JP2012041906A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2012041906A
JP2012041906A JP2010186104A JP2010186104A JP2012041906A JP 2012041906 A JP2012041906 A JP 2012041906A JP 2010186104 A JP2010186104 A JP 2010186104A JP 2010186104 A JP2010186104 A JP 2010186104A JP 2012041906 A JP2012041906 A JP 2012041906A
Authority
JP
Japan
Prior art keywords
temperature
regeneration
deviation
forced regeneration
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010186104A
Other languages
Japanese (ja)
Other versions
JP5621969B2 (en
Inventor
Kazuhito Kawashima
川島  一仁
Keisuke Tashiro
圭介 田代
Masahiro Tsuda
正広 津田
Kenji Hashimoto
賢治 橋本
Kiyoka Tsunekawa
希代香 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2010186104A priority Critical patent/JP5621969B2/en
Publication of JP2012041906A publication Critical patent/JP2012041906A/en
Application granted granted Critical
Publication of JP5621969B2 publication Critical patent/JP5621969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine, capable of preventing deterioration of a DPF due to extreme temperature rise, while reducing deterioration of fuel economy and oil dilution, by establishing optimum forcible regeneration conditions according to the deposit amount of PM.SOLUTION: The forcible regeneration is started and a target regeneration temperature is raised according to a total deposit amount (S10 to S16), the temperature deviation ΔT is calculated by subtracting the target regeneration temperature T2 in the step B from the practical regeneration temperature Tx during forcible regeneration processing (S18), the starting timing of the step B is delayed in the next time forcible regeneration and the forcible regeneration time is delayed in the step A assuming that extreme temperature rise occurs in the case in the temperature deviation ΔT is a predetermined temperature deviation or more (S22 to S32). Further, the starting timing of the step B is accelerated of the next forcible regeneration time assuming that the extreme temperature rise does not occur and the forcible regeneration condition is switched so as to shorten the forcible regeneration time in the step A in the case the temperature deviation ΔT is smaller than the predetermined temperature deviation (S34 to S36).

Description

本発明は、内燃機関の排気浄化装置に係り、詳しくは、ディーゼルパティキュレートフィルタに堆積した微粒子状物質を強制的に除去するディーゼルパティキュレートフィルタの強制再生技術に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine, and more particularly to a forced regeneration technology for a diesel particulate filter that forcibly removes particulate matter deposited on a diesel particulate filter.

ディーゼルエンジンの排気を浄化する排気後処理装置として、ディーゼルパティキュレートフィルタ(以下、DPFという)が知られている。DPFは、排気通路に設けられ、排気中の微粒子状物質(パティキュレートマター、以下、PMという)を捕集するものである。そして、DPFに捕集されて堆積したPMを除去するために、DPFの上流に酸化触媒を設け、この酸化触媒に未燃燃料を流入させて酸化反応を起こさせ、これに伴う反応熱により排気温度を上昇させDPFに捕集されたPMを燃焼・除去させることでDPFを強制的に再生させる技術が知られている。   2. Description of the Related Art A diesel particulate filter (hereinafter referred to as DPF) is known as an exhaust aftertreatment device that purifies exhaust from a diesel engine. The DPF is provided in the exhaust passage and collects particulate matter (particulate matter, hereinafter referred to as PM) in the exhaust. In order to remove the PM collected and accumulated in the DPF, an oxidation catalyst is provided upstream of the DPF, and an unburned fuel is caused to flow into the oxidation catalyst to cause an oxidation reaction. A technique for forcibly regenerating DPF by raising the temperature and burning and removing PM trapped in the DPF is known.

例えば、強制再生の開始から所定期間に亘り、メイン噴射後の膨張行程等でポスト噴射を行い、ポスト噴射により発生した未燃燃料をDPFの上流側に位置する酸化触媒で燃焼させ、DPFの入口温度を所定温度に保持した後、DPFの出口温度を上記所定温度よりも高い温度となるように強制再生をフィードバック制御するようにし、DPFの中心部に堆積したPMを徐々に燃焼させることでPMの急速な燃焼によるDPFの過昇温を防止し、所定期間の経過後にPMが減少しDPFが過昇温するおそれが解消された後に、DPFの出口温度を高めの所定温度よりも高い温度に保持することで引き続きDPFの過昇温を防止しつつDPFの周辺部に堆積したPMを燃え残りなく確実に燃焼除去する技術が知られている(特許文献1)。   For example, for a predetermined period from the start of forced regeneration, post-injection is performed in the expansion stroke after main injection, and unburned fuel generated by post-injection is burned with an oxidation catalyst located upstream of the DPF, and the DPF inlet After maintaining the temperature at a predetermined temperature, the forced regeneration is feedback controlled so that the outlet temperature of the DPF becomes higher than the predetermined temperature, and PM accumulated in the center of the DPF is gradually burned to thereby improve the PM. Overheating of the DPF due to rapid combustion of the DPF, after the elapse of a predetermined period, after the risk of PM decreasing and overheating of the DPF is resolved, the outlet temperature of the DPF is raised to a temperature higher than the predetermined temperature. A technique is known in which the PM accumulated on the periphery of the DPF is reliably burned and removed without being left unburned, while preventing the excessive temperature rise of the DPF by continuing to hold (Patent Document 1).

特開2008−133764号公報JP 2008-133664 A

このように、上記特許文献1の内燃機関の排気浄化装置では、強制再生の開始から予め試験等により決定された所定期間に亘りDPFの入口温度を所定温度で保持した後に、DPFの出口温度を所定温度よりも高い温度とし、DPFに堆積したPMを過昇温の発生を抑制し、確実に燃焼除去するようにしている。
しかしながら、DPFに堆積するPMの堆積量は、内燃機関の運転状況や強制再生の間隔により大きく異なる。
As described above, in the exhaust gas purification apparatus for an internal combustion engine disclosed in Patent Document 1, after maintaining the DPF inlet temperature at a predetermined temperature for a predetermined period determined by a test or the like from the start of forced regeneration, the outlet temperature of the DPF is changed. The temperature is set higher than a predetermined temperature, and the PM accumulated in the DPF is suppressed from being excessively heated and reliably removed by combustion.
However, the amount of PM deposited on the DPF varies greatly depending on the operating condition of the internal combustion engine and the interval between forced regenerations.

このことより、予め再生処理期間や再生温度を設定するとPMの堆積量が少ない場合には堆積したPMが完全に燃焼除去された後も強制再生が継続して行われることとなる。また、PMの堆積量が多い場合にはPMの急激な燃焼によりDPFに過昇温が生じる可能性がある。
従って、PMの完全燃焼後の強制再生の継続は、ポスト噴射期間の継続であり、燃費の悪化、更にはポスト噴射によりシリンダ壁面への燃料の付着量が増え、シリンダに付着した燃料と潤滑油が混ざり潤滑油の燃料希釈、所謂オイルダイリューションが発生する。また、DPFの過昇温は、DPFの劣化を早めることとなりいずれも好ましいことではない。
Accordingly, if the regeneration period and regeneration temperature are set in advance, if the amount of accumulated PM is small, forced regeneration is continued even after the accumulated PM is completely burned and removed. Further, when the amount of accumulated PM is large, there is a possibility that an excessive temperature rise will occur in the DPF due to rapid combustion of PM.
Therefore, the continuation of forced regeneration after complete combustion of PM is the continuation of the post-injection period, fuel consumption deteriorates, and the amount of fuel adhering to the cylinder wall surface increases due to post-injection. Are mixed with each other, and so-called oil dilution occurs. Further, excessive temperature rise of the DPF accelerates the deterioration of the DPF, which is not preferable.

本発明は、この様な問題を解決するためになされたもので、その目的とするところは、PMの堆積量に応じて最適な強制再生条件とし、燃費の悪化及びオイルダイリューションを低減しつつ、過昇温によるDPFの劣化を防止することのできる内燃機関の排気浄化装置を提供することにある。   The present invention has been made to solve such a problem, and the object of the present invention is to set the optimum forced regeneration conditions according to the amount of accumulated PM, thereby reducing fuel consumption deterioration and oil dilution. An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can prevent the deterioration of the DPF due to excessive temperature rise.

上記の目的を達成するために、請求項1の内燃機関の排気浄化装置では、内燃機関の排気通路に設けられ、排気中の微粒子状物質を捕集するフィルタと、前記フィルタを昇温させて該フィルタに堆積した微粒子状物質を燃焼させ該フィルタを強制再生させる強制再生手段と、前記フィルタの出口温度を検出する出口温度検出手段と、前記フィルタに堆積した微粒子状物質の総堆積量を算出する総堆積量算出手段と、前記強制再生を実行する際の目標再生温度と、該目標再生温度に対応する前記微粒子状物質の基準堆積量とが複数設定され、前記総堆積量が該基準堆積量のいずれかに達すると、対応した該目標再生温度に前記フィルタを昇温させ段階的に強制再生を実行する強制再生制御手段とを備え、前記強制再生制御手段は、更に前記出口温度検出手段にて検出される出口温度に基づいて、次回の強制再生時の再生条件を変更することを特徴とする。   In order to achieve the above object, in the exhaust gas purification apparatus for an internal combustion engine according to claim 1, a filter provided in an exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust, and heating the filter Compulsory regeneration means for forcibly regenerating the particulate matter deposited on the filter and forcibly regenerating the filter; outlet temperature detection means for detecting the outlet temperature of the filter; and calculating the total amount of particulate matter deposited on the filter A plurality of target accumulation temperatures, a target regeneration temperature for executing the forced regeneration, and a reference deposition amount of the particulate matter corresponding to the target regeneration temperature, and the total deposition amount is the reference deposition And the forced regeneration control means for executing the forced regeneration stepwise by increasing the temperature of the filter to the corresponding target regeneration temperature, the forced regeneration control means further comprising the outlet Based on the outlet temperature detected by the degree detecting means, and changes the next forced regeneration time reproduction condition.

