JP2012043683A - Nonaqueous electrolyte secondary battery pack - Google Patents

Nonaqueous electrolyte secondary battery pack Download PDF

Info

Publication number
JP2012043683A
JP2012043683A JP2010184798A JP2010184798A JP2012043683A JP 2012043683 A JP2012043683 A JP 2012043683A JP 2010184798 A JP2010184798 A JP 2010184798A JP 2010184798 A JP2010184798 A JP 2010184798A JP 2012043683 A JP2012043683 A JP 2012043683A
Authority
JP
Japan
Prior art keywords
battery pack
battery
voltage
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010184798A
Other languages
Japanese (ja)
Other versions
JP5748972B2 (en
Inventor
Shinsuke Matsuno
真輔 松野
Masaru Yamamoto
大 山本
Yoshinao Tatebayashi
義直 舘林
Norio Takami
則雄 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010184798A priority Critical patent/JP5748972B2/en
Publication of JP2012043683A publication Critical patent/JP2012043683A/en
Application granted granted Critical
Publication of JP5748972B2 publication Critical patent/JP5748972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery pack including a plurality of nonaqueous electrolyte secondary batteries connected in series, in which voltage monitoring means such as a circuit for monitoring a voltage of each of the batteries can be decreased by half while deterioration in the battery pack due to variations in unit cells is suppressed and safety is maintained.SOLUTION: In the nonaqueous electrolyte battery pack, a charging voltage of a nonaqueous electrolyte secondary battery pack is set preliminarily, and a nonaqueous electrolyte secondary battery having a capacity change rate of 90% or more is adopted. The capacity change rate is a rate between a 0.1 C discharge capacity at 25°C when each of nonaqueous electrolyte batteries constituting the battery pack is charged at 25°C with a 0.1 C rate at a charging voltage higher by 0.8 V than half of the set charging voltage of the nonaqueous electrolyte secondary battery pack and a 0.1 C discharge capacity at 25°C when charged at a voltage half of the set charging voltage.

Description

本発明の実施の形態は、非水電解質二次電池パックに関する。   Embodiments described herein relate generally to a nonaqueous electrolyte secondary battery pack.

近年、Liイオンが負極と正極を移動することにより充放電が行われる非水電解質二次電池は、高エネルギー密度電池として盛んに研究開発が進められている。このような非水電解質二次電池は、環境問題の観点から、特に電気自動車やエンジンとモーターを併用するハイブリッド自動車などの大型用電源として期待されている。また自動車用途に限らず、大型電源としての非水電解質二次電池は非常に着目されている。   In recent years, non-aqueous electrolyte secondary batteries that are charged and discharged by moving Li ions between a negative electrode and a positive electrode have been actively researched and developed as high-energy density batteries. Such a non-aqueous electrolyte secondary battery is expected as a power source for large-sized electric vehicles and hybrid vehicles using both an engine and a motor, from the viewpoint of environmental problems. In addition to automobile applications, nonaqueous electrolyte secondary batteries as large-scale power sources have attracted considerable attention.

非水電解質二次電池の1つとしてリチウムイオン二次電池があげられるが、殆どのリチウムイオン二次電池は、正極にコバルト酸リチウム(LiCoO)あるいはマンガン酸リチウム(LiMn)等が用いられ、負極にグラファイト系材料が用いられている。このような組み合わせの二次電池は、多くの場合、3Vから4.2Vの間で使用され、電池の平均動作電圧は3.7V程度になる。この電池を大型電源として活用するためには、複数の直列接続を行い、用途によっては数百Vかそれ以上まで高める必要がある。 One of the non-aqueous electrolyte secondary batteries is a lithium ion secondary battery. Most lithium ion secondary batteries have lithium cobalt oxide (LiCoO 2 ) or lithium manganate (LiMn 2 O 2 ) as a positive electrode. Used, and a graphite-based material is used for the negative electrode. Such a combination of secondary batteries is often used between 3V and 4.2V, and the average operating voltage of the battery is about 3.7V. In order to use this battery as a large-scale power source, it is necessary to make a plurality of series connections and increase it to several hundred volts or more depending on the application.

リチウムイオン二次電池は高いエネルギー密度を有する半面、その安全性が問題視されている。安全性を高めるために、種々の工夫が施され、改良が施されているものの、特に過充電時は、負極の場合、グラファイト系材料表面で金属リチウムの析出がおこりやすく、また、正極の場合LiCoOから酸素が放出されやすくなり、熱暴走を引き起こす要因となっており、安全性の観点から大きな問題となることが知られている。 Lithium ion secondary batteries have high energy density, but their safety is regarded as a problem. Although various measures have been taken to improve safety and improvements have been made, especially when overcharged, metal lithium tends to precipitate on the surface of the graphite-based material, and in the case of the positive electrode. It is known that oxygen is easily released from LiCoO 2 and causes thermal runaway, which is a serious problem from the viewpoint of safety.

このようなリチウムイオン二次電池を大量に直列接続をするためには、電池個々の電圧を常に監視する制御方法が常に必要となる。例えば、リチウムイオン二次電池の10直列パックを充電するために、42Vの電圧を電池パックにかけた場合、通常に全ての電池が機能していれば、それぞれの電池は4.2Vにて充電されるが、万が一、1つのセルがショートして0Vになってしまった場合、9個の電池が42Vの電圧がかかるため、1個平均4.7Vもの電圧がかかってしまう。この場合、個々のセルはあきらかに過充電状態になり、発火の可能性が高くなる。   In order to connect a large number of such lithium ion secondary batteries in series, a control method for constantly monitoring the voltage of each battery is always required. For example, if a 42V voltage is applied to the battery pack to charge a 10 series pack of lithium ion secondary batteries, each battery will be charged at 4.2V if all batteries are functioning normally. However, if one cell is short-circuited and becomes 0V, nine batteries are applied with a voltage of 42V, so an average voltage of 4.7V is applied to each cell. In this case, the individual cells are clearly overcharged and the possibility of ignition increases.

安全性の観点だけでなく、例えば電池パックにて充放電サイクルを行うと、内部の温度ムラ等により、容量劣化速度が異なり、最終的には、電池個々の容量、電圧がばらついてしまう。リチウムイオン二次電池は充電電圧が0.1V高くなるだけでも容量劣化が大きくなるため、電池パックそのものも、極端に劣化してしまう。   For example, when a charge / discharge cycle is performed in a battery pack as well as from the viewpoint of safety, the capacity deterioration rate differs due to internal temperature unevenness and the like, and ultimately the capacity and voltage of each battery vary. Since the lithium ion secondary battery has a large capacity deterioration even when the charging voltage is increased by 0.1 V, the battery pack itself is extremely deteriorated.

以上の観点からも、従来のリチウムイオン二次電池にて複数直列を行う場合には、1つ1つの電池電圧を監視する回路が必須の構成となり、装置が大がかりなものになるという欠点があった。
From the above viewpoints, when a plurality of series is performed in a conventional lithium ion secondary battery, a circuit for monitoring each battery voltage is indispensable, and there is a disadvantage that the apparatus becomes large. It was.

