JP2012042791A - Optical system and optical device having the same - Google Patents

Optical system and optical device having the same Download PDF

Info

Publication number
JP2012042791A
JP2012042791A JP2010184919A JP2010184919A JP2012042791A JP 2012042791 A JP2012042791 A JP 2012042791A JP 2010184919 A JP2010184919 A JP 2010184919A JP 2010184919 A JP2010184919 A JP 2010184919A JP 2012042791 A JP2012042791 A JP 2012042791A
Authority
JP
Japan
Prior art keywords
lens
optical system
cemented
refractive power
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010184919A
Other languages
Japanese (ja)
Other versions
JP5709433B2 (en
JP2012042791A5 (en
Inventor
Shigenobu Sugita
茂宣 杉田
Tetsuichiro Okumura
哲一朗 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010184919A priority Critical patent/JP5709433B2/en
Publication of JP2012042791A publication Critical patent/JP2012042791A/en
Publication of JP2012042791A5 publication Critical patent/JP2012042791A5/ja
Application granted granted Critical
Publication of JP5709433B2 publication Critical patent/JP5709433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lens Barrels (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical system capable of easily obtaining high optical performance by preventing unnecessary stress from being added to a cemented lens when the lens is held in a lens holding frame, and reducing the occurrence of double refraction of a material due to the stress.SOLUTION: In an optical system including a cemented lens, an image side lens of the cemented lens has an outer diameter larger than that of an object side lens, and a periphery of the image side lens has a positioning part for determining a position of the cemented lens in an optical axis direction. A distance L on the optical axis from an image surface to a lens surface closest to the object side in the cemented lens and a focal distance f of the optical system are appropriately set, respectively.

Description

本発明は、光学系及びそれを有する光学機器に関し、例えば一眼レフカメラ、デジタルスチルカメラ、デジタルビデオカメラ、TVカメラ等の撮影光学系に好適なものである。   The present invention relates to an optical system and an optical apparatus having the optical system, and is suitable for a photographing optical system such as a single-lens reflex camera, a digital still camera, a digital video camera, and a TV camera.

近年、デジタル一眼レフカメラ等の撮像装置では、撮像素子の多画素化が進んでおり、それに伴い撮影光学系に要求される光学性能も、より厳しいものになっている。そのため、光学設計性能をより向上するための手段や、レンズ保持精度を向上してレンズ位置誤差による性能劣化を軽減する方法が、従来より研究されている(特許文献1、2)。また、樹脂材料を用いたレンズに関しては、光弾性係数やヤング率が非常に大きいため、レンズを保持する際、保持機構からの応力により面の変形や複屈折が生じ、結像性能が劣化し易い。   In recent years, in an imaging apparatus such as a digital single-lens reflex camera, an increase in the number of pixels of an imaging element has progressed, and accordingly, optical performance required for a photographing optical system has become stricter. Therefore, means for further improving the optical design performance and a method for improving the lens holding accuracy and reducing the performance deterioration due to the lens position error have been studied (Patent Documents 1 and 2). Also, for lenses using resin materials, the photoelastic coefficient and Young's modulus are very large, so when holding the lens, deformation from the surface and birefringence occur due to stress from the holding mechanism, resulting in degradation of imaging performance. easy.

そのため、特許文献1や特許文献2では、樹脂レンズを保持する際に、レンズ有効部内に応力が加わることを回避する方法についても報告されている。ここで、遠距離の被写体を拡大実写する、長焦点距離の望遠レンズについて着目する。望遠レンズは、遠方の被写体をより細部まで高精細に拡大撮影することが求められるため、光学性能に対する要求が他の焦点距離域のレンズに比べて非常に高い。一方で、望遠レンズは携帯時や撮影時の利便性のために、小型軽量化も同時に強く要望されている。   For this reason, Patent Document 1 and Patent Document 2 also report a method for avoiding the application of stress in the lens effective portion when the resin lens is held. Here, attention is focused on a long focal length telephoto lens that magnifies and captures a subject at a long distance. Since a telephoto lens is required to magnify and photograph a distant subject with high definition to a finer detail, the demand for optical performance is much higher than lenses in other focal length regions. On the other hand, the telephoto lens is also strongly demanded to be small and light at the same time for convenience in carrying and photographing.

そこで従来より、小型軽量化と高性能を両立するレンズタイプとして、物体側より順に正の屈折力の第1レンズ群、負の屈折力の第2レンズ群の順に配置する所謂テレフォトタイプの光学系が数多く報告されている(特許文献3)。特許文献3では、テレ比(焦点距離に対する全長の比率)が1より小さく、かつその光学性能を回折限界に迫るまで向上した望遠レンズが開示されている。   Therefore, conventionally, as a lens type that achieves both small size and light weight and high performance, a so-called telephoto type optical system in which a first lens group having a positive refractive power and a second lens group having a negative refractive power are arranged in this order from the object side. Many systems have been reported (Patent Document 3). Patent Document 3 discloses a telephoto lens in which the tele ratio (ratio of the total length to the focal length) is smaller than 1, and the optical performance is improved to approach the diffraction limit.

特開平10−227961号公報Japanese Patent Laid-Open No. 10-227961 特開平11−052108号公報Japanese Patent Laid-Open No. 11-052108 特開平05−027163号公報Japanese Patent Laid-Open No. 05-027163

特許文献3をはじめとする通常の望遠レンズでは、小型軽量化を達成するために、光学性能を劣化させない程度に各レンズのパワーを強め、レンズ全長やレンズ有効系を小さくしている。そのためこのような望遠レンズは、製造誤差が生じた時に性能劣化が生じ易く、高精細な光学系を得るためには、いかに製造誤差を抑えるかが重要なポイントの1つになっている。光学系を1枚の薄肉系とした時、軸上光束は無限遠方からf/FNOの幅の平行光束として入射し、薄肉系により収束性のパワーを得て、光学系の焦点距離分だけ離れた位置に結像する。   In normal telephoto lenses such as Patent Document 3, in order to achieve a reduction in size and weight, the power of each lens is increased to the extent that optical performance is not deteriorated, and the total lens length and effective lens system are reduced. Therefore, the performance of such a telephoto lens is likely to deteriorate when a manufacturing error occurs, and one of the important points is how to suppress the manufacturing error in order to obtain a high-definition optical system. When the optical system is a single thin system, the axial light beam enters as a parallel light beam of f / FNO width from infinity, and convergent power is obtained by the thin system, and it is separated by the focal length of the optical system. The image is formed at the position.

通常の厚肉光学系においても同様であり、各レンズ要素のパワーに応じて発散と収束を繰り返しはするが、基本的には無限遠方からの平行光束が、光学系の後側主点位置から焦点距離分だけ離れた像面に向かって収束する。そのため、図10に示すように、テレ比が1より小さい望遠レンズ(以下テレフォトタイプと呼ぶ)では、後側主点位置が光学系の最も物体側のレンズより物体側にあるため、軸上光線高hは、最も物体側のレンズで最も大きくなり、像面に向かって収束していく。そのため、絞り付近から物体側のレンズ殆どで、レンズの有効範囲に対して軸上光束が通る面積が、大部分となっている。   The same applies to normal thick optical systems, and divergence and convergence are repeated according to the power of each lens element, but basically a parallel light beam from infinity is reflected from the rear principal point position of the optical system. Convergence toward an image plane separated by the focal length. Therefore, as shown in FIG. 10, in a telephoto lens having a tele ratio smaller than 1 (hereinafter referred to as a telephoto type), the rear principal point position is closer to the object side than the most object side lens of the optical system. The ray height h is the largest with the most object side lens and converges toward the image plane. For this reason, most of the lens on the object side from the vicinity of the stop has a large area through which the axial luminous flux passes with respect to the effective range of the lens.

また、全系の小型軽量化を求めた際、各レンズの外径は光線有効径に対して最小限のレンズ保持部を残し、極力小さく設計される。レンズの瞳周辺部の面精度の部分的劣化は、画面全体の劣化に影響を及ぼすため、絞り付近から物体側のレンズで周辺部の研磨精度が低下した場合、軸上光束における瞳最周辺付近の光線の結像位置に誤差が生じ、画面全体がフレア掛かった画像になってしまう。   Further, when seeking to reduce the size and weight of the entire system, the outer diameter of each lens is designed to be as small as possible while leaving a minimum lens holding portion with respect to the effective beam diameter. Partial degradation of the surface accuracy around the pupil of the lens affects the degradation of the entire screen, so if the polishing accuracy of the periphery of the lens near the stop decreases from the vicinity of the aperture, the vicinity of the most peripheral pupil of the axial luminous flux An error occurs in the image forming position of the light beam, and the entire screen becomes a flare image.

以上のように、テレフォトタイプの望遠レンズは他のレンズタイプに比べ、各レンズの周辺部の面精度が結像性能に大きく関わるため、厳しい公差管理を要している。ここで本発明者は、より高解像のレンズを求めた場合、従来プラスチック材料において懸念されていた、レンズを保持する際の面変形や複屈折の影響が、硝子材料においても無視できない量になると考えた。材料に単位長の変形を与えるのに必要な応力量を表すヤング率は、例えば樹脂材料のアクリルが3.2Mpaなのに対し、硝子材料が商品名BK7で80MPa程度と、20倍以上となっており、応力による面変形の影響は、十分無視できる量と言える。   As described above, telephoto type telephoto lenses require strict tolerance management because the surface accuracy of the peripheral portion of each lens is greatly related to the imaging performance as compared with other lens types. Here, when the present inventor demanded a higher resolution lens, the influence of surface deformation and birefringence when holding the lens, which has been a concern in the conventional plastic material, is an amount that cannot be ignored even in the glass material. I thought. The Young's modulus representing the amount of stress required to give a unit length of deformation to the material is, for example, resin material acrylic is 3.2 MPa, glass material is about 80 MPa with the trade name BK7, which is 20 times or more, It can be said that the influence of surface deformation due to stress is sufficiently negligible.