また、請求項2の内燃機関の排気浄化装置では、請求項1において、前記強制再生制御手段は、前記目標再生温度と前記出口温度との偏差が所定温度偏差より低ければ、次回の強制再生時に該目標再生温度に対応する前記基準堆積量に所定量を加算することを特徴とする。
また、請求項3の内燃機関の排気浄化装置では、請求項1或いは2において、前記強制再生制御手段は、前記目標再生温度と前記出口温度との偏差が所定温度偏差以上であれば、該温度偏差が該所定温度偏差となった時点での総堆積量と該目標再生温度に対応する前記基準堆積量と該総堆積量との偏差より補正量を算出し、次回の強制再生時に該基準堆積量より該補正量を減算することを特徴とする。
Further, in the exhaust gas purification apparatus for an internal combustion engine according to claim 2, the forced regeneration control means according to claim 1, wherein the deviation between the target regeneration temperature and the outlet temperature is lower than a predetermined temperature deviation at the next forced regeneration. A predetermined amount is added to the reference accumulation amount corresponding to the target regeneration temperature.
Further, in the exhaust gas purification apparatus for an internal combustion engine according to claim 3, the forced regeneration control means according to claim 1 or 2, wherein if the deviation between the target regeneration temperature and the outlet temperature is not less than a predetermined temperature deviation, A correction amount is calculated from a deviation between the total deposition amount when the deviation reaches the predetermined temperature deviation, the reference deposition amount corresponding to the target regeneration temperature, and the total deposition amount, and the reference deposition is performed at the next forced regeneration. The correction amount is subtracted from the amount.

また、請求項4の内燃機関の排気浄化装置では、請求項1において、前記強制再生制御手段は、前記目標再生温度と前記出口温度との偏差が所定温度偏差より低ければ、次回の強制再生時に該目標再生温度に第1の所定温度を加算することを特徴とする。
また、請求項5の内燃機関の排気浄化装置では、請求項1或いは4において、前記強制再生制御手段は、前記目標再生温度と前記出口温度との偏差が所定温度偏差以上であれば、次回の強制再生時に該目標再生温度より第2の所定温度を減算することを特徴とする。
According to a fourth aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine according to the first aspect, wherein if the deviation between the target regeneration temperature and the outlet temperature is lower than a predetermined temperature deviation, the forced regeneration control means A first predetermined temperature is added to the target regeneration temperature.
Further, in the exhaust gas purification apparatus for an internal combustion engine according to claim 5, in the claim 1 or 4, if the deviation between the target regeneration temperature and the outlet temperature is not less than a predetermined temperature deviation, the forced regeneration control means The second predetermined temperature is subtracted from the target regeneration temperature during forced regeneration.

請求項1の発明によれば、強制再生を実行する目標の温度である目標再生温度と、目標再生温度に対応し目標再生温度を切り換える微粒子状物質の堆積量である基準堆積量とが複数設定され、総堆積量算出手段にて算出される総堆積量が複数設定される基準堆積量のいずれかに達すると、基準堆積量に対応した目標再生温度にフィルタを昇温させ強制再生を実行し、総堆積量の推移に応じて目標再生温度を段階的に高温側に切り換え、更に出口温度検出手段にて検出される出口温度に基づいて、次回実施される強制再生時の再生条件を変更するようにしている。   According to the first aspect of the present invention, a plurality of target regeneration temperatures, which are target temperatures for executing forced regeneration, and reference deposition amounts, which are deposition amounts of particulate matter that switches the target regeneration temperature in response to the target regeneration temperatures, are set. When the total accumulation amount calculated by the total accumulation amount calculation means reaches one of a plurality of set reference accumulation amounts, the filter is heated to a target regeneration temperature corresponding to the reference accumulation amount and forced regeneration is executed. The target regeneration temperature is gradually switched to the high temperature side according to the transition of the total accumulation amount, and the regeneration condition at the next forced regeneration is changed based on the exit temperature detected by the exit temperature detecting means. I am doing so.

これにより、フィルタの出口温度によって次回の強制再生の再生条件を最適にすることができ、強制再生に用いる燃料の量を最適にすることができるので、燃費の悪化を抑制しつつ、オイルダイリューションを抑制することができる。また、フィルタの出口温度によって次回の強制再生の再生条件を最適にすることができ、フィルタでの過昇温の発生を抑制することができるので、DPFの劣化を防止することができる。   As a result, the regeneration condition for the next forced regeneration can be optimized depending on the outlet temperature of the filter, and the amount of fuel used for the forced regeneration can be optimized. Can be suppressed. Further, the regeneration condition for the next forced regeneration can be optimized by the outlet temperature of the filter, and the occurrence of excessive temperature rise in the filter can be suppressed, so that the DPF can be prevented from deteriorating.

また、請求項2の発明によれば、目標再生温度と出口温度との偏差である温度偏差が所定温度偏差より低ければ、その目標再生温度に対応する基準堆積量に所定量を加算しており、次回の強制再生時には微粒子状物資の堆積量に対して今回の再生よりも目標再生温度を高温側に早期に切り換えることができるので、強制再生の期間を短縮することができる。   According to the invention of claim 2, if the temperature deviation which is the deviation between the target regeneration temperature and the outlet temperature is lower than the predetermined temperature deviation, the predetermined amount is added to the reference accumulation amount corresponding to the target regeneration temperature. In the next forced regeneration, the target regeneration temperature can be switched to the higher temperature side earlier than the current regeneration with respect to the accumulation amount of the particulate matter, so that the forced regeneration period can be shortened.

これにより、強制再生に用いる燃料の量を低減することができるので、燃費の悪化を抑制しつつ、オイルダイリューションを抑制することができる。
また、請求項3の発明によれば、目標再生温度と出口温度との偏差である温度偏差が所定温度偏差以上であれば、圧力差検出手段にて検出される圧力差に基づいて温度偏差が所定温度偏差となった時点での微粒子状物質の堆積量である過昇温時推定堆積量を算出し、目標再生温度での基準堆積量と過昇温時推定堆積量との偏差である堆積量偏差より補正量を算出し、次回の強制再生時にはその目標再生温度に対応する基準堆積量より補正量を減算している。
Thereby, since the amount of fuel used for forced regeneration can be reduced, it is possible to suppress oil dilution while suppressing deterioration of fuel consumption.
According to the invention of claim 3, if the temperature deviation, which is the deviation between the target regeneration temperature and the outlet temperature, is not less than a predetermined temperature deviation, the temperature deviation is based on the pressure difference detected by the pressure difference detecting means. Calculate the estimated deposition amount at the time of overheating, which is the amount of particulate matter deposited when the specified temperature deviation is reached, and deposit that is the deviation between the reference deposition amount at the target regeneration temperature and the estimated deposition amount at the time of overheating. The correction amount is calculated from the amount deviation, and the correction amount is subtracted from the reference accumulation amount corresponding to the target regeneration temperature at the next forced regeneration.

これにより、フィルタの出口温度が目標再生温度よりも所定温度偏差以上高くなる過昇温が発生すると、目標再生温度での基準堆積量より補正量を減算し、次回の強制再生時にはフィルタに堆積している微粒子状物質が少なくなるまで目標再生温度を高温側に切り換わらないようにしているので、次回よりフィルタの過昇温が発生することを防止し、フィルタの劣化を防止することができる。   As a result, if an excessive temperature rise occurs in which the outlet temperature of the filter is higher than the target regeneration temperature by a predetermined temperature deviation, the correction amount is subtracted from the reference accumulation amount at the target regeneration temperature, and the filter accumulates on the filter during the next forced regeneration. Since the target regeneration temperature is not switched to the high temperature side until the amount of particulate matter is reduced, it is possible to prevent an excessive temperature rise of the filter from the next time and to prevent deterioration of the filter.

また、請求項4の発明によれば、目標再生温度と出口温度との偏差である温度偏差が所定温度偏差より低ければ、目標再生温度に第1の所定温度を加算しており、次回の強制再生時には強制再生の温度を高くすることができるので、フィルタに堆積した微粒子状物資を短期間に燃焼することができ、強制再生の期間を短縮することができる。
これにより、強制再生に用いる燃料の量を低減することができるので、燃費の悪化を抑制しつつ、オイルダイリューションを抑制することができる。
According to the invention of claim 4, if the temperature deviation which is the deviation between the target regeneration temperature and the outlet temperature is lower than the predetermined temperature deviation, the first predetermined temperature is added to the target regeneration temperature, and the next forced Since the forced regeneration temperature can be increased during regeneration, the particulate matter deposited on the filter can be burned in a short time, and the forced regeneration period can be shortened.
Thereby, since the amount of fuel used for forced regeneration can be reduced, it is possible to suppress oil dilution while suppressing deterioration of fuel consumption.

また、請求項5の発明によれば、目標再生温度と出口温度との偏差である温度偏差が所定温度偏差以上であれば、目標再生温度に第2の所定温度を減算しており、次回の強制再生時には強制再生の温度を低くすることができるので、次回より強制再生時のフィルタの過昇温を防止し、フィルタを保護することができる。   According to the invention of claim 5, if the temperature deviation which is the deviation between the target regeneration temperature and the outlet temperature is equal to or greater than the predetermined temperature deviation, the second predetermined temperature is subtracted from the target regeneration temperature. Since the forced regeneration temperature can be lowered during forced regeneration, it is possible to prevent excessive temperature rise of the filter during forced regeneration and protect the filter from the next time.