特開2000−67928号公報JP 2000-67928 A

本実施の形態は、非水電解質二次電池を複数直列する電池パックにおいて、単電池のばらつきによる電池パックの劣化を抑制し、安全性を維持させながら、個々の電池の電圧監視回路など電圧監視手段を半減することのできる電池パックを提供する。
In this embodiment, in a battery pack in which a plurality of nonaqueous electrolyte secondary batteries are connected in series, voltage monitoring such as a voltage monitoring circuit of each battery is performed while suppressing deterioration of the battery pack due to variations in single cells and maintaining safety. A battery pack capable of halving the means is provided.

この実施の形態の2直列非水電解質電池パックは、予め非水電解質二次電池パックの充電電圧を設定し、この設定した非水電解質二次電池パックの充電電圧の半分の値よりも0.8V高い充電電圧にて、前記電池パックを構成する個々の非水電解質電池を25℃、0.1Cレートにて充電した場合の25℃における0.1C放電容量と、前記設定した充電電圧の半分の値の電圧にて充電した場合の25℃における0.1C放電容量の容量変化率が、90%以上である非水電解質二次電池を採用することを特徴とするものである。
In the two-series nonaqueous electrolyte battery pack of this embodiment, the charging voltage of the nonaqueous electrolyte secondary battery pack is set in advance, and is less than half the value of the charging voltage of the set nonaqueous electrolyte secondary battery pack. When the individual nonaqueous electrolyte batteries constituting the battery pack are charged at a rate of 25V and a 0.1C rate at a charging voltage that is 8V higher, a 0.1C discharge capacity at 25C and half of the set charging voltage A nonaqueous electrolyte secondary battery having a capacity change rate of 0.1 C discharge capacity at 25 ° C. when charged at a voltage of 90% or more is employed.

図1は、一般的なリチウムイオン二次電池の1Cレートでの充電曲線を示すグラフである。FIG. 1 is a graph showing a charging curve at a 1C rate of a general lithium ion secondary battery. 図2は、本実施の形態のリチウムイオン二次電池の1Cレートでの充電曲線を示すグラフである。FIG. 2 is a graph showing a charging curve at the 1C rate of the lithium ion secondary battery of the present embodiment. 図3は、本実施の形態の電池を適用することのできる薄型非水電解質二次電池の部分欠截斜視図である。FIG. 3 is a partially broken perspective view of a thin nonaqueous electrolyte secondary battery to which the battery of the present embodiment can be applied.

以下、従来一般的なリチウムイオン二次電池を例にあげて説明する。
正極材料にLiCoOおよび負極材料にグラファイトを用いた場合、正極は主にLiCoOの層状を形成しながらLiが連続的に挿入・脱離する。LiCoOは、電池の充電深度(State Of Charge;以後SOC)を100%にした状態でも、LiCoOの可逆性を保ち、かつ、熱的な安定性を確保するために、LiCoO内のLiが完全に抜けないように正極と負極の容量バランスが塗布量により制御されている。従って、リチウムイオン二次電池において、SOC100%の状態から強制的に充電し続けると、正極からさらにリチウムが引き抜かれ、可逆性が悪く、熱安定性も失いやすい。また、正極から引き抜かれたリチウムは、負極グラファイト表面にリチウム金属の状態として析出する。この状態では、電池電圧が連続的に上昇し、充電電圧に比例して見かけ上容量が増加する。従って、SOC100%の状態から電圧上昇に伴い容量が顕著に増加する状態は、サイクル性能を悪化させるばかりか、電池の安全性にも過大な問題が残る。
Hereinafter, a conventional general lithium ion secondary battery will be described as an example.
When LiCoO 2 is used for the positive electrode material and graphite is used for the negative electrode material, Li is continuously inserted and desorbed while the positive electrode mainly forms a layer of LiCoO 2 . LiCoO 2, the battery state of charge; even in a state where the (State Of Charge hereinafter SOC) to 100%, maintaining reversibility of LiCoO 2, and, in order to ensure thermal stability, Li in the LiCoO 2 The volume balance between the positive electrode and the negative electrode is controlled by the coating amount so that the ink does not come off completely. Therefore, in a lithium ion secondary battery, if charging is continued forcibly from a state where the SOC is 100%, lithium is further extracted from the positive electrode, the reversibility is poor, and thermal stability is likely to be lost. Further, the lithium extracted from the positive electrode is deposited as a lithium metal state on the negative electrode graphite surface. In this state, the battery voltage rises continuously, and the capacity increases apparently in proportion to the charging voltage. Therefore, the state in which the capacity increases remarkably as the voltage increases from the state where the SOC is 100% not only deteriorates the cycle performance but also leaves an excessive problem in the safety of the battery.

このようなリチウムイオン二次電池を2つ直列させた電池パックについて説明する。
図1に一般的なリチウムイオン二次電池の1Cレートでの充電曲線を示す。例えば、正極をニッケル酸リチウム(LiNiO)、負極にグラファイトを用いた場合、図のように充電深度(SOC)に応じて連続的に電位が変化する挙動を示すことが多い。このような同じリチウムイオン二次電池を二直列で管理することを考える。2つの電池、AとBとを直列に接続した電池パックは本来、図1で示した(a)のように、個々の電池電圧挙動が等しい状態が理想的である。しかしながら、電池パック内の温度ムラによる自己放電等により、電池Aと電池BとのSOCが徐々にずれやすくなる。極端な例を図1の(b)にて示した。この例は、片方の電池Bが、自己放電等で当初設定していたSOCよりも低い状態になったため、電池AがSOC80%、電池BがSOC50%になった状態を示している。
A battery pack in which two such lithium ion secondary batteries are connected in series will be described.
FIG. 1 shows a charging curve at a 1C rate of a general lithium ion secondary battery. For example, when lithium nickelate (LiNiO 2 ) is used as the positive electrode and graphite is used as the negative electrode, the potential often changes continuously according to the depth of charge (SOC) as shown in the figure. Consider managing the same lithium ion secondary battery in two series. A battery pack in which two batteries, A and B are connected in series, is ideally in a state where individual battery voltage behaviors are equal as shown in FIG. However, the SOCs of the battery A and the battery B are likely to gradually shift due to self-discharge due to temperature unevenness in the battery pack. An extreme example is shown in FIG. This example shows a state in which one battery B is lower than the SOC initially set by self-discharge or the like, so that the battery A is 80% SOC and the battery B is 50% SOC.

このような状態で2直列電池パックに8.4Vの充電を施そうとすると、電池パック電圧が8.4Vに達したときには、電池Aは4.4V、電池Bは4.0Vになる可能性がある。この場合、電池Aは本来適正な充電電圧を超えた、過充電状態になるので、電池性能が劣化しやすくなるばかりか、電池発火といった大変危険な状態に陥る。   If it is attempted to charge 8.4V to the two-series battery pack in such a state, when the battery pack voltage reaches 8.4V, battery A may be 4.4V and battery B may be 4.0V. There is. In this case, since the battery A is in an overcharged state that exceeds the proper charge voltage, the battery performance is easily deteriorated and the battery A falls into a very dangerous state such as battery ignition.

従って、リチウムイオン二次電池の場合、2直列に限らず複数直列の電池パックを作製するにあたり、1つ1つの電池電圧を監視するための回路を電池内あるいは、電池外の制御システムに組み込むことがある。このようにすることで、電池パック内のSOCばらつきがおきたとしても、構成する電池の過充電を防ぐことができるが、電池の数ほどの監視回路が必要となるため、システムは大掛かりになってしまう。   Therefore, in the case of a lithium ion secondary battery, a circuit for monitoring each battery voltage is incorporated in a control system in the battery or outside the battery when manufacturing not only two series but also a plurality of series battery packs. There is. In this way, even if the SOC variation in the battery pack occurs, overcharging of the battery constituting the battery pack can be prevented. However, since a monitoring circuit as many as the number of batteries is required, the system becomes large. End up.