しかし、単位応力に対する複屈折量を表す光弾性定数は、アクリルが6×10-12Pa-1に対し、硝子材料が商品名BK7で2.2×10-12Pa-1と、1/3程度である。それは即ち、樹脂材料の複屈折により光学性能が劣化する空間周波数域の3倍の空間周波数では、硝子材料の複屈折も同程度の光学性能劣化を及ぼすことを意味し、多画素化が進む昨今の要求性能に対し、決して無視できる量ではないと考えた。その観点に立った時、本発明者は、2枚以上の硝子が接着される接合レンズを保持する際に、光学性能を著しく劣化させる複屈折が発生している問題に行き着いた。 However, the photoelastic constant representing the amount of birefringence per unit stress is about 1/3, with acrylic material 6 × 10 −12 Pa −1 and glass material 2.2 × 10 −12 Pa −1 under the trade name BK7. is there. In other words, at a spatial frequency that is three times the spatial frequency range where the optical performance deteriorates due to the birefringence of the resin material, it means that the birefringence of the glass material also causes the same degree of optical performance deterioration. I thought that it was not a negligible amount for the required performance. From this point of view, the present inventor has come up with a problem that birefringence occurs that significantly deteriorates optical performance when holding a cemented lens to which two or more glasses are bonded.

そこで本発明では、硝子同士の接合レンズを含む光学系で発生する複屈折による光学性能の劣化を軽減する方法を提案する。   In view of this, the present invention proposes a method for reducing the deterioration of optical performance due to birefringence that occurs in an optical system including a cemented lens made of glass.

この他本発明は、接合レンズをレンズ保持枠に保持する際に不要な応力がレンズに付加されないようにし、応力による材料の複屈折の発生を軽減し、高い光学性能が容易に得られる光学系及びそれを有する光学機器の提供を目的とする。   In addition, the present invention prevents an unnecessary stress from being applied to the lens when holding the cemented lens on the lens holding frame, reduces the occurrence of birefringence of the material due to the stress, and easily obtains a high optical performance. And an optical apparatus including the same.

本発明の光学系は、接合レンズを含む光学系において、該接合レンズの像側レンズは、物体側レンズよりも外径が大きく、該像側レンズの外周部は、前記接合レンズの光軸方向の位置を決定するための位置決め部を有し、像面から前記接合レンズの最も物体側のレンズ面までの光軸上の距離をL、該光学系の焦点距離をfとするとき、
0.2 < L/f < 1.0
なる条件式を満足することを特徴としている。
The optical system of the present invention is an optical system including a cemented lens, wherein the image-side lens of the cemented lens has a larger outer diameter than the object-side lens, and the outer peripheral portion of the image-side lens is in the optical axis direction of the cemented lens. When the distance on the optical axis from the image plane to the lens surface closest to the object side of the cemented lens is L, and the focal length of the optical system is f,
0.2 <L / f <1.0
It satisfies the following conditional expression.

本発明によれば、接合レンズをレンズ保持枠に保持する際に不要な応力がレンズに付加されないようにし、応力による材料の複屈折の発生を軽減し、高い光学性能が容易に得られる光学系が得られる。   According to the present invention, an optical system that prevents unnecessary stress from being applied to the lens when holding the cemented lens on the lens holding frame, reduces the occurrence of birefringence of the material due to the stress, and easily obtains high optical performance. Is obtained.

実施例1の光学系の断面図Sectional view of the optical system of Example 1 実施例1の光学系をmm単位で表した時の、物体距離無限時における収差図Aberration diagram at infinite object distance when the optical system of Example 1 is expressed in mm. 実施例1において、本発明を実施した接合レンズの形状と、レンズ保持機構の断面図In Example 1, the shape of the cemented lens embodying the present invention and the sectional view of the lens holding mechanism 実施例2の光学系の断面図Sectional drawing of the optical system of Example 2 実施例2の光学系をmm単位で表した時の、物体距離無限時における収差図Aberration diagram at infinite object distance when the optical system of Example 2 is expressed in mm. 実施例2において、本発明を実施した接合レンズの形状と、レンズ保持機構の断面図In Example 2, the shape of the cemented lens embodying the present invention and a sectional view of the lens holding mechanism 実施例3の光学系の断面図Sectional drawing of the optical system of Example 3 (A),(B)実施例3の光学系をmm単位で表した時の、広角端と望遠端の物体距離無限時における収差図(A), (B) Aberration diagrams at the infinite object distance between the wide-angle end and the telephoto end when the optical system of Example 3 is expressed in mm. 実施例3において、本発明を実施した接合レンズの形状と、レンズ保持機構の断面図In Example 3, the shape of the cemented lens embodying the present invention and a sectional view of the lens holding mechanism テレ比が1より小さい望遠レンズでの軸上光束に関する説明図Explanatory drawing regarding axial luminous flux in a telephoto lens with a tele ratio smaller than 1

本発明の光学系は、少なくとも2つのレンズを接合した接合レンズを含む。そして接合レンズの少なくとも2つのレンズのうち像側レンズは、物体側レンズよりも外径が大きく、そして像側レンズの外周部には光軸方向の位置決めを行う位置決め部を有している。像側レンズの位置決め部は光軸方向に隔てて2つ設けられており、2つの位置決め部は平行な平面部より成っている。少なくとも2つのレンズの材料は硝子である。以下、本発明の実施例について、図面を参照しながら説明する。   The optical system of the present invention includes a cemented lens in which at least two lenses are cemented. Of the at least two lenses of the cemented lens, the image-side lens has an outer diameter larger than that of the object-side lens, and an outer peripheral portion of the image-side lens has a positioning portion that performs positioning in the optical axis direction. Two positioning portions of the image side lens are provided apart from each other in the optical axis direction, and the two positioning portions are formed of parallel plane portions. The material of the at least two lenses is glass. Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施例1の光学系のレンズ断面図、図2は実施例1の無限遠物体にフォーカスしているときの収差図である。図3は実施例1におけるレンズ保持機構の説明図である。実施例1の光学系は望遠レンズである。図4は本発明の実施例2の光学系のレンズ断面図、図5は実施例2の無限遠物体にフォーカスしているときの収差図である。図6は実施例2におけるレンズ保持機構の説明図である。実施例2の光学系は望遠レンズである。図7は本発明の実施例3の光学系のレンズ断面図、図8(A),(B)は実施例3の広角端と望遠端において無限遠物体にフォーカスしているときの収差図である。図9は実施例3におけるレンズ保持機構の説明図である。実施例3の光学系は望遠型のズームレンズである。   FIG. 1 is a lens cross-sectional view of the optical system according to the first embodiment of the present invention, and FIG. 2 is an aberration diagram when focusing on an object at infinity according to the first embodiment. FIG. 3 is an explanatory diagram of the lens holding mechanism in the first embodiment. The optical system of Example 1 is a telephoto lens. FIG. 4 is a lens cross-sectional view of the optical system according to the second embodiment of the present invention, and FIG. 5 is an aberration diagram when focusing on an object at infinity according to the second embodiment. FIG. 6 is an explanatory diagram of the lens holding mechanism in the second embodiment. The optical system of Example 2 is a telephoto lens. FIG. 7 is a lens cross-sectional view of the optical system according to the third embodiment of the present invention, and FIGS. 8A and 8B are aberration diagrams when focusing on an object at infinity at the wide-angle end and the telephoto end according to the third embodiment. is there. FIG. 9 is an explanatory diagram of the lens holding mechanism in the third embodiment. The optical system of Example 3 is a telephoto zoom lens.

それぞれの収差図では、左から順に、球面収差(軸上色収差)、非点収差、歪曲、倍率色収差を表している。球面収差と倍率色収差を示す図において、実線はd線(587.6nm)、破線はg線(435.8nm)を表している。また、非点収差を示す図において、実線はd線のサジタル方向、破線はd線のメリディオナル方向を表している。また、歪曲を示す図は、d線における歪曲を表している。FnoはFナンバー、ωは半画角を示している。各実施例の光学系はビデオカメラやデジタルカメラ等の光学機器に用いられる撮影レンズ系である。レンズ断面図において、左方が物体側(前方)で右方が像側(後方)である。尚、各実施例の光学系をプロジェクター等の投射レンズとして用いるときは、左方がスクリーン、右方が被投射画像となる。   In each aberration diagram, spherical aberration (axial chromatic aberration), astigmatism, distortion, and lateral chromatic aberration are shown in order from the left. In the diagrams showing spherical aberration and lateral chromatic aberration, the solid line represents the d line (587.6 nm), and the broken line represents the g line (435.8 nm). In the diagram showing astigmatism, the solid line represents the sagittal direction of the d line, and the broken line represents the meridional direction of the d line. Moreover, the figure which shows distortion represents the distortion in d line | wire. Fno represents an F number, and ω represents a half angle of view. The optical system of each embodiment is a photographing lens system used in an optical apparatus such as a video camera or a digital camera. In the lens cross-sectional view, the left is the object side (front) and the right is the image side (rear). When the optical system of each embodiment is used as a projection lens such as a projector, the left side is a screen and the right side is a projected image.

レンズ断面図において、iは物体側からのレンズ群の順番を示し、Liは第iレンズ群である。SPは開口絞りであり。開口絞りSPは実施例1,2においては第3レンズ群L3の物体側に配置している。実施例3では第3レンズ群L3の像側に配置し、ズーミングに際して第3レンズ群L3とともに移動する。   In the lens cross-sectional view, i indicates the order of the lens groups from the object side, and Li is the i-th lens group. SP is an aperture stop. The aperture stop SP is disposed on the object side of the third lens unit L3 in the first and second embodiments. In Example 3, it is disposed on the image side of the third lens unit L3, and moves together with the third lens unit L3 during zooming.

IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際には光学系によって形成された像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面が置かれる。又、銀塩フィルム用のカメラの撮像光学系として使用する際にはフィルム面に相当する。   IP is an image plane, and when used as a photographing optical system of a video camera or a digital still camera, an image of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor that receives an image formed by the optical system. A face is placed. Further, when used as an imaging optical system of a silver salt film camera, it corresponds to a film surface.