本発明に係る内燃機関の排気浄化装置が適用されたエンジンの全体構成図である。1 is an overall configuration diagram of an engine to which an exhaust gas purification apparatus for an internal combustion engine according to the present invention is applied. 本発明に係る内燃機関の燃料噴射制御装置の通常の強制再生処理を時系列で示す図である。It is a figure which shows the normal forced regeneration process of the fuel-injection control apparatus of the internal combustion engine which concerns on this invention in time series. 本発明の第1実施例に係る強制再生処理条件の切換制御ルーチンを示すフローチャートの一部である。6 is a part of a flowchart showing a forced regeneration processing condition switching control routine according to the first embodiment of the present invention. 本発明の第1実施例に係る強制再生処理条件の切換制御ルーチンを示すフローチャートの残部である。It is the remainder of the flowchart which shows the switching control routine of the forced regeneration process condition which concerns on 1st Example of this invention. 本発明の第1実施例に係る強制再生処理条件の切換制御において一例としてステップBにて過昇温のない場合の強制再生処理を時系列で示す図である。FIG. 6 is a diagram showing time-series forced regeneration processing when there is no excessive temperature rise in step B as an example in forced regeneration processing condition switching control according to the first embodiment of the present invention. 本発明の第1実施例に係る強制再生処理条件の切換制御において一例としてステップBにて過昇温のある場合の強制再生処理を時系列で示す図である。FIG. 6 is a diagram showing time-sequential forced regeneration processing when there is an excessive temperature rise in step B as an example in forced regeneration processing condition switching control according to the first embodiment of the present invention. 本発明の第1実施例に係る堆積量偏差と補正量との関係を示す図である。It is a figure which shows the relationship between the deposition amount deviation and correction amount which concern on 1st Example of this invention. 本発明の第2実施例に係る強制再生処理条件の切換制御ルーチンを示すフローチャートの一部である。It is a part of flowchart which shows the switching control routine of the forced regeneration process condition which concerns on 2nd Example of this invention. 本発明の第2実施例に係る強制再生処理条件の切換制御ルーチンを示すフローチャートの残部である。It is the remainder of the flowchart which shows the switching control routine of the forced regeneration process condition which concerns on 2nd Example of this invention. 本発明の第2実施例に係る強制再生処理条件の切換制御において一例としてステップBにて過昇温のない場合の強制再生処理を時系列で示す図である。It is a figure which shows the forced regeneration process in case there is no excessive temperature rise in step B as an example in the forced regeneration process condition switching control which concerns on 2nd Example of this invention in time series. 本発明の第2実施例に係る強制再生処理条件の切換制御において一例としてステップBにて過昇温のある場合の強制再生処理を時系列で示す図である。It is a figure which shows the forced regeneration process at the time of an excessive temperature rise in step B as an example in the forced regeneration process condition switching control which concerns on 2nd Example of this invention in time series.

以下、本発明の実施の形態を図面に基づき説明する。
図1は、本発明に係る内燃機関の排気浄化装置が適用されたエンジン(内燃機関)1の全体構成図を示している。図2は、通常の強制再生処理を時系列で示している。なお、図2の上段はPM堆積量の変化と目標再生温度の基準堆積量を、下段は各基準堆積量での目標再生温度の変化を示し、ステップA,B,Cは目標再生温度が一定である強制再生処理の範囲を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an overall configuration diagram of an engine (internal combustion engine) 1 to which an exhaust gas purification apparatus for an internal combustion engine according to the present invention is applied. FIG. 2 shows a normal forced regeneration process in time series. 2 shows the change in the PM accumulation amount and the reference accumulation amount of the target regeneration temperature, the lower part shows the change in the target regeneration temperature at each reference accumulation amount, and steps A, B, and C have a constant target regeneration temperature. This shows the range of forced regeneration processing.

エンジン1は、例えばコモンレール式直列多気筒のディーゼルエンジンである。エンジン1のシリンダヘッド2には、燃焼室3に臨んで電磁式の燃料噴射ノズル4が気筒毎に設けられている。各燃料噴射ノズル4は高圧パイプ5によりコモンレール6に接続されるとともに、コモンレール6は高圧パイプ7を介して高圧ポンプ8に接続されている。高圧ポンプ8は燃料タンク9に貯留された燃料(軽油)をコモンレール6に供給する機能を有しており、コモンレール6に供給された燃料は高圧の状態で蓄えられ、各燃料噴射ノズル4から燃焼室3内に噴射される。   The engine 1 is, for example, a common rail type in-line multi-cylinder diesel engine. The cylinder head 2 of the engine 1 is provided with an electromagnetic fuel injection nozzle 4 for each cylinder facing the combustion chamber 3. Each fuel injection nozzle 4 is connected to a common rail 6 by a high-pressure pipe 5, and the common rail 6 is connected to a high-pressure pump 8 via a high-pressure pipe 7. The high-pressure pump 8 has a function of supplying the fuel (light oil) stored in the fuel tank 9 to the common rail 6. The fuel supplied to the common rail 6 is stored in a high-pressure state and burns from each fuel injection nozzle 4. It is injected into the chamber 3.

シリンダヘッド2には、気筒毎に燃焼室3と連通する吸気ポート10及び排気ポート11がそれぞれ形成されており、吸気ポート10には吸気管12が、排気ポート11には排気管13が接続されている。また、シリンダヘッド2には、吸気ポート10を開閉する吸気バルブ14と、排気ポート11を開閉する排気バルブ15とが設けられている。
吸気管12には、吸入空気量を調節する電磁式の吸気絞り弁16と、その上流側に吸気流量を検出するエアフローセンサ17が設けられている。
The cylinder head 2 is formed with an intake port 10 and an exhaust port 11 communicating with the combustion chamber 3 for each cylinder. An intake pipe 12 is connected to the intake port 10 and an exhaust pipe 13 is connected to the exhaust port 11. ing. The cylinder head 2 is provided with an intake valve 14 that opens and closes the intake port 10 and an exhaust valve 15 that opens and closes the exhaust port 11.
The intake pipe 12 is provided with an electromagnetic intake throttle valve 16 that adjusts the amount of intake air, and an airflow sensor 17 that detects the intake flow rate upstream thereof.

排気管13と吸気管12との間には、電磁開閉弁であるEGR弁19を備えたEGR管18が設けられている。EGR管18は、一端が排気ポート11近傍で排気管13に接続される一方、他端が吸気ポート10近傍で吸気管12に接続され、排気管13と吸気管12とを連通する。
排気管13には、上流側から順番に、ディーゼル酸化触媒(以下、DOCという)20、DPF(フィルタ)21が連通するように設けられている。DOC20は、例えば、筒状のケースの中に第1の酸化触媒22及び第2の酸化触媒23が収容されて形成されている。第1の酸化触媒22は排気上流側に設けられ、第2の酸化触媒23は第1の酸化触媒22と間隔をおいて下流側に設けられている。第1の酸化触媒22及び第2の酸化触媒23は、通路を形成する多孔質の壁にプラチナ(Pt)、パラジウム(Pd)、ロジウム(Rh)等の触媒貴金属を担持して形成されており、排気中のCO及びHCを酸化させてCO及びHOに変換させるとともに、排気中のNOを酸化させてNOを生成する機能を有する。
Between the exhaust pipe 13 and the intake pipe 12, an EGR pipe 18 provided with an EGR valve 19 which is an electromagnetic on-off valve is provided. One end of the EGR pipe 18 is connected to the exhaust pipe 13 in the vicinity of the exhaust port 11, and the other end is connected to the intake pipe 12 in the vicinity of the intake port 10, and the exhaust pipe 13 and the intake pipe 12 are communicated.
A diesel oxidation catalyst (hereinafter referred to as DOC) 20 and a DPF (filter) 21 are provided in the exhaust pipe 13 in order from the upstream side. The DOC 20 is formed, for example, by accommodating a first oxidation catalyst 22 and a second oxidation catalyst 23 in a cylindrical case. The first oxidation catalyst 22 is provided on the exhaust upstream side, and the second oxidation catalyst 23 is provided downstream from the first oxidation catalyst 22. The first oxidation catalyst 22 and the second oxidation catalyst 23 are formed by supporting a catalyst noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh) on a porous wall forming a passage. In addition to oxidizing the CO and HC in the exhaust gas to convert them into CO 2 and H 2 O, it has the function of oxidizing NO in the exhaust gas to generate NO 2 .

DPF21は、例えば、ハニカム担体の通路の上流側及び下流側を交互にプラグで閉鎖して、排気中のPMを捕集する機能を有しており、さらに、通路を形成する多孔質の壁にプラチナ(Pt)、パラジウム(Pd)、ロジウム(Rh)等の触媒貴金属を担持して形成されている。
また、第1の酸化触媒22と第2の酸化触媒23との間には、第1の酸化触媒22を通過した直後の排気温度を検出する排気温度センサ24が備えられている。DPF21の下流側には、DPF21通過直後の排気温度を検出する排気温度センサ(出口温度検出手段)25が設けられている。更に、DPF21の上流側と下流側との差圧を検出する差圧センサ(圧力差検出手段)26が設けられている。
The DPF 21, for example, has a function of alternately closing the upstream side and the downstream side of the honeycomb carrier passage with plugs to collect PM in the exhaust, and further, on the porous wall forming the passage. It is formed by supporting a catalytic noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh).
An exhaust temperature sensor 24 that detects the exhaust temperature immediately after passing through the first oxidation catalyst 22 is provided between the first oxidation catalyst 22 and the second oxidation catalyst 23. An exhaust gas temperature sensor (exit temperature detector) 25 that detects the exhaust gas temperature immediately after passing through the DPF 21 is provided on the downstream side of the DPF 21. Further, a differential pressure sensor (pressure difference detection means) 26 for detecting the differential pressure between the upstream side and the downstream side of the DPF 21 is provided.

電子コントロールユニット(以下、ECUという、総堆積量算出手段、強制再生制御手段)30は、エンジン1の運転制御をはじめとして総合的な制御を行うための制御装置であり、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)等を含んで構成されている。
ECU30の入力側には、上述したエアフローセンサ17、排気温度センサ24,25及び差圧センサ26の他に、エンジン1のクランク角を検出するクランク角センサ31、アクセルペダルの踏込量を検出するアクセルポジションセンサ32、及び車速を検出する車速センサ33等が接続されており、これらセンサ類からの検出情報が入力される。
An electronic control unit (hereinafter referred to as ECU, total accumulation amount calculation means, forced regeneration control means) 30 is a control device for performing comprehensive control including operation control of the engine 1, and includes an input / output device and a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU) and the like are included.
On the input side of the ECU 30, in addition to the air flow sensor 17, the exhaust temperature sensors 24 and 25, and the differential pressure sensor 26 described above, a crank angle sensor 31 that detects the crank angle of the engine 1 and an accelerator that detects the amount of depression of the accelerator pedal. A position sensor 32 and a vehicle speed sensor 33 for detecting the vehicle speed are connected, and detection information from these sensors is input.

