JP2012042213A - Film thickness evaluation method - Google Patents

Film thickness evaluation method Download PDF

Info

Publication number
JP2012042213A
JP2012042213A JP2010180740A JP2010180740A JP2012042213A JP 2012042213 A JP2012042213 A JP 2012042213A JP 2010180740 A JP2010180740 A JP 2010180740A JP 2010180740 A JP2010180740 A JP 2010180740A JP 2012042213 A JP2012042213 A JP 2012042213A
Authority
JP
Japan
Prior art keywords
film thickness
voltage
measurement
sample
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010180740A
Other languages
Japanese (ja)
Inventor
Masaaki Tatsuoka
正明 立岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010180740A priority Critical patent/JP2012042213A/en
Publication of JP2012042213A publication Critical patent/JP2012042213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the spatial distribution of film thickness of an insulation thin film inside a measurement area subjected to film thickness measurement.SOLUTION: The present invention relates to a film thickness evaluation method for measuring the distribution of film thickness of an insulation thin film by using an atomic force microscope which applies a variable DC voltage between a sample and a probe held by a cantilever. The method includes: applying the voltage to a measurement area of the sample while varying the voltage; measuring a generated current and a dielectric breakdown voltage; and determining the distribution of a relative film thickness within the measurement area on the basis of a relationship between the dielectric breakdown voltage at each measuring point and an expression (1) which is film thickness=dielectric breakdown voltage/dielectric breakdown field intensity, while defining the film thickness at any one arbitrary point in the measurement area as a criterion value.

Description

本発明は、磁気記録媒体や薄膜太陽電池、ならびに半導体素子などに含まれる絶縁性薄膜の膜厚の空間分布を得る、膜厚評価方法に関する。   The present invention relates to a film thickness evaluation method for obtaining a spatial distribution of the film thickness of an insulating thin film included in a magnetic recording medium, a thin film solar cell, and a semiconductor element.

現在、磁気記録媒体や薄膜太陽電池、トランジスタなどに用いる半導体素子などのデバイスの作製技術が急速に発展している。これらのデバイスの性能を向上させるために、デバイスを構成する多層薄膜各層の膜厚の薄膜化が進められており、数nm〜数十nmの薄膜が製膜されるに至っている。   Currently, a manufacturing technique of a device such as a semiconductor element used for a magnetic recording medium, a thin film solar cell, a transistor, or the like is rapidly developing. In order to improve the performance of these devices, the thickness of each layer of the multilayer thin film constituting the device has been reduced, and thin films of several nm to several tens of nm have been formed.

これらのデバイスにおいては、多層薄膜の各薄膜の膜厚がデバイス性能に直結するため、正確な膜厚評価、ならびに膜厚管理は重要な課題であり、絶縁性薄膜も、その例外ではない。   In these devices, since the film thickness of each thin film of the multilayer thin film is directly related to the device performance, accurate film thickness evaluation and film thickness management are important issues, and the insulating thin film is no exception.

これまで、絶縁性薄膜の膜厚を評価する方法として、TEM断面解析や蛍光X線法、X線反射率測定法、X線光電子分光法、赤外吸収分光法、分光エリプソメトリー法などが開発されてきた。また、誘電体薄膜の膜厚を評価する方法として、微小電流を検出する方法が、特許文献1に開示されている。   Up to now, TEM cross-section analysis, X-ray fluorescence analysis, X-ray reflectometry, X-ray photoelectron spectroscopy, infrared absorption spectroscopy, spectroscopic ellipsometry, etc. have been developed as methods for evaluating the thickness of insulating thin films. It has been. Further, Patent Document 1 discloses a method for detecting a minute current as a method for evaluating the thickness of a dielectric thin film.