これに対して、予め非水電解質二次電池パックの充電電圧を設定し、この設定した非水電解質二次電池パックの充電電圧の半分の値よりも0.8V高い充電電圧にて、構成する個々の電池を25℃、0.1Cレートにて充電した場合の25℃における0.1C放電容量と、前記設定した充電電圧の半分の値の電圧にて充電した場合の25℃における0.1C放電容量の容量変化率が、90%以上である非水電解質二次電池を採用することにより、前記課題を解決することができることが判明した。
なお、単電池を満充電電圧まで充電した際の充電容量(電気量)を1時間で割った電流値を1Cとした。
On the other hand, the charging voltage of the nonaqueous electrolyte secondary battery pack is set in advance, and the charging voltage is 0.8V higher than the half of the charging voltage of the set nonaqueous electrolyte secondary battery pack. 0.1 C discharge capacity at 25 ° C. when charging each battery at a rate of 25 ° C. and 0.1 C, and 0.1 C at 25 ° C. when charging at a voltage half the value of the set charging voltage It has been found that the above problem can be solved by employing a non-aqueous electrolyte secondary battery having a capacity change rate of 90% or more in discharge capacity.
In addition, the electric current value which divided the charging capacity (electric amount) at the time of charging a cell to a full charge voltage by 1 hour was set to 1C.

すなわち、非水電解質電池の充電電圧を4.2Vに設定した場合、この4.2Vの半分の電圧、つまり2.1Vでの充電を0.1Cレートに行い、0.1Cレートでの放電容量を測定した値をC2とした時、0.8V高い電圧、つまり2.9Vでの充電を25℃、0.1Cレートにて行い、0.1Cレートでの放電容量をC1とした時、C2/C1×100(%)を算出し、90%以上になる電池を選び、電池パックとする。これにより、前記課題が解決された電池パックを得ることができる。   That is, when the charging voltage of the non-aqueous electrolyte battery is set to 4.2 V, charging at a voltage half that of 4.2 V, that is, 2.1 V, is performed at a 0.1 C rate, and the discharging capacity at a 0.1 C rate. When the measured value of C2 is C2, charging at a high voltage of 0.8V, that is, 2.9V, is performed at 25 ° C. and a 0.1C rate, and when the discharge capacity at the 0.1C rate is C1, C2 / C1 × 100 (%) is calculated, and a battery that is 90% or more is selected to obtain a battery pack. Thereby, the battery pack in which the above-mentioned subject was solved can be obtained.

上記本実施の形態で、単一の非水電解質二次電池の評価において、充電電圧の設定値の半分の電圧より0.8V高い電圧で充電した場合と、充電電圧の設定値の半分の電圧で充電した場合の放電容量を比較したが、これは以下の理由による。
充電電圧の設定値の半分の電圧より0.8Vを超える電圧で充電した場合、電池内の電解液分解などの副反応が顕著に起こりやすい。このような場合、見かけ上、充電容量が増大、その一方で劣化などによる放電容量が減少するおそれがあり、本発明を達成させるための正確な容量比率の算出(C2/C1×100(%))が困難になる。
In the present embodiment, in the evaluation of a single non-aqueous electrolyte secondary battery, when charging at a voltage higher by 0.8V than the voltage half of the set value of the charging voltage, and voltage half of the set value of the charging voltage The discharge capacities when charged with the above were compared for the following reason.
When the battery is charged at a voltage exceeding 0.8 V from half the set value of the charging voltage, a side reaction such as decomposition of the electrolyte in the battery tends to occur remarkably. In such a case, the charge capacity apparently increases, while the discharge capacity due to deterioration or the like may decrease, and an accurate capacity ratio calculation for achieving the present invention (C2 / C1 × 100 (%)) ) Becomes difficult.

また、充電電圧の設定値は、外部装置の充電電圧により決定することができる。好ましい充電電圧の設定値としては、非水電解質二次電池パックのSOC50%における電圧よりも0.8V高い電圧値である。0.8Vを超えると非水電解質二次電池の劣化を招きやすい。
The set value of the charging voltage can be determined by the charging voltage of the external device. A preferable setting value of the charging voltage is a voltage value that is 0.8V higher than the voltage at 50% SOC of the nonaqueous electrolyte secondary battery pack. If it exceeds 0.8 V, the nonaqueous electrolyte secondary battery is likely to be deteriorated.

以下、本実施の形態を、代表的な構成例を用いてさらに詳しく説明する。   Hereinafter, the present embodiment will be described in more detail using a typical configuration example.

例えば正極がLiFePO、負極がLiTi12から構成される場合、25℃におけるSOC50%の開回路電圧は約1.8Vを示した。つまり2直列の電池パックの場合、約3.6Vの電圧を示した。この非水電解質二次電池の電池パックにおける充電電圧を4.2Vに設定した。 For example, when the positive electrode is composed of Li x FePO 4 and the negative electrode is composed of Li 4 Ti 5 O 12 , the open circuit voltage of SOC 50% at 25 ° C. is about 1.8V. That is, in the case of two series battery packs, a voltage of about 3.6 V was shown. The charging voltage in the battery pack of this nonaqueous electrolyte secondary battery was set to 4.2V.

このような非水電解質二次電池を2直列にし、電池パックを作製した。この時の充電挙動を図2の(a)に示した。このように正極LiFePO、負極LiTi12から構成される電池は、約1.9Vに平坦な領域を持ち、充電末期あるいは充電初期は非常に急峻に電圧が変化する特徴を持ちやすい。図2の(b)に、先ほどの図1の(b)で示したのと同様に、この2直列の電池パックがパック内部の温度ムラ等による自己放電ばらつき、劣化等により、電池パック内の電池AがSOC80%、電池BがSOC50%を示した電池パックの充電曲線の例を示した。このような電池パックに4.2Vの充電電圧にて充電を行うと、充電末期に電池Bの電圧はほぼ一定状態であるが、電池Aは急激に電圧が上昇しはじめる。電池Aが実質SOC100%になる状態では電池Aの電圧が2.1V付近に達しているのに対し、電池AはSOC70%の状態であるものの電圧はSOC50%とほぼ等しく、電池パックの電圧は4Vにしか達していない。電池パックの充電電圧が4.2Vに設定されているため、電池Bは事実上過充電状態に陥る。 Two such nonaqueous electrolyte secondary batteries were connected in series to produce a battery pack. The charging behavior at this time is shown in FIG. As described above, the battery composed of the positive electrode Li x FePO 4 and the negative electrode Li 4 Ti 5 O 12 has a flat region of about 1.9 V, and the voltage changes very steeply at the end of charging or at the initial stage of charging. Easy to hold. In FIG. 2 (b), similar to the case shown in FIG. 1 (b), the two-series battery pack has a self-discharge variation or deterioration due to temperature unevenness inside the pack. An example of a charging curve of a battery pack in which the battery A shows SOC 80% and the battery B shows SOC 50% is shown. When such a battery pack is charged at a charging voltage of 4.2 V, the voltage of the battery B is almost constant at the end of charging, but the voltage of the battery A starts to increase rapidly. In the state where the battery A is substantially SOC 100%, the voltage of the battery A reaches near 2.1V, whereas the voltage of the battery A is 70% SOC, but the voltage is almost equal to the SOC 50%, and the voltage of the battery pack is It has only reached 4V. Since the charging voltage of the battery pack is set to 4.2 V, the battery B is practically overcharged.