一方、ECU30の出力側には、燃料噴射ノズル4、吸気絞り弁16及びEGR弁19等の各種出力デバイスが接続されており、これら各種出力デバイスには各種センサ類からの検出情報に基づきECU30において演算された燃料噴射量、燃料噴射時期及びEGR量等がそれぞれ出力され、これにより、適正なタイミングで吸気絞り弁16、燃料噴射ノズル4及びEGR弁19等の制御が実施される。   On the other hand, various output devices such as the fuel injection nozzle 4, the intake throttle valve 16 and the EGR valve 19 are connected to the output side of the ECU 30, and these various output devices are connected to the ECU 30 based on detection information from various sensors. The calculated fuel injection amount, fuel injection timing, EGR amount, and the like are output, and thereby the intake throttle valve 16, the fuel injection nozzle 4, the EGR valve 19, and the like are controlled at an appropriate timing.

また、上記のようにDPF21の上流にDOC20が配置されていると、通常のエンジン運転時には、DOC20において生成されたNOがDPF21に流入し、DPF21に捕集され堆積しているPM中の炭素成分である煤と反応してこれを酸化させる。酸化した煤はCOとなり、DPF21から除去され、これによりDPF21が連続的に再生される連続再生が行われる。 Further, when the DOC 20 is arranged upstream of the DPF 21 as described above, during normal engine operation, NO 2 generated in the DOC 20 flows into the DPF 21 and is collected and accumulated in the DPF 21. It reacts with the ingredient soot to oxidize it. Oxidized soot becomes CO 2 and is removed from the DPF 21, thereby performing continuous regeneration in which the DPF 21 is continuously regenerated.

一方、エンジン1の運転状況によっては、上記連続再生だけではDPF21の再生が十分に行われない場合がある。そこで、ECU30は、図2に示すように、差圧センサ26にて検出される差圧よりDPF21におけるPMの堆積量である総堆積量を算出する。算出された総堆積量が予め実験にて設定され、エンジン1のバラツキ及び運転パターンのバラツキ等を考慮し、複数(本実施形態では3つ)設定された目標再生温度を切り換えるタイミングとなる堆積量である基準堆積量(図2の(i),(ii),(iii),(iv)に該当)のいずれかとなると、基準堆積量に対応した強制再生温度の目標値である目標再生温度(図2のT1,T2,T3に該当)となるように強制再生温度を昇温させる。強制再生温度を総堆積量に応じて段階的に昇温させることにより強制的にPMを燃焼除去させる強制再生を行うようにもしている。   On the other hand, depending on the operating condition of the engine 1, the DPF 21 may not be sufficiently regenerated only by the continuous regeneration. Therefore, as shown in FIG. 2, the ECU 30 calculates the total accumulation amount as the PM accumulation amount in the DPF 21 from the differential pressure detected by the differential pressure sensor 26. The calculated total accumulation amount is set in advance in an experiment, taking into account variations in the engine 1, variations in the operation pattern, and the like, and the accumulation amount serving as a timing for switching a plurality of (three in this embodiment) target regeneration temperatures. Is the reference regeneration amount (corresponding to (i), (ii), (iii), (iv) in FIG. 2)), the target regeneration temperature (which is the target value of the forced regeneration temperature corresponding to the reference deposition amount) The forced regeneration temperature is increased so as to satisfy T1, T2, and T3 in FIG. The forced regeneration is performed by forcibly burning and removing PM by raising the forced regeneration temperature stepwise according to the total deposition amount.

当該強制再生は、エンジン1の運転時における燃料の主噴射の後の例えば膨張行程以降に強制再生温度となるように燃料のポスト噴射(副噴射)を行い、未燃燃料(HC、CO等)を含んだ排気を排気管13に排出させることによって行われる。排気中に混入された未燃燃料は、DOC20に流入して酸化され、酸化の反応熱によって排気温度を上昇させる。これにより、高温の排気が排気下流側のDPF21に流入して当該DPF21に堆積したPMを加熱し燃焼させ、DPF21を強制的に再生させることが可能である(強制再生手段)。   In the forced regeneration, post-injection (sub-injection) of fuel is performed so that the forced regeneration temperature is reached after, for example, the expansion stroke after the main injection of fuel during operation of the engine 1, and unburned fuel (HC, CO, etc.) Exhaust gas containing the gas is exhausted to the exhaust pipe 13. The unburned fuel mixed in the exhaust flows into the DOC 20 and is oxidized, and the exhaust temperature is increased by the reaction heat of oxidation. As a result, the high-temperature exhaust gas flows into the DPF 21 on the exhaust downstream side, and the PM deposited on the DPF 21 can be heated and burned to forcibly regenerate the DPF 21 (forced regeneration means).

ところで、予め実験等にて設定された設定値にエンジン1のバラツキや運転パターンのバラツキを考慮して、DPF21にて過昇温が発生しないような強制再生温度及び再生時間となるように基準堆積量が設定されている。このように基準堆積量は、各種のバラツキを考慮しているため、過昇温が発生しないように強制再生温度が低く設定され、DPF21に堆積したPMを完全に除去できるように再生時間が長く設定されており、燃費が悪化するという問題がある。
[第1実施例]
そこで、本発明の第1実施例に係る内燃機関の排気浄化装置では、このような問題点を解消しつつ強制再生を行うようにしており、以下、本発明の第1実施例に係る強制再生処理条件の切換制御内容について説明する。
By the way, considering the variation of the engine 1 and the variation of the operation pattern in the setting values set in advance through experiments or the like, the reference accumulation is performed so that the forced regeneration temperature and regeneration time are such that excessive temperature rise does not occur in the DPF 21. The amount is set. As described above, since the reference accumulation amount takes into account various variations, the forced regeneration temperature is set low so that excessive temperature rise does not occur, and the regeneration time is long so that the PM deposited on the DPF 21 can be completely removed. It is set and there is a problem that fuel consumption deteriorates.
[First embodiment]
Therefore, in the exhaust gas purification apparatus for an internal combustion engine according to the first embodiment of the present invention, forced regeneration is performed while solving such problems, and hereinafter, forced regeneration according to the first embodiment of the present invention. Processing condition switching control will be described.

図3は、本発明の第1実施例に係る強制再生処理条件の切換制御ルーチンを示すフローチャートの一部を示し、図4は、強制再生処理条件の切換制御ルーチンを示すフローチャートの残部を示している。図5は、一例として過昇温のない場合の強制再生処理を時系列で示し、図6は、一例として過昇温のある場合の強制再生処理を時系列で示している。なお、図5及び図6の上段はPM堆積量の変化と目標再生温度の基準堆積量を、下段は各基準堆積量での目標再生温度の変化を示し、ステップA,B,Cは目標再生温度が一定である強制再生処理の範囲を示している。また、上段の実線は補正前PM堆積量を、二点鎖線は補正後PM堆積量を示し、下段の実線は目標再生温度、破線は実再生温度、一点鎖線が補正後目標再生温度をそれぞれ示している。図7は、堆積量偏差と補正量との関係を示す。   FIG. 3 shows a part of a flowchart showing a forced regeneration processing condition switching control routine according to the first embodiment of the present invention, and FIG. 4 shows the rest of the flowchart showing the forced regeneration processing condition switching control routine. Yes. FIG. 5 shows, as an example, forced regeneration processing when there is no excessive temperature rise in time series, and FIG. 6 shows, as an example, forced regeneration processing when there is an excessive temperature rise, in time series. 5 and 6 show the change in the PM deposition amount and the reference deposition amount of the target regeneration temperature, the lower row shows the change in the target regeneration temperature at each reference deposition amount, and steps A, B, and C represent the target regeneration. The range of the forced regeneration process where temperature is constant is shown. The upper solid line indicates the PM deposition amount before correction, the two-dot chain line indicates the corrected PM deposition amount, the lower solid line indicates the target regeneration temperature, the broken line indicates the actual regeneration temperature, and the alternate long and short dash line indicates the corrected target regeneration temperature. ing. FIG. 7 shows the relationship between the accumulation amount deviation and the correction amount.

図3及び図4に示すように、始めにステップS10では、差圧センサ26にて検出される差圧よりDPF21におけるPMの堆積量である総堆積量が予め実験等により設定された基準堆積量a以上か、否かを判別する。判別結果が真(Yes)で総堆積量が基準堆積量a以上であれば、ステップS12に進み、判別結果が偽(No)で総堆積量が基準堆積量aより少なければ、再度ステップS10の処理を行う。   As shown in FIGS. 3 and 4, first, in step S10, a reference deposition amount in which the total deposition amount, which is the PM deposition amount in the DPF 21, is set in advance by experiments or the like based on the differential pressure detected by the differential pressure sensor 26. It is determined whether or not the value is a or more. If the determination result is true (Yes) and the total deposition amount is greater than or equal to the reference deposition amount a, the process proceeds to step S12. If the determination result is false (No) and the total deposition amount is less than the reference deposition amount a, the process returns to step S10. Process.

ステップS12では、目標再生温度T1で図5或いは図6に記載のステップAの強制再生処理を開始する(図5及び図6の(i)に該当)。そして、ステップS14に進む。
ステップS14では、差圧センサ26にて検出される差圧よりDPF21におけるPMの堆積量である総堆積量が予め実験等により設定された基準堆積量b以下になったか、否かを判別する。判別結果が真(Yes)で総堆積量が基準堆積量b以下になっていれば、ステップS16に進み、判別結果が偽(No)で総堆積量が基準堆積量b以下になっていなければ、再度ステップS14の処理を行う。
In step S12, the forced regeneration process in step A shown in FIG. 5 or 6 is started at the target regeneration temperature T1 (corresponding to (i) in FIGS. 5 and 6). Then, the process proceeds to step S14.
In step S14, it is determined from the differential pressure detected by the differential pressure sensor 26 whether or not the total deposition amount, which is the PM deposition amount in the DPF 21, has become equal to or less than a reference deposition amount b set in advance through experiments or the like. If the determination result is true (Yes) and the total accumulation amount is equal to or less than the reference accumulation amount b, the process proceeds to step S16. If the determination result is false (No) and the total accumulation amount is not equal to or less than the reference accumulation amount b. Then, the process of step S14 is performed again.

