を設定遅延値とする。信号Dも同様に,信号A,Dのスキュー関係によって,2種類の演算式を使い分ける必要がある。信号Dより信号Aが遅い場合には,AB間の測定スキューの「0」の数に,AD間の測定スキューの「0」の数を加算し,さらにBD間の目標スキューの「0」の数を加算した遅延量を設定遅延値とする。逆に信号Dより信号Aが早い場合には,AB間の測定スキューの「0」の数から,AD間の測定スキューの「0」の数を減算し,BD間の目標スキューの「0」の数を加算した遅延量を設定遅延値とする。   First, for the signal A, a delay amount obtained by adding the number of “0” of the target skew between AB to the number of “0” of the measured skew between AB is set as a set delay value. For the signal C, it is necessary to properly use two types of arithmetic expressions depending on the skew relationship between the signals A and C. When the signal A is later than the signal C, add the number of measurement skews “0” between ACs to the number of measurement skews “0” between ABs, and further add the target skew “0” between BCs. The delay amount obtained by adding the numbers is set as the set delay value. Conversely, when signal A is earlier than signal C, the number of measurement skews between ACs is subtracted from the number of measurement skews between ABs and the target skew between BCs is “0”. The delay amount obtained by adding the number of is set delay value. Similarly, for signal D, it is necessary to use two types of arithmetic expressions depending on the skew relationship between signals A and D. When the signal A is later than the signal D, the number of “0” of the measurement skew between AD is added to the number of “0” of the measurement skew between AB, and further, the target skew of “0” of the target skew between BDs The delay amount obtained by adding the numbers is set as the set delay value. Conversely, when the signal A is earlier than the signal D, the number of measurement skews “0” between ADs is subtracted from the number of measurement skews “0” between ABs, and the target skew between BDs is “0”. The delay amount obtained by adding the number of is set delay value.

図28の(3)の信号Cが最も遅い場合と(4)の信号Dが最も遅い場合も,図27の(2)と同様の演算式により設定すべき遅延値を求めることができる。   Even when the signal C of (3) in FIG. 28 is the slowest and when the signal D of (4) is the slowest, the delay value to be set can be obtained by the same arithmetic expression as in (2) of FIG.

[第2の実施の形態(2)]
図29は,第2の実施の形態におけるスキュー調整回路の第1の変型例を示す図である。図23のスキュー調整回路10との相違点は,動作状態監視回路50を有することと,目標スキュー値ROM45がスキュー調整対象信号グループGrと最も遅い信号と信号組み合わせに加えて,動作状態監視回路50が検出する動作速度とに対応する目標スキュー値を格納していることである。遅延回路は図11と同じであり,セレクタ26は図4と同じであり,スキュー測定回路28は図5と同じであり,遅延調整回路38も図23,25,26と同じである。
[Second Embodiment (2)]
FIG. 29 is a diagram illustrating a first modification of the skew adjustment circuit according to the second embodiment. 23 differs from the skew adjustment circuit 10 of FIG. 23 in that it has an operation state monitoring circuit 50, and that the target skew value ROM 45 has an operation state monitoring circuit 50 in addition to the skew adjustment target signal group Gr and the latest signal and signal combination. The target skew value corresponding to the operation speed detected by is stored. The delay circuit is the same as in FIG. 11, the selector 26 is the same as in FIG. 4, the skew measurement circuit 28 is the same as in FIG. 5, and the delay adjustment circuit 38 is the same as in FIGS.

図30は,目標スキュー値ROM45の具体例の図である。このROM45は,図24のアドレスに加えて,動作状態信号Fast, Typical, Slowが追加されている。動作状態に対する目標スキューの設定は,図15と同様に,動作状態Slowのほうが目標スキューのゼロの数が少なく,動作状態Fastのほうが目標スキューのゼロの数が多い。   FIG. 30 is a diagram of a specific example of the target skew value ROM 45. In the ROM 45, operation state signals Fast, Typical, and Slow are added in addition to the addresses shown in FIG. In the setting of the target skew with respect to the operation state, the number of zero target skews is smaller in the operation state Slow and the number of zero target skews is larger in the operation state Fast as in FIG.

[第2の実施の形態(3)]
図31は,第2の実施の形態におけるスキュー調整回路の第2の変型例を示す図である。このスキュー調整回路10では,LSI外部またはLSI内部のRAMのデータをCPUが読み出して,CPUインターフェース62を介して遅延調整回路39内の目標スキューレジスタ383に格納する。また,スキュー測定回路28により測定されたスキューと判別モードのデータは,測定スキューレジスタ384に格納される。これらのレジスタ383,384は,データの組み合わせの数N-1個だけ設けられる。
[Second Embodiment (3)]
FIG. 31 is a diagram illustrating a second modification of the skew adjustment circuit according to the second embodiment. In the skew adjustment circuit 10, the CPU reads RAM data outside or inside the LSI and stores it in the target skew register 383 in the delay adjustment circuit 39 via the CPU interface 62. Further, the skew and discrimination mode data measured by the skew measurement circuit 28 are stored in the measurement skew register 384. These registers 383 and 384 are provided for the number N-1 of data combinations.