しかしながら、本発明の電池は、上述の例にあわせると、充電電圧が2.1Vの時の容量と0.8V高い2.9Vの時の容量との比率が90%以上である。つまり、本発明の非水電解質二次電池は、充電末期に電位が急上昇する特徴があり、この比率が短ければ短いほど、充電末期の副反応は起こりにくい。事実、電池AはSOC100%を越えたあたりから急峻に電圧が上昇し、電池Aが1.9Vであったとしても、電池Bの電圧はすぐに2.3Vに達するため、電池劣化も起こりにくく、安全性が損なわれる危険性がはるかに少なくなる。従って、2直列に電池を接続する場合、電池電圧を管理する回路が省略できる。   However, in the battery of the present invention, the ratio between the capacity when the charging voltage is 2.1 V and the capacity when 2.9 V, which is higher by 0.8 V, is 90% or more in accordance with the above-described example. That is, the nonaqueous electrolyte secondary battery of the present invention has a feature that the potential rapidly rises at the end of charging, and the shorter the ratio, the less likely the side reaction occurs at the end of charging. In fact, the voltage of the battery A suddenly increases when the SOC exceeds 100%, and even if the voltage of the battery A is 1.9V, the voltage of the battery B quickly reaches 2.3V. There is much less risk of sacrificing safety. Therefore, when two batteries are connected in series, a circuit for managing the battery voltage can be omitted.

このように、本発明では充電末期にて充電曲線が急峻であるほど、各々の電池のSOCがパック内部のバラツキにより異なる値を示したとしても、電池パック全体の安全性は保たれる。従って、本発明の請求項1のように、構成する個々の電池を25℃、0.1Cレートにて充電した場合、非水電解質二次電池パックの充電電圧の半分の値にて充電した場合の0.1C放電容量と充電電圧の半分の値より0.8V高い電圧にて充電した場合の25℃における0.1C放電容量の容量変化率が、90%以上の場合は、充電末期の電位上昇が急激に変化するために、電池パック全体の安全性が保たれる。一方、90%未満の場合は、電圧変化がゆるやかになる、つまり、個々の電池が過充電にさらされる時間がながくなるため、電池が劣化しやすくなるばかりか、安全性が損なわれる危険性があるため、各々の電池電圧を監視する仕組みが必須となる。   As described above, in the present invention, the steeper charging curve at the end of charging allows the safety of the entire battery pack to be maintained even if the SOC of each battery shows a different value due to variations in the pack. Therefore, as in claim 1 of the present invention, when each battery constituting the battery is charged at 25 ° C. and a 0.1 C rate, when charged at a value half the charge voltage of the non-aqueous electrolyte secondary battery pack When the capacity change rate of the 0.1 C discharge capacity at 25 ° C. is 90% or more when charged at a voltage 0.8 V higher than the half value of the 0.1 C discharge capacity and the charging voltage, the potential at the end of charging is Since the rise changes rapidly, the safety of the entire battery pack is maintained. On the other hand, if it is less than 90%, the voltage change becomes gradual, that is, the time for each battery to be overcharged is reduced, so that not only the battery is likely to deteriorate but also there is a risk that the safety is impaired. For this reason, a mechanism for monitoring each battery voltage is essential.

上記知見に基づいて本発明者らが検討した結果、本実施の形態の非水電解質二次電池の正負極材料として、それぞれ、オリビン型のリチウムリン酸鉄(LiFePO)及び、スピネル型チタン酸リチウム(LiTi12)を用い、このリチウムイオン二次電池を2直列ずつ、直列接続を行うことにより、電圧監視手段を従来の半分に減らしても、高い安全性を維持しつつ、優れた電池性能を維持できることを見出した。 As a result of the study by the present inventors based on the above findings, olivine type lithium iron phosphate (Li x FePO 4 ) and spinel type are used as positive and negative electrode materials of the nonaqueous electrolyte secondary battery of the present embodiment, respectively. By using lithium titanate (Li 4 Ti 5 O 12 ) and connecting these lithium ion secondary batteries in series in series, the safety is maintained even if the voltage monitoring means is reduced to half that of the prior art. The present inventors have found that excellent battery performance can be maintained.

これらの材料は、充電末期の電圧変化が急峻である特徴を備えており、本実施の形態の材料として適している。この2つの材料は、反応全体の殆どが、放電状態の結晶相と充電状態の結晶相の二相共存反応による充放電機構にて進行するため、充電中の平坦性が高く、かつ充電末期の電圧変化が急峻となるため、本発明の趣旨にもっとも好適である。
しかしながら、この材料の組合せは、あくまでも、上記実施の形態の一例であり、上記容量変化率の特徴を備えている材料であれば、他の材料であってもこの発明において使用することができる。
These materials have a feature that the voltage change at the end of charging is steep, and are suitable as materials of the present embodiment. In these two materials, most of the entire reaction proceeds by a charge / discharge mechanism based on a two-phase coexistence reaction between a crystal phase in a discharged state and a crystal phase in a charged state, and thus the flatness during charging is high and the end of charging is in progress. Since the voltage change becomes steep, it is most suitable for the purpose of the present invention.
However, this combination of materials is merely an example of the above-described embodiment, and any other material can be used in the present invention as long as the material has the characteristics of the capacity change rate.

本実施の形態の電池パックにおいて用いることのできる非水電解質電池は、非水電解質と、正極と、本発明の非水電解質電池用負極材料を負極活物質として含む負極とを具備するものである。   The nonaqueous electrolyte battery that can be used in the battery pack of the present embodiment includes a nonaqueous electrolyte, a positive electrode, and a negative electrode containing the negative electrode material for a nonaqueous electrolyte battery of the present invention as a negative electrode active material. .

1)正極
本実施の形態の非水電解質二次電池パックで用いる正極材料としては、平均粒径が0.05μm以上25μm以下のオリビン型のリチウム燐酸鉄が好ましい。このほかにも、スピネル型のリチウムマンガン複合酸化物(例えば、LiMn)、層状構造を持つリチウムニッケルマンガンコバルト複合酸化物(例えばLiNiMnCo;x+y+z=1)のような化合物を用いることができる。
1) Positive Electrode As a positive electrode material used in the nonaqueous electrolyte secondary battery pack of the present embodiment, olivine type lithium iron phosphate having an average particle diameter of 0.05 μm or more and 25 μm or less is preferable. In addition to this, the spinel-type lithium-manganese composite oxide (e.g., LiMn 2 O 4), lithium nickel manganese cobalt composite oxide having a layered structure (e.g., LiNi x Mn y Co z O 2 ; x + y + z = 1) as Compounds can be used.

充電末期の電圧変化を急峻にするためには、正極のオリビン型のリチウム燐酸鉄の平均粒径を制御する必要がある。0.05μm未満の場合、ナノ粒子化による表面エネルギーの影響にて、リチウム燐酸鉄の充放電曲線が全体的になだらかなになるため、充電末期の電圧変化が急峻にはならない。一方、25μmを超えると、リチウム燐酸鉄のレート性能が悪化しやすい。   In order to make the voltage change at the end of charging steep, it is necessary to control the average particle diameter of the olivine-type lithium iron phosphate of the positive electrode. When the thickness is less than 0.05 μm, the charging / discharging curve of lithium iron phosphate becomes gentle as a whole due to the influence of the surface energy due to the formation of nanoparticles, so that the voltage change at the end of charging does not become steep. On the other hand, if it exceeds 25 μm, the rate performance of lithium iron phosphate tends to deteriorate.