図1は、TEM断面解析の測定例を示すもので、(a)はTEM断面図のイメージを示す図、(b)は実際のTEM測定試料のイメージを示す図ある。TEM断面解析は、導電性基板2と絶縁性薄膜1とが積層している測定試料3の局所部位のみを測定するものであり、その測定結果は、測定試料の電子線透過方向の試料厚さに含まれる情報を重ね合わせたものになる。また、測定試料を一つ作製するのに10時間以上の時間が必要であり、測定を行うまでに多大な労力を要する。   1A and 1B show measurement examples of TEM cross-sectional analysis. FIG. 1A shows an image of a TEM cross-sectional view, and FIG. 1B shows an image of an actual TEM measurement sample. The TEM cross-sectional analysis is to measure only the local portion of the measurement sample 3 in which the conductive substrate 2 and the insulating thin film 1 are laminated, and the measurement result is the sample thickness in the electron beam transmission direction of the measurement sample. The information contained in is superimposed. In addition, it takes 10 hours or more to produce one measurement sample, and a great deal of labor is required to perform the measurement.

図2は、X線反射率測定法の測定例を示すものである。この手法は、入射X線4に対する反射X線5の干渉の入射角依存性を解析することにより、膜厚の絶対値を与えるが、X線照射領域全体の平均的な膜厚を与える。また、この手法により膜厚を評価する場合、シミュレーションによるフィッティングを行うため、多層薄膜上に製膜された絶縁性薄膜の膜厚を評価することは困難である。この点は、分光エリプソメトリー法でも同じである。   FIG. 2 shows a measurement example of the X-ray reflectance measurement method. This method gives the absolute value of the film thickness by analyzing the incident angle dependence of the interference of the reflected X-ray 5 with respect to the incident X-ray 4, but gives the average film thickness of the entire X-ray irradiation region. Further, when the film thickness is evaluated by this method, since the fitting is performed by simulation, it is difficult to evaluate the film thickness of the insulating thin film formed on the multilayer thin film. This is the same in the spectroscopic ellipsometry method.

蛍光X線法、X線光電子分光法、赤外吸収分光法を用いた膜厚評価法、そして微小電流を検出する方法は、TEM断面解析結果と照合し、検量線を用いて評価することになるため、TEM断面解析に含まれる課題を同様に有する。   The film thickness evaluation method using X-ray fluorescence, X-ray photoelectron spectroscopy, infrared absorption spectroscopy, and the method for detecting a minute current are to be compared with the TEM cross-sectional analysis results and evaluated using a calibration curve. Therefore, it similarly has the problems included in the TEM cross-sectional analysis.

このように、上記の方法を用いることによって、絶縁性薄膜または誘電体薄膜の膜厚を評価することは可能であるが、いずれも、測定領域の平均的な情報のみを与えるもので、任意の試料領域の膜厚の空間分布を得ることはできない。   As described above, by using the above method, it is possible to evaluate the film thickness of the insulating thin film or the dielectric thin film. A spatial distribution of film thickness in the sample area cannot be obtained.

しかし、冒頭に述べたデバイスの性能を維持、向上、安定させるためには、絶縁性薄膜の膜厚の空間分布を把握することが重要である。   However, in order to maintain, improve, and stabilize the device performance described at the beginning, it is important to grasp the spatial distribution of the film thickness of the insulating thin film.

特開2002−22639号公報 JP 2002-22639 A

上記した先行技術は、電子線、X線、光、電流を用いて薄膜の膜厚を評価するものであるが、測定領域の平均的情報を取得するに留まるものであり、測定領域内の膜厚の空間分布を得ることはできない。   The above-mentioned prior art evaluates the film thickness of the thin film using electron beam, X-ray, light, and current. However, the prior art is limited to obtaining average information of the measurement region, and the film in the measurement region A spatial distribution of thickness cannot be obtained.

本発明が解決しようとする課題は以下の通りである。
・ 測定領域内の絶縁性薄膜の膜厚の空間分布を評価する。
・ TEM断面解析結果による検量線を用いずに、絶縁性薄膜の膜厚の空間分布を評価する。
The problems to be solved by the present invention are as follows.
• Evaluate the spatial distribution of the thickness of the insulating thin film in the measurement area.
-The spatial distribution of the film thickness of the insulating thin film is evaluated without using a calibration curve based on the TEM cross-sectional analysis result.

・ 多層薄膜上に製膜された絶縁性薄膜の膜厚の空間分布を評価する。     ・ Evaluate the spatial distribution of the thickness of the insulating thin film formed on the multilayer thin film.