セレクタ26とスキュー測定回路28からはN-1通りの判定モードと測定スキューが測定スキューレジスタ384に格納される。格納されると図17のようにそのレジスタ内のスキュー有効ビットが「1」に設定される。CPUは,このスキュー有効ビットを常時監視し,スキュー有効ビットが「1」になると,遅延設定値演算回路381の演算1により検出された最も遅い信号に対応する目標スキューのデータを,RAM45から読み出し,目標スキューレジスタ383に格納し,図17のように遅延切替オンビットを「1」に設定する。   From the selector 26 and the skew measurement circuit 28, N−1 determination modes and measurement skews are stored in the measurement skew register 384. When stored, the skew valid bit in the register is set to “1” as shown in FIG. The CPU constantly monitors the skew effective bit, and when the skew effective bit becomes “1”, reads the target skew data corresponding to the slowest signal detected by the calculation 1 of the delay setting value calculation circuit 381 from the RAM 45. , And stored in the target skew register 383, the delay switching on bit is set to “1” as shown in FIG.

遅延設定値演算回路381は,この遅延切替オンビットが「1」に設定されると,測定スキューと判定モードとから得られる現在の信号A,B,C,Dのスキュー関係を,目標スキューによる信号A,B,C,Dのスキュー関係にするために必要な各信号の設定遅延値を演算する。そして,演算された設定遅延値が,各遅延回路に属する遅延設定レジスタに設定される。この設定がされると,スキュー有効ビットが「0」にリセットされる。   When the delay switching on bit is set to “1”, the delay set value calculation circuit 381 determines the skew relationship of the current signals A, B, C, and D obtained from the measurement skew and the determination mode according to the target skew. The set delay value of each signal necessary for making the skew relationship of the signals A, B, C, and D is calculated. The calculated set delay value is set in a delay setting register belonging to each delay circuit. When this setting is made, the skew valid bit is reset to “0”.

[第2の実施の形態(4)]
図32は,第2の実施の形態におけるスキュー調整回路の第3の変型例を示す図である。このスキュー調整回路10は,図31と異なるところは,動作状態監視回路50を有し,それに伴いRAM45に動作状態に対応する目標スキューが格納されていることである。それ以外の構成と動作は,図31の第2の変型例と同じである。
[Second Embodiment (4)]
FIG. 32 is a diagram illustrating a third modification of the skew adjustment circuit according to the second embodiment. This skew adjustment circuit 10 is different from FIG. 31 in that it has an operation state monitoring circuit 50 and a target skew corresponding to the operation state is stored in the RAM 45 accordingly. Other configurations and operations are the same as those of the second modified example of FIG.

以上,第2の実施の形態によれば,スキュー調整対象のN本の信号線の信号に対し,N-1の組み合わせのスキューを測定し,メモリ内の目標スキューになるように各信号線に挿入すべき遅延量を演算で求めて,N本の信号線の信号変化に目標スキューを生成させることができる。それにより,出力バッファが同時にスイッチングした時に発生する同時スイッチングノイズを低減することができる。   As described above, according to the second embodiment, the skew of N-1 combinations is measured for the signals of N signal lines to be skew-adjusted, and each signal line is set so as to be the target skew in the memory. A delay amount to be inserted can be obtained by calculation, and a target skew can be generated for signal changes of N signal lines. Thereby, simultaneous switching noise generated when the output buffers are simultaneously switched can be reduced.

以上の実施の形態をまとめると,次の付記のとおりである。   The above embodiment is summarized as follows.

(付記1)
第1及び第2の信号をそれぞれ伝播する第1及び第2の信号線と,前記第1及び第2の信号線を伝播する第1及び第2の信号がそれぞれ入力される第1及び第2のバッファ回路とを有する集積回路に設けられるスキュー調整回路であって,
前記第1及び第2のバッファ回路の前段にそれぞれ設けられた第1及び第2の遅延回路と,
前記第1及び第2の信号の間のスキューを測定するスキュー測定回路と,
前記スキュー測定回路が測定した測定スキューに基づいて前記第1,第2の遅延回路の遅延量を決定し,当該決定した遅延量を前記第1,第2の遅延回路に設定する遅延調整回路とを有するスキュー調整回路。
(Appendix 1)
First and second signal lines that propagate the first and second signals, respectively, and first and second signals that receive the first and second signals that propagate through the first and second signal lines, respectively. A skew adjustment circuit provided in an integrated circuit having a buffer circuit of
First and second delay circuits respectively provided in front stages of the first and second buffer circuits;
A skew measuring circuit for measuring a skew between the first and second signals;
A delay adjustment circuit that determines a delay amount of the first and second delay circuits based on the measured skew measured by the skew measurement circuit, and sets the determined delay amounts in the first and second delay circuits; A skew adjustment circuit.