ステップS16では、目標再生温度T2で図5或いは図6に記載のステップBの強制再生処理を開始する(図5及び図6の(ii)に該当)。そして、ステップS18に進む。
ステップS18では、排気温度センサ25にて検出される温度である実再生温度Txから現在の強制再生処理のステップ(ここではステップB)の目標再生温度T2を減算し、温度偏差ΔTを算出する。そして、ステップS20に進む。
In step S16, the forced regeneration process in step B shown in FIG. 5 or 6 is started at the target regeneration temperature T2 (corresponding to (ii) in FIGS. 5 and 6). Then, the process proceeds to step S18.
In step S18, the target regeneration temperature T2 of the current forced regeneration process step (in this case, step B) is subtracted from the actual regeneration temperature Tx, which is the temperature detected by the exhaust temperature sensor 25, to calculate a temperature deviation ΔT. Then, the process proceeds to step S20.

ステップS20では、ステップS18にて算出された温度偏差ΔTが予め実験等により設定された所定温度偏差以上か、否かを判別する。判別結果が真(Yes)で温度偏差ΔTが所定温度偏差以上であれば、DPF21が過昇温しているとして、ステップS22に進み、判別結果が偽(No)で温度偏差ΔTが所定温度偏差より小さければ、ステップS34に進む。   In step S20, it is determined whether or not the temperature deviation ΔT calculated in step S18 is greater than or equal to a predetermined temperature deviation set in advance through experiments or the like. If the determination result is true (Yes) and the temperature deviation ΔT is equal to or greater than the predetermined temperature deviation, it is determined that the DPF 21 has overheated, the process proceeds to step S22, the determination result is false (No), and the temperature deviation ΔT is the predetermined temperature deviation. If it is smaller, the process proceeds to step S34.

ステップS22では、温度偏差ΔTが所定温度偏差以上となった、即ち、DPF21で過昇温が発生した時点のDPF21におけるPMの堆積量である過昇温時総堆積量Dxを算出する(図6(v)に該当)。そして、ステップS24に進む。
ステップS24では、現在の強制再生処理のステップ(ここではステップB)の基準堆積量bからステップS22で算出した過昇温時総堆積量Dxを減算して、堆積量偏差ΔDを算出する。そして、ステップS26に進む。
In step S22, the overheated total deposition amount Dx, which is the amount of PM accumulated in the DPF 21 at the time when the temperature deviation ΔT is equal to or greater than the predetermined temperature deviation, that is, when the overheated temperature is generated in the DPF 21 is calculated (FIG. 6). (Applicable to (v)). Then, the process proceeds to step S24.
In step S24, the accumulation amount deviation ΔD is calculated by subtracting the total accumulation amount Dx at the time of overheating calculated in step S22 from the reference accumulation amount b in the current forced regeneration process step (here, step B). Then, the process proceeds to step S26.

ステップS26では、図7の堆積量偏差と補正量との関係図とステップS24にて算出した堆積量偏差ΔDより、補正量xを算出する。そして、ステップS28に進む。
ステップS28では、現在の強制再生処理のステップ(ここではステップB)の基準堆積量bからステップS26で算出した補正量xを減算して、補正後基準堆積量b”を算出する。そして、ステップS30に進む。
In step S26, the correction amount x is calculated from the relationship diagram between the accumulation amount deviation and the correction amount in FIG. 7 and the accumulation amount deviation ΔD calculated in step S24. Then, the process proceeds to step S28.
In step S28, the corrected reference accumulation amount b "is calculated by subtracting the correction amount x calculated in step S26 from the reference accumulation amount b of the current forced regeneration processing step (here, step B). Proceed to S30.

ステップS30では、次回の強制再生時に現ステップと同一のステップ(ここではステップB)の目標再生温度を切り換える基準堆積量をステップS28で算出した補正後基準堆積量b”としステップAをステップA”として強制再生時間を延長する(図6(ii")に該当)。そして、ステップS32に進む。
ステップS32では、強制再生処理を終了し(図5及び図6の(iv)に該当)、当該ルーチンより抜ける。
In step S30, in the next forced regeneration, the reference accumulation amount for switching the target regeneration temperature in the same step (here, step B) as the current step is set as the corrected reference accumulation amount b ″ calculated in step S28, and step A is changed to step A ″. The forced regeneration time is extended (corresponding to FIG. 6 (ii ")), and the process proceeds to step S32.
In step S32, the forced regeneration process is terminated (corresponding to (iv) in FIGS. 5 and 6), and the process exits from the routine.

次に、ステップS34では、現在の強制再生処理のステップ(ここではステップB)の基準堆積量bに予め実験等により設定された所定量を加算して、補正後基準堆積量b’を算出する。そして、ステップS36に進む。
ステップS36では、次回の強制再生時に現ステップと同一のステップ(ここではステップB)の目標再生温度を切り換える基準堆積量をステップS34で算出した補正後基準堆積量b’とし強制再生処理ステップAをステップA’として強制再生時間を短縮する(図5(ii')に該当)。そして、ステップS38に進む。
Next, in step S34, a corrected reference deposition amount b ′ is calculated by adding a predetermined amount set in advance through experiments or the like to the reference deposition amount b in the current forced regeneration processing step (here, step B). . Then, the process proceeds to step S36.
In step S36, the reference regeneration amount B ′ calculated in step S34 is set as the reference accumulation amount for switching the target regeneration temperature in the same step (here, step B) as the current step at the next forced regeneration, and the forced regeneration processing step A is performed. In step A ′, the forced regeneration time is shortened (corresponding to FIG. 5 (ii ′)). Then, the process proceeds to step S38.

ステップS38では、差圧センサ27にて検出される差圧よりDPF21におけるPMの堆積量である総堆積量が予め実験等により設定された基準堆積量c以下になったか、否かを判別する。判別結果が真(Yes)で総堆積量が基準堆積量c以下になっていれば、ステップS40に進み、判別結果が偽(No)で総堆積量が基準堆積量c以下になっていなければ、ステップS18へ戻る。   In step S38, it is determined from the differential pressure detected by the differential pressure sensor 27 whether or not the total accumulation amount, which is the PM accumulation amount in the DPF 21, has become equal to or less than a reference accumulation amount c set in advance through experiments or the like. If the determination result is true (Yes) and the total accumulation amount is equal to or less than the reference accumulation amount c, the process proceeds to step S40. If the determination result is false (No) and the total accumulation amount is not equal to or less than the reference accumulation amount c. Return to step S18.

ステップS40では、目標再生温度T3で図5或いは図6に記載のステップCの強制再生処理を開始する(図5及び図6の(iii)に該当)。そして、ステップS42に進む。
ステップS42では、排気温度センサ25にて検出される温度である実再生温度Txから現在の強制再生処理のステップ(ここではステップC)の目標再生温度T3を減算し、温度偏差ΔTを算出する。そして、ステップS44に進む。
In step S40, the forced regeneration process in step C shown in FIG. 5 or 6 is started at the target regeneration temperature T3 (corresponding to (iii) in FIGS. 5 and 6). Then, the process proceeds to step S42.
In step S42, the target regeneration temperature T3 of the current forced regeneration process step (here, step C) is subtracted from the actual regeneration temperature Tx, which is the temperature detected by the exhaust temperature sensor 25, to calculate a temperature deviation ΔT. Then, the process proceeds to step S44.

ステップS44では、ステップS42にて算出されて温度偏差ΔTが予め実験等により設定された所定温度偏差以上か、否かを判別する。判別結果が真(Yes)で温度偏差ΔTが所定温度偏差以上であれば、DPF21が過昇温しているとして、ステップS46に進み、判別結果が偽(No)で温度偏差ΔTが所定温度偏差より小さければ、ステップS56に進む。   In step S44, it is determined whether or not the temperature deviation ΔT calculated in step S42 is greater than or equal to a predetermined temperature deviation set in advance through experiments or the like. If the determination result is true (Yes) and the temperature deviation ΔT is equal to or greater than the predetermined temperature deviation, it is determined that the DPF 21 has overheated, the process proceeds to step S46, the determination result is false (No), and the temperature deviation ΔT is the predetermined temperature deviation. If it is smaller, the process proceeds to step S56.

ステップS46では、温度偏差ΔTが所定温度偏差以上となった、即ち、DPF21で過昇温が発生した時点のDPF21におけるPMの堆積量である過昇温時総堆積量Dxを算出する。そして、ステップS48に進む。
ステップS48では、現在の強制再生処理のステップ(ここではステップC)の基準堆積量cからステップS46で算出した過昇温時総堆積量Dxを減算して、堆積量偏差ΔDを算出する。そして、ステップS50に進む。
In step S46, the total temperature deposit amount Dx at the time of overheating, which is the amount of PM accumulated in the DPF 21 at the time when the temperature deviation ΔT is equal to or greater than the predetermined temperature deviation, that is, when the overheating temperature is generated in the DPF 21 is calculated. Then, the process proceeds to step S48.
In step S48, the accumulation amount deviation ΔD is calculated by subtracting the total accumulation amount Dx at the time of overheating calculated in step S46 from the reference accumulation amount c in the current forced regeneration process step (here, step C). Then, the process proceeds to step S50.