上記の課題を解決するために、本発明によれば、
試料と、カンチレバーに保持された探針との間に可変直流電圧を印加する原子間力顕微鏡を用いて、絶縁性薄膜の膜厚の空間分布を測定することとする。
In order to solve the above problems, according to the present invention,
The spatial distribution of the film thickness of the insulating thin film is measured using an atomic force microscope that applies a variable DC voltage between the sample and the probe held by the cantilever.

ここで、試料の測定領域に電圧を変化させて印加するとともに、発生電流および絶縁破壊電圧を測定し、前記測定領域のうち任意の1点の膜厚を基準値として、各測定点の絶縁破壊電圧および(1)式の関係に基づいて、前記測定領域内の相対膜厚の分布を求めることとする。   Here, the voltage is applied to the measurement region of the sample while being changed, the generated current and the breakdown voltage are measured, and the dielectric breakdown at each measurement point is determined using the film thickness at any one point in the measurement region as a reference value. Based on the relationship between the voltage and the formula (1), the distribution of the relative film thickness in the measurement region is obtained.

膜厚=絶縁破壊電圧÷絶縁破壊電場強度 (1)
また、前記(1)式及び既知の絶縁破壊電場強度から求まる前記任意の1点の絶対膜厚と前記相対膜厚分布から、前記測定領域内の絶対膜厚の分布を求めることする。この場合は、実験で求められる絶対膜厚の基準値と、膜厚の相対分布とから、膜厚の絶対分布を求めるものである。
Film thickness = breakdown voltage ÷ breakdown field strength (1)
Further, the absolute film thickness distribution in the measurement region is obtained from the absolute film thickness at one arbitrary point and the relative film thickness distribution obtained from the equation (1) and the known breakdown electric field strength. In this case, the absolute distribution of the film thickness is obtained from the reference value of the absolute film thickness obtained through experiments and the relative distribution of the film thickness.

あるいは、試料の測定領域に電圧を変化させて印加するとともに、発生電流および絶縁破壊電圧を測定し、(1)式の関係と既知の絶縁破壊電場強度から、前記測定領域内の絶対膜厚の分布を求めることとする。   Alternatively, the voltage is applied to the measurement region of the sample while being applied, and the generated current and the breakdown voltage are measured. From the relationship of equation (1) and the known breakdown field strength, the absolute film thickness in the measurement region is The distribution is to be obtained.

膜厚=絶縁破壊電圧÷絶縁破壊電場強度 (1)
ここで、膜厚の測定領域全域が絶縁破壊を起こすまで印加電圧を所定の値ずつ変化させて測定を繰り返し行うことが好ましい。
Film thickness = breakdown voltage ÷ breakdown field strength (1)
Here, it is preferable to repeat the measurement by changing the applied voltage by a predetermined value until the entire thickness measurement region causes dielectric breakdown.

また、絶縁性薄膜が、導電性物質と電気的に接合していると好ましい。
さらに、導電性物質と電気的に接合している絶縁性薄膜が、多層薄膜上に製膜されたものであると好ましい。
In addition, it is preferable that the insulating thin film is electrically joined to the conductive substance.
Furthermore, it is preferable that the insulating thin film electrically bonded to the conductive substance is formed on the multilayer thin film.

本発明で使用する原子力間顕微鏡は、原子力間顕微鏡自体としては、公知の構成のものを用いる。
本発明では、絶縁破壊電圧値と膜厚とは、絶縁破壊電場強度を定数とした比例関係にある。すなわち、「絶縁破壊電場強度=絶縁破壊電圧/膜厚」の関係にある。
The atomic force microscope used in the present invention has a known structure as the atomic force microscope itself.
In the present invention, the breakdown voltage value and the film thickness are in a proportional relationship with the breakdown electric field strength as a constant. That is, there is a relationship of “dielectric breakdown field strength = dielectric breakdown voltage / film thickness”.

印加電圧値の間隔は、対象とする膜によって変動する。すなわち、対象とする膜の絶縁破壊電場強度をEとすると、系内の膜厚の分布の変化、すなわち膜厚のムラ(膜厚の凹凸の山・谷)に依存する。   The interval between the applied voltage values varies depending on the target film. That is, if the dielectric breakdown electric field strength of the target film is E, it depends on a change in the film thickness distribution in the system, that is, the film thickness unevenness (the peaks and valleys of the film thickness unevenness).