(付記2)
付記1において,
前記遅延調整回路は,前記第1及び第2の信号の間の目標スキューと前記測定スキューの差分を,前記第1または第2の遅延回路の遅延量に決定するスキュー調整回路。
(Appendix 2)
In Appendix 1,
The delay adjustment circuit determines a difference between a target skew and the measurement skew between the first and second signals as a delay amount of the first or second delay circuit.

(付記3)
付記1または2において,
さらに,前記第1及び第2の信号間の目標スキューを格納するメモリを有し,
前記遅延調整回路は,前記メモリを参照して前記目標スキューを読み出し,前記測定スキューと前記目標スキューとの差分を,前記第1または第2の遅延回路の遅延量に決定するスキュー調整回路。
(Appendix 3)
In Appendix 1 or 2,
And a memory for storing a target skew between the first and second signals,
The delay adjustment circuit reads the target skew with reference to the memory, and determines a difference between the measured skew and the target skew as a delay amount of the first or second delay circuit.

(付記4)
付記1または2において,
前記遅延調整回路は,前記測定スキューと前記第1,第2の信号のうちいずれが早いかのデータとに対応して,前記第1及び第2の信号間の目標スキューを生成する設定遅延量を格納するメモリを参照し,前記メモリから読み出した前記設定遅延量を前記第1,第2の遅延回路に設定するスキュー調整回路。
(Appendix 4)
In Appendix 1 or 2,
The delay adjustment circuit sets a set delay amount for generating a target skew between the first and second signals in correspondence with the measured skew and data indicating which of the first and second signals is faster. A skew adjusting circuit that sets the set delay amount read from the memory in the first and second delay circuits.

(付記5)
付記1または2において,
前記スキュー測定回路は,前記第1,第2の信号のいずれか一方をデータとして入力する複数のラッチ回路と,前記第1,第2の信号のいずれか他方を遅延させながらクロックとして前記複数のラッチ回路に入力するクロック供給回路とを有し,
さらに,前記第1,第2の信号を前記データ及びクロックに選択して前記スキュー測定回路に出力するセレクタを有するスキュー調整回路。
(Appendix 5)
In Appendix 1 or 2,
The skew measuring circuit includes: a plurality of latch circuits that input one of the first and second signals as data; and the plurality of latch circuits that are used as a clock while delaying the other of the first and second signals. A clock supply circuit for input to the latch circuit,
And a skew adjusting circuit having a selector for selecting the first and second signals as the data and the clock and outputting the selected data and clock to the skew measuring circuit.

(付記6)
付記5において,
前記セレクタは,前記第1,第2の信号をそれぞれ前記データ及びクロックに選択して前記スキュー測定回路に出力したときに,前記スキュー測定回路が前記データ入力のほうが前記クロック入力より早いことを検出した場合は,前記第1,第2の信号をそれぞれ前記クロック及びデータに選択して前記スキュー測定回路に出力するスキュー調整回路。
(Appendix 6)
In Appendix 5,
The selector detects that the data input is earlier than the clock input when the first and second signals are respectively selected as the data and the clock and output to the skew measurement circuit. In this case, a skew adjustment circuit that selects the first and second signals as the clock and data, respectively, and outputs them to the skew measurement circuit.

(付記7)
第1〜第Nの信号をそれぞれ伝播する第1〜第Nの信号線と,前記第1〜第Nの信号線を伝播する第1〜第Nの信号がそれぞれ入力される第1〜第Nのバッファ回路とを有する集積回路に設けられるスキュー調整回路であって,
前記第1〜第Nのバッファ回路の前段にそれぞれ設けられた第1〜第Nの遅延回路と,
前記第1及び第2の信号間〜第1及び第Nの信号の間のスキューをそれぞれ測定するスキュー測定回路と,
前記スキュー測定回路が測定した測定スキューに基づいて前記第1〜第Nの遅延回路の遅延量を決定し,当該決定した遅延量を前記第1〜第Nの遅延回路に設定する遅延調整回路とを有するスキュー調整回路。
(Appendix 7)
First to Nth signal lines that propagate the first to Nth signals, respectively, and the first to Nth signals that receive the first to Nth signals that propagate to the first to Nth signal lines, respectively. A skew adjustment circuit provided in an integrated circuit having a buffer circuit of
First to Nth delay circuits respectively provided in front of the first to Nth buffer circuits;
A skew measuring circuit for measuring a skew between the first and second signals to the first and Nth signals;
A delay adjustment circuit that determines a delay amount of the first to N-th delay circuits based on the measured skew measured by the skew measurement circuit, and sets the determined delay amounts in the first to N-th delay circuits; A skew adjustment circuit.