正極は、LiFePOを正極活物質とし、正極活物質、導電剤および結着剤を適当な溶媒に懸濁させ、この懸濁物をアルミニウム箔などの集電体に塗布し、乾燥し、プレスして帯状電極にすることにより作製される。導電剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、エチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが挙げられる。 The positive electrode uses Li x FePO 4 as the positive electrode active material, the positive electrode active material, the conductive agent and the binder are suspended in an appropriate solvent, and the suspension is applied to a current collector such as an aluminum foil and dried. It is manufactured by pressing into a strip electrode. Examples of the conductive agent include acetylene black, carbon black, and graphite. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, ethylene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like.

正極活物質、導電剤及び結着剤の配合比は、正極活物質80〜95質量%、導電剤3〜20質量%、結着剤2〜7質量%の範囲にすることが好ましい。   The compounding ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 95% by mass of the positive electrode active material, 3 to 20% by mass of the conductive agent, and 2 to 7% by mass of the binder.

2)負極
本実施の形態の非水電解質二次電池パックで用いる負極材料としては、平均粒径が0.1μm以上50μm以下であるスピネル型チタン酸リチウムが好ましい。
2) Negative electrode As the negative electrode material used in the nonaqueous electrolyte secondary battery pack of the present embodiment, spinel type lithium titanate having an average particle size of 0.1 μm or more and 50 μm or less is preferable.

充電末期の電圧変化を急峻にするためには、負極のスピネル型のチタン酸リチウムの平均粒径を制御する必要がある。0.1μm未満の場合、ナノ粒子化による表面エネルギーの影響にて、リチウム燐酸鉄の充放電曲線が全体的になだらかなになるため、充電末期の電圧変化が急峻にはならない。一方50μmを超えると、リチウム燐酸鉄のレート性能が悪化しやすい。   In order to make the voltage change at the end of charging steep, it is necessary to control the average particle size of the negative spinel type lithium titanate. When the thickness is less than 0.1 μm, the charging / discharging curve of lithium iron phosphate becomes smooth as a whole due to the influence of the surface energy due to the formation of nanoparticles, so that the voltage change at the end of charging does not become steep. On the other hand, if it exceeds 50 μm, the rate performance of lithium iron phosphate tends to deteriorate.

負極にはチタン酸リチウムを用いる。負極電極の作製には、本発明の非水電解質電池用負極材料を含むチタン酸リチウム、導電剤及び結着剤からなる負極合剤を適当な溶媒に懸濁して混合し、塗液としたものを集電体の片面もしくは両面に塗布し、乾燥することにより作製される。   Lithium titanate is used for the negative electrode. For the production of the negative electrode, a negative electrode mixture composed of lithium titanate containing the negative electrode material for the nonaqueous electrolyte battery of the present invention, a conductive agent and a binder is suspended in an appropriate solvent and mixed to form a coating solution Is applied to one or both sides of the current collector and dried.

さらに、負極には使用される導電剤としては、通常炭素材料が使用される。前述した負極活物質に用いる炭素材料として、アルカリ金属の吸蔵性と導電性との両特性の高いものがあれば、負極活物質として用いる前述の炭素材料を導電剤と兼用させることが可能であるが、メソフェーズピッチカーボンファイバーなどの炭素吸蔵性の高い黒鉛のみでは導電性が低くなるため、導電剤として使用される炭素材料としては、例えばアセチレンブラック、カーボンブラック等を負極に使用することが好ましい。   Further, as the conductive agent used for the negative electrode, a carbon material is usually used. If the carbon material used for the negative electrode active material described above has high alkali metal occlusion and conductivity, the carbon material used as the negative electrode active material can also be used as a conductive agent. However, since only the graphite having high carbon occlusion such as mesophase pitch carbon fiber has low conductivity, it is preferable to use, for example, acetylene black, carbon black or the like as the negative electrode as the carbon material used as the conductive agent.

結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、エチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが挙げられる。   Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, ethylene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like.

前記負極活物質、導電剤及び結着剤の配合比は、負極活物質70〜95質量%、導電剤0〜25質量%、結着剤2〜10質量%の範囲にすることが好ましい。   The compounding ratio of the negative electrode active material, the conductive agent and the binder is preferably in the range of 70 to 95% by mass of the negative electrode active material, 0 to 25% by mass of the conductive agent, and 2 to 10% by mass of the binder.

3)非水電解質
前記非水電解質は、非水溶媒に電解質を溶解することにより調製される液体状非水電解質(非水電解液)、高分子材料に前記非水溶媒と前記電解質を含有した高分子ゲル状電解質、高分子材料に前記電解質を含有した高分子固体電解質、リチウムイオン伝導性を有する無機固体電解質が挙げられる。
3) Non-aqueous electrolyte The non-aqueous electrolyte contains a liquid non-aqueous electrolyte (non-aqueous electrolyte) prepared by dissolving an electrolyte in a non-aqueous solvent, and the non-aqueous solvent and the electrolyte in a polymer material. Examples thereof include a polymer gel electrolyte, a polymer solid electrolyte containing the electrolyte in a polymer material, and an inorganic solid electrolyte having lithium ion conductivity.

液状非水電解質に用いられる非水溶媒としては、リチウム電池で公知の非水溶媒を用いることができ、例えば、エチレンカーボネート(EC)やプロピレンカーボネート(PC)などの環状カーボネートや、環状カーボネートと環状カーボネートより低粘度の非水溶媒(以下第2の溶媒)との混合溶媒を主体とする非水溶媒などを挙げることができる。   As the non-aqueous solvent used in the liquid non-aqueous electrolyte, a known non-aqueous solvent can be used in a lithium battery. For example, cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), cyclic carbonates and cyclic Examples thereof include a nonaqueous solvent mainly composed of a mixed solvent with a nonaqueous solvent (hereinafter referred to as a second solvent) having a viscosity lower than that of carbonate.

第2の溶媒としては、例えば、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネート、γ−ブチロラクトン、アセトニトリル、プロピオン酸メチル、プロピオン酸エチル、環状エーテルとしてテトラヒドロフラン、2−メチルテトラヒドロフランなど、鎖状エーテルとしてジメトキシエタン、ジエトキシエタンなどが挙げられる。   Examples of the second solvent include chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, γ-butyrolactone, acetonitrile, methyl propionate, ethyl propionate, cyclic ether such as tetrahydrofuran, 2-methyltetrahydrofuran, and the like. Examples of the ethers include dimethoxyethane and diethoxyethane.

電解質としては、アルカリ塩が挙げられるが、とくにリチウム塩が挙げられる。リチウム塩として、六フッ化リン酸リチウム(LiPF)、四フッ化硼酸リチウム(LiBF)、六フッ化ヒ素リチウム(LiAsF)、過塩素酸リチウム(LiClO)、トリフルオロメタスルホン酸リチウム(LiCFSO)などが挙げられる。特に、六フッ化リン酸リチウム(LiPF)、四フッ化硼酸リチウム(LiBF)が好ましい。前記電解質の前記非水溶媒に対する溶解量は、0.5〜2モル/Lとすることが好ましい。 Examples of the electrolyte include alkali salts, and particularly lithium salts. As lithium salts, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), lithium perchlorate (LiClO 4 ), lithium trifluorometasulfonate (LiCF 3 SO 3 ) and the like. In particular, lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ) are preferable. The amount of the electrolyte dissolved in the non-aqueous solvent is preferably 0.5 to 2 mol / L.