ステップS50では、図7の堆積量偏差と補正量との関係図とステップS48にて算出した堆積量偏差ΔDより、補正量xを算出する。そして、ステップS52に進む。
ステップS52では、現在の強制再生処理のステップ(ここではステップC)の基準堆積量cからステップS50で算出した補正量xを減算して、補正後基準堆積量c”を算出する。そして、ステップS54に進む。
In step S50, the correction amount x is calculated from the relationship diagram between the accumulation amount deviation and the correction amount in FIG. 7 and the accumulation amount deviation ΔD calculated in step S48. Then, the process proceeds to step S52.
In step S52, the corrected reference accumulation amount c ″ is calculated by subtracting the correction amount x calculated in step S50 from the reference accumulation amount c in the current forced regeneration processing step (here, step C). Proceed to S54.

ステップS54では、次回の強制再生時に現ステップと同一のステップ(ここではステップc)の目標再生温度を切り換える基準堆積量をステップS52で算出した補正後基準堆積量c”としステップBの強制再生時間を延長する。そして、ステップS32へ戻る。
次に、ステップS56では、現在の強制再生処理のステップ(ここではステップC)の基準堆積量cに予め実験等により設定された所定量を加算して、補正後基準堆積量c’を算出する。そして、ステップS58に進む。
In step S54, the reference accumulation amount for switching the target regeneration temperature in the same step (here, step c) as the current step at the next forced regeneration is set as the corrected reference deposition amount c ″ calculated in step S52, and the forced regeneration time in step B Then, the process returns to step S32.
Next, in step S56, a corrected reference deposition amount c ′ is calculated by adding a predetermined amount set in advance through experiments or the like to the reference deposition amount c in the current forced regeneration processing step (here, step C). . Then, the process proceeds to step S58.

ステップS58では、次回の強制再生時に現ステップと同一のステップ(ここではステップC)の目標再生温度を切り換える基準堆積量をステップS56で算出した補正後基準堆積量c’とし強制再生処理ステップBの強制再生時間を短縮する。そして、ステップS60に進む。
ステップS60では、差圧センサ26にて検出される差圧よりDPF21におけるPMの堆積量である総堆積量が予め実験等により設定された基準堆積量d以下になったか、否かを判別する。判別結果が真(Yes)で総堆積量が基準堆積量d以下になっていれば、ステップS32へ戻り、判別結果が偽(No)で総堆積量が基準堆積量d以下になっていなければ、ステップS42へ戻る。
In step S58, the reference accumulation amount for switching the target regeneration temperature in the same step (in this case, step C) as the current step at the next forced regeneration is set to the corrected reference deposition amount c ′ calculated in step S56. Reduce forced regeneration time. Then, the process proceeds to step S60.
In step S60, it is determined from the differential pressure detected by the differential pressure sensor 26 whether or not the total accumulation amount, which is the PM accumulation amount in the DPF 21, has become equal to or less than a reference accumulation amount d set in advance through experiments or the like. If the determination result is true (Yes) and the total accumulation amount is equal to or less than the reference accumulation amount d, the process returns to step S32, and if the determination result is false (No) and the total accumulation amount is not equal to or less than the reference accumulation amount d. Return to step S42.

このように、本発明の第1実施例に係る内燃機関の排気浄化装置によれば、強制再生処理時に実再生温度Txから目標再生温度を減算して算出される温度偏差ΔTが所定温度偏差以上である場合には、DPF21で過昇温が発生したとして、次回の強制再生時には過昇温が発生したステップの開始を遅らせ強制再生時間を延長するようにしている。また、温度偏差ΔTが所定温度偏差より小さい場合には、過昇温が発生していないとして次回の強制再生時には過昇温の発生していないステップの開始を早め強制再生時間を短縮するように強制再生条件の切り換えを行い最適な処理時間で強制再生を行うようにしている。   Thus, according to the exhaust gas purification apparatus for an internal combustion engine according to the first embodiment of the present invention, the temperature deviation ΔT calculated by subtracting the target regeneration temperature from the actual regeneration temperature Tx during the forced regeneration process is equal to or greater than a predetermined temperature deviation. In this case, assuming that an excessive temperature rise has occurred in the DPF 21, at the next forced regeneration, the start of the step where the excessive temperature rise has occurred is delayed to extend the forced regeneration time. Further, when the temperature deviation ΔT is smaller than the predetermined temperature deviation, it is assumed that no excessive temperature rise has occurred and the start of the step where the excessive temperature rise has not occurred at the next forced regeneration is shortened to shorten the forced regeneration time. The forced regeneration conditions are switched to perform forced regeneration with the optimum processing time.

従って、強制再生を実行する毎に最適な処理時間で強制再生処理を行うことができ、強制再生に用いる燃料の量を最適にすることができるので、燃費の悪化を抑制しつつ、オイルダイリューションを抑制することができる。
また、本実施例では、前回の強制再生時の実再生温度Txと目標再生温度との温度偏差ΔTに基づいて強制再生時間の補正を行なうので、事前にDPF21にて過昇温が発生しないように再生条件を設定することが可能となる。更に、目標再生温度を低い値から順次高くなるように切換えており、再生途中で過昇温になった場合には、次のステップに移行せずに強制再生を終了させるので、例え強制再生初期に過昇温が発生したとしてもDPF21の保護を確実に図ることができ、過昇温によるDPF21の劣化を防止することができる。
[第2実施例]
次に本発明の第2実施例に係る強制再生処理条件の切換制御内容について説明する。
Therefore, every time the forced regeneration is executed, the forced regeneration process can be performed with the optimum processing time, and the amount of fuel used for the forced regeneration can be optimized. Can be suppressed.
Further, in this embodiment, the forced regeneration time is corrected based on the temperature deviation ΔT between the actual regeneration temperature Tx and the target regeneration temperature at the previous forced regeneration, so that excessive temperature rise does not occur in the DPF 21 in advance. It is possible to set the playback conditions. In addition, the target regeneration temperature is switched so as to increase gradually from a low value. If the temperature rises excessively during regeneration, forced regeneration is terminated without proceeding to the next step. Even if an excessive temperature rise occurs, it is possible to reliably protect the DPF 21 and to prevent the DPF 21 from being deteriorated due to the excessive temperature rise.
[Second Embodiment]
Next, the contents of switching control of forced regeneration processing conditions according to the second embodiment of the present invention will be described.

図8は、本発明の第2実施例に係る強制再生処理条件の切換制御ルーチンを示すフローチャートの一部を示し、図9は、強制再生処理条件の切換制御ルーチンを示すフローチャートの残部を示している。図10は、一例として過昇温のない場合の強制再生処理を時系列で示し、図11は、一例として過昇温のある場合の強制再生処理を時系列で示している。なお、図10及び図11の上段はPM堆積量の変化と目標再生温度の基準堆積量を、下段は各基準堆積量での目標再生温度の変化を示し、ステップA,B,Cは目標再生温度が一定である強制再生処理の範囲を示している。また、上段の実線は補正前PM堆積量を、二点鎖線は補正後PM堆積量を示し、下段の実線は目標再生温度、破線は実再生温度、一点鎖線が補正後目標再生温度をそれぞれ示している。   FIG. 8 shows a part of a flowchart showing a forced regeneration processing condition switching control routine according to the second embodiment of the present invention, and FIG. 9 shows the rest of the flowchart showing the forced regeneration processing condition switching control routine. Yes. FIG. 10 shows, as an example, forced regeneration processing when there is no excessive temperature rise in time series, and FIG. 11 shows, as an example, forced regeneration processing when there is an excessive temperature rise, in time series. 10 and 11 show the change in the PM accumulation amount and the reference accumulation amount of the target regeneration temperature, the lower part shows the change in the target regeneration temperature at each reference accumulation amount, and steps A, B, and C represent the target regeneration. The range of the forced regeneration process where temperature is constant is shown. The upper solid line indicates the PM deposition amount before correction, the two-dot chain line indicates the corrected PM deposition amount, the lower solid line indicates the target regeneration temperature, the broken line indicates the actual regeneration temperature, and the alternate long and short dash line indicates the corrected target regeneration temperature. ing.

第2実施例では、上記第1実施例に対して、強制再生条件を基準堆積量の補正から目標再生温度の補正に変更しており、以下に上記第1実施例と異なる点に付いて説明する。
図8及び図9に示すように、ステップS10〜S20では、第1実施例と同様にDPF21に堆積しているPMの総堆積量より強制再生を開始(ステップA)し、総堆積量が基準堆積量bとなると目標再生温度をT2とする(ステップB)。また、排気温度センサ25にて検出される温度である実再生温度Txから目標再生温度T2を減算して温度偏差ΔTを算出する。当該温度偏差ΔTが予め実験等により設定された所定温度偏差以上か、否かを判別し、判別結果が真(Yes)で温度偏差ΔTが所定温度偏差以上であれば、DPF21が過昇温しているとして、ステップS22’に進み、判別結果が偽(No)で温度偏差ΔTが所定温度偏差より小さければ、ステップS34’に進む。
In the second embodiment, the forced regeneration condition is changed from the correction of the reference accumulation amount to the correction of the target regeneration temperature with respect to the first embodiment, and the difference from the first embodiment will be described below. To do.
As shown in FIGS. 8 and 9, in steps S10 to S20, forcible regeneration is started (step A) from the total amount of PM accumulated in the DPF 21 as in the first embodiment, and the total amount of accumulation is the reference. When the accumulation amount b is reached, the target regeneration temperature is set to T2 (step B). Further, the target regeneration temperature T2 is subtracted from the actual regeneration temperature Tx that is the temperature detected by the exhaust temperature sensor 25 to calculate the temperature deviation ΔT. It is determined whether or not the temperature deviation ΔT is equal to or greater than a predetermined temperature deviation set in advance through experiments or the like. If the determination result is true and the temperature deviation ΔT is equal to or greater than the predetermined temperature deviation, the DPF 21 overheats. If the determination result is false (No) and the temperature deviation ΔT is smaller than the predetermined temperature deviation, the process proceeds to step S34 ′.