(付記8)
付記7において,
前記遅延調整回路は,前記測定スキューから前記第1〜第Nの信号のうち最も遅いタイミングの信号を検出し,当該検出した最も遅いタイミングの信号を最も早いタイミングにする目標スキューにするように前記第1〜第Nの遅延回路に設定すべき遅延量を決定するスキュー調整回路。
(Appendix 8)
In Appendix 7,
The delay adjustment circuit detects a signal having the latest timing among the first to N-th signals from the measurement skew, and sets the detected latest timing signal to a target skew having the earliest timing. A skew adjustment circuit for determining a delay amount to be set in the first to Nth delay circuits.

(付記9)
付記8において,
さらに,前記第1〜第Nの信号それぞれに対応して,当該信号を最も早いタイミングにする目標スキューを格納するメモリを有し,
前記遅延調整回路は,前記メモリを参照して,前記検出した最も遅いタイミングの信号に対応する目標スキューを読み出すスキュー調整回路。
(Appendix 9)
In Appendix 8,
And a memory for storing a target skew corresponding to each of the first to Nth signals, which makes the signal the earliest timing,
The delay adjustment circuit is a skew adjustment circuit that reads the target skew corresponding to the detected signal of the latest timing with reference to the memory.

(付記10)
付記9において,
前記メモリは,書き換え可能メモリであるスキュー調整回路。
(Appendix 10)
In Appendix 9,
The skew adjustment circuit is a rewritable memory.

(付記11)
付記1,2,7,8のいずれかにおいて,
さらに,前記集積回路装置内のゲートの動作状態を監視する動作状態監視回路を有し,
前記遅延調整回路は,前記動作状態監視回路が検出した動作状態に応じて前記遅延量を決定するスキュー調整回路。
(Appendix 11)
In any one of Supplementary Notes 1, 2, 7, and 8,
And an operation state monitoring circuit for monitoring an operation state of the gate in the integrated circuit device,
The delay adjustment circuit is a skew adjustment circuit that determines the delay amount according to the operation state detected by the operation state monitoring circuit.

(付記12)
付記1〜11のいずれかにおいて,
前記監視回路と遅延調整回路の動作イネーブルと動作デセーブルを制御する制御イネーブル信号を有し,当該制御イネーブル信号に応じて前記監視回路と遅延調整回路の動作開始と動作停止とが制御されるスキュー調整回路。
(Appendix 12)
In any one of appendices 1-11,
Skew adjustment having a control enable signal for controlling operation enable and operation disable of the monitoring circuit and the delay adjustment circuit, and controlling the start and stop of the operation of the monitoring circuit and the delay adjustment circuit according to the control enable signal circuit.

(付記13)
付記4または5において,
前記メモリは書き換え可能であり,前記目標スキューまたは設定遅延量が書き換えされるスキュー調整回路。
(Appendix 13)
In Appendix 4 or 5,
A skew adjustment circuit in which the memory is rewritable and the target skew or set delay amount is rewritten.

(付記14)
第1及び第2の信号をそれぞれ伝播する第1及び第2の信号線と,前記第1及び第2の信号線を伝播する第1及び第2の信号がそれぞれ入力される第1及び第2のバッファ回路と,第3の信号がそれぞれ入力される第3及び第4のバッファ回路と,前記第3及び第4のバッファ回路に入力された第3の信号を伝搬し前記第1及び第2の信号線と同じ長さの第3及び第4の信号線とを有する集積回路に設けられるスキュー調整回路であって,
前記第1及び第2のバッファ回路の前段にそれぞれ設けられた第1及び第2の遅延回路と,
前記第3及び第4の信号線を伝搬してきた前記第3の信号の間のスキューを測定するスキュー測定回路と,
前記スキュー測定回路が測定した測定スキューに基づいて前記第1,第2の遅延回路の遅延量を決定し,当該決定した遅延量を前記第1,第2の遅延回路に設定する遅延調整回路とを有するスキュー調整回路。
(Appendix 14)
First and second signal lines that propagate the first and second signals, respectively, and first and second signals that receive the first and second signals that propagate through the first and second signal lines, respectively. The first and second buffer circuits, the third and fourth buffer circuits to which the third signal is input, and the third signal input to the third and fourth buffer circuits. A skew adjustment circuit provided in an integrated circuit having third and fourth signal lines having the same length as the signal line of
First and second delay circuits respectively provided in front stages of the first and second buffer circuits;
A skew measuring circuit for measuring a skew between the third signals propagated through the third and fourth signal lines;
A delay adjustment circuit that determines a delay amount of the first and second delay circuits based on the measured skew measured by the skew measurement circuit, and sets the determined delay amounts in the first and second delay circuits; A skew adjustment circuit.