たとえば、Eが1×10V/cmの場合(一部の磁気記録媒体の保護膜の場合)、例えば、1mVごとに測定すれば、1nmごとの膜厚の違いを検出することができる。したがって、このEを持っていて、膜厚のムラが1nm以上の系であれば、所定の間隔は1mVでよい。ただし、媒体のように、ムラが0.5nm以下になりそうな場合には、それに応じて印加電圧間隔を狭める必要がある。 For example, when E is 1 × 10 4 V / cm (in the case of a protective film of some magnetic recording media), for example, if measurement is performed every 1 mV, a difference in film thickness per 1 nm can be detected. Accordingly, if the system has this E and the film thickness unevenness is 1 nm or more, the predetermined interval may be 1 mV. However, when the unevenness is likely to be 0.5 nm or less like a medium, it is necessary to narrow the applied voltage interval accordingly.

Eが1×10/cmの場合(一部の磁気記録媒体の媒体保護膜の場合)には、基本的には上記と同様であり、この材料に、1mVの測定を行うことにより、0.1nmごとの膜厚の相違を求めることができる。 When E is 1 × 10 5 / cm (in the case of a medium protective film of some magnetic recording media), it is basically the same as described above. By measuring this material at 1 mV, 0 The difference in film thickness every 1 nm can be obtained.

Eが1×10V/cmの場合(シリコンの酸化膜など)は、上記と同様に考えると、1mVごとの測定を行えば、0.01nmごとの相違を検出できることになるが、これは現実的ではないので、10mVごと以上の測定で十分である。 When E is 1 × 10 6 V / cm (silicon oxide film or the like), if the measurement is performed for every 1 mV, the difference for every 0.01 nm can be detected. Since it is not realistic, it is sufficient to measure every 10 mV or more.

絶縁性薄膜に流れる電流は、試料によって異なる。例えば、磁気記録媒体の保護膜では、印加電圧−5mVで、数十pAの電流が流れる。このような電流値は、対象としている系(膜の材料、膜の組成)のIV特性に依存する。   The current flowing through the insulating thin film varies depending on the sample. For example, in a protective film of a magnetic recording medium, a current of several tens of pA flows at an applied voltage of −5 mV. Such a current value depends on the IV characteristics of the target system (film material, film composition).

本発明によれば、これまで測定が困難であった絶縁性薄膜の膜厚の分布を相対的に、または絶対的に測定することができる。   According to the present invention, it is possible to relatively or absolutely measure the film thickness distribution of an insulating thin film that has been difficult to measure.

TEM断面解析の測定例を示す図で、(a)はTEM断面図のイメージを示す図、(b)は実際のTEM測定試料のイメージを示す図である。It is a figure which shows the example of a measurement of a TEM cross section analysis, (a) is a figure which shows the image of a TEM cross section, (b) is a figure which shows the image of an actual TEM measurement sample. X線反射率測定法の測定例を示す構成図である。It is a block diagram which shows the example of a measurement of a X-ray reflectivity measuring method. 本発明を実施するための装置構成を示す図である。It is a figure which shows the apparatus structure for implementing this invention. 本発明の試料構成を示す試料部を拡大した図である。It is the figure which expanded the sample part which shows the sample structure of this invention. 本発明により得られた膜厚分布のイメージを模式的に示す平面図である。It is a top view which shows typically the image of the film thickness distribution obtained by this invention.

図3、図4は、本発明を実施するための装置構成、ならびに試料構成を示すものである。
図3において、原子間力顕微鏡は、公知の構成のものを用いている。x、y、z方向への走査を行うピエゾ素子6に取り付けられた試料台7と、試料台7に取り付けられた試料3と、試料表面を走査する探針を保持したカンチレバー8とからなる。
3 and 4 show an apparatus configuration and a sample configuration for carrying out the present invention.
In FIG. 3, an atomic force microscope having a known configuration is used. It consists of a sample stage 7 attached to a piezo element 6 that performs scanning in the x, y, and z directions, a sample 3 attached to the sample stage 7, and a cantilever 8 that holds a probe that scans the sample surface.