ゲル状電解質として前記溶媒と前記電解質を高分子材料に溶解しゲル状にしたもので、高分子材料としてはポリアクリロニトリル、ポリアクリレート、ポリフッ化ビニリデン(PVdF)、ポリエチレンオキシド(PECO)などの単量体の重合体または他の単量体との共重合体が挙げられる。   A gel electrolyte is obtained by dissolving the solvent and the electrolyte in a polymer material to form a gel. The polymer material is a single amount of polyacrylonitrile, polyacrylate, polyvinylidene fluoride (PVdF), polyethylene oxide (PECO), or the like. And polymers with other monomers.

固体電解質としては、前記電解質を高分子材料に溶解し、固体化したものである。高分子材料としてはポリアクリロニトリル、ポリフッ化ビニリデン(PVdF)、ポリエチレンオキシド(PEO)などの単量体の重合体または他の単量体との共重合体が挙げられる。また、無機固体電解質として、リチウムを含有したセラミック材料が挙げられる。なかでもLiN、LiPO−LiS−SiSガラスなどが挙げられる。 As the solid electrolyte, the electrolyte is dissolved in a polymer material and solidified. Examples of the polymer material include polymers of monomers such as polyacrylonitrile, polyvinylidene fluoride (PVdF), polyethylene oxide (PEO), and copolymers with other monomers. Moreover, the ceramic material containing lithium is mentioned as an inorganic solid electrolyte. Of these Li 3 N, etc. Li 3 PO 4 -Li 2 S- SiS 2 glass.

正極と負極の間には、セパレータを配置することができる。また、このセパレータと併せてゲル状もしくは固体の非水電解質層を用いても良いし、セパレータの代わりにゲル状もしくは固体の非水電解質層を用いることも可能である。セパレータは、正極および負極が接触するのを防止するためのものであり、絶縁性材料で構成される。さらに、正極および負極の間を電解質が移動可能な形状のものが使用される。具体的には、例えば合成樹脂製不織布、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルムあるいは、セルロース系のセパレータが可能である。   A separator can be disposed between the positive electrode and the negative electrode. In addition, a gel-like or solid nonaqueous electrolyte layer may be used in combination with this separator, or a gel-like or solid nonaqueous electrolyte layer may be used instead of the separator. The separator is for preventing contact between the positive electrode and the negative electrode, and is made of an insulating material. Furthermore, a shape in which the electrolyte can move between the positive electrode and the negative electrode is used. Specifically, for example, a synthetic resin nonwoven fabric, a polyethylene porous film, a polypropylene porous film, or a cellulose-based separator can be used.

非水電解質電池の一実施形態である薄型非水電解質二次電池の部分切欠斜視図を示す。扁平型の電極群11は、正極12と負極13をその間にセパレータ14を介在させて扁平形状にした構造を有する。帯状の正極端子15は、正極12に電気的に接続されている。帯状の負極端子16は、負極13に電気的に接続されている。電極群11は、ラミネートフィルム製外装袋17内に正極端子15および負極端子16の端部を外装袋17から延出させた状態で収納されている。非水電解液は、ラミネートフィルム製外装袋17内に収容されている。ラミネートフィルム製外装袋17は、その開口部を正極端子15および負極端子16と共にヒートシールにより電極群11および非水電解液が封止されている。

The partial notch perspective view of the thin nonaqueous electrolyte secondary battery which is one Embodiment of a nonaqueous electrolyte battery is shown. The flat electrode group 11 has a structure in which a positive electrode 12 and a negative electrode 13 are flattened with a separator 14 interposed therebetween. The strip-like positive electrode terminal 15 is electrically connected to the positive electrode 12. The strip-like negative electrode terminal 16 is electrically connected to the negative electrode 13. The electrode group 11 is housed in a laminated film-made outer bag 17 with the end portions of the positive electrode terminal 15 and the negative electrode terminal 16 extending from the outer bag 17. The nonaqueous electrolytic solution is accommodated in the laminated film outer bag 17. The laminated film outer bag 17 has the opening 11 sealed with the electrode group 11 and the non-aqueous electrolyte by heat sealing together with the positive electrode terminal 15 and the negative electrode terminal 16.

以下、本発明の実施例について説明する。
(実施例1)
<正極の作製>
平均粒径0.5μmのLiFePO粉末を正極活物質とし、アセチレンブラック、グラファイト、ポリフッ化ビニリデン(PVdF)を、100:8:8:6の割合(いずれも質量%)にてミキサーを用いて混合した。さらにN−メチルピロリドンを加えて混合し、厚さ15μmのアルミニウム箔の集電体に塗布し、乾燥後、プレスすることにより電極密度2.0〜3.5g/cmの正極を作製した。
Examples of the present invention will be described below.
Example 1
<Preparation of positive electrode>
Using a Li x FePO 4 powder having an average particle size of 0.5 μm as a positive electrode active material, acetylene black, graphite, and polyvinylidene fluoride (PVdF) were mixed at a ratio of 100: 8: 8: 6 (both mass%). Used and mixed. Further, N-methylpyrrolidone was added and mixed, applied to a current collector of aluminum foil having a thickness of 15 μm, dried and pressed to prepare a positive electrode having an electrode density of 2.0 to 3.5 g / cm 3 .

<負極の作製>
負極活物質としては、平均粒径1.2μmのスピネル型リチウムチタン酸化物に、負極活物質材料の粉末85質量%に導電剤としてのグラファイト5質量%と、同じく導電剤としてのアセチレンブラック3質量%と、PVdF7質量%と、NMPとを加えて混合し、厚さ11μmの銅箔からなる集電体に塗布し、乾燥し、プレスすることにより負極を作製した。
<Production of negative electrode>
As the negative electrode active material, spinel-type lithium titanium oxide having an average particle size of 1.2 μm, 85% by mass of the negative electrode active material material powder, 5% by mass of graphite as a conductive agent, and 3% of acetylene black as a conductive agent are also used. %, PVdF 7% by mass, and NMP were added and mixed, applied to a current collector made of a copper foil having a thickness of 11 μm, dried, and pressed to prepare a negative electrode.

<電極群の作製>
前記正極、ポリエチレン製多孔質フィルム及びセルロースからなるセパレータ、前記負極、及び前記セパレータをそれぞれこの順序で積層した後、前記負極が最外周に位置するように渦巻き状に捲回して電極群を作製した。
<Production of electrode group>
After laminating the positive electrode, the polyethylene porous film and the separator made of cellulose, the negative electrode, and the separator in this order, they were wound in a spiral shape so that the negative electrode was located on the outermost periphery, thereby producing an electrode group. .

<非水電解液の調製>
さらに、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)の混合溶媒に(混合体積比率1:2)に六フッ化リン酸リチウム(LiPF)を1.0モル/L溶解して非水電解液を調製した。
<Preparation of non-aqueous electrolyte>
Furthermore, 1.0 mol / L of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (mixing volume ratio 1: 2) to perform non-aqueous electrolysis. A liquid was prepared.