(付記15)
第1及び第2の信号をそれぞれ伝播する第1及び第2の信号線と,前記第1及び第2の信号線を伝播する第1及び第2の信号がそれぞれ入力される第1及び第2のバッファ回路とを有する集積回路のスキュー調整方法であって,
前記第1及び第2の信号の間のスキューを測定し,
前記測定した測定スキューに基づいて,前記第1及び第2のバッファ回路の前段にそれぞれ設けられた第1及び第2の遅延回路の遅延量を決定し,当該決定した遅延量を前記第1,第2の遅延回路に設定するスキュー調整方法。
(Appendix 15)
First and second signal lines that propagate the first and second signals, respectively, and first and second signals that receive the first and second signals that propagate through the first and second signal lines, respectively. A method for adjusting the skew of an integrated circuit having a buffer circuit of
Measuring a skew between the first and second signals;
Based on the measured measurement skew, the delay amounts of the first and second delay circuits provided in the previous stage of the first and second buffer circuits are determined, and the determined delay amounts are determined as the first and second delay circuits. A skew adjustment method set in the second delay circuit.

(付記16)
付記15において,
前記第1及び第2の信号の間の目標スキューと前記測定スキューの差分を,前記第1または第2の遅延回路の遅延量に決定するスキュー調整方法。
(Appendix 16)
In Appendix 15,
A skew adjustment method for determining a difference between the target skew and the measurement skew between the first and second signals as a delay amount of the first or second delay circuit.

(付記17)
第1〜第Nの信号をそれぞれ伝播する第1〜第Nの信号線と,前記第1〜第Nの信号線を伝播する第1〜第Nの信号がそれぞれ入力される第1〜第Nのバッファ回路とを有する集積回路に設けられるスキュー調整方法であって,
前記第1及び第2の信号間〜第1及び第Nの信号の間のスキューをそれぞれ測定し,
前記測定した測定スキューに基づいて,前記第1〜第Nのバッファ回路の前段にそれぞれ設けられた第1〜第Nの遅延回路の遅延量を決定し,当該決定した遅延量を前記第1〜第Nの遅延回路に設定するスキュー調整方法。
(Appendix 17)
First to Nth signal lines that propagate the first to Nth signals, respectively, and the first to Nth signals that receive the first to Nth signals that propagate to the first to Nth signal lines, respectively. A skew adjustment method provided in an integrated circuit having a buffer circuit of
Measuring the skew between the first and second signals to the first and Nth signals, respectively;
Based on the measured measurement skew, a delay amount of first to N-th delay circuits provided in a preceding stage of the first to N-th buffer circuits is determined, and the determined delay amount is set to the first to first delay circuits. A skew adjustment method set in the Nth delay circuit.

(付記18)
付記17において,
前記測定スキューから前記第1〜第Nの信号のうち最も遅いタイミングの信号を検出し,当該検出した最も遅いタイミングの信号を最も早いタイミングにする目標スキューにするように前記第1〜第Nの遅延回路に設定すべき遅延量を決定するスキュー調整方法。
(Appendix 18)
In Appendix 17,
The signal having the latest timing among the first to N-th signals is detected from the measurement skew, and the first to N-th signals are set so that the detected latest timing signal has the earliest timing. A skew adjustment method for determining a delay amount to be set in a delay circuit.

10:スキュー調整回路 25:信号変化監視回路
35,37:遅延調整回路 45:遅延量ROM
DL_0〜DL_7:遅延回路 OB_0〜OB_7:出力バッファ
SL_0〜SL_7:信号線 SG_0〜SG_7:信号
10: Skew adjustment circuit 25: Signal change monitoring circuit
35, 37: Delay adjustment circuit 45: Delay amount ROM
DL_0 to DL_7: Delay circuit OB_0 to OB_7: Output buffer
SL_0 to SL_7: Signal line SG_0 to SG_7: Signal

Claims (10)