ステップS22’では、現在の強制再生処理のステップ(ここではステップB)の目標再生温度T2から第2の所定温度を減算して補正後目標再生温度T2"を算出する。そして、ステップS30’に進む。
ステップS30’では、次回の強制再生時に現ステップと同一のステップ(ここではステップB)の目標再生温度をステップS22’にて算出した補正後目標再生温度T2"としステップBをステップB”として強制再生温度を低下させる(図11(ii)〜(iii")に該当)。そして、ステップS32に進む。
In step S22 ′, a corrected target regeneration temperature T2 ″ is calculated by subtracting the second predetermined temperature from the target regeneration temperature T2 of the current forced regeneration processing step (here, step B). Then, the process proceeds to step S30 ′. move on.
In step S30 ′, at the next forced regeneration, the target regeneration temperature of the same step (here, step B) as the current step is set to the corrected target regeneration temperature T2 ″ calculated in step S22 ′, and step B is forced to be step B ″. The regeneration temperature is lowered (corresponding to FIGS. 11 (ii) to (iii ")), and the process proceeds to step S32.

次に、ステップS34’では、現在の強制再生処理のステップ(ここではステップB)の目標再生温度T2に第1の所定温度を加算して補正後目標再生温度T2'を算出する。そして、ステップS36’に進む。
ステップS36’では、次回の強制再生時に現ステップと同一のステップ(ここではステップB)の目標再生温度をステップS34’にて算出した補正後目標再生温度T2'としステップBをステップB’として強制再生温度を上昇させる(図10(ii)〜(iii')に該当)。そして、ステップS38に進む。
Next, in step S34 ′, a corrected target regeneration temperature T2 ′ is calculated by adding the first predetermined temperature to the target regeneration temperature T2 in the current forced regeneration process step (here, step B). Then, the process proceeds to step S36 ′.
In step S36 ′, the target regeneration temperature of the same step (here, step B) as the current step at the next forced regeneration is set to the corrected target regeneration temperature T2 ′ calculated in step S34 ′ and step B is forced to be step B ′. The regeneration temperature is increased (corresponding to FIGS. 10 (ii) to (iii ′)). Then, the process proceeds to step S38.

ステップS38〜S44までは、第1実施例と同様に、DPF21に堆積しているPMの総堆積量が基準堆積量cとなると目標再生温度をT3とする(ステップC)。また、排気温度センサ25にて検出される温度である実再生温度Txから目標再生温度T3を減算して温度偏差ΔTを算出する。当該温度偏差ΔTが予め実験等により設定された所定温度偏差以上か、否かを判別し、判別結果が真(Yes)で温度偏差ΔTが所定温度偏差以上であれば、DPF21が過昇温しているとして、ステップS46’に進み、判別結果が偽(No)で温度偏差ΔTが所定温度偏差より小さければ、ステップS56’に進む。   From step S38 to S44, as in the first embodiment, the target regeneration temperature is set to T3 when the total accumulation amount of PM accumulated in the DPF 21 becomes the reference accumulation amount c (step C). In addition, the temperature deviation ΔT is calculated by subtracting the target regeneration temperature T3 from the actual regeneration temperature Tx that is the temperature detected by the exhaust temperature sensor 25. It is determined whether or not the temperature deviation ΔT is equal to or greater than a predetermined temperature deviation set in advance through experiments or the like. If the determination result is true and the temperature deviation ΔT is equal to or greater than the predetermined temperature deviation, the DPF 21 overheats. If the determination result is false (No) and the temperature deviation ΔT is smaller than the predetermined temperature deviation, the process proceeds to step S56 ′.

ステップS46’では、現在の強制再生処理のステップ(ここではステップC)の目標再生温度T3から第2の所定温度を減算して補正後目標再生温度T3"を算出する。そして、ステップS54’に進む。
ステップS54’では、次回の強制再生時に現ステップと同一のステップ(ここではステップC)の目標再生温度をステップS46’にて算出した補正後目標再生温度T3"として強制再生温度を低下させる。そして、ステップS32に進む。
In step S46 ′, a corrected target regeneration temperature T3 ″ is calculated by subtracting the second predetermined temperature from the target regeneration temperature T3 in the current forced regeneration processing step (here, step C). Then, the process proceeds to step S54 ′. move on.
In step S54 ′, the forced regeneration temperature is lowered by setting the target regeneration temperature of the same step (here, step C) as the current step at the next forced regeneration to the corrected target regeneration temperature T3 ″ calculated in step S46 ′. The process proceeds to step S32.

次に、ステップS56’では、現在の強制再生処理のステップ(ここではステップC)の目標再生温度T3に第1の所定温度を加算して補正後目標再生温度T3'を算出する。そして、ステップS58’に進む。
ステップS58’では、次回の強制再生時に現ステップと同一のステップ(ここではステップC)の目標再生温度をステップS56’にて算出した補正後目標再生温度T3'として強制再生温度を上昇させる。そして、ステップS60に進む。
Next, in step S56 ′, a corrected target regeneration temperature T3 ′ is calculated by adding the first predetermined temperature to the target regeneration temperature T3 of the current forced regeneration process step (here, step C). Then, the process proceeds to step S58 ′.
In step S58 ′, the forced regeneration temperature is raised as the corrected target regeneration temperature T3 ′ calculated in step S56 ′ as the target regeneration temperature in the same step (here, step C) as the current step at the next forced regeneration. Then, the process proceeds to step S60.

このように、本発明の第2実施例に係る内燃機関の排気浄化装置によれば、排気温度センサ25にて検出される温度である実再生温度Txから目標再生温度を減算して温度偏差ΔTを算出する。当該温度偏差ΔTが所定温度偏差以上であれば、過昇温しているとして目標再生温度から第2の所定温度を減算して補正後目標再生温度を算出し、温度偏差ΔTが所定温度偏差より低ければ目標再生温度に第1の所定温度を加算して補正後目標再生温度を算出し、次回の強制再生時には目標再生温度を補正後目標再生温度として強制再生を行うようにしている。   As described above, according to the exhaust gas purification apparatus for an internal combustion engine according to the second embodiment of the present invention, the temperature deviation ΔT is obtained by subtracting the target regeneration temperature from the actual regeneration temperature Tx that is the temperature detected by the exhaust temperature sensor 25. Is calculated. If the temperature deviation ΔT is equal to or greater than the predetermined temperature deviation, the second predetermined temperature is subtracted from the target regeneration temperature and the corrected target regeneration temperature is calculated by assuming that the temperature is excessively high. If it is lower, the corrected target regeneration temperature is calculated by adding the first predetermined temperature to the target regeneration temperature, and the forced regeneration is performed with the target regeneration temperature as the corrected target regeneration temperature at the next forced regeneration.

従って、過昇温が発生していない場合には、再生温度を高くしてDPF21に堆積したPMを短期間に燃焼することで強制再生処理時間を短縮し、過昇温が発生した場合には、再生温度を低くして過昇温が発生しないようにしているので、最適な処理時間で強制再生処理を行うことができ、強制再生に用いる燃料の量を最適にすることができるので、第1実施例と同様に燃費の悪化を抑制しつつ、オイルダイリューションを抑制することができる。   Therefore, when the excessive temperature rise has not occurred, the regeneration temperature is increased and the PM accumulated in the DPF 21 is burned in a short time to shorten the forced regeneration processing time. Since the regeneration temperature is lowered to prevent excessive temperature rise, forced regeneration processing can be performed in an optimal processing time, and the amount of fuel used for forced regeneration can be optimized. As in the first embodiment, oil dilution can be suppressed while suppressing deterioration of fuel consumption.

また、第1実施例と同様に本実施例でも、前回の強制再生時の実再生温度Txと目標再生温度との温度偏差ΔTに基づいて強制再生時間の補正を行なうので、事前にDPF21にて過昇温が発生しないように再生条件を設定することが可能となる。更に、目標再生温度を低い値から順次高くなるように切換えており、再生途中で過昇温になった場合には、次のステップに移行せずに強制再生を終了させるので、例え強制再生初期に過昇温が発生したとしてもDPF21の保護を確実に図ることができ、過昇温によるDPF21の劣化を防止することができる。   Similarly to the first embodiment, in this embodiment, since the forced regeneration time is corrected based on the temperature deviation ΔT between the actual regeneration temperature Tx and the target regeneration temperature at the previous forced regeneration, the DPF 21 uses the DPF 21 in advance. It is possible to set the regeneration condition so that the excessive temperature rise does not occur. In addition, the target regeneration temperature is switched so as to increase gradually from a low value. If the temperature rises excessively during regeneration, forced regeneration is terminated without proceeding to the next step. Even if an excessive temperature rise occurs, it is possible to reliably protect the DPF 21 and to prevent the DPF 21 from being deteriorated due to the excessive temperature rise.

以上で発明の実施形態の説明を終えるが、本発明の形態は上記実施形態に限定されるものではない。
上記第1実施例では、差圧センサ26にて検出される差圧よりDPF21におけるPMの堆積量である総堆積量を算出しているが、これに限定されるものではなく、DPF21に堆積しているPMの堆積量がある程度の精度で分かればよく、前回の再生処理からの経過時間や走行距離、またはDPF21を通過する排気流量の積算からPMの総堆積量を推定しても良い。
Although the description of the embodiment of the invention is finished as above, the embodiment of the present invention is not limited to the above embodiment.
In the first embodiment, the total accumulation amount, which is the accumulation amount of PM in the DPF 21, is calculated from the differential pressure detected by the differential pressure sensor 26. However, the present invention is not limited to this. The accumulated PM amount may be known with a certain degree of accuracy, and the total accumulated PM amount may be estimated from the elapsed time or travel distance from the previous regeneration process or the integration of the exhaust flow rate passing through the DPF 21.