試料台7には、可変直流電圧源9が、カンチレバー8にはIVアンプ10と電流計11が接続されており、可変直流電圧源9と試料台7と試料3とカンチレバー8とIVアンプ10と電流計11によって直列回路が形成されている。   A variable DC voltage source 9 is connected to the sample stage 7, and an IV amplifier 10 and an ammeter 11 are connected to the cantilever 8. The variable DC voltage source 9, the sample stage 7, the sample 3, the cantilever 8, and the IV amplifier 10 A series circuit is formed by the ammeter 11.

また、カンチレバー8にレーザ光12を照射し、その反射光13をフォトディテクター14で受け、カンチレバー8の歪みをフォトディテクター14上での反射光照射位置のずれとして検出する、「光てこ方式」を用いてあり、カンチレバー8にかかる力が一定となるようにピエゾ素子を制御し、試料3の表面を走査することができる。   In addition, an “optical lever method” in which the cantilever 8 is irradiated with the laser light 12, the reflected light 13 is received by the photodetector 14, and the distortion of the cantilever 8 is detected as a deviation of the reflected light irradiation position on the photodetector 14. The surface of the sample 3 can be scanned by controlling the piezo element so that the force applied to the cantilever 8 is constant.

本発明は、カンチレバー8と試料3との間に電圧を印加することによって、試料3に流れた電流を電流計11によって検出すると同時に、ピエゾ素子6を制御システム15によって制御して、カンチレバー8が試料3の表面を走査することで、試料3に流れた電流の空間分布を取り、電流値から絶縁破壊を検出し、この絶縁破壊現象を利用して、膜厚の相対分布を評価する。   In the present invention, by applying a voltage between the cantilever 8 and the sample 3, the current flowing through the sample 3 is detected by the ammeter 11, and at the same time, the piezo element 6 is controlled by the control system 15. By scanning the surface of the sample 3, the spatial distribution of the current flowing through the sample 3 is taken, dielectric breakdown is detected from the current value, and the relative distribution of film thickness is evaluated using this dielectric breakdown phenomenon.

なお、原子間力顕微鏡は、試料表面の凹凸を表面走査により出力するものなので、走査するのみでは、凹凸は評価できても膜厚を評価することはできない。そこで、本発明の方法が適用されるものである。   In addition, since the atomic force microscope outputs unevenness on the surface of the sample by surface scanning, the film thickness cannot be evaluated even if the unevenness can be evaluated only by scanning. Therefore, the method of the present invention is applied.

図4は試料形状の一例を示すものである。試料3は、導電性基板2と導電性基板2上に製膜された絶縁性薄膜1とからなる。ただし、多層薄膜上に製膜された絶縁性薄膜も測定対象であり、基板も導電性基板に限らず、ガラス基板のような絶縁体であっても、導電性物質と電気的な接合をしていて電圧印加が可能な形態を採る絶縁性薄膜は、全て本発明の対象となる。   FIG. 4 shows an example of the sample shape. The sample 3 includes a conductive substrate 2 and an insulating thin film 1 formed on the conductive substrate 2. However, an insulating thin film formed on a multilayer thin film is also an object to be measured, and the substrate is not limited to a conductive substrate, and even an insulator such as a glass substrate is electrically connected to a conductive substance. Insulating thin films that can be applied with voltage are all subject of the present invention.

図5は、本発明の評価方法により得られた、膜厚分布を模式図に表す平面図である。
この結果は以下のようにして得ることができる。
先ず、試料3とカンチレバー8を等電位にした状態で、測定対象領域を走査し、走査終了後、カンチレバー8と試料3との間にある所定の電圧を印加して測定領域を走査して電流像を得る。この測定を、測定領域全域が絶縁破壊を起こすまで繰り返す。なお、繰り返し測定を行う際の印加電圧値の間隔は、上記手段の項に記載したようにして決める。
FIG. 5 is a plan view schematically showing the film thickness distribution obtained by the evaluation method of the present invention.
This result can be obtained as follows.
First, in a state where the sample 3 and the cantilever 8 are equipotential, the region to be measured is scanned, and after the scanning is completed, a predetermined voltage between the cantilever 8 and the sample 3 is applied to scan the measurement region and the current is Get a statue. This measurement is repeated until the entire measurement region causes dielectric breakdown. Note that the interval between the applied voltage values when performing repeated measurement is determined as described in the above section.

測定完了後、測定領域内の任意の測定点を選択し、その測定点を基準点とする。基準点の膜厚を1として、基準点の絶縁破壊電圧値と他の測定点の絶縁破壊電圧値を比較する。測定領域内で絶縁性薄膜の膜質が均一であれば、絶縁破壊電圧値と膜厚とは、絶縁破壊電場強度を介して比例関係にあるので、他の測定点の絶縁破壊電圧値を基準点の絶縁破壊電圧値で規格化することにより、基準点の膜厚を1とした膜厚の相対分布を得ることができる。   After the measurement is completed, an arbitrary measurement point in the measurement area is selected, and that measurement point is set as a reference point. The film thickness at the reference point is set to 1, and the breakdown voltage value at the reference point is compared with the breakdown voltage values at other measurement points. If the film quality of the insulating thin film is uniform within the measurement area, the breakdown voltage value and the film thickness are proportional to each other via the breakdown electric field strength. By normalizing with the dielectric breakdown voltage value, it is possible to obtain a relative film thickness distribution with the reference point film thickness being 1.

ここで、測定対象絶縁性薄膜の、絶縁破壊電場強度と絶縁破壊電圧値が既知であれば、絶縁破壊電場強度を介した絶縁破壊電圧値と膜厚の比例関係を用いて、基準点の絶対膜厚を評価する(ただし、印加電圧は実験によって求まるので、絶縁破壊電場強度だけが既知であれば、基準点の絶対膜厚は算出可能である。)。この結果に相対膜厚分布の測定結果を合わせて、膜厚の絶対分布を知ることができる。   Here, if the dielectric breakdown electric field strength and dielectric breakdown voltage value of the insulating thin film to be measured are known, the absolute value of the reference point is calculated using the proportional relationship between the dielectric breakdown voltage value and the film thickness via the dielectric breakdown electric field strength. The film thickness is evaluated (however, since the applied voltage is obtained by experiment, if only the breakdown electric field strength is known, the absolute film thickness of the reference point can be calculated). By combining the measurement result of the relative film thickness distribution with this result, the absolute film thickness distribution can be known.

図5において、図の外枠の大きさは、500nm×500nmである。16で示した膜厚厚膜部と17で示した膜厚薄膜部の大きさは、ともに直径数十nm程度である。
なお、通常、原子間力顕微鏡に用いられる探針の先端径は20nm程度であり、この探針と導電性基板との間に電圧を印加するので、探針の径と同等の間隔をもって走査すれば、隣接測定点での絶縁破壊の影響を受けることなく、膜厚の評価が可能である。
In FIG. 5, the size of the outer frame in the figure is 500 nm × 500 nm. The thickness of the thick film portion indicated by 16 and the thickness of the thin film portion indicated by 17 are both about several tens of nm in diameter.
Normally, the tip diameter of the probe used in the atomic force microscope is about 20 nm, and a voltage is applied between the probe and the conductive substrate, so that scanning is performed with an interval equal to the probe diameter. For example, the film thickness can be evaluated without being affected by dielectric breakdown at adjacent measurement points.

本発明は、先にも述べたように、磁気記録媒体ではその保護膜、薄膜太陽電池では酸化シリコン膜、シリコンデバイスやシリコンカーバイドデバイスではゲート酸化膜など、広範囲に適用が可能である。   As described above, the present invention can be applied in a wide range such as a protective film for magnetic recording media, a silicon oxide film for thin film solar cells, and a gate oxide film for silicon devices and silicon carbide devices.

1 絶縁性薄膜
2 導電性基板
3 試料
4 入射X線
5 反射X線
6 ピエゾ素子
7 試料台
8 カンチレバー
9 可変直流電圧源
10 IVアンプ
11 電流計
12 レーザ光
13 反射光
14 フォトディテクター
15 制御システム
16 膜厚厚膜部
17 膜厚薄膜部
DESCRIPTION OF SYMBOLS 1 Insulating thin film 2 Conductive substrate 3 Sample 4 Incident X-ray 5 Reflected X-ray 6 Piezo element 7 Sample stand 8 Cantilever 9 Variable DC voltage source 10 IV amplifier 11 Ammeter 12 Laser light 13 Reflected light 14 Photo detector 15 Control system 16 Thick film part 17 Thick film part

Claims (7)

試料と、カンチレバーに保持された探針との間に可変直流電圧を印加する原子間力顕微鏡を用いて、絶縁性薄膜の膜厚分布を測定することを特徴とする膜厚評価方法。   A film thickness evaluation method for measuring a film thickness distribution of an insulating thin film using an atomic force microscope that applies a variable DC voltage between a sample and a probe held by a cantilever. 試料の測定領域に電圧を変化させて印加するとともに、発生電流および絶縁破壊電圧を測定し、前記測定領域のうち任意の1点の膜厚を基準値として、各測定点の絶縁破壊電圧および(1)式の関係に基づいて、前記測定領域内の相対膜厚の分布を求めることを特徴とする請求項1に記載の膜厚評価方法。
膜厚=絶縁破壊電圧÷絶縁破壊電場強度 (1)
While changing and applying a voltage to the measurement region of the sample, the generated current and the breakdown voltage are measured, and the dielectric breakdown voltage at each measurement point and ( 2. The film thickness evaluation method according to claim 1, wherein a distribution of a relative film thickness in the measurement region is obtained based on the relationship of the expression (1).
Film thickness = breakdown voltage ÷ breakdown field strength (1)
前記(1)式及び既知の絶縁破壊電場強度から求まる前記任意の1点の絶対膜厚と前記相対膜厚分布から、前記測定領域内の絶対膜厚の分布を求めることを特徴とする請求項2に記載の膜厚評価方法。   The absolute film thickness distribution in the measurement region is obtained from the absolute film thickness and the relative film thickness distribution at any one point obtained from the equation (1) and the known breakdown electric field strength. 2. The film thickness evaluation method according to 2. 試料の測定領域に電圧を変化させて印加するとともに、発生電流および絶縁破壊電圧を測定し、(1)式の関係と既知の絶縁破壊電場強度から、前記測定領域内の絶対膜厚の分布を求めることを特徴とする請求項1に記載の膜厚評価方法。
膜厚=絶縁破壊電圧÷絶縁破壊電場強度 (1)
While changing the voltage to the measurement area of the sample and applying it, the generated current and the breakdown voltage are measured, and the distribution of the absolute film thickness in the measurement area is calculated from the relationship of equation (1) and the known breakdown electric field strength. The film thickness evaluation method according to claim 1, wherein the film thickness evaluation method is obtained.
Film thickness = breakdown voltage ÷ breakdown field strength (1)
前記測定領域の全域が絶縁破壊を起こすまで、印加電圧を所定の値ずつ変化させて前記測定を繰り返し行うことを特徴とする請求項2ないし請求項4のいずれか一項に記載の膜厚評価方法。   5. The film thickness evaluation according to claim 2, wherein the measurement is repeated by changing the applied voltage by a predetermined value until the entire measurement region causes dielectric breakdown. 6. Method. 絶縁性薄膜が、導電性物質と電気的に接合していることを特徴とする請求項1ないし請求項5のいずれか一項に記載の膜厚評価方法。   The film thickness evaluation method according to any one of claims 1 to 5, wherein the insulating thin film is electrically joined to the conductive substance. 導電性物質と電気的に接合している絶縁性薄膜が、多層薄膜上に製膜されたものであることを特徴とする請求項1ないし請求項6のいずれか一項に記載の膜厚評価方法。   The film thickness evaluation according to any one of claims 1 to 6, wherein the insulating thin film electrically bonded to the conductive substance is formed on a multilayer thin film. Method.
JP2010180740A 2010-08-12 2010-08-12 Film thickness evaluation method Pending JP2012042213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010180740A JP2012042213A (en) 2010-08-12 2010-08-12 Film thickness evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010180740A JP2012042213A (en) 2010-08-12 2010-08-12 Film thickness evaluation method

Publications (1)

Publication Number Publication Date
JP2012042213A true JP2012042213A (en) 2012-03-01

Family

ID=45898738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010180740A Pending JP2012042213A (en) 2010-08-12 2010-08-12 Film thickness evaluation method

Country Status (1)

Country Link
JP (1) JP2012042213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572425A (en) * 2016-03-21 2016-05-11 南京大学 Method of using microwave near-field technology to represent lithium niobate waveguide
CN113092968A (en) * 2021-04-14 2021-07-09 哈尔滨理工大学 Automatic testing system for AC/DC breakdown field intensity of film sample

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180870A (en) * 1992-12-15 1994-06-28 Hitachi Ltd Storage device
JPH06180225A (en) * 1992-12-14 1994-06-28 Yokogawa Electric Corp Probe scanning microscope
JPH1151980A (en) * 1997-07-31 1999-02-26 Nec Yamagata Ltd Voltage detecting circuit
JP2005101412A (en) * 2003-09-26 2005-04-14 Sanyo Electric Co Ltd Method of manufacturing photovoltaic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180225A (en) * 1992-12-14 1994-06-28 Yokogawa Electric Corp Probe scanning microscope
JPH06180870A (en) * 1992-12-15 1994-06-28 Hitachi Ltd Storage device
JPH1151980A (en) * 1997-07-31 1999-02-26 Nec Yamagata Ltd Voltage detecting circuit
JP2005101412A (en) * 2003-09-26 2005-04-14 Sanyo Electric Co Ltd Method of manufacturing photovoltaic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572425A (en) * 2016-03-21 2016-05-11 南京大学 Method of using microwave near-field technology to represent lithium niobate waveguide
CN113092968A (en) * 2021-04-14 2021-07-09 哈尔滨理工大学 Automatic testing system for AC/DC breakdown field intensity of film sample

Similar Documents

Publication Publication Date Title
EP3084398B1 (en) Quality inspection of thin film materials
Fumagalli et al. Dielectric-constant measurement of thin insulating films at low frequency by nanoscale capacitance microscopy
Mangote et al. A high accuracy femto-/picosecond laser damage test facility dedicated to the study of optical thin films
KR101360540B1 (en) Method for evaluating property of electronic device using spectroscopic ellipsometry
US20140084902A1 (en) Measurement apparatus
TW201341784A (en) Apparatus for measuring thermal diffusivity and method for measuring thermal diffusivity
JP4517323B2 (en) Electron microanalyzer measurement data correction method
JP5239346B2 (en) Stress evaluation method using Raman spectroscopy and semiconductor device manufacturing method
Melios et al. Towards standardisation of contact and contactless electrical measurements of CVD graphene at the macro-, micro-and nano-scale
Krause et al. Scanning photo-induced impedance microscopy—an impedance based imaging technique
Petrik et al. Mapping and imaging of thin films on large surfaces
JP2012042213A (en) Film thickness evaluation method
CN108020535B (en) Method for measuring deuterium content uniformity of DKDP crystal
Marty-Dessus et al. Space charge distributions in insulating polymers: A new non-contacting way of measurement
JP2005188933A (en) Tft array inspection device
KR102104059B1 (en) Conductive atomic force microscope and method for operating the same
Parmar et al. Enhanced Broadband Photodetection with Geometry and Interface Engineered Nanocrystalline Graphite
Shoji et al. Laser assisted SEM for visualizing electrical property using voltage contrast dynamics
US7724872B2 (en) Inspection method for thin film stack
WO2012014736A1 (en) Specimen testing device and method for creating absorbed current image
Linde et al. Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film
Wachulak et al. 2-D nanometer thickness mapping applying a reduced bias soft X-ray NEXAFS approach
JP5116261B2 (en) Ferroelectric inspection equipment
JP2018200401A (en) Optical functional element, polarization analyzer, and method for manufacturing optical functional element
Smykalla et al. Measuring 3D pyroelectric distributions with high resolution in thin films by a laser scanning microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527