第1及び第2の信号をそれぞれ伝播する第1及び第2の信号線と,前記第1及び第2の信号線を伝播する第1及び第2の信号がそれぞれ入力される第1及び第2のバッファ回路とを有する集積回路に設けられるスキュー調整回路であって,
前記第1及び第2のバッファ回路の前段にそれぞれ設けられた第1及び第2の遅延回路と,
前記第1及び第2の信号の間のスキューを測定するスキュー測定回路と,
前記スキュー測定回路が測定した測定スキューに基づいて前記第1,第2の遅延回路の遅延量を決定し,当該決定した遅延量を前記第1,第2の遅延回路に設定する遅延調整回路とを有するスキュー調整回路。
First and second signal lines that propagate the first and second signals, respectively, and first and second signals that receive the first and second signals that propagate through the first and second signal lines, respectively. A skew adjustment circuit provided in an integrated circuit having a buffer circuit of
First and second delay circuits respectively provided in front stages of the first and second buffer circuits;
A skew measuring circuit for measuring a skew between the first and second signals;
A delay adjustment circuit that determines a delay amount of the first and second delay circuits based on the measured skew measured by the skew measurement circuit, and sets the determined delay amounts in the first and second delay circuits; A skew adjustment circuit.
請求項1において,
前記遅延調整回路は,前記第1及び第2の信号の間の目標スキューと前記測定スキューの差分を,前記第1または第2の遅延回路の遅延量に決定するスキュー調整回路。
In claim 1,
The delay adjustment circuit determines a difference between a target skew and the measurement skew between the first and second signals as a delay amount of the first or second delay circuit.
請求項1または2において,
さらに,前記第1及び第2の信号間の目標スキューを格納するメモリを有し,
前記遅延調整回路は,前記メモリを参照して前記目標スキューを読み出し,前記測定スキューと前記目標スキューとの差分を,前記第1または第2の遅延回路の遅延量に決定するスキュー調整回路。
In claim 1 or 2,
And a memory for storing a target skew between the first and second signals,
The delay adjustment circuit reads the target skew with reference to the memory, and determines a difference between the measured skew and the target skew as a delay amount of the first or second delay circuit.
請求項1または2において,
前記遅延調整回路は,前記測定スキューと前記第1,第2の信号のうちいずれが早いかのデータとに対応して,前記第1及び第2の信号間の目標スキューを生成する設定遅延量を格納するメモリを参照し,前記メモリから読み出した前記設定遅延量を前記第1,第2の遅延回路に設定するスキュー調整回路。
In claim 1 or 2,
The delay adjustment circuit sets a set delay amount for generating a target skew between the first and second signals in correspondence with the measured skew and data indicating which of the first and second signals is faster. A skew adjusting circuit that sets the set delay amount read from the memory in the first and second delay circuits.
請求項1または2において,
前記スキュー測定回路は,前記第1,第2の信号のいずれか一方をデータとして入力する複数のラッチ回路と,前記第1,第2の信号のいずれか他方を遅延させながらクロックとして前記複数のラッチ回路に入力するクロック供給回路とを有し,
さらに,前記第1,第2の信号を前記データ及びクロックに選択して前記スキュー測定回路に出力するセレクタを有するスキュー調整回路。
In claim 1 or 2,
The skew measuring circuit includes: a plurality of latch circuits that input one of the first and second signals as data; and the plurality of latch circuits that are used as a clock while delaying the other of the first and second signals. A clock supply circuit for input to the latch circuit,
And a skew adjusting circuit having a selector for selecting the first and second signals as the data and the clock and outputting the selected data and clock to the skew measuring circuit.
第1〜第Nの信号をそれぞれ伝播する第1〜第Nの信号線と,前記第1〜第Nの信号線を伝播する第1〜第Nの信号がそれぞれ入力される第1〜第Nのバッファ回路とを有する集積回路に設けられるスキュー調整回路であって,
前記第1〜第Nのバッファ回路の前段にそれぞれ設けられた第1〜第Nの遅延回路と,
前記第1及び第2の信号間〜第1及び第Nの信号の間のスキューをそれぞれ測定するスキュー測定回路と,
前記スキュー測定回路が測定した測定スキューに基づいて前記第1〜第Nの遅延回路の遅延量を決定し,当該決定した遅延量を前記第1〜第Nの遅延回路に設定する遅延調整回路とを有するスキュー調整回路。
First to Nth signal lines that propagate the first to Nth signals, respectively, and the first to Nth signals that receive the first to Nth signals that propagate to the first to Nth signal lines, respectively. A skew adjustment circuit provided in an integrated circuit having a buffer circuit of
First to Nth delay circuits respectively provided in front of the first to Nth buffer circuits;