本発明の接合レンズを有する光学系において、像面から接合レンズの少なくとも2つのレンズのうち物体側頂点までの距離をL、光学系の焦点距離をfとする。このとき、接合レンズの少なくとも2つのレンズは光路中の
0.2 < L/f < 1.0 ・・・(1)
なる条件式を満足する位置に配置されている。
In the optical system having the cemented lens of the present invention, L is the distance from the image plane to the object-side vertex of at least two lenses of the cemented lens, and f is the focal length of the optical system. At this time, at least two lenses of the cemented lens are 0.2 <L / f <1.0 in the optical path (1).
It is arranged at a position satisfying the following conditional expression.

接合レンズは2つ以上のレンズを接合したものでも良い。以下簡単のため本発明の光学系において材料が硝子より成る2つのレンズを接合した接合レンズを例にとり、接合レンズより発生する複屈折による光学性能の劣化を軽減することができる原理について、説明する。異なる硝子材料よりレンズが接着剤で接着された接合レンズでは、各材料の線膨張係数が異なる。このため、接着剤が硬化する際に、硝子周辺部に応力が発生する。接合レンズは光学系より発生する色収差を軽減するために、光学系において不可欠である。接合レンズは接合時の応力によりレンズ有効部内に複屈折が発生し、光学性能に影響を及ぼすことが知られている。   The cemented lens may be a lens in which two or more lenses are cemented. In the following, for the sake of simplicity, the principle that can reduce optical performance deterioration due to birefringence generated from a cemented lens will be described by taking a cemented lens in which two lenses made of glass are cemented in the optical system of the present invention as an example. . In a cemented lens in which a lens is bonded with an adhesive from different glass materials, the linear expansion coefficient of each material is different. For this reason, when the adhesive is cured, stress is generated in the peripheral portion of the glass. The cemented lens is indispensable in the optical system in order to reduce chromatic aberration generated from the optical system. It is known that the cemented lens generates birefringence in the lens effective portion due to stress at the time of cementing and affects the optical performance.

本発明者は、接合レンズにおいて接着剤の硬化時にレンズ周辺部で発生する応力に加え、更にその部分に保持機構からの応力が掛かった時、より大きな複屈折が生じ、光学性能が劣化することを見出した。   In addition to the stress generated at the periphery of the lens when the adhesive is cured in the cemented lens, the inventor further increases the birefringence when the stress from the holding mechanism is applied to that portion, resulting in deterioration of the optical performance. I found.

特に、光学系中の条件式(1)を満たす位置(光路中)にある接合レンズでは、軸上光線高hが光線有効径の9割以上となる。このため硝子周辺部において接着剤の硬化時に複屈折が発生した際、軸上光束の瞳周辺を通る光線の結像位置がばらつき易く、光学性能が大きく劣化してくる。接合レンズの光学系中の位置が条件式(1)の上限値又は下限値を逸脱する位置では、レンズ有効径を決定する光線が、それぞれ軸外光束の下線、上線であり、軸上光線高hがレンズ外径に対して十分内周側となる。   In particular, in a cemented lens at a position (in the optical path) that satisfies the conditional expression (1) in the optical system, the axial ray height h is 90% or more of the effective ray diameter. For this reason, when birefringence occurs at the periphery of the glass when the adhesive is cured, the imaging position of the light beam passing through the periphery of the pupil of the axial light beam tends to vary, and the optical performance is greatly deteriorated. At the position where the position of the cemented lens in the optical system deviates from the upper limit value or the lower limit value of the conditional expression (1), the light rays that determine the lens effective diameter are the underline and the upper line of the off-axis light beam, respectively. h is sufficiently on the inner peripheral side with respect to the lens outer diameter.

従来、接合レンズのレンズ保持枠における保持方法では、接合レンズの両側を挟み込むように押さえていた。または、有効系が小さい像側のレンズの外径を物体側のレンズの外径より小さくし、物体側のレンズのみで押さえていた。前者の場合、特にレンズ周辺部で肉厚が薄くなる正レンズ側に、接着剤の硬化による応力と保持機構からの応力が2重で加わり、正レンズの材料の複屈折が大きく発生していることが分かった。後者の場合、物体側のレンズに保持機構からの応力が集中するため、接着剤の硬化による応力と併せて物体側のレンズの材料に大きな複屈折が発生する。更に、物体側のレンズは軸上光線高hが大きくなるため、複屈折の影響が瞳周辺光束に対してより顕著に現れていた。   Conventionally, in the holding method of the cemented lens in the lens holding frame, the both sides of the cemented lens are pressed down. Alternatively, the outer diameter of the lens on the image side having a small effective system is made smaller than the outer diameter of the lens on the object side, and the lens is pressed only by the lens on the object side. In the case of the former, stress due to the curing of the adhesive and stress from the holding mechanism are applied twice on the positive lens side where the thickness is particularly thin at the periphery of the lens, and the birefringence of the material of the positive lens is greatly generated. I understood that. In the latter case, the stress from the holding mechanism is concentrated on the lens on the object side, so that a large birefringence is generated in the material of the lens on the object side together with the stress due to the curing of the adhesive. Furthermore, since the axial ray height h of the lens on the object side is large, the influence of birefringence appears more conspicuously with respect to the pupil peripheral luminous flux.

そこで各実施例の接合レンズのレンズ保持枠では、像側レンズの外径を物体側レンズの外径よりも大きくし、像側レンズのみでレンズ保持枠に保持している。これにより、保持機構からの応力を軸上光線高hが小さい像側レンズに集中させ、レンズ周辺光束(瞳周辺光束)への複屈折の影響を軽減している。それと同時に、像側レンズの光線有効径からレンズ保持部までの距離を広げて、応力による複屈折の影響が光線有効系内に極力及ばないようにしている。このような構成をとることにより、各実施例の光学系では硝子同士のレンズを接合した接合レンズに保持機構から応力が掛かった際の、光学性能の劣化を軽減している。更に好ましくは条件式(1)の数値範囲を次の如く設定するのが良い。   Therefore, in the lens holding frame of the cemented lens of each example, the outer diameter of the image side lens is made larger than the outer diameter of the object side lens, and the lens holding frame is held only by the image side lens. Thereby, the stress from the holding mechanism is concentrated on the image side lens having a small axial ray height h, and the influence of birefringence on the lens peripheral light beam (pupil peripheral light beam) is reduced. At the same time, the distance from the effective beam diameter of the image-side lens to the lens holder is increased so that the influence of birefringence due to stress does not reach the effective beam system as much as possible. By adopting such a configuration, in the optical system of each embodiment, deterioration of optical performance is reduced when stress is applied from the holding mechanism to the cemented lens in which the lenses of the glasses are cemented. More preferably, the numerical range of conditional expression (1) is set as follows.

0.25 < L/f < 0.90 ・・・(1a)
以上、本発明によれば、硝子同士の接合レンズを含む光学系で発生する複屈折による光学性能の劣化を軽減することができる。
0.25 <L / f <0.90 (1a)
As described above, according to the present invention, it is possible to reduce deterioration of optical performance due to birefringence generated in an optical system including a glass-to-glass cemented lens.

本発明の光学系において、更に好ましくは、次の諸条件のうちの1以上を満足するのが良い。光学系の最も物体側の面頂点から像面までの距離をLtotalとする。2つの位置決め部の平面部の光軸方向の長さをdout、接合レンズの中心肉厚をdcenとする。少なくとも2つのレンズは正レンズと負レンズより成り、正レンズの光入出射面のうち、小さい方の径をdea、光入出射面の径の最周辺における光軸方向の厚みをdcovとする。このとき
0.4 < Ltotal/f < 1.2 ・・・(2)
0.05 < dout/dcen < 0.80 ・・・(3)
0.02 < dcov/dea < 0.40 ・・・(4)
なる条件式のうち1以上を満足するのが良い。
In the optical system of the present invention, it is more preferable that one or more of the following conditions are satisfied. The distance from the surface vertex on the most object side of the optical system to the image plane is defined as Ltotal. The length in the optical axis direction of the planar portions of the two positioning portions is defined as dout, and the center thickness of the cemented lens is defined as dcen. At least two lenses are composed of a positive lens and a negative lens. Of the light incident / exit surfaces of the positive lens, the smaller diameter is dea, and the thickness in the optical axis direction at the outermost periphery of the diameter of the light incident / exit surface is dcov. At this time, 0.4 <Ltotal / f <1.2 (2)
0.05 <dout / dcen <0.80 (3)
0.02 <dcov / dea <0.40 (4)
It is preferable to satisfy one or more of the following conditional expressions.

テレ比が条件式(2)を満たす範囲にある、小型軽量化と高性能の両立を図った光学系においては、各レンズ要素のパワーが強くなる。この結果、軸上光束の瞳周辺を通る光線の結像位置が、よりばらつき易くなる。このため、各実施例の光学系では条件式(2)を満足することがより好ましい。   In an optical system in which the tele ratio is in a range that satisfies the conditional expression (2) and that achieves both small size and light weight and high performance, the power of each lens element increases. As a result, the imaging position of the light beam passing through the vicinity of the pupil of the axial light beam is more likely to vary. For this reason, it is more preferable that the conditional expression (2) is satisfied in the optical system of each embodiment.

条件式(2)の下限値を逸脱すると、各レンズ要素のパワーが強くなり過ぎ、良好な光学性能を得ることが困難になる。
条件式(2)の上限値を逸脱すると、各レンズ要素のパワーが弱くなりすぎて、軸上光束のレンズ周辺を通る光線の結像位置が、ばらつきにくくなり、また全系の小型軽量化が困難になる。
If the lower limit of conditional expression (2) is deviated, the power of each lens element becomes too strong, and it becomes difficult to obtain good optical performance.
If the upper limit value of conditional expression (2) is deviated, the power of each lens element becomes too weak, and the imaging position of the light beam passing through the periphery of the axial light beam becomes difficult to vary, and the entire system is reduced in size and weight. It becomes difficult.