前記電極群及び前記電解液をラミネートフィルム内にそれぞれ収納して、容量3Ahの薄型非水電解質二次電池を組み立てた。   The electrode group and the electrolyte solution were respectively stored in a laminate film, and a thin nonaqueous electrolyte secondary battery having a capacity of 3 Ah was assembled.

<電池パックの作製>
上述のように作製した円筒形非水電解質二次電池を直列に接続するために、2つの電池の正極と負極の両端を厚さ1mm、幅1cmの銅製のリードと抵抗溶接し、2直列電池パックを作製した。今回は、発明の効果を検証するために、それぞれの電池の正極端子と負極端子にリード線を繋げ、それぞれの電圧が測定できるようにした。
<Production of battery pack>
In order to connect the cylindrical non-aqueous electrolyte secondary batteries produced as described above in series, both ends of the positive and negative electrodes of the two batteries were resistance-welded to a copper lead having a thickness of 1 mm and a width of 1 cm to form a two-series battery. A pack was made. This time, in order to verify the effect of the invention, lead wires were connected to the positive terminal and the negative terminal of each battery so that each voltage could be measured.

<個々の電池の容量確認>
実施例1では、2直列電池の充電電圧の設定値を4.2Vとした。この設定値に基づき、25℃環境下にて、その設定値の半分(すなわち2.1V)の+0.8V(すなわち2.9V)にて0.1Cレートにて充電し、0.1Cレートにて放電した容量(C1)と、充電電圧の設定値の半分(すなわち2.1V)にて0.1Cレートにて充電し、0.1Cレートにて放電した容量(C2)の比率、C2/C1×100(%)を確認したところ、96%であった。
<Confirmation of individual battery capacity>
In Example 1, the setting value of the charging voltage of the 2-series battery was set to 4.2V. Based on this set value, in a 25 ° C environment, the battery is charged at a 0.1 C rate at +0.8 V (ie, 2.9 V), which is half the set value (ie, 2.1 V), The ratio between the discharged capacity (C1) and the capacity (C2) discharged at the 0.1C rate at half the charging voltage setting value (ie 2.1V) and discharged at the 0.1C rate, C2 / When C1 × 100 (%) was confirmed, it was 96%.

(実施例2〜8)
表1に示すような平均粒子径を持つ正極材料と負極材料を用いた他は、実施例1と同様な方法にて、電池ならびに電池パックを作製した。作製した電池パックの充電電圧を表1に従って設定した。さらに、個々の電池容量と充電電圧の関係を測定した結果、上述のC2/C1×100(%)の値についても表1にまとめた。

Figure 2012043683
(Examples 2 to 8)
A battery and a battery pack were produced in the same manner as in Example 1 except that a positive electrode material and a negative electrode material having an average particle size as shown in Table 1 were used. The charging voltage of the produced battery pack was set according to Table 1. Furthermore, as a result of measuring the relationship between each battery capacity and the charging voltage, the above-mentioned value of C2 / C1 × 100 (%) is also summarized in Table 1.
Figure 2012043683

(比較例1)
正極にコバルト酸リチウム(LiCoO)、負極にグラファイトを用いたこと以外は、実施例1と同様に電池ならびに電池パックを作製した。
(Comparative Example 1)
A battery and a battery pack were produced in the same manner as in Example 1 except that lithium cobalt oxide (LiCoO 2 ) was used for the positive electrode and graphite was used for the negative electrode.

<実験>
電池パック内を構成する個々の電池のSOCばらつき現象は、本来、長期の保存による自己放電や設置された温度ムラにより生じやすい。しかしながら本測定においては、加速試験のために、実施例1〜8、および比較例1の電池パックを一度ばらして、それぞれ構成する電池、電池AがSOC80%、電池Bが50%になるように、意図的にSOCがばらついた状態の電池パックを構成した。
<Experiment>
The SOC variation phenomenon of individual batteries constituting the battery pack is inherently likely to occur due to self-discharge due to long-term storage and temperature unevenness in the installed battery. However, in this measurement, for the acceleration test, the battery packs of Examples 1 to 8 and Comparative Example 1 are separated once so that the constituent batteries, battery A, SOC 80% and battery B 50%. The battery pack in a state where the SOC was intentionally varied was configured.

その後、得られた電池パックを再び設定した充電電圧まで1Cレートにて充電した時の2つの電池の電圧を測定した結果を表2にまとめた。   Then, the result of having measured the voltage of two batteries when charging the obtained battery pack at the 1C rate to the charging voltage set again was put together in Table 2.

これらの電池を1Cレート、45℃環境下にて、充放電サイクル試験を行った。なお、放電カットオフ電圧は、設定充電電圧から2V低い電圧(つまり、4.2Vであれば1.2Vまで放電)とした。それぞれの電池パックを構成する電池の初回の厚さを測定し、500サイクル後の厚さを測定し、電池パック劣化の指標とした。その厚さ変化を表2に示す。

Figure 2012043683
These batteries were subjected to a charge / discharge cycle test in a 1C rate, 45 ° C. environment. The discharge cut-off voltage was set to a voltage 2V lower than the set charge voltage (that is, discharging to 1.2V if 4.2V). The initial thickness of the battery constituting each battery pack was measured, and the thickness after 500 cycles was measured and used as an indicator of battery pack deterioration. The thickness change is shown in Table 2.
Figure 2012043683

電池Aは総じて電池Bに比べると総じて膨れやすいが、比較例1に比べると本発明の電池は殆ど膨れていないことが分かる。比較例1については、基準の電圧(つまりは電池B)以内の充放電では殆ど膨れていないのに対し、基準の電圧を大きく上回ると膨れが顕著に発生する。このような大きな膨れは、さらに時間が経過すると、膨れはより大きくなり、電池破裂につながる可能性がある。実施例と比較例の差は、すでに述べたように、SOCのズレにより、電池Aが過充電となるが、その過充電にさらされる時間が本発明よりも長くなるためであると考えられる。一方、本発明の実施例1〜8については、過充電になっても、その時間が非常に短いため、電圧上昇の影響を殆ど受けないためであると考えられる。   The battery A generally tends to swell compared to the battery B as a whole, but the battery of the present invention hardly swells compared to Comparative Example 1. As for Comparative Example 1, the charge / discharge within the reference voltage (that is, the battery B) hardly swells, but the swelling greatly occurs when the reference voltage is greatly exceeded. Such a large bulge becomes larger as time passes, which may lead to battery rupture. As described above, the difference between the example and the comparative example is considered to be because the battery A is overcharged due to the SOC shift, but the time of the overcharge is longer than that of the present invention. On the other hand, in Examples 1 to 8 of the present invention, it is considered that even when overcharging occurs, the time is very short, so that it is hardly affected by the voltage increase.