A skew measuring circuit for measuring a skew between the first and second signals to the first and Nth signals;
A delay adjustment circuit that determines a delay amount of the first to N-th delay circuits based on the measured skew measured by the skew measurement circuit, and sets the determined delay amounts in the first to N-th delay circuits; A skew adjustment circuit.
請求項6において,
前記遅延調整回路は,前記測定スキューから前記第1〜第Nの信号のうち最も遅いタイミングの信号を検出し,当該検出した最も遅いタイミングの信号を最も早いタイミングにする目標スキューにするように前記第1〜第Nの遅延回路に設定すべき遅延量を決定するスキュー調整回路。
In claim 6,
The delay adjustment circuit detects a signal having the latest timing among the first to N-th signals from the measurement skew, and sets the detected latest timing signal to a target skew having the earliest timing. A skew adjustment circuit for determining a delay amount to be set in the first to Nth delay circuits.
請求項7において,
さらに,前記第1〜第Nの信号それぞれに対応して,当該信号を最も早いタイミングにする目標スキューを格納するメモリを有し,
前記遅延調整回路は,前記メモリを参照して,前記検出した最も遅いタイミングの信号に対応する目標スキューを読み出すスキュー調整回路。
In claim 7,
And a memory for storing a target skew corresponding to each of the first to Nth signals, which makes the signal the earliest timing,
The delay adjustment circuit is a skew adjustment circuit that reads the target skew corresponding to the detected signal of the latest timing with reference to the memory.
請求項1,2,6,7のいずれかにおいて,
さらに,前記集積回路装置内のゲートの動作状態を監視する動作状態監視回路を有し,
前記遅延調整回路は,前記動作状態監視回路が検出した動作状態に応じて前記遅延量を決定するスキュー調整回路。
In any one of Claims 1, 2, 6, and 7,
And an operation state monitoring circuit for monitoring an operation state of the gate in the integrated circuit device,
The delay adjustment circuit is a skew adjustment circuit that determines the delay amount according to the operation state detected by the operation state monitoring circuit.
第1及び第2の信号をそれぞれ伝播する第1及び第2の信号線と,前記第1及び第2の信号線を伝播する第1及び第2の信号がそれぞれ入力される第1及び第2のバッファ回路と,第3の信号がそれぞれ入力される第3及び第4のバッファ回路と,前記第3及び第4のバッファ回路に入力された第3の信号を伝搬し前記第1及び第2の信号線と同じ長さの第3及び第4の信号線とを有する集積回路に設けられるスキュー調整回路であって,
前記第1及び第2のバッファ回路の前段にそれぞれ設けられた第1及び第2の遅延回路と,
前記第3及び第4の信号線を伝搬してきた前記第3の信号の間のスキューを測定するスキュー測定回路と,
前記スキュー測定回路が測定した測定スキューに基づいて前記第1,第2の遅延回路の遅延量を決定し,当該決定した遅延量を前記第1,第2の遅延回路に設定する遅延調整回路とを有するスキュー調整回路。
First and second signal lines that propagate the first and second signals, respectively, and first and second signals that receive the first and second signals that propagate through the first and second signal lines, respectively. The first and second buffer circuits, the third and fourth buffer circuits to which the third signal is input, and the third signal input to the third and fourth buffer circuits. A skew adjustment circuit provided in an integrated circuit having third and fourth signal lines having the same length as the signal line of
First and second delay circuits respectively provided in front stages of the first and second buffer circuits;
A skew measuring circuit for measuring a skew between the third signals propagated through the third and fourth signal lines;
A delay adjustment circuit that determines a delay amount of the first and second delay circuits based on the measured skew measured by the skew measurement circuit, and sets the determined delay amounts in the first and second delay circuits; A skew adjustment circuit.
JP2010184524A 2010-08-20 2010-08-20 Integrated circuit Expired - Fee Related JP5549474B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010184524A JP5549474B2 (en) 2010-08-20 2010-08-20 Integrated circuit
US13/179,326 US8856578B2 (en) 2010-08-20 2011-07-08 Integrated circuit device including skew adjustment circuit and skew adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184524A JP5549474B2 (en) 2010-08-20 2010-08-20 Integrated circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014027153A Division JP5773002B2 (en) 2014-02-17 2014-02-17 Integrated circuit