次に像側レンズにおいて、物体側レンズの外径よりも大きい箇所(外周部)にある保持部分(位置決め部)を、光軸方向で幅が狭い2面の平行な平面部とすることで、硝子重量を増加することなく、レンズを保持している。また、平行な平面部を光軸方向の両側から挟み込むように像側レンズを保持することで、硝子の内径方向への応力成分が小さくなり、光線有効部内の複屈折の発生をより軽減している。像側レンズの平行な平面部の幅(長さ)は、条件式(3)を満たすことが好ましい。条件式(3)の上限値を逸脱すると、平行平面部の幅が広くなり過ぎ、硝子部品が大型化及び重量化してしまう。条件式(3)の下限値を逸脱すると、平行平面部の幅が狭くなり過ぎ、加工が困難である上に、保持応力により破損が生じ易いため、好ましくない。   Next, in the image side lens, the holding part (positioning part) at a location (outer peripheral part) larger than the outer diameter of the object side lens is made into two parallel plane parts having a narrow width in the optical axis direction. The lens is held without increasing the glass weight. Also, by holding the image side lens so that the parallel plane part is sandwiched from both sides in the optical axis direction, the stress component in the inner diameter direction of the glass is reduced, and the occurrence of birefringence in the light beam effective part is further reduced. Yes. The width (length) of the parallel plane portion of the image side lens preferably satisfies the conditional expression (3). If the upper limit value of conditional expression (3) is deviated, the width of the parallel plane portion becomes too wide, and the glass part becomes larger and heavier. Deviating from the lower limit value of conditional expression (3) is not preferable because the width of the parallel plane portion becomes too narrow and difficult to process, and breakage easily occurs due to holding stress.

更に本発明の光学系では、接合レンズを構成する正レンズにおいて、光線有効部最周辺の厚みを、硝子重量が著しく増加しない程度に厚くすることで、接着剤が硬化する際の硝子周辺部への応力による複屈折発生量を小さくできるようにしている。応力により発生する複屈折量は、光弾性係数と材料の厚みに比例するため、レンズ周辺部で厚みが薄くなる正レンズにおいて、より大きな複屈折が発生し易いためである。具体的には条件式(4)を満たすようにしている。条件式(4)の上限値を逸脱した場合、硝子部品が重量化するため好ましくない。また、条件式(4)の下限値を逸脱した場合、正レンズのレンズ周辺部での複屈折量が増えるため、光学性能が劣化してくる。更に好ましくは条件式(2)〜(4)の数値範囲を次の如く設定するのが良い。   Furthermore, in the optical system of the present invention, in the positive lens constituting the cemented lens, the thickness of the outermost periphery of the light beam effective portion is increased to such an extent that the glass weight does not increase remarkably, so that the adhesive is cured. The amount of birefringence generated due to the stress of can be reduced. This is because the amount of birefringence generated by the stress is proportional to the photoelastic coefficient and the thickness of the material, so that a larger birefringence is likely to occur in a positive lens whose thickness is reduced at the periphery of the lens. Specifically, conditional expression (4) is satisfied. If the upper limit value of conditional expression (4) is deviated, the glass part becomes heavy, which is not preferable. Further, when the lower limit value of conditional expression (4) is deviated, the amount of birefringence at the lens peripheral portion of the positive lens increases, so that the optical performance deteriorates. More preferably, the numerical ranges of the conditional expressions (2) to (4) are set as follows.

0.5 < Ltotal/f < 1.0 ・・・(2a)
0.10 < dout/dcen < 0.70 ・・・(3a)
0.03 < dcov/dea < 0.30 ・・・(4a)
次に、物体側から像側へ、正レンズ,負レンズより成る接合レンズにおいては、正レンズにおいてレンズ周辺部の肉厚が薄く複屈折が発生し易い。各実施例においては正レンズへの、軸上光線高hが大きくなるため、正レンズ,負レンズの順の接合レンズに本発明に係るレンズ保持方法を実施することが、より効果的である。
0.5 <Ltotal / f <1.0 (2a)
0.10 <dout / dcen <0.70 (3a)
0.03 <dcov / dea <0.30 (4a)
Next, in a cemented lens including a positive lens and a negative lens from the object side to the image side, the thickness of the peripheral portion of the positive lens is small and birefringence is likely to occur. In each embodiment, since the axial ray height h to the positive lens increases, it is more effective to implement the lens holding method according to the present invention on the cemented lens in the order of the positive lens and the negative lens.

次に、物体側より像側へ順に、正の屈折力の第1レンズ群、フォーカシングで駆動する負の屈折力の第2レンズ群を有するテレフォトタイプの光学系では、小型軽量化と高性能を両立し易い。その反面、大部分のレンズが条件式(1)を満たす位置にあるため、レンズ最周辺光束の結像位置にばらつきが生じ易い。そのため、このテレフォトタイプの光学系に本発明に係るレンズ保持方法を実施することが、より効果的である。テレフォトタイプの光学系では、無限遠物体から近距離物体へのフォーカシングの際、負のパワーの第2レンズ群が像側に駆動するため、球面収差がオーバー側に変動し易い。そのため、第2レンズ群よりも軸上光線高hの大きくなる物体側に正レンズを配置すると、アンダー側の補正効果が得られる。このため、第2レンズ群は物体側から像側へ正レンズ,負レンズの接合レンズとすることが好ましい。   Next, in order from the object side to the image side, a telephoto type optical system having a first lens unit having a positive refractive power and a second lens unit having a negative refractive power driven by focusing is reduced in size and weight and has high performance. It is easy to balance. On the other hand, since most lenses are at positions that satisfy the conditional expression (1), variations in the imaging position of the lens's most peripheral light beam are likely to occur. Therefore, it is more effective to implement the lens holding method according to the present invention in this telephoto type optical system. In the telephoto type optical system, when focusing from an object at infinity to an object at a short distance, the second lens group having a negative power is driven to the image side, so that the spherical aberration is likely to fluctuate to the over side. Therefore, if a positive lens is disposed on the object side where the axial ray height h is larger than that of the second lens group, an underside correction effect can be obtained. For this reason, the second lens group is preferably a cemented lens of a positive lens and a negative lens from the object side to the image side.

尚、本発明に係る接合レンズは、2枚のレンズの接合に限ったものではなく、その像側または物体側に更に1枚以上のレンズ接合された、3枚以上の接合レンズであっても、同様の効果が得られる。   The cemented lens according to the present invention is not limited to the cementing of two lenses, but may be three or more cemented lenses in which one or more lenses are further cemented on the image side or the object side. A similar effect can be obtained.

本発明は、上述のような光学系を有する光学機器(例えば撮像装置、画像投影装置やその他の光学機器)に、種々適用可能である。   The present invention can be variously applied to an optical apparatus (for example, an imaging apparatus, an image projection apparatus, or other optical apparatus) having the above-described optical system.

[実施例1]
図1に示す実施例1の光学系は、物体側より像側へ順に、正の屈折力の第1レンズ群L1、フォーカシングの際に光軸上を移動する負の屈折力の第2レンズ群L2、正の第3レンズ群L3より構成される、テレフォトタイプの望遠レンズである。実施例1では、Ltotal/f=0.94と条件式(2)を満たしており、小型軽量化を図っている。第2レンズ群L2を構成する接合レンズC1、及び第3レンズ群L3内の接合レンズC2は、本発明に係る方法でレンズ保持枠に保持されている。
[Example 1]
The optical system of Example 1 shown in FIG. 1 includes, in order from the object side to the image side, a first lens unit L1 having a positive refractive power, and a second lens unit having a negative refractive power that moves on the optical axis during focusing. This is a telephoto type telephoto lens composed of L2 and a positive third lens unit L3. In Example 1, Ltotal / f = 0.94, which satisfies the conditional expression (2), is aimed at reducing the size and weight. The cemented lens C1 constituting the second lens group L2 and the cemented lens C2 in the third lens group L3 are held by the lens holding frame by the method according to the present invention.

接合レンズC1は光路中のL/f=0.57の位置に配置され、接合レンズC2は光路中のL/f=0.32の位置に配置されており、共に条件式(1)を満たしている。そのため、それぞれの接合レンズC1,C2において、軸上光束のレンズ周辺部を通る光線の結像位置がばらつき易い条件となっている。接合レンズC1は、図3(a)に示すように物体側より順に像側へ正レンズ(物体側正レンズ)1と負レンズ(像側負レンズ)2とを接合して構成されている。像側負レンズ2の外径は物体側正レンズ1よりも大きい。接合レンズC1は、物体側正レンズ1の外周よりも外側に位置し、光軸方向の位置決めを行う位置決め部としての2つの平面部5、6を鏡筒(レンズ保持枠)4と押さえ環3で挟み込むことで、光軸方向の保持を行っている。   The cemented lens C1 is disposed at a position of L / f = 0.57 in the optical path, and the cemented lens C2 is disposed at a position of L / f = 0.32 in the optical path, both satisfy the conditional expression (1). ing. For this reason, in each of the cemented lenses C1 and C2, the image forming position of the light beam passing through the lens peripheral portion of the axial light beam is apt to vary. As shown in FIG. 3A, the cemented lens C1 is configured by cementing a positive lens (object-side positive lens) 1 and a negative lens (image-side negative lens) 2 in order from the object side to the image side. The outer diameter of the image side negative lens 2 is larger than that of the object side positive lens 1. The cemented lens C1 is positioned outside the outer periphery of the object-side positive lens 1, and includes two plane portions 5 and 6 serving as positioning portions for positioning in the optical axis direction with a lens barrel (lens holding frame) 4 and a pressing ring 3. Is held in the optical axis direction.

尚、鏡筒4による接合レンズC1の径方向の保持は、像側負レンズ2の外周の平面部7を鏡筒4の内周面に突き当てることで決定保持している。接合レンズC2は図3(b)に示すように、物体側より像側へ順に正レンズ(物体側正レンズ)1と負レンズ(像側負レンズ)2とを接合して構成されている。像側負レンズ2の外径は物体側正レンズ1よりも大きい。接合レンズC2は物体側正レンズ1の外周よりも外側で光軸方向に位置する負レンズ2の物体側の平面部5を鏡筒4の突き当て部4aに突き当てている。そして鏡筒4の一部の加締め爪8を熱変形させて負レンズ2の像側の位置決め部としての平面部6に掛けることで光軸方向の保持を行っている。   The holding of the cemented lens C1 in the radial direction by the lens barrel 4 is determined and held by abutting the outer peripheral plane portion 7 of the image side negative lens 2 against the inner peripheral surface of the lens barrel 4. As shown in FIG. 3B, the cemented lens C2 is configured by cementing a positive lens (object-side positive lens) 1 and a negative lens (image-side negative lens) 2 in order from the object side to the image side. The outer diameter of the image side negative lens 2 is larger than that of the object side positive lens 1. The cemented lens C <b> 2 abuts the object-side flat portion 5 of the negative lens 2 positioned in the optical axis direction outside the outer periphery of the object-side positive lens 1 against the abutting portion 4 a of the lens barrel 4. Then, a part of the caulking claw 8 of the lens barrel 4 is thermally deformed and applied to the flat surface portion 6 as a positioning portion on the image side of the negative lens 2 to hold in the optical axis direction.

尚、鏡筒4による接合レンズC2の径方向の保持は、像側負レンズ2の外周の平面部7を鏡筒3の内周面に突き当てることで決定している。   The holding of the cemented lens C2 in the radial direction by the lens barrel 4 is determined by abutting the outer peripheral plane portion 7 of the image side negative lens 2 against the inner peripheral surface of the lens barrel 3.

本実施例において2つの平面部5、6は光軸方向に隔てて2つあり、互いに平行である。尚、本実施例において正レンズ1と負レンズ2の順番は逆であっても良い。このとき像側正レンズの外周部が鏡筒によって保持されることになる。   In the present embodiment, the two flat portions 5 and 6 are separated from each other in the optical axis direction and are parallel to each other. In this embodiment, the order of the positive lens 1 and the negative lens 2 may be reversed. At this time, the outer periphery of the image side positive lens is held by the lens barrel.

本実施例では、以上のようにして、軸上光線高hが小さい像側レンズに保持応力を集中させている。これにより、レンズ周辺光束への影響を小さくすると同時に、像側レンズの光線有効径からレンズ外径までに余裕を持たせ、応力による複屈折の影響が光線有効径内に及びにくくしている。   In this embodiment, as described above, the holding stress is concentrated on the image side lens having a small axial ray height h. As a result, the influence on the lens peripheral luminous flux is reduced, and at the same time, a margin is provided from the effective ray diameter of the image-side lens to the outer diameter of the lens, so that the influence of birefringence due to stress does not easily reach the effective ray diameter.

また、接合レンズC1における平面部5、6、接合レンズC2における平面部5、6は、お互い平行平面部となっており、その面間隔と接合レンズの中心肉厚の関係が、共に条件式(3)を満たしている。それにより、硝子(材料)の内径方向への応力成分を軽減し、光線有効部内の複屈折の発生をより軽減することができ、それと同時に硝子(材料)部品の軽量化を図っている。また、各接合レンズC1,C2における、物体側正レンズの光入射面径と光入出射面の最周辺部の光軸方向の厚みの関係が、共に条件式(4)を満たしている。それにより、応力による複屈折量を軽減すると共に、硝子材料の軽量化を図っている。   The plane portions 5 and 6 in the cemented lens C1 and the plane portions 5 and 6 in the cemented lens C2 are parallel plane portions, and the relationship between the surface spacing and the center thickness of the cemented lens is a conditional expression ( 3) is satisfied. As a result, the stress component in the inner diameter direction of the glass (material) can be reduced, the occurrence of birefringence in the light beam effective portion can be further reduced, and at the same time, the weight of the glass (material) part is reduced. Further, in each cemented lens C1, C2, the relationship between the light incident surface diameter of the object-side positive lens and the thickness in the optical axis direction of the outermost peripheral portion of the light incident / exit surface both satisfies the conditional expression (4). As a result, the amount of birefringence due to stress is reduced and the weight of the glass material is reduced.

次に、通常、テレフォトタイプの光学系では負の屈折力の第2レンズ群L2が像側へフォーカシング駆動した際、球面収差がオーバー側に変動する。これに対して、実施形態1の接合レンズC1では軸上光線高hが大きい物体側に正レンズを配置してアンダー側の補正効果を強め、全フォーカス域で高い光学性能を達成している。   Next, normally, in the telephoto type optical system, when the second lens unit L2 having a negative refractive power is driven to focus on the image side, the spherical aberration changes to the over side. On the other hand, in the cemented lens C1 of the first embodiment, a positive lens is arranged on the object side where the axial ray height h is large to enhance the underside correction effect and achieve high optical performance in the entire focus range.

[実施例2]
図4に示す実施例2の光学系は、実施例1と同様である。即ち、物体側より像側へ順に、正の屈折力の第1レンズ群L1、フォーカシングで像側に駆動する負の屈折力の第2レンズ群L2、正の屈折力の第3レンズ群L3の順に構成される、テレフォトタイプの望遠レンズである。実施例2では、Ltotal/f=0.81と条件式(2)を満たしており、小型軽量化と高性能化を図っている。
[Example 2]
The optical system of Example 2 shown in FIG. 4 is the same as that of Example 1. That is, in order from the object side to the image side, the first lens unit L1 having a positive refractive power, the second lens unit L2 having a negative refractive power driven to the image side by focusing, and the third lens unit L3 having a positive refractive power. It is a telephoto type telephoto lens constructed in order. In the second embodiment, Ltotal / f = 0.81 and the conditional expression (2) are satisfied, and a reduction in size and weight and an increase in performance are achieved.

第2レンズ群L2を構成する接合レンズC1、及び第3レンズ群L3内の接合レンズC2は、本発明に係る方法でレンズ保持枠に保持されている。接合レンズC1は光路中のL/f=0.48の位置に配置され、接合レンズC2は光路中のL/f=0.29の位置に配置され、共に条件式(1)を満たしている。そのため、各々の接合レンズC1,C2における軸上光線高hが、光線有効径の9割以上となっており、軸上光束のレンズ周辺を通る光線の結像位置がばらつき易い条件となっている。接合レンズC1に関しては、図6(a)に示すように実施例1と同様の構成を採用しており、その効果も同様となっている。   The cemented lens C1 constituting the second lens group L2 and the cemented lens C2 in the third lens group L3 are held by the lens holding frame by the method according to the present invention. The cemented lens C1 is disposed at a position of L / f = 0.48 in the optical path, and the cemented lens C2 is disposed at a position of L / f = 0.29 in the optical path, and both satisfy the conditional expression (1). . Therefore, the axial ray height h in each of the cemented lenses C1 and C2 is 90% or more of the effective ray diameter, and the imaging position of the ray passing through the lens periphery of the axial beam is easily variable. . The cemented lens C1 has the same configuration as that of the first embodiment as shown in FIG. 6A, and the effect thereof is also the same.

接合レンズC2は、物体側より像側へ順に負レンズ,正レンズの順となっており、図6(b)に示すように、像側正レンズ2の外径が物体側の負レンズ1よりも大きい。接合レンズC2は物体側負レンズ1よりも外側に位置し、光軸方向の位置決めを行う位置決め部としての平面部5を鏡筒4の突き当て部4aに突き当てている。そして鏡筒4の一部の加締め爪8を熱変形させて正レンズ2の像側の位置決め部としての平面部6に掛けることで光軸方向の保持を行っている。   The cemented lens C2 has a negative lens and a positive lens in order from the object side to the image side. As shown in FIG. 6B, the outer diameter of the image side positive lens 2 is larger than that of the negative lens 1 on the object side. Is also big. The cemented lens C2 is positioned outside the object-side negative lens 1, and a flat surface portion 5 as a positioning portion for positioning in the optical axis direction is abutted against the abutting portion 4a of the lens barrel 4. Then, some of the caulking claws 8 of the lens barrel 4 are thermally deformed and hung on the flat surface portion 6 as a positioning portion on the image side of the positive lens 2 to thereby hold the optical axis direction.

尚、鏡筒4による接合レンズC2の径方向の保持は、像側正レンズ2の外周の平面部7を鏡筒4の内周面に突き当てることで決定している。それにより、軸上光線高hが小さい像側正レンズ2に保持応力を集中させている。これによりレンズ周辺光束への影響を小さくすると同時に、像側正レンズ2の光線有効径からレンズ外径までに余裕を持たせ、応力による複屈折の影響が光線有効径内に及びにくくしている。また、像側正レンズ2の2つの平面部5,6は平行平面部となっており、その間隔と接合レンズC2の中心肉厚の関係は、条件式(3)を満たしている。それにより、硝子(材料)の内径方向への応力成分がなくなり、光線有効部内の複屈折の発生をより軽減することができ、それと同時に硝子(材料)部品の軽量化を図っている。   The holding of the cemented lens C <b> 2 in the radial direction by the lens barrel 4 is determined by abutting the outer peripheral plane portion 7 of the image side positive lens 2 against the inner peripheral surface of the lens barrel 4. Thereby, the holding stress is concentrated on the image-side positive lens 2 having a small axial ray height h. As a result, the influence on the luminous flux around the lens is reduced, and at the same time, a margin is provided from the effective beam diameter of the image-side positive lens 2 to the outer diameter of the lens so that the effect of birefringence due to stress does not easily reach the effective beam diameter. . The two plane portions 5 and 6 of the image-side positive lens 2 are parallel plane portions, and the relationship between the interval and the center thickness of the cemented lens C2 satisfies the conditional expression (3). As a result, the stress component in the inner diameter direction of the glass (material) is eliminated, the occurrence of birefringence in the light beam effective portion can be further reduced, and at the same time, the weight of the glass (material) part is reduced.

このように、本実施例では物体側から像側へ順に、負レンズと正レンズの接合レンズであっても、本発明の効果を得ることができる。   Thus, in the present embodiment, the effect of the present invention can be obtained even with a cemented lens of a negative lens and a positive lens in order from the object side to the image side.

[実施例3]
図7に示す実施例3の光学系では、物体側より像側へ順に、正の屈折力の第1レンズ群L1、負の屈折力の第2レンズ群L2、正の屈折力の第3レンズ群L3、負の屈折力の第4レンズ群L4を有する。更に正の屈折力の第5レンズ群L5、負の屈折力の第6レンズ群L6、正の屈折力の第7レンズ群L7より構成される7群の望遠型のズームレンズである。広角端から望遠端へのズーミングにおいて、矢印の如く第1,第3,第6レンズ群L1,L3,L6が物体側へ移動し、第4レンズ群L4が像側へ移動する。第2,第5,第7レンズ群L2,L5,L7はズーミングのためには不動である。
[Example 3]
In the optical system of Example 3 shown in FIG. 7, in order from the object side to the image side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, and a third lens having a positive refractive power. The lens unit L3 includes a fourth lens unit L4 having negative refractive power. Further, the zoom lens is a seven-group telephoto zoom lens including a fifth lens unit L5 having a positive refractive power, a sixth lens unit L6 having a negative refractive power, and a seventh lens unit L7 having a positive refractive power. During zooming from the wide-angle end to the telephoto end, the first, third, and sixth lens units L1, L3, and L6 move toward the object side, and the fourth lens unit L4 moves toward the image side as indicated by an arrow. The second, fifth, and seventh lens units L2, L5, and L7 do not move for zooming.

本実施例の光学系は、望遠端における撮影半画角が4.2度の望遠型のズームレンズである。実施例3では、望遠端のズーム位置においてLtotal/f=0.80と条件式(2)を満たしており、小型軽量化と高性能化を図っている。実施例3において、第1レンズ群L1内の接合レンズC1と、第2レンズ群L2内の接合レンズC2は本発明に係る方法でレンズ保持枠に保持されている。それぞれの接合レンズは、望遠端のズーム位置において、接合レンズC1が光路中のL/f=0.78の位置に配置され、接合レンズC2が光路中のL/f=0.54の位置に配置され、共に条件式(1)を満たしている。   The optical system of the present embodiment is a telephoto zoom lens having a shooting half angle of view of 4.2 degrees at the telephoto end. In the third embodiment, Ltotal / f = 0.80 is satisfied at the zoom position at the telephoto end, which satisfies the conditional expression (2), thereby achieving a reduction in size and weight and an increase in performance. In Example 3, the cemented lens C1 in the first lens unit L1 and the cemented lens C2 in the second lens unit L2 are held by the lens holding frame by the method according to the present invention. Each cemented lens has a cemented lens C1 disposed at a position of L / f = 0.78 in the optical path and a cemented lens C2 at a position of L / f = 0.54 in the optical path at the zoom position at the telephoto end. They are arranged and both satisfy the conditional expression (1).

そのため、それぞれの接合レンズC1,C2における望遠端のズーム位置での軸上光線高hが、光線有効径の9割以上となっており、軸上光束の瞳周辺を通る光線の結像位置がばらつき易い条件となっている。接合レンズC1の保持方法は、図9(a)に示すように、実施例1及び実施例2と同様である。図9(a)の保持方法では、図3(b)の接合レンズC2の保持方法に比べて接合レンズC2の鏡筒3への挿入方法が逆になっている点が異なっているだけである。   For this reason, the axial ray height h at the telephoto end zoom position of each cemented lens C1, C2 is 90% or more of the effective ray diameter, and the imaging position of the ray passing through the periphery of the pupil of the axial beam is The conditions are likely to vary. The method for holding the cemented lens C1 is the same as that in the first and second embodiments as shown in FIG. 9A is different from the holding method of the cemented lens C2 in FIG. 3B only in that the method of inserting the cemented lens C2 into the lens barrel 3 is reversed. .

接合レンズC2は、図9(b)に示すように、像側負レンズ2の平面部5を鏡筒4の突き当て部4aに突き当て、更に負レンズ9を負レンズ2の平面部6に突き当て、負レンズ9の像側を鏡筒4の加締め爪8で押さえる構成としている。平面部5と平面部6は平行平面部となっている。接合レンズC2の保持は平面部5と平面部6を挟み込むように行われており、やはり実施例1及び実施例2と同等の効果を得ている。このように、ズームレンズの望遠端のズーム位置においても、本発明の効果を得ることができる。   9B, the cemented lens C2 abuts the flat surface portion 5 of the image-side negative lens 2 against the abutting portion 4a of the lens barrel 4, and further the negative lens 9 against the flat surface portion 6 of the negative lens 2. The image side of the negative lens 9 is pressed by the caulking claw 8 of the lens barrel 4. The plane part 5 and the plane part 6 are parallel plane parts. The cemented lens C2 is held so as to sandwich the flat portion 5 and the flat portion 6, and the same effects as those of the first and second embodiments are obtained. Thus, the effect of the present invention can be obtained even at the zoom position at the telephoto end of the zoom lens.

以上、本発明の好ましい光学系の実施例について説明したが、本発明はこれらの実施例に限定されないことは言うまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although the Example of the preferable optical system of this invention was described, it cannot be overemphasized that this invention is not limited to these Examples, A various deformation | transformation and change are possible within the range of the summary.

次に、各実施例に各々対応する数値実施例1〜3を示す。各数値実施例においてiは物体側からの光学面の順序を示し、riは第i番目の光学面(第i面)の曲率半径、diは第i面と第i+1面との間の間隔、ndiとνdiはそれぞれd線に対する第i番目の光学部材の材料の屈折率、アッベ数を示す。また、焦点距離、Fナンバー等のスペックに加え、画角は全系の半画角、像高は半画角を決定する最大像高、レンズ全長は第1レンズ面から最終レンズ面までの距離、BFは最終レンズ面から像面までの長さを示している。   Next, numerical examples 1 to 3 corresponding to the respective examples will be shown. In each numerical example, i indicates the order of the optical surfaces from the object side, ri is the radius of curvature of the i-th optical surface (i-th surface), di is the distance between the i-th surface and the i + 1-th surface, ndi and νdi indicate the refractive index and Abbe number of the material of the i-th optical member with respect to the d-line, respectively. In addition to specs such as focal length and F-number, the angle of view is the half angle of view of the entire system, the image height is the maximum image height that determines the half angle of view, and the total lens length is the distance from the first lens surface to the final lens surface. , BF indicates the length from the final lens surface to the image plane.

また、数値実施例3において、各光学面の間隔dが(可変)となっている部分は、ズーミングに際して変化するものであり、別表に焦点距離に応じた面間隔を記している。
尚、以下に記載する数値実施例1〜3のレンズデータに基づく、各条件式の計算結果を表1に示す。
In Numerical Example 3, the part where the distance d between the optical surfaces is (variable) changes during zooming, and the surface distance corresponding to the focal length is shown in the separate table.
Table 1 shows the calculation results of the conditional expressions based on the lens data of Numerical Examples 1 to 3 described below.


(数値実施例1)

単位 mm

面データ
面番号 r d nd νd 有効径
1 302.145 16.85 1.48749 70.2 135.31
2 -439.426 22.74 134.71
3 133.921 23.10 1.43387 95.1 118.64
4 -348.061 0.13 116.20
5 -339.367 4.30 1.65412 39.7 116.20
6 236.146 29.16 109.53
7 82.605 15.28 1.43387 95.1 94.89
8 380.565 1.00 92.78
9 65.968 6.00 1.48749 70.2 81.91
10 49.683 29.03 73.32
11 4862.721 6.72 1.80809 22.8 64.59
12 -141.662 2.60 1.80610 40.7 63.49
13 113.588 86.23 59.76
14(絞り) ∞ 2.04 41.39
15 137.526 8.07 1.77250 49.6 40.60
16 -67.088 2.05 1.80518 25.4 39.68
17 -308.914 5.97 38.62
18 83.839 4.48 1.84666 23.8 34.77
19 -126.211 1.71 1.72916 54.7 34.39
20 44.290 4.41 32.64
21 -183.415 1.63 1.83481 42.7 32.67
22 69.289 3.51 33.18
23 83.969 4.56 1.77250 49.6 35.51
24 -481.588 10.16 35.89
25 63.420 8.29 1.65412 39.7 39.13
26 -97.491 1.91 1.80809 22.8 38.76
27 156.214 5.29 38.40
28 ∞ 2.20 1.51633 64.1 38.70
29 ∞ 38.81

各種データ

焦点距離 392.39
Fナンバー 2.90
画角 3.16
像高 21.64
レンズ全長 370.71
BF 61.28

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 208.49 118.56 12.14 -81.30
2 11 -144.71 9.32 5.29 0.13
3 14 384.03 66.29 -12.42 -63.84


(Numerical example 1)

Unit mm

Surface data surface number rd nd νd Effective diameter
1 302.145 16.85 1.48749 70.2 135.31
2 -439.426 22.74 134.71
3 133.921 23.10 1.43387 95.1 118.64
4 -348.061 0.13 116.20
5 -339.367 4.30 1.65412 39.7 116.20
6 236.146 29.16 109.53
7 82.605 15.28 1.43387 95.1 94.89
8 380.565 1.00 92.78
9 65.968 6.00 1.48749 70.2 81.91
10 49.683 29.03 73.32
11 4862.721 6.72 1.80809 22.8 64.59
12 -141.662 2.60 1.80610 40.7 63.49
13 113.588 86.23 59.76
14 (Aperture) ∞ 2.04 41.39
15 137.526 8.07 1.77250 49.6 40.60
16 -67.088 2.05 1.80518 25.4 39.68
17 -308.914 5.97 38.62
18 83.839 4.48 1.84666 23.8 34.77
19 -126.211 1.71 1.72916 54.7 34.39
20 44.290 4.41 32.64
21 -183.415 1.63 1.83481 42.7 32.67
22 69.289 3.51 33.18
23 83.969 4.56 1.77250 49.6 35.51
24 -481.588 10.16 35.89
25 63.420 8.29 1.65412 39.7 39.13
26 -97.491 1.91 1.80809 22.8 38.76
27 156.214 5.29 38.40
28 ∞ 2.20 1.51633 64.1 38.70
29 ∞ 38.81

Various data

Focal length 392.39
F number 2.90
Angle of View 3.16
Statue height 21.64
Total lens length 370.71
BF 61.28

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 208.49 118.56 12.14 -81.30
2 11 -144.71 9.32 5.29 0.13
3 14 384.03 66.29 -12.42 -63.84

(数値実施例2)

単位 mm

面データ
面番号 r d nd νd 有効径
1 331.299 15.10 1.48749 70.2 141.97
2 -698.860 44.37 141.42
3 160.224 19.00 1.43387 95.1 122.37
4 -634.734 0.41 120.51
5 -556.300 4.50 1.65412 39.7 120.50
6 276.476 45.32 115.49
7 93.942 14.23 1.43387 95.1 98.57
8 395.355 1.00 96.70
9 82.615 5.30 1.48749 70.2 88.69
10 61.070 46.72 81.52
11 637.682 5.99 1.80809 22.8 64.41
12 -272.868 2.80 1.88300 40.8 63.29
13 146.588 97.26 60.84
14(絞り) ∞ 5.82 40.52
15 154.638 2.00 1.80610 33.3 38.99
16 63.649 7.03 1.59282 68.6 38.13
17 -234.143 12.76 37.53
18 87.560 3.86 1.84666 23.8 32.05
19 -444.007 1.65 1.62041 60.3 31.63
20 42.018 3.99 30.48
21 -133.996 1.60 1.81600 46.6 30.50
22 113.702 5.00 31.03
23 91.366 3.20 1.65412 39.7 33.93
24 -1021.757 10.91 34.15
25 88.375 7.49 1.72047 34.7 37.12
26 -74.187 1.91 1.80809 22.8 36.96
27 296.105 10.00 36.86
28 ∞ 2.20 1.51633 64.1 45.00
29 ∞ 45.00

各種データ

焦点距離 584.90
Fナンバー 4.12
画角 2.12
像高 21.64
レンズ全長 475.88
BF 94.46

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 270.91 149.24 30.00 -101.98
2 11 -200.18 8.79 5.97 1.14
3 14 1625.81 79.42 11.00 -59.54

(Numerical example 2)

Unit mm

Surface data surface number rd nd νd Effective diameter
1 331.299 15.10 1.48749 70.2 141.97
2 -698.860 44.37 141.42
3 160.224 19.00 1.43387 95.1 122.37
4 -634.734 0.41 120.51
5 -556.300 4.50 1.65412 39.7 120.50
6 276.476 45.32 115.49
7 93.942 14.23 1.43387 95.1 98.57
8 395.355 1.00 96.70
9 82.615 5.30 1.48749 70.2 88.69
10 61.070 46.72 81.52
11 637.682 5.99 1.80809 22.8 64.41
12 -272.868 2.80 1.88300 40.8 63.29
13 146.588 97.26 60.84
14 (Aperture) ∞ 5.82 40.52
15 154.638 2.00 1.80610 33.3 38.99
16 63.649 7.03 1.59282 68.6 38.13
17 -234.143 12.76 37.53
18 87.560 3.86 1.84666 23.8 32.05
19 -444.007 1.65 1.62041 60.3 31.63
20 42.018 3.99 30.48
21 -133.996 1.60 1.81600 46.6 30.50
22 113.702 5.00 31.03
23 91.366 3.20 1.65412 39.7 33.93
24 -1021.757 10.91 34.15
25 88.375 7.49 1.72047 34.7 37.12
26 -74.187 1.91 1.80809 22.8 36.96
27 296.105 10.00 36.86
28 ∞ 2.20 1.51633 64.1 45.00
29 ∞ 45.00

Various data

Focal length 584.90
F number 4.12
Angle of View 2.12
Statue height 21.64
Total lens length 475.88
BF 94.46

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 270.91 149.24 30.00 -101.98
2 11 -200.18 8.79 5.97 1.14
3 14 1625.81 79.42 11.00 -59.54

(数値実施例3)

面データ
面番号 r d nd νd 有効径
1 129.190 6.01 1.48749 70.2 53.00
2 -197.870 0.15 52.80
3 106.656 8.24 1.43875 94.9 50.39
4 -127.775 2.40 1.61340 44.3 49.08
5 262.140 (可変) 47.00
6 183.157 4.37 1.80518 25.4 25.75
7 -43.972 1.20 1.71300 53.9 24.81
8 47.602 3.12 23.31
9 -49.900 1.20 1.83481 42.7 23.26
10 212.970 (可変) 25.40
11 125.359 1.20 1.80518 25.4 25.40
12 40.994 4.46 1.60311 60.6 25.64
13 -68.824 0.15 25.74
14 47.854 3.31 1.49700 81.5 25.48
15 -237.275 1.00 25.18
16(絞り) ∞ (可変) 24.60
17 -42.550 1.20 1.57135 53.0 22.40
18 47.732 2.25 1.84666 23.8 22.88
19 164.018 (可変) 22.80
20 -126.107 2.73 1.74950 35.3 24.40
21 -38.896 0.15 24.91
22 108.304 4.60 1.48749 70.2 24.91
23 -31.051 1.00 1.84666 23.8 24.82
24 -131.207 0.15 25.00
25 56.635 3.17 1.51633 64.1 25.28
26 -187.996 (可変) 25.00
27 -139.768 1.10 1.83400 37.2 25.00
28 46.843 3.69 24.17
29 77.820 5.40 1.80518 25.4 25.81
30 -39.907 4.90 26.07
31 -33.492 1.10 1.83481 42.7 24.37
32 75.079 (可変) 25.13
33 43.379 3.41 1.48749 70.2 33.40
34 116.452 33.51


各種データ

ズーム比 4.02

広角 中間 望遠
焦点距離 72.20 134.99 289.95
Fナンバー 4.09 4.47 5.92
画角 16.68 9.11 4.27
像高 21.64 21.64 21.64
レンズ全長 178.05 210.65 232.33
BF 39.65 39.65 39.65

d 5 4.01 36.49 58.01
d10 22.79 14.54 1.28
d16 3.62 17.87 43.13
d19 20.43 14.43 2.43
d26 11.60 8.78 1.23
d32 4.27 7.18 14.76

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 146.02 16.80 -1.81 -12.88
2 6 -34.23 9.89 6.03 -0.93
3 11 44.52 10.12 3.40 -3.46
4 17 -77.74 3.45 0.45 -1.52
5 20 41.25 11.80 3.57 -4.12
6 27 -34.77 16.20 8.09 -3.09
7 33 139.67 3.41 -1.34 -3.60
(Numerical Example 3)

Surface data surface number rd nd νd Effective diameter
1 129.190 6.01 1.48749 70.2 53.00
2 -197.870 0.15 52.80
3 106.656 8.24 1.43875 94.9 50.39
4 -127.775 2.40 1.61340 44.3 49.08
5 262.140 (variable) 47.00
6 183.157 4.37 1.80518 25.4 25.75
7 -43.972 1.20 1.71300 53.9 24.81
8 47.602 3.12 23.31
9 -49.900 1.20 1.83481 42.7 23.26
10 212.970 (variable) 25.40
11 125.359 1.20 1.80518 25.4 25.40
12 40.994 4.46 1.60311 60.6 25.64
13 -68.824 0.15 25.74
14 47.854 3.31 1.49700 81.5 25.48
15 -237.275 1.00 25.18
16 (Aperture) ∞ (Variable) 24.60
17 -42.550 1.20 1.57135 53.0 22.40
18 47.732 2.25 1.84666 23.8 22.88
19 164.018 (variable) 22.80
20 -126.107 2.73 1.74950 35.3 24.40
21 -38.896 0.15 24.91
22 108.304 4.60 1.48749 70.2 24.91
23 -31.051 1.00 1.84666 23.8 24.82
24 -131.207 0.15 25.00
25 56.635 3.17 1.51633 64.1 25.28
26 -187.996 (variable) 25.00
27 -139.768 1.10 1.83400 37.2 25.00
28 46.843 3.69 24.17
29 77.820 5.40 1.80518 25.4 25.81
30 -39.907 4.90 26.07
31 -33.492 1.10 1.83481 42.7 24.37
32 75.079 (variable) 25.13
33 43.379 3.41 1.48749 70.2 33.40
34 116.452 33.51


Various data

Zoom ratio 4.02

Wide angle Medium telephoto focal length 72.20 134.99 289.95
F number 4.09 4.47 5.92
Angle of View 16.68 9.11 4.27
Image height 21.64 21.64 21.64
Total lens length 178.05 210.65 232.33
BF 39.65 39.65 39.65

d 5 4.01 36.49 58.01
d10 22.79 14.54 1.28
d16 3.62 17.87 43.13
d19 20.43 14.43 2.43
d26 11.60 8.78 1.23
d32 4.27 7.18 14.76

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 146.02 16.80 -1.81 -12.88
2 6 -34.23 9.89 6.03 -0.93
3 11 44.52 10.12 3.40 -3.46
4 17 -77.74 3.45 0.45 -1.52
5 20 41.25 11.80 3.57 -4.12
6 27 -34.77 16.20 8.09 -3.09
7 33 139.67 3.41 -1.34 -3.60

SP:絞り IP:撮像面 L1〜L7:第1レンズ群〜第7レンズ群
Focus:フォーカシングで移動する群と、その移動方向 C1、C2:接合レンズ
SP: Aperture IP: Imaging surface L1-L7: First lens group to seventh lens group Focus: A group that moves by focusing, and its moving direction C1, C2: Joint lens

Claims (10)