また、上記第1実施例における基準堆積量b、cの補正、あるいは第2実施例における目標再生温度T2、T3の補正とは独立して、更に、強制再生の間隔である再生インターバルを補正してもよい。詳しくは、再生期間(ステップA〜C)においてDPF21で過昇温が発生した場合に、このときの実再生温度Txの最高到達温度が高くなるに従って、次回の再生時における基準堆積量aを少なくするよう補正する。このように基準堆積量aを補正することで、再生インターバルを変更することになり、次回の再生開始時におけるPMの堆積量を抑え、過昇温をより確実に防止することができる。   Further, independently of the correction of the reference deposition amounts b and c in the first embodiment or the correction of the target regeneration temperatures T2 and T3 in the second embodiment, the regeneration interval which is the forced regeneration interval is further corrected. May be. Specifically, when an excessive temperature rise occurs in the DPF 21 during the regeneration period (steps A to C), the reference accumulation amount a at the next regeneration is reduced as the maximum temperature of the actual regeneration temperature Tx increases at this time. Correct to By correcting the reference accumulation amount a in this way, the regeneration interval is changed, and the amount of PM accumulation at the start of the next regeneration can be suppressed to prevent overheating more reliably.

1 エンジン(内燃機関)
4 燃料噴射ノズル
20 DOC
21 DPF(フィルタ)
24 排気温度センサ
25 排気温度センサ(出口温度検出手段)
26 差圧センサ(圧力差検出手段)
30 ECU(総堆積量算出手段、強制再生制御手段)
1 engine (internal combustion engine)
4 Fuel injection nozzle 20 DOC
21 DPF (filter)
24 Exhaust temperature sensor 25 Exhaust temperature sensor (exit temperature detection means)
26 Differential pressure sensor (pressure difference detection means)
30 ECU (total accumulation calculation means, forced regeneration control means)

Claims (5)

内燃機関の排気通路に設けられ、排気中の微粒子状物質を捕集するフィルタと、
前記フィルタを昇温させて該フィルタに堆積した微粒子状物質を燃焼させ該フィルタを強制再生させる強制再生手段と、
前記フィルタの出口温度を検出する出口温度検出手段と、
前記フィルタに堆積した微粒子状物質の総堆積量を算出する総堆積量算出手段と、
前記強制再生を実行する際の目標再生温度と、該目標再生温度に対応する前記微粒子状物質の基準堆積量とが複数設定され、前記総堆積量が該基準堆積量のいずれかに達すると、対応した該目標再生温度に前記フィルタを昇温させ段階的に強制再生を実行する強制再生制御手段とを備え、
前記強制再生制御手段は、更に前記出口温度検出手段にて検出される出口温度に基づいて、次回の強制再生時の再生条件を変更することを特徴とする内燃機関の排気浄化装置。
A filter provided in an exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust;
Forcibly regenerating means for forcibly regenerating the filter by heating the filter to burn particulate matter deposited on the filter;
Outlet temperature detecting means for detecting the outlet temperature of the filter;
A total deposition amount calculating means for calculating a total deposition amount of the particulate matter deposited on the filter;
When a plurality of target regeneration temperatures at the time of executing the forced regeneration and a reference deposition amount of the particulate matter corresponding to the target regeneration temperature are set, and the total deposition amount reaches one of the reference deposition amounts, A forced regeneration control means for increasing the temperature of the filter to the corresponding target regeneration temperature and executing forced regeneration stepwise;
The exhaust purification device of an internal combustion engine, wherein the forced regeneration control means further changes a regeneration condition at the next forced regeneration based on the outlet temperature detected by the outlet temperature detecting means.
前記強制再生制御手段は、前記目標再生温度と前記出口温度との偏差が所定温度偏差より低ければ、次回の強制再生時に該目標再生温度に対応する前記基準堆積量に所定量を加算することを特徴とする、請求項1に記載の内燃機関の排気浄化装置。   If the deviation between the target regeneration temperature and the outlet temperature is lower than a predetermined temperature deviation, the forced regeneration control means adds a predetermined amount to the reference accumulation amount corresponding to the target regeneration temperature at the next forced regeneration. The exhaust emission control device for an internal combustion engine according to claim 1, characterized in that it is characterized in that: 前記強制再生制御手段は、前記目標再生温度と前記出口温度との偏差が所定温度偏差以上であれば、該温度偏差が該所定温度偏差となった時点での総堆積量と該目標再生温度に対応する前記基準堆積量と該総堆積量との偏差より補正量を算出し、次回の強制再生時に該基準堆積量より該補正量を減算することを特徴とする、請求項1或いは2に記載の内燃機関の排気浄化装置。   If the deviation between the target regeneration temperature and the outlet temperature is equal to or greater than a predetermined temperature deviation, the forced regeneration control means sets the total accumulation amount and the target regeneration temperature when the temperature deviation becomes the predetermined temperature deviation. The correction amount is calculated from a deviation between the corresponding reference deposition amount and the total deposition amount, and the correction amount is subtracted from the reference deposition amount at the next forced regeneration. Exhaust gas purification device for internal combustion engine. 前記強制再生制御手段は、前記目標再生温度と前記出口温度との偏差が所定温度偏差より低ければ、次回の強制再生時に該目標再生温度に第1の所定温度を加算することを特徴とする、請求項1に記載の内燃機関の排気浄化装置。   If the deviation between the target regeneration temperature and the outlet temperature is lower than a predetermined temperature deviation, the forced regeneration control means adds a first predetermined temperature to the target regeneration temperature at the next forced regeneration. The exhaust emission control device for an internal combustion engine according to claim 1. 前記強制再生制御手段は、前記目標再生温度と前記出口温度との偏差が所定温度偏差以上であれば、次回の強制再生時に該目標再生温度より第2の所定温度を減算することを特徴とする、請求項1或いは4に記載の内燃機関の排気浄化装置。   The forced regeneration control means subtracts a second predetermined temperature from the target regeneration temperature at the next forced regeneration when the deviation between the target regeneration temperature and the outlet temperature is a predetermined temperature deviation or more. 5. An exhaust emission control device for an internal combustion engine according to claim 1 or 4.
JP2010186104A 2010-08-23 2010-08-23 Exhaust gas purification device for internal combustion engine Active JP5621969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010186104A JP5621969B2 (en) 2010-08-23 2010-08-23 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010186104A JP5621969B2 (en) 2010-08-23 2010-08-23 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012041906A true JP2012041906A (en) 2012-03-01
JP5621969B2 JP5621969B2 (en) 2014-11-12

Family

ID=45898495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010186104A Active JP5621969B2 (en) 2010-08-23 2010-08-23 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5621969B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282244A1 (en) * 2021-07-08 2023-01-12 日立Astemo株式会社 Control device for internal combustion engine, and filter regeneration method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763039A (en) * 1993-08-20 1995-03-07 Toyota Autom Loom Works Ltd Exhaust emission control device
JP2004263579A (en) * 2003-02-26 2004-09-24 Ngk Insulators Ltd Method and program for regenerating exhaust gas purifying filter
JP2005120981A (en) * 2003-10-20 2005-05-12 Nissan Motor Co Ltd Filter regenerating control device
JP2009121264A (en) * 2007-11-13 2009-06-04 Mitsubishi Fuso Truck & Bus Corp Exhaust gas after-treatment device
JP2010001860A (en) * 2008-06-23 2010-01-07 Denso Corp Exhaust emission control device for internal combustion engine
JP2010071203A (en) * 2008-09-18 2010-04-02 Mitsubishi Heavy Ind Ltd Dpf regeneration control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763039A (en) * 1993-08-20 1995-03-07 Toyota Autom Loom Works Ltd Exhaust emission control device
JP2004263579A (en) * 2003-02-26 2004-09-24 Ngk Insulators Ltd Method and program for regenerating exhaust gas purifying filter
JP2005120981A (en) * 2003-10-20 2005-05-12 Nissan Motor Co Ltd Filter regenerating control device
JP2009121264A (en) * 2007-11-13 2009-06-04 Mitsubishi Fuso Truck & Bus Corp Exhaust gas after-treatment device
JP2010001860A (en) * 2008-06-23 2010-01-07 Denso Corp Exhaust emission control device for internal combustion engine
JP2010071203A (en) * 2008-09-18 2010-04-02 Mitsubishi Heavy Ind Ltd Dpf regeneration control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282244A1 (en) * 2021-07-08 2023-01-12 日立Astemo株式会社 Control device for internal combustion engine, and filter regeneration method

Also Published As

Publication number Publication date
JP5621969B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP4288985B2 (en) Exhaust gas purification device for internal combustion engine
JP4367176B2 (en) Exhaust gas purification device for internal combustion engine
US6622480B2 (en) Diesel particulate filter unit and regeneration control method of the same
JP2003254133A (en) Device for controlling exhaust gas of internal combustion engine
JP4935983B2 (en) Exhaust gas purification device for internal combustion engine
JP4022714B2 (en) Exhaust gas purification device for internal combustion engine
JP2008031854A (en) Exhaust emission control device for internal combustion engine
JP5830832B2 (en) Filter regeneration device
JP5569690B2 (en) Exhaust gas purification device for internal combustion engine
JP4895019B2 (en) Exhaust gas purification device for internal combustion engine
JP2008144726A (en) Exhaust emission control device for internal combustion engine
JP5621969B2 (en) Exhaust gas purification device for internal combustion engine
JP2008138537A (en) Exhaust emission control device for internal combustion engine
JP5227149B2 (en) Engine exhaust purification system
JP4328949B2 (en) Exhaust gas purification device for internal combustion engine
JP5310749B2 (en) Regeneration temperature control device and regeneration temperature control method for exhaust gas purification filter
JP2010169032A (en) Engine control device
JP2006274983A (en) Exhaust emission control device
JP4512519B2 (en) Exhaust gas purification device for internal combustion engine
JP6677008B2 (en) Exhaust gas purification device for internal combustion engine
JP2006274978A (en) Exhaust emission control device of internal combustion engine
JP4356583B2 (en) Fuel injection control device for internal combustion engine
JP5858224B2 (en) Exhaust purification device regenerator
JP7244214B2 (en) Exhaust purification system controller
JP4946054B2 (en) Regeneration temperature control device and regeneration temperature control method for exhaust gas purification filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130903

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140909

R151 Written notification of patent or utility model registration

Ref document number: 5621969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350