Publications (2)

Publication Number Publication Date
JP2012044489A true JP2012044489A (en) 2012-03-01
JP5549474B2 JP5549474B2 (en) 2014-07-16

Family

ID=45900269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184524A Expired - Fee Related JP5549474B2 (en) 2010-08-20 2010-08-20 Integrated circuit

Country Status (1)

Country Link
JP (1) JP5549474B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419616B2 (en) 2013-11-29 2016-08-16 Ricoh Company, Ltd. LVDS driver
JP2017192261A (en) * 2016-04-15 2017-10-19 ローム株式会社 Synchronous rectification circuit for wireless power receiver, control circuit therefor, control method, wireless power receiver and power reception control circuit, and electronic apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133114A (en) * 1997-10-24 1999-05-21 Advantest Corp Ic tester
JP2000089849A (en) * 1998-09-09 2000-03-31 Nec Corp Clock skew adjustment circuit and large-scale integrated circuit provided with the adjustment circuit
JP2002135234A (en) * 2000-10-20 2002-05-10 Mitsubishi Electric Corp Skew adjustment circuit
JP2004120678A (en) * 2002-09-30 2004-04-15 Sony Corp Semiconductor integrated circuit device and retarding adjustment circuit therefor
JP2006054731A (en) * 2004-08-12 2006-02-23 Advantest Corp Timing generator, testing device, and skew adjustment method
JP2007173893A (en) * 2005-12-19 2007-07-05 Hitachi Ulsi Systems Co Ltd Semiconductor integrated circuit device
JP2008199156A (en) * 2007-02-09 2008-08-28 Renesas Technology Corp Interface circuit for serial communication
JP2009081588A (en) * 2007-09-26 2009-04-16 Fujitsu Microelectronics Ltd Semiconductor integrated circuit device and delay compensation method for clock signal in semiconductor integrated circuit device
WO2009069209A1 (en) * 2007-11-29 2009-06-04 Advantest Corporation Short-circuit wiring fixture, method for measuring skew, and method for adjusting skew
JP2010119077A (en) * 2008-10-16 2010-05-27 Nec Corp Phase comparator, pll circuit, and method of controlling phase comparator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133114A (en) * 1997-10-24 1999-05-21 Advantest Corp Ic tester
JP2000089849A (en) * 1998-09-09 2000-03-31 Nec Corp Clock skew adjustment circuit and large-scale integrated circuit provided with the adjustment circuit
JP2002135234A (en) * 2000-10-20 2002-05-10 Mitsubishi Electric Corp Skew adjustment circuit
JP2004120678A (en) * 2002-09-30 2004-04-15 Sony Corp Semiconductor integrated circuit device and retarding adjustment circuit therefor
JP2006054731A (en) * 2004-08-12 2006-02-23 Advantest Corp Timing generator, testing device, and skew adjustment method
JP2007173893A (en) * 2005-12-19 2007-07-05 Hitachi Ulsi Systems Co Ltd Semiconductor integrated circuit device
JP2008199156A (en) * 2007-02-09 2008-08-28 Renesas Technology Corp Interface circuit for serial communication
JP2009081588A (en) * 2007-09-26 2009-04-16 Fujitsu Microelectronics Ltd Semiconductor integrated circuit device and delay compensation method for clock signal in semiconductor integrated circuit device
WO2009069209A1 (en) * 2007-11-29 2009-06-04 Advantest Corporation Short-circuit wiring fixture, method for measuring skew, and method for adjusting skew
JP2010119077A (en) * 2008-10-16 2010-05-27 Nec Corp Phase comparator, pll circuit, and method of controlling phase comparator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419616B2 (en) 2013-11-29 2016-08-16 Ricoh Company, Ltd. LVDS driver
JP2017192261A (en) * 2016-04-15 2017-10-19 ローム株式会社 Synchronous rectification circuit for wireless power receiver, control circuit therefor, control method, wireless power receiver and power reception control circuit, and electronic apparatus

Also Published As

Publication number Publication date
JP5549474B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
KR101653035B1 (en) Command paths, apparatuses and methods for providing a command to a data block
US8509011B2 (en) Command paths, apparatuses, memories, and methods for providing internal commands to a data path
US8856578B2 (en) Integrated circuit device including skew adjustment circuit and skew adjustment method
US7816960B2 (en) Circuit device and method of measuring clock jitter
US20110133786A1 (en) Semiconductor device
US7889581B2 (en) Digital DLL circuit
US7236035B2 (en) Semiconductor device adapted to minimize clock skew
JP2012516629A (en) Critical path circuit for performance monitoring
JP5549474B2 (en) Integrated circuit
JP5773002B2 (en) Integrated circuit
JP3352080B2 (en) Waveform generator
US11275113B2 (en) Measuring a control system response time
KR20100090967A (en) Method of measuring setup time including clock skew absorbing characteristic of a pulse-based flip-flop
JP5772398B2 (en) Electronic component and reflected wave canceling method
JP5533424B2 (en) Integrated circuit device and skew adjustment method for integrated circuit device
KR101912905B1 (en) Cas latency setting circuit and semiconductor memory apparatus including the same
JP2005233975A (en) Delay measuring device
JP2017060050A (en) Semiconductor device, demultiplexer, semiconductor circuit, data processing method and inspection method
KR20150078012A (en) Semiconductor memory apparatus and test method using the same
US20130193986A1 (en) Delay line scheme with no exit tree
US8564351B2 (en) Clock phase compensation for adjusted voltage circuits
JP2013036960A (en) Delay scan test method, semiconductor device, and semiconductor device design method
US8499188B2 (en) Processing device for determining whether to output a first data using a first clock signal or a second data using delay from the first clock signal according to a control signal
US8850256B2 (en) Communication circuit and communication method
JP4313226B2 (en) Pulse width adjustment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R150 Certificate of patent or registration of utility model

Ref document number: 5549474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees