JP2012041592A - Flat copper particle - Google Patents

Flat copper particle Download PDF

Info

Publication number
JP2012041592A
JP2012041592A JP2010182494A JP2010182494A JP2012041592A JP 2012041592 A JP2012041592 A JP 2012041592A JP 2010182494 A JP2010182494 A JP 2010182494A JP 2010182494 A JP2010182494 A JP 2010182494A JP 2012041592 A JP2012041592 A JP 2012041592A
Authority
JP
Japan
Prior art keywords
copper particles
flat copper
copper
particles
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010182494A
Other languages
Japanese (ja)
Other versions
JP5759688B2 (en
Inventor
Yoshinobu Nakamura
芳信 中村
Taku Fujimoto
卓 藤本
Hikari Minowa
光 箕輪
Takahiko Sakagami
貴彦 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2010182494A priority Critical patent/JP5759688B2/en
Publication of JP2012041592A publication Critical patent/JP2012041592A/en
Application granted granted Critical
Publication of JP5759688B2 publication Critical patent/JP5759688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide flat copper particles having a high filling density of particles, and enabling easy control of viscosity when being changed into paste.SOLUTION: This flat copper particle has a contour defined by a plurality of approximately linear sides in a plan view, comprises a flat body in which each angle formed by adjacent sides is ≥60° and <180°, and has an average particle size of 0.05-0.5 μm. The flat copper particles are produced preferably by a method including the first reduction process and the second reduction process performed thereafter. In the first reduction process, reducing sugar or hydrazine is used as a reducing agent, and in the second reduction process, two or more kinds of reducing agents whose hydrogen reduction standard potential Eis -1.11 to -1.24 V are used as the reducing agent.

Description

本発明は、扁平な形状をした銅粒子に関する。本発明の扁平銅粒子は、例えばプリント配線板の回路形成や、セラミックコンデンサの外部電極の電気的導通確保のために用いられる銅ペーストの原料として特に好適に用いられる。   The present invention relates to a copper particle having a flat shape. The flat copper particles of the present invention are particularly preferably used as a raw material for a copper paste used, for example, for circuit formation of a printed wiring board and ensuring electrical continuity of external electrodes of a ceramic capacitor.

従来、電子部品等の電極や回路を形成する方法として、導電性材料である銅粉をペーストに分散させた導電性ペーストを基板に印刷した後、該ペーストを焼成又はキュアリングし硬化させて回路を形成する方法が知られている。   Conventionally, as a method of forming electrodes and circuits for electronic components, etc., after a conductive paste in which copper powder, which is a conductive material, is dispersed in a paste is printed on a substrate, the paste is baked or cured and cured. A method of forming is known.

この導電性ペーストに含まれる銅粒子としては、これまで略球形の形状をしたものが用いられてきた。近年では、プリント配線板のビアホールの穴埋め性の向上や、形成する導体の形状の精度の向上の点から、フレーク状の粒子も用いられている。フレーク銅粒子は比表面積が大きく、粒子どうしの接触面積が大きくなるので、電気抵抗を減少させ、導体形状の精度を上げるのに有効である。   As the copper particles contained in the conductive paste, those having a substantially spherical shape have been used so far. In recent years, flaky particles have also been used from the viewpoint of improving the fillability of via holes in printed wiring boards and improving the accuracy of the shape of the conductor to be formed. Since the flake copper particles have a large specific surface area and a large contact area between the particles, they are effective in reducing electrical resistance and improving the accuracy of the conductor shape.

従来、フレーク状の銅粒子は、例えば球形の銅粒子をボールミル等で機械的に変形させて製造していた(例えば特許文献1参照)。また、このような機械的な方法に代えて、化学的にフレーク状の銅粒子を製造する方法も提案されている(例えば特許文献2参照)。   Conventionally, flaky copper particles have been manufactured by mechanically deforming, for example, spherical copper particles with a ball mill or the like (see, for example, Patent Document 1). Moreover, it replaces with such a mechanical method and the method of manufacturing a flaky copper particle chemically is also proposed (for example, refer patent document 2).

特開2003−119501号公報JP 2003-119501 A 特開2005−314755号公報JP 2005-314755 A

特許文献1に記載の機械的な方法でフレーク状の銅粒子を製造した場合、得られる粒子の大きさを一定に揃えることは容易でなく、また粒径の小さな粒子を製造することには限界があった。また、製造に長時間を有し、また歩留りも下がるので、製造経費を抑えることが容易でなかった。一方、特許文献2に記載の化学的な方法によれば、特許文献1に記載の技術よりも高い歩留りで、粒径の小さなフレーク状の粒子を製造することができる。しかし、反応によって生成する粒子の形状や大きさを精密にコントロールするのには限界があった。   When flaky copper particles are produced by the mechanical method described in Patent Document 1, it is not easy to make the obtained particles uniform in size, and there is a limit to producing particles having a small particle size. was there. Moreover, since it takes a long time to manufacture and the yield decreases, it is not easy to suppress the manufacturing cost. On the other hand, according to the chemical method described in Patent Document 2, flaky particles having a small particle diameter can be produced with a higher yield than the technique described in Patent Document 1. However, there is a limit to precisely controlling the shape and size of the particles produced by the reaction.

したがって本発明の課題は、前述した従来技術の銅粒子よりも各種の特性が一層向上した扁平銅粒子を提供することにある。   Accordingly, an object of the present invention is to provide flat copper particles having various characteristics further improved as compared with the copper particles of the prior art described above.

本発明は、平面視において、略直線状の複数の辺によって画定される輪郭を有し、かつ隣り合う辺のなす角がすべて60度以上180未満である扁平体からなり、
平均粒径Diaが0.05〜0.5μmであることを特徴とする扁平銅粒子を提供することで前記の課題を解決したものである。
The present invention comprises a flat body having a contour defined by a plurality of substantially straight sides in a plan view, and the angles formed by adjacent sides are all 60 degrees or more and less than 180;
The object is solved by providing flat copper particles having an average particle diameter Dia of 0.05 to 0.5 μm.

また本発明は、前記の扁平銅粒子の好適な製造方法として、
水溶性銅化合物を含む水溶液に還元剤を添加して銅の還元を行う還元工程を有する扁平銅粒子を製造する方法において、
還元工程が第1の還元工程と、その後に行われる第2の還元工程とを含み、
第1の還元工程において還元剤として還元糖又はヒドラジンを用い、
第2の還元工程において還元剤として、水素還元標準電位E0が−1.11〜−1.24Vである還元剤を2種以上用いることを特徴とする扁平銅粒子の製造方法を提供するものである。
In addition, the present invention provides a suitable method for producing the flat copper particles,
In the method of producing flat copper particles having a reduction step of reducing copper by adding a reducing agent to an aqueous solution containing a water-soluble copper compound,
The reduction step includes a first reduction step and a second reduction step performed thereafter;
In the first reduction step, reducing sugar or hydrazine is used as a reducing agent,
Provided is a method for producing flat copper particles, wherein two or more reducing agents having a hydrogen reduction standard potential E 0 of −1.11 to −1.24 V are used as reducing agents in the second reduction step. It is.

本発明の扁平銅粒子は、粒子の分散性及びアスペクト比の均一性に優れ、充填密度が高くなる。また、ペーストにしたときに粘度の制御が容易になる。また、該ペーストを用いて形成された導体は、その表面粗さが従来のものよりも低くなる。   The flat copper particles of the present invention are excellent in particle dispersibility and aspect ratio uniformity, and have a high packing density. Further, the viscosity can be easily controlled when the paste is formed. Moreover, the surface roughness of the conductor formed using the paste is lower than that of the conventional one.

図1は、実施例1で得られた扁平銅粒子の走査型電子顕微鏡像である。1 is a scanning electron microscope image of the flat copper particles obtained in Example 1. FIG. 図2は、実施例2で得られた扁平銅粒子の走査型電子顕微鏡像である。FIG. 2 is a scanning electron microscope image of the flat copper particles obtained in Example 2. 図3は、実施例3で得られた扁平銅粒子の走査型電子顕微鏡像である。FIG. 3 is a scanning electron microscope image of the flat copper particles obtained in Example 3. 図4は、実施例4で得られた扁平銅粒子の走査型電子顕微鏡像である。4 is a scanning electron microscope image of the flat copper particles obtained in Example 4. FIG. 図5は、比較例1で得られた銅粒子の走査型電子顕微鏡像である。FIG. 5 is a scanning electron microscope image of the copper particles obtained in Comparative Example 1. 図6は、比較例2で得られた銅粒子の走査型電子顕微鏡像である。FIG. 6 is a scanning electron microscope image of the copper particles obtained in Comparative Example 2. 図7は、比較例3で得られた銅粒子の走査型電子顕微鏡像である。FIG. 7 is a scanning electron microscope image of the copper particles obtained in Comparative Example 3.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の銅粒子は、その形状が扁平であることによって特徴付けられる。具体的には、対向する略平坦な2つの面を有し、該面の大きさ(横断長さ)が厚みに比べて大きくなっている板状の形状をしている。銅粒子を平面視した場合、この板状の形状は、略直線状の複数の辺によって画定される輪郭を有する形状になっている。例えば多角形の輪郭を有する形状になっている。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The copper particles of the present invention are characterized by their flat shape. Specifically, it has a plate-like shape having two substantially flat surfaces facing each other, and the size (transverse length) of the surfaces is larger than the thickness. When the copper particles are viewed in plan, this plate-like shape is a shape having an outline defined by a plurality of substantially straight sides. For example, it has a polygonal outline.

扁平銅粒子の板面を平面視した場合、該板面を画定する辺のうち、隣り合う二辺のなす角は60度以上180度未満になっており、好ましくは80度以上160度以下、更に好ましくは100度以上120度以下になっている。本発明の扁平銅粒子は、その板面を画定する辺における隣り合う二辺がなすすべての角部においてこの角度を満たしている。尤も、すべての角部が同じ角度であることは要しない。扁平銅粒子がこのような形状を有していることで、該粒子からなる銅粉は形状の揃ったものとなり、粒子の充填密度が高くなる。またペーストにしたときの粘度の制御が容易になる。なお「平面視」とは、本発明の扁平銅粒子をその板面と直交する方向からみたときの状態のことである。   When the plate surface of the flat copper particles is viewed in plan, the angle formed by two adjacent sides among the sides defining the plate surface is 60 degrees or more and less than 180 degrees, preferably 80 degrees or more and 160 degrees or less, More preferably, it is 100 degrees or more and 120 degrees or less. The flat copper particles of the present invention satisfy this angle at all corners formed by two adjacent sides in the side defining the plate surface. However, it is not necessary that all corners have the same angle. Since the flat copper particles have such a shape, the copper powder made of the particles has a uniform shape, and the packing density of the particles is increased. Further, the viscosity can be easily controlled when the paste is formed. In addition, "plan view" is a state when the flat copper particles of the present invention are viewed from a direction orthogonal to the plate surface.

粒子の充填密度を一層高める観点から、本発明の扁平銅粒子は、その板面が三角形以上、特に六角形以上の多角形の形状をしていることが好ましい。この場合、該多角形は正多角形であることを要しないが、形状が正多角形に近づくほど好ましい。   From the viewpoint of further increasing the packing density of the particles, the flat copper particles of the present invention preferably have a polygonal shape with a plate surface of a triangle or more, particularly a hexagon or more. In this case, the polygon does not need to be a regular polygon, but it is preferable that the shape is closer to the regular polygon.

本発明の銅粒子は、扁平であるにもかかわらずその大きさが小さいこと、つまり微粒であることによっても特徴付けられる。具体的には、扁平銅粒子を走査型電子顕微鏡(SEM)で観察し、画像解析して算出された板面の平均粒径Diaが0.05〜0.5μmという微粒のものであり、好ましくは0.1〜0.45μm、更に好ましくは0.15〜0.4μmである。本発明の銅粒子がこのような微粒のものであることによって、該粒子が扁平なものであることとの相乗効果で、粒子の充填密度が一層高くなる。   The copper particles of the present invention are also characterized by their small size, that is, they are fine particles despite being flat. Specifically, the flat copper particles are observed with a scanning electron microscope (SEM), and the average particle diameter Dia of the plate surface calculated by image analysis is a fine particle having a diameter of 0.05 to 0.5 μm, preferably Is 0.1 to 0.45 μm, more preferably 0.15 to 0.4 μm. When the copper particles of the present invention are such fine particles, the packing density of the particles is further increased by a synergistic effect with the flatness of the particles.

前記の画像解析による平均粒径Diaは、SEMを用い5000倍〜20000倍に拡大して直接観察して得られるSEM像に基づき、個々の銅粒子(測定サンプル数は10個以上)の最大横断長を実測し、測定サンプル数で平均することで求められる。   The average particle diameter Dia obtained by the above image analysis is based on the SEM image obtained by direct observation using a SEM with a magnification of 5000 to 20000 times, and the maximum crossing of individual copper particles (the number of measurement samples is 10 or more). It is obtained by actually measuring the length and averaging with the number of measurement samples.

本発明の扁平銅粒子における板面の平均粒径が前記の範囲であるのに対して、該粒子の厚み、すなわち2つの対向する板面間の距離は、板面の平均粒径よりも小さくなっている。具体的には、好ましくは0.01〜0.1μm、更に好ましくは0.02〜0.08μmになっている。したがって、粒径/厚みで定義されるアスペクト比は、好ましくは2〜25、更に好ましくは5〜10になっている。扁平銅粒子の厚みは、SEMによる直接観察で測定される実測値を平均して(測定サンプル数10個以上)求められる。   While the average particle size of the plate surface in the flat copper particles of the present invention is in the above range, the thickness of the particle, that is, the distance between two opposing plate surfaces is smaller than the average particle size of the plate surface. It has become. Specifically, it is preferably 0.01 to 0.1 μm, more preferably 0.02 to 0.08 μm. Therefore, the aspect ratio defined by the particle size / thickness is preferably 2 to 25, more preferably 5 to 10. The thickness of the flat copper particles is obtained by averaging measured values measured by direct observation with an SEM (number of measurement samples: 10 or more).

本発明の扁平銅粒子は、好ましくは後述する方法によって製造され、該方法によって製造された扁平銅粒子は粒度分布がシャープなものになる。粒度分布の尺度としては例えばSD/D50の値を用いることができる。ここで、SDは、レーザー回折散乱式粒度分布測定法で得られた粒度分布の標準偏差(μm)であり、D50はレーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径(μm)である。本発明の扁平銅粒子は、このSD/D50の値が、好ましくは0.4以下、更に好ましくは0.38以下、一層好ましくは0.35以下になっている。粒度分布がこのようなシャープなものであることによって、本発明の扁平銅粒子は、粒子の充填密度が一層高くなる。 The flat copper particles of the present invention are preferably produced by the method described later, and the flat copper particles produced by the method have a sharp particle size distribution. As a measure of the particle size distribution, for example, the value of SD / D 50 can be used. Here, SD is the standard deviation (μm) of the particle size distribution obtained by the laser diffraction / scattering particle size distribution measurement method, and D 50 is the volume cumulative particle at a cumulative volume of 50% by volume by the laser diffraction / scattering particle size distribution measurement method. Diameter (μm). The flat copper particles of the present invention have an SD / D 50 value of preferably 0.4 or less, more preferably 0.38 or less, and even more preferably 0.35 or less. By having such a sharp particle size distribution, the flat copper particles of the present invention have a higher particle packing density.

なお、前記の粒度分布の式であるSD/D50における分母のD50の値そのものは、0.1〜0.4μm、特に0.25〜0.35μmであることが好ましい。D50は、本発明の扁平銅粒子の凝集粒径の代表値であり、この値が先に述べた平均粒径Diaに近づくほど、該粒子の凝集の程度が低いことを意味する。本発明の扁平銅粒子の平均粒径Diaは、上述のとおり0.05〜0.3μmなので、この値とD50の値である0.1〜0.4との比較から明らかなように、本発明の扁平銅粒子は凝集の程度が小さいと言える。このことによっても本発明の扁平銅粒子は特徴付けられる。 The value itself of the denominator of the D 50 in SD / D 50 is an expression of the particle size distribution of said, 0.1 to 0.4 [mu] m, it is preferable that particularly 0.25~0.35Myuemu. D 50 is a representative value of the agglomerated particle diameter of the flat copper particles of the present invention, and the closer this value is to the average particle diameter Dia described above, the lower the degree of aggregation of the particles. Since the average particle diameter Dia of the flat copper particles of the present invention is 0.05 to 0.3 μm as described above, as is clear from a comparison between this value and 0.1 to 0.4 which is the value of D 50 , It can be said that the flat copper particles of the present invention have a small degree of aggregation. This also characterizes the flat copper particles of the present invention.

本発明の扁平銅粒子の粒度分布がシャープであることは、該粒子のアスペクト比の分布もシャープであることを意味する。アスペクト比が粒径/厚みで定義されることは上述のとおりであるところ、粒径の変動に比べて厚みの変動の幅は小さいので、粒度分布がシャープであれば、結果としてアスペクト比の分布もシャープになる。具体的には、アスペクト比の分布は、標準偏差σで表して、好ましくは4以下、更に好ましくは2以下になっている。アスペクト比の分布がシャープであることは、本発明の扁平銅粒子を用いてペーストを製造した場合、該ペーストの粘度の制御が容易になるという点から有利である。また該ペーストを用いて形成された導体の表面粗さが一層低くなるという点でも有利である。   The sharp particle size distribution of the flat copper particles of the present invention means that the distribution of the aspect ratio of the particles is also sharp. As described above, the aspect ratio is defined by the particle size / thickness. Since the width of the thickness variation is small compared to the variation of the particle size, if the particle size distribution is sharp, the distribution of the aspect ratio results. Also become sharper. Specifically, the distribution of the aspect ratio is preferably 4 or less, more preferably 2 or less, expressed by the standard deviation σ. The sharp distribution of the aspect ratio is advantageous in that when the paste is produced using the flat copper particles of the present invention, the viscosity of the paste can be easily controlled. It is also advantageous in that the surface roughness of the conductor formed using the paste is further reduced.

本発明の扁平銅粒子が後述する方法によって製造される場合、該粒子はその結晶子径が、機械的に製造された扁平銅粒子に比べて大きくなる。結晶子径が大きいことは、耐焼結性が向上する観点から有利である。具体的には、本発明の扁平銅粒子を用いてペーストを製造し、該ペーストを用いて導体を形成する場合、その導体を焼結する工程が行われる。耐焼結性が低い銅粒子を用いると、該粒子の熱収縮に起因して導体の寸法安定性が損なわれやすいが、耐焼結性の高い本発明の扁平銅粒子を用いることで、焼結に起因する寸法安定性の変化を抑制することが可能になる。この観点から、本発明の扁平銅粒子における結晶子径は、20nm以上であることが好ましく、25nm以上であることが更に好ましい。扁平銅粒子の結晶子径は、例えば該粒子のX線回折によって測定される回折角のピークの半価幅から求めることができる。   When the flat copper particles of the present invention are produced by the method described later, the particles have a crystallite size larger than that of the mechanically produced flat copper particles. A large crystallite diameter is advantageous from the viewpoint of improving the sintering resistance. Specifically, when producing a paste using the flat copper particles of the present invention and forming a conductor using the paste, a step of sintering the conductor is performed. When copper particles with low sintering resistance are used, the dimensional stability of the conductor is likely to be impaired due to thermal contraction of the particles, but by using the flat copper particles of the present invention with high sintering resistance, sintering is performed. It is possible to suppress the resulting change in dimensional stability. From this viewpoint, the crystallite diameter in the flat copper particles of the present invention is preferably 20 nm or more, and more preferably 25 nm or more. The crystallite diameter of the flat copper particles can be determined from, for example, the half width of the diffraction angle peak measured by X-ray diffraction of the particles.

本発明の扁平銅粒子は、銅のみから構成されていてもよく、あるいは銅及びそれ以外の元素を少量含んでいてもよい。他の元素を含有させることで、扁平銅粒子の各種の特性を向上させることができる。例えばホウ素を好ましくは1〜50ppm、更に好ましくは10〜40ppm含有させることで、耐酸化性が向上するという有利な効果が奏される。更に、粒子サイズを均一化することができ、また微粒化することもできる。微粒化できることは、本発明の扁平銅粒子を用いて調製されたペーストの粘度制御のしやすさの点から有利である。なおppmは、重量基準の百万分率のことである。   The flat copper particles of the present invention may be composed only of copper, or may contain a small amount of copper and other elements. By containing other elements, various properties of the flat copper particles can be improved. For example, the advantageous effect that oxidation resistance improves by containing boron preferably 1-50 ppm, more preferably 10-40 ppm is produced. Furthermore, the particle size can be made uniform and atomized. The ability to atomize is advantageous in terms of ease of viscosity control of a paste prepared using the flat copper particles of the present invention. Ppm means parts per million by weight.

ホウ素に加えて、又はホウ素に代えて、本発明の扁平銅粒子はリンを含有していてもよい。リンを含有させることで、扁平銅粒子の耐酸化性を向上させることができる。尤も、多量のリンを含有させることは銅粒子の電気伝導性の低下の一因となることから、本発明の扁平銅粒子におけるリンの含有量は、10〜200ppm、特に50〜180ppmであることが好ましい。   In addition to or in place of boron, the flat copper particles of the present invention may contain phosphorus. By containing phosphorus, the oxidation resistance of the flat copper particles can be improved. However, since inclusion of a large amount of phosphorus contributes to a decrease in electrical conductivity of the copper particles, the phosphorus content in the flat copper particles of the present invention is 10 to 200 ppm, particularly 50 to 180 ppm. Is preferred.

本発明の扁平銅粒子にホウ素やリンを含有させるためには、例えば後述する製造方法において、リン含有の化合物を添加したり、銅イオンの還元剤としてホウ素含有の還元剤を用いたりすればよい。また本発明の扁平銅粒子におけるホウ素やリンの含有量は、例えばICP発光分析装置によって測定することができる。   In order to contain boron and phosphorus in the flat copper particles of the present invention, for example, in the production method described later, a phosphorus-containing compound may be added, or a boron-containing reducing agent may be used as a reducing agent for copper ions. . Further, the content of boron or phosphorus in the flat copper particles of the present invention can be measured by, for example, an ICP emission analyzer.

耐酸化性を一層向上させる観点から、本発明の扁平銅粒子は、その表面が有機化合物によって処理されていてもよい。例えば、飽和脂肪酸、不飽和脂肪酸、窒素含有有機化合物、硫黄含有有機化合物又はシランカップリング剤等で扁平銅粒子の表面を処理することで、該粒子の耐酸化性が一層向上する。これら各種の有機化合物の詳細については、例えば本出願人の先の出願に係る特開2005−314755号公報に記載されている。   From the viewpoint of further improving the oxidation resistance, the surface of the flat copper particles of the present invention may be treated with an organic compound. For example, by treating the surface of the flat copper particles with a saturated fatty acid, an unsaturated fatty acid, a nitrogen-containing organic compound, a sulfur-containing organic compound, or a silane coupling agent, the oxidation resistance of the particles is further improved. Details of these various organic compounds are described in, for example, Japanese Patent Application Laid-Open No. 2005-314755 related to the earlier application of the present applicant.

次に、本発明の扁平銅粒子の好適な製造方法について説明する。本製造方法では、水溶性銅化合物を含む水溶液に還元剤を添加して銅の還元を行うという化学的方法で扁平銅粒子を得る。先に述べた特許文献1に記載されているような機械的な方法は、本製造方法では採用していない。本製造方法では、還元工程を2段階で行う。すなわち、還元工程が、第1の還元工程と、その後に行われる第2の還元工程とを含んでいる。   Next, the suitable manufacturing method of the flat copper particle of this invention is demonstrated. In this production method, flat copper particles are obtained by a chemical method in which a reducing agent is added to an aqueous solution containing a water-soluble copper compound to reduce copper. The mechanical method described in Patent Document 1 described above is not adopted in this manufacturing method. In this production method, the reduction process is performed in two stages. That is, the reduction process includes a first reduction process and a second reduction process performed thereafter.

本製造方法においては、先ず水溶性銅化合物を含む水溶液(以下「銅含有水溶液」とも言う。)を調製する。水溶性銅化合物としては、例えば硫酸銅、硝酸銅、酢酸銅又はこれらの水和物等を用いることができる。これらの銅化合物のうち、硫酸銅五水和物及び硝酸銅は、水溶性が高く、水溶液中での銅濃度を高くすることができ、また粒度の均一性の高い扁平銅粒子が得られやすいので好適に用いられる。   In this production method, first, an aqueous solution containing a water-soluble copper compound (hereinafter also referred to as “copper-containing aqueous solution”) is prepared. As the water-soluble copper compound, for example, copper sulfate, copper nitrate, copper acetate, or a hydrate thereof can be used. Among these copper compounds, copper sulfate pentahydrate and copper nitrate are highly water-soluble, can increase the copper concentration in the aqueous solution, and can easily obtain flat copper particles with high particle size uniformity. Therefore, it is preferably used.

銅含有水溶液は、水100重量部に対して銅化合物を好ましくは10重量部〜50重量部、更に好ましくは20重量部〜40重量部含む。この範囲の割合で銅化合物が含まれていることで、粒径の均一性の高い扁平銅粒子が得られやすくなる。   The copper-containing aqueous solution preferably contains 10 to 50 parts by weight, more preferably 20 to 40 parts by weight of the copper compound with respect to 100 parts by weight of water. By containing the copper compound in a proportion within this range, it becomes easy to obtain flat copper particles having a highly uniform particle size.

銅含有水溶液には銅(II)イオンの錯化剤が含まれていることが好ましい。水溶液中に錯化剤が共存することで、銅(II)イオンを首尾良く還元することができる。錯化剤としては例えば、アミノ酸、酒石酸等を用いることができる。これらは単独で又は2種以上を組み合わせて用いることができる。アミノ酸としては例えば、アミノ酢酸、アラニン、グルタミン酸等を用いることができる。これらのアミノ酸のうちアミノ酢酸を用いると、粒径の均一性の高い扁平銅粒子が得られやすいので好ましい。   The copper-containing aqueous solution preferably contains a copper (II) ion complexing agent. By coexisting the complexing agent in the aqueous solution, copper (II) ions can be successfully reduced. As the complexing agent, for example, amino acids, tartaric acid and the like can be used. These can be used alone or in combination of two or more. Examples of amino acids that can be used include aminoacetic acid, alanine, and glutamic acid. Of these amino acids, use of aminoacetic acid is preferred because flat copper particles having a high uniformity in particle size can be easily obtained.

銅含有水溶液は、これに含まれる銅1モルに対して錯化剤を好ましくは0.005モル〜10モル、更に好ましくは0.01モル〜5モル含む。この範囲の割合で錯化剤が含まれていることで、微粒でかつ結晶子径の大きな扁平銅粒子を得ることができるので好ましい。また、扁平銅粒子のアスペクト比も大きくなるので好ましい。   The copper-containing aqueous solution preferably contains 0.005 mol to 10 mol, more preferably 0.01 mol to 5 mol of a complexing agent with respect to 1 mol of copper contained therein. It is preferable that the complexing agent is contained in a proportion within this range because flat copper particles having a fine particle size and a large crystallite diameter can be obtained. Moreover, since the aspect ratio of flat copper particle becomes large, it is preferable.

銅含有水溶液は、水に銅化合物及び必要に応じ錯化剤を溶解することにより調製される。銅化合物及び錯化剤の水への溶解方法及び溶解順序に特に制限はない。銅化合物及び錯化剤の溶解方法としては例えば、水を攪拌した状態にしておき、これに銅化合物及び錯化剤を添加して攪拌する方法が挙げられる。銅含有水溶液の調製の際の液温は、均一な粒径の扁平銅粒子を得る観点から、好ましくは50℃〜90℃、更に好ましくは60℃〜80℃である。   The copper-containing aqueous solution is prepared by dissolving a copper compound and, if necessary, a complexing agent in water. There are no particular limitations on the method and order of dissolution of the copper compound and complexing agent in water. Examples of the method for dissolving the copper compound and the complexing agent include a method in which water is stirred and the copper compound and the complexing agent are added and stirred. The liquid temperature during the preparation of the copper-containing aqueous solution is preferably 50 ° C. to 90 ° C., more preferably 60 ° C. to 80 ° C., from the viewpoint of obtaining flat copper particles having a uniform particle size.

このようにして得られた銅含有水溶液に塩基性化合物を添加して酸化第二銅(CuO)を生成させる。このために用いられる塩基性化合物としては、例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属の水酸化物及びアンモニアが挙げられる。生成した酸化第二銅は微小な固体状粒子の状態で液中に懸濁している。   A basic compound is added to the copper-containing aqueous solution thus obtained to produce cupric oxide (CuO). Examples of the basic compound used for this purpose include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and ammonia. The produced cupric oxide is suspended in the liquid in the form of fine solid particles.

銅含有水溶液への塩基性化合物の添加方法としては例えば、銅含有水溶液を攪拌した状態にしておき、これに塩基性化合物の水溶液を添加して攪拌する方法が挙げられる。このときの液温は好ましくは50℃〜90℃、更に好ましくは60℃〜80℃とすることができる。液温がこの範囲内にあると、一次粒子の凝集が少ない粒径の均一性の高い扁平銅粒子が得られやすいので好ましい。   Examples of the method for adding the basic compound to the copper-containing aqueous solution include a method in which the copper-containing aqueous solution is kept in a stirred state, and an aqueous solution of the basic compound is added thereto and stirred. The liquid temperature at this time is preferably 50 ° C to 90 ° C, more preferably 60 ° C to 80 ° C. When the liquid temperature is within this range, it is preferable because flat copper particles having a high particle size with little primary particle aggregation are easily obtained.

塩基性化合物の銅含有水溶液への添加量は、銅化合物1当量に対する塩基性化合物の量が、好ましくは1.05当量〜1.5当量、更に好ましくは1.1当量〜1.3当量となるような量とする。塩基性化合物の添加量をこの範囲内にすることで、粒径の均一性の高い扁平銅粒子が得られやすいので好ましい。銅化合物及び塩基性化合物の当量とは、それぞれ酸としての当量及び塩基としての当量をいう。   The amount of the basic compound added to the copper-containing aqueous solution is such that the amount of the basic compound relative to 1 equivalent of the copper compound is preferably 1.05 equivalents to 1.5 equivalents, more preferably 1.1 equivalents to 1.3 equivalents. The amount is such that By making the addition amount of the basic compound within this range, it is preferable because flat copper particles having a high uniformity in particle diameter can be easily obtained. The equivalent of a copper compound and a basic compound means the equivalent as an acid and the equivalent as a base, respectively.

銅含有水溶液への塩基性化合物の添加によって酸化第二銅が生成した後も液の攪拌を継続させて熟成を行うことが好ましい。熟成は10分〜60分、特に20分〜40分行うことが好ましい。熟成によって酸化第二銅が十分に生成し、それによって粒度の均一性の高い扁平銅粒子が得られやすいので好ましい。   After cupric oxide is formed by adding a basic compound to the copper-containing aqueous solution, it is preferable to continue aging by continuing the stirring of the solution. The aging is preferably performed for 10 minutes to 60 minutes, particularly 20 minutes to 40 minutes. It is preferable because cupric oxide is sufficiently formed by aging, and thereby flat copper particles having high particle size uniformity are easily obtained.

このようにして酸化第二銅が生成したら、次に第1の還元工程を行う。本還元工程においては、液を攪拌しながら還元剤を添加することで、液中に含まれている酸化第二銅を酸化第一銅(Cu2O)に還元する。したがって、本還元工程において用いられる還元剤は、酸化第二銅を酸化第一銅に還元する作用を有するものである。この還元剤としては、例えば、還元糖及びヒドラジン等を用いることができる。還元剤は、単独で又は2種を以上組み合わせて用いることができる。還元糖としては例えば、グルコース、フルクトース、ラクトース等を用いることができる。これらの還元糖のうち、グルコースは還元反応を制御しやすいので好ましく用いられる。 When cupric oxide is produced in this way, the first reduction step is performed next. In this reduction step, cupric oxide contained in the liquid is reduced to cuprous oxide (Cu 2 O) by adding a reducing agent while stirring the liquid. Therefore, the reducing agent used in this reduction step has an action of reducing cupric oxide to cuprous oxide. As this reducing agent, for example, reducing sugar and hydrazine can be used. A reducing agent can be used individually or in combination of 2 or more types. As the reducing sugar, for example, glucose, fructose, lactose and the like can be used. Among these reducing sugars, glucose is preferably used because it easily controls the reduction reaction.

本還元工程においては、液中に含まれる銅1モルに対して還元剤を好ましくは0.1モル〜3モル、更に好ましくは0.3モル〜1.5モル添加する。還元剤の添加量がこの範囲内であると、酸化第二銅の酸化第一銅への還元反応が十分に行われ、その結果、目的とする扁平銅粒子はその一次粒子の凝集が起こりにくくなるので好ましい。   In this reduction step, the reducing agent is preferably added in an amount of 0.1 mol to 3 mol, more preferably 0.3 mol to 1.5 mol, per 1 mol of copper contained in the liquid. When the addition amount of the reducing agent is within this range, the reduction reaction of cupric oxide to cuprous oxide is sufficiently performed. As a result, the target flat copper particles are unlikely to aggregate the primary particles. This is preferable.

本還元工程によって酸化第二銅が酸化第一銅へ還元した後も、液の攪拌を継続させて熟成を行うことが好ましい。熟成は10分〜60分、特に20分〜40分行うことが好ましい。熟成によって酸化第一銅が十分に生成し、目的とする扁平銅粒子はその一次粒子の凝集が起こりにくくなるので好ましい。   Even after cupric oxide is reduced to cuprous oxide by this reduction step, it is preferable to continue aging by continuing the stirring of the liquid. The aging is preferably performed for 10 minutes to 60 minutes, particularly 20 minutes to 40 minutes. The cuprous oxide is sufficiently produced by aging, and the intended flat copper particles are preferable because the primary particles are less likely to aggregate.

第1の還元工程が完了したら、引き続き第2の還元工程を行う。本還元工程においては、液を攪拌しながら還元剤を添加することで、液中に含まれている酸化第一銅を銅に還元する。したがって、本還元工程において用いられる還元剤は、酸化第一銅を銅に還元する作用を有するものである。この還元剤として、本発明においては2種以上の還元剤を組み合わせて用いる。この還元剤としては、水素還元標準電位E0が−1.11〜−1.24Vであるものを用いる。このような還元剤を2種以上組み合わせて用いることで、酸化第一銅を適切な速度で還元することができ、目的とする扁平銅粒子、特に六角形の扁平銅粒子を首尾良く得ることができることが、本発明者らの検討の結果判明した。用いることのできる