このように、本発明では、電池パック内の電池のSOCがずれたとしても、電池の安全性を損なうことがないため、電池パック作製時において、各々の電池の電圧監視する必要がないことが確認できた。   As described above, in the present invention, even if the SOC of the battery in the battery pack is deviated, the safety of the battery is not impaired. Therefore, it is not necessary to monitor the voltage of each battery when manufacturing the battery pack. It could be confirmed.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…電極群
12…正極
13…負極
14…セパレータ
15…正極端子
16…負極端子
17…外装袋

DESCRIPTION OF SYMBOLS 11 ... Electrode group 12 ... Positive electrode 13 ... Negative electrode 14 ... Separator 15 ... Positive electrode terminal 16 ... Negative electrode terminal 17 ... Exterior bag

Claims (4)

2個の非水電解質電池を直列に接続した電池パックにおいて、予め非水電解質二次電池パックの充電電圧を設定し、この設定した非水電解質二次電池パックの充電電圧の半分の値よりも0.8V高い充電電圧にて、構成する個々の電池を25℃、0.1Cレートにて充電した場合の25℃における0.1C放電容量と、前記設定した充電電圧の半分の値の電圧にて充電した場合の25℃における0.1C放電容量の容量変化率が、90%以上である非水電解質二次電池を採用することを特徴とする非水電解質二次電池パック。   In a battery pack in which two non-aqueous electrolyte batteries are connected in series, the charging voltage of the non-aqueous electrolyte secondary battery pack is set in advance, and is less than half of the charging voltage of the set non-aqueous electrolyte secondary battery pack. With a charging voltage higher by 0.8 V, the individual batteries constituting the battery are charged at a rate of 0.1 C at 25 ° C. when charged at a rate of 0.1 ° C. and a voltage half the value of the set charging voltage. A non-aqueous electrolyte secondary battery pack employing a non-aqueous electrolyte secondary battery having a capacity change rate of 0.1 C discharge capacity at 25 ° C. of 90% or more when charged in the above manner. 前記非水電解質二次電池の正極材料がオリビン型のリチウム燐酸鉄であり、前記非水電解質二次電池の負極材料がスピネル型リチウムチタン酸であることを特徴とする請求項1に記載の非水電解質二次電池パック。   2. The non-aqueous electrolyte secondary battery according to claim 1, wherein a positive electrode material of the non-aqueous electrolyte secondary battery is olivine type lithium iron phosphate and a negative electrode material of the non-aqueous electrolyte secondary battery is spinel type lithium titanate. Water electrolyte secondary battery pack. 前記オリビン型のリチウム燐酸鉄の平均粒径が、0.05μm以上25μm以下であることを特徴とする請求項2に記載の非水電解質二次電池パック。   3. The nonaqueous electrolyte secondary battery pack according to claim 2, wherein an average particle size of the olivine-type lithium iron phosphate is 0.05 μm or more and 25 μm or less. 前記スピネル型リチウムチタン酸の平均粒径が、0.1μm以上50μm以下であることを特徴とする請求項2に記載の非水電解質二次電池パック。   3. The nonaqueous electrolyte secondary battery pack according to claim 2, wherein an average particle size of the spinel type lithium titanic acid is 0.1 μm or more and 50 μm or less.
JP2010184798A 2010-08-20 2010-08-20 Non-aqueous electrolyte secondary battery pack Active JP5748972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010184798A JP5748972B2 (en) 2010-08-20 2010-08-20 Non-aqueous electrolyte secondary battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184798A JP5748972B2 (en) 2010-08-20 2010-08-20 Non-aqueous electrolyte secondary battery pack

Publications (2)

Publication Number Publication Date
JP2012043683A true JP2012043683A (en) 2012-03-01
JP5748972B2 JP5748972B2 (en) 2015-07-15

Family

ID=45899753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184798A Active JP5748972B2 (en) 2010-08-20 2010-08-20 Non-aqueous electrolyte secondary battery pack

Country Status (1)

Country Link
JP (1) JP5748972B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189082A1 (en) * 2013-05-22 2014-11-27 石原産業株式会社 Method for manufacturing non-aqueous electrolyte secondary battery
US20150086811A1 (en) * 2013-09-20 2015-03-26 Kabushiki Kaisha Toshiba Battery module, battery pack and vehicle
US11654882B2 (en) 2020-12-10 2023-05-23 Hyundai Motor Company Device for controlling driving of an electric four-wheel drive vehicle at the time of shift

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822841A (en) * 1994-04-21 1996-01-23 Haibaru:Kk Secondary battery
JP2009231245A (en) * 2008-03-25 2009-10-08 Toshiba Corp Nonaqueous electrolyte battery
JP2009245808A (en) * 2008-03-31 2009-10-22 Toyota Central R&D Labs Inc Lithium ion secondary battery, and power source for electric vehicle
JP2010147030A (en) * 2006-03-30 2010-07-01 Toshiba Corp Battery pack, charging type cleaner, and battery-assisted bicycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822841A (en) * 1994-04-21 1996-01-23 Haibaru:Kk Secondary battery
JP2010147030A (en) * 2006-03-30 2010-07-01 Toshiba Corp Battery pack, charging type cleaner, and battery-assisted bicycle
JP2009231245A (en) * 2008-03-25 2009-10-08 Toshiba Corp Nonaqueous electrolyte battery
JP2009245808A (en) * 2008-03-31 2009-10-22 Toyota Central R&D Labs Inc Lithium ion secondary battery, and power source for electric vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189082A1 (en) * 2013-05-22 2014-11-27 石原産業株式会社 Method for manufacturing non-aqueous electrolyte secondary battery
JPWO2014189082A1 (en) * 2013-05-22 2017-02-23 石原産業株式会社 Method for producing non-aqueous electrolyte secondary battery
US20150086811A1 (en) * 2013-09-20 2015-03-26 Kabushiki Kaisha Toshiba Battery module, battery pack and vehicle
JP2015060829A (en) * 2013-09-20 2015-03-30 株式会社東芝 Assembled battery, battery pack and automobile
EP2851234A3 (en) * 2013-09-20 2015-06-24 Kabushiki Kaisha Toshiba Battery module, battery pack and vehicle
US11654882B2 (en) 2020-12-10 2023-05-23 Hyundai Motor Company Device for controlling driving of an electric four-wheel drive vehicle at the time of shift

Also Published As

Publication number Publication date
JP5748972B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5070753B2 (en) battery
JP5671774B2 (en) Lithium ion secondary battery
WO2009157507A1 (en) Lithium ion secondary cell
US9515298B2 (en) Nonaqueous electrolyte battery and battery pack
JP6305263B2 (en) Non-aqueous electrolyte battery, battery pack, battery pack and car
JP3705728B2 (en) Non-aqueous electrolyte secondary battery
CN102308424B (en) Non-aqueous electrolyte secondary battery, battery pack, and automobile
KR20070100957A (en) Lithium-ion secondary battery
JP6056125B2 (en) Battery pack and power storage device
KR102217574B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP5412843B2 (en) battery
EP3279148A1 (en) Lithium cobalt composite oxide for lithium secondary battery and lithium secondary battery including positive electrode including the same
WO2016163282A1 (en) Lithium ion secondary battery
KR20160134808A (en) Nonaqueous electrolyte secondary battery
JP2008041504A (en) Nonaqueous electrolyte battery
US10637048B2 (en) Silicon anode materials
CN109565029B (en) Method for manufacturing long-life electrode of secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP4715848B2 (en) battery
US9991563B2 (en) Energy storage device and energy storage apparatus
JP2014127333A (en) Positive electrode collector foil of lithium ion secondary battery, and lithium ion secondary battery
JP2009134970A (en) Nonaqueous electrolytic battery
JP2008103311A (en) Battery
JP5748972B2 (en) Non-aqueous electrolyte secondary battery pack
KR101858334B1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150513

R151 Written notification of patent or utility model registration

Ref document number: 5748972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151