接合レンズを含む光学系において、該接合レンズの像側レンズは、物体側レンズよりも外径が大きく、該像側レンズの外周部は、前記接合レンズの光軸方向の位置を決定するための位置決め部を有し、像面から前記接合レンズの最も物体側のレンズ面までの光軸上の距離をL、該光学系の焦点距離をfとするとき、
0.2 < L/f < 1.0
なる条件式を満足することを特徴とする光学系。
In an optical system including a cemented lens, the image side lens of the cemented lens has an outer diameter larger than that of the object side lens, and the outer peripheral portion of the image side lens is used to determine the position of the cemented lens in the optical axis direction. Having a positioning portion, when the distance on the optical axis from the image plane to the lens surface closest to the object side of the cemented lens is L, and the focal length of the optical system is f,
0.2 <L / f <1.0
An optical system that satisfies the following conditional expression:
前記光学系の最も物体側のレンズ面から像面までの光軸上の距離をLtotalとするとき
0.4 < Ltotal/f < 1.2
なる条件式を満足することを特徴とする請求項1に記載の光学系。
When the distance on the optical axis from the lens surface closest to the object side of the optical system to the image plane is Ltotal, 0.4 <Ltotal / f <1.2
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記像側レンズの位置決め部は光軸方向に隔てて2つ設けられており、該2つの位置決め部は互いに平行な平面部より成ることを特徴とする請求項1または2に記載の光学系   3. The optical system according to claim 1, wherein two positioning portions of the image side lens are provided apart from each other in the optical axis direction, and the two positioning portions are formed of plane portions parallel to each other. 前記2つの位置決め部の平面部の光軸方向の間隔をdout、前記接合レンズの中心肉厚をdcenとするとき
0.05 < dout/dcen < 0.80
なる条件式を満たすことを特徴とする請求項3に記載の光学系
0.05 <dout / dcen <0.80 where the distance in the optical axis direction between the flat portions of the two positioning portions is dout and the center thickness of the cemented lens is dcen.
The optical system according to claim 3, wherein the following conditional expression is satisfied:
前記接合レンズは正レンズと負レンズより成り、該正レンズの光入出射面のうち、小さい方の径をdea、該光入出射面の径の最周辺における光軸方向の厚みをdcovとするとき
0.02 < dcov/dea < 0.40
なる条件式を満たすことを特徴とする請求項1乃至4のいずれか1項に記載の光学系。
The cemented lens includes a positive lens and a negative lens. Of the light incident / exit surfaces of the positive lens, the smaller diameter is dea, and the thickness in the optical axis direction at the outermost periphery of the diameter of the light incident / exit surface is dcov. 0.02 <dcov / dea <0.40
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記接合レンズは、物体側より像側へ順に、正レンズと負レンズより成ることを特徴とする請求項1乃至5のいずれか1項に記載の光学系。   The optical system according to claim 1, wherein the cemented lens includes a positive lens and a negative lens in order from the object side to the image side. 前記光学系は、物体側より像側へ順に、正の屈折力の第1レンズ群、フォーカシングに際して光軸上を移動する負の屈折力の第2レンズ群、正の屈折力の第3レンズ群より成ることを特徴とする請求項1乃至6のいずれか1項に記載の光学系。   The optical system includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power that moves on the optical axis during focusing, and a third lens group having a positive refractive power. The optical system according to claim 1, further comprising: 前記接合レンズは、前記第2レンズ群に含まれることを特徴とする請求項7に記載の光学系。   The optical system according to claim 7, wherein the cemented lens is included in the second lens group. 前記光学系は、物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、正の屈折力の第5レンズ群、負の屈折力の第6レンズ群、正の屈折力の第7レンズ群より構成され、ズーミングのためには該第2、第5、第7レンズ群は不動であり、ズーミングに際して該第1、第3、第4、第6レンズ群が移動し、前記接合レンズは該第2レンズ群に含まれることを特徴とする請求項1乃至6のいずれか1項に記載の光学系。   The optical system includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power. The zoom lens includes a lens group, a fifth lens group having a positive refractive power, a sixth lens group having a negative refractive power, and a seventh lens group having a positive refractive power. The second, fifth, and seventh lenses are used for zooming. The lens group is stationary, the first, third, fourth, and sixth lens groups move during zooming, and the cemented lens is included in the second lens group. The optical system according to any one of the above. 請求項1乃至9のいずれか1項に記載の光学系と、該光学系によって形成された像を受光する固体撮像素子を有することを特徴とする光学機器。   An optical apparatus comprising: the optical system according to claim 1; and a solid-state imaging device that receives an image formed by the optical system.
JP2010184919A 2010-08-20 2010-08-20 Optical system and optical apparatus having the same Active JP5709433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010184919A JP5709433B2 (en) 2010-08-20 2010-08-20 Optical system and optical apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184919A JP5709433B2 (en) 2010-08-20 2010-08-20 Optical system and optical apparatus having the same

Publications (3)

Publication Number Publication Date
JP2012042791A true JP2012042791A (en) 2012-03-01
JP2012042791A5 JP2012042791A5 (en) 2013-10-10
JP5709433B2 JP5709433B2 (en) 2015-04-30

Family

ID=45899156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184919A Active JP5709433B2 (en) 2010-08-20 2010-08-20 Optical system and optical apparatus having the same

Country Status (1)

Country Link
JP (1) JP5709433B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246354A (en) * 2012-05-28 2013-12-09 Sigma Corp Imaging optical system
JP2015132719A (en) * 2014-01-14 2015-07-23 株式会社ニコン Optical system, optical device, method for manufacturing the optical system
WO2016113921A1 (en) * 2015-01-14 2016-07-21 オリンパス株式会社 Imaging optical systems, and imaging device provided with same
WO2016113920A1 (en) * 2015-01-14 2016-07-21 オリンパス株式会社 Imaging optical systems, and imaging device provided with same
WO2017094665A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
WO2017094661A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
JP2019152887A (en) * 2019-06-18 2019-09-12 株式会社ニコン Optical system, optical device, and method of manufacturing optical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527163A (en) * 1991-07-17 1993-02-05 Canon Inc Telephoto lens
JP2003015008A (en) * 2001-07-04 2003-01-15 Pentax Corp Structure for lens optical axis adjusting frame
JP2005352429A (en) * 2004-06-14 2005-12-22 Ricoh Co Ltd Lens unit, lens barrel unit and camera
JP2010078736A (en) * 2008-09-25 2010-04-08 Fujinon Corp Zoom lens and imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527163A (en) * 1991-07-17 1993-02-05 Canon Inc Telephoto lens
JP2003015008A (en) * 2001-07-04 2003-01-15 Pentax Corp Structure for lens optical axis adjusting frame
JP2005352429A (en) * 2004-06-14 2005-12-22 Ricoh Co Ltd Lens unit, lens barrel unit and camera
JP2010078736A (en) * 2008-09-25 2010-04-08 Fujinon Corp Zoom lens and imaging apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013246354A (en) * 2012-05-28 2013-12-09 Sigma Corp Imaging optical system
JP2015132719A (en) * 2014-01-14 2015-07-23 株式会社ニコン Optical system, optical device, method for manufacturing the optical system
CN107111109A (en) * 2015-01-14 2017-08-29 奥林巴斯株式会社 Compound imaging optical system and the camera device with the compound imaging optical system
US9989728B2 (en) 2015-01-14 2018-06-05 Olympus Corporation Plurality of imaging optical systems and image pickup apparatus using the same
US9557540B2 (en) 2015-01-14 2017-01-31 Olympus Corporation Plurality of imaging optical systems and image pickup apparatus using the same
US9671596B2 (en) 2015-01-14 2017-06-06 Olympus Corporation Plurality of imaging optical systems and image pickup apparatus using the same
WO2016113920A1 (en) * 2015-01-14 2016-07-21 オリンパス株式会社 Imaging optical systems, and imaging device provided with same
JPWO2016113921A1 (en) * 2015-01-14 2017-10-19 オリンパス株式会社 Plural imaging optical systems and imaging apparatus having the same
WO2016113921A1 (en) * 2015-01-14 2016-07-21 オリンパス株式会社 Imaging optical systems, and imaging device provided with same
CN107111108A (en) * 2015-01-14 2017-08-29 奥林巴斯株式会社 Compound imaging optical system and the camera device with the compound imaging optical system
JPWO2016113920A1 (en) * 2015-01-14 2017-10-19 オリンパス株式会社 Plural imaging optical systems and imaging apparatus having the same
WO2017094661A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
WO2017094665A1 (en) * 2015-11-30 2017-06-08 株式会社ニコン Variable power optical system, optical device, and method for producing variable power optical system
JPWO2017094661A1 (en) * 2015-11-30 2018-09-06 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JPWO2017094665A1 (en) * 2015-11-30 2018-09-20 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
US10678030B2 (en) 2015-11-30 2020-06-09 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
US10831004B2 (en) 2015-11-30 2020-11-10 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
JP2019152887A (en) * 2019-06-18 2019-09-12 株式会社ニコン Optical system, optical device, and method of manufacturing optical system

Also Published As

Publication number Publication date
JP5709433B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5111056B2 (en) Optical system and imaging apparatus having the same
JP5028104B2 (en) Zoom lens and imaging apparatus having the same
JP4914136B2 (en) Zoom lens and imaging apparatus having the same
US9933603B2 (en) Zoom lens and image pickup apparatus including the same
JP2016200743A (en) Optical system and imaging apparatus including the same
JP2007226142A (en) Zoom lens and imaging apparatus having the same
JP2010060612A (en) Zoom lens and image pickup device including the same
JP5709433B2 (en) Optical system and optical apparatus having the same
JP6226611B2 (en) Zoom lens and imaging apparatus having the same
JP2008058600A (en) Zoom lens and imaging apparatus having the same
JP6566991B2 (en) Zoom lens and imaging apparatus having the same
JP4981466B2 (en) Optical system and imaging apparatus having the same
JP2015028530A5 (en)
JP2014010286A (en) Zoom lens and imaging device with the same
JP2014010286A5 (en)
JP2006343552A (en) Zoom lens and imaging apparatus having the same
JP5395495B2 (en) Variable magnification optical system
JP2018004726A (en) Optical system and image capturing device having the same
US8351128B2 (en) Zoom lens and image pickup apparatus using the same
JP5305831B2 (en) Imaging optics
JP6508879B2 (en) Zoom lens and imaging device having the same
JP6071473B2 (en) Zoom lens and imaging apparatus using the same
JP5305889B2 (en) Zoom lens and imaging apparatus having the same
JP6296803B2 (en) Optical system and imaging apparatus having the same
JP2019095640A (en) Zoom lens and imaging apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141118

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R151 Written notification of patent or utility model registration

Ref document number: 5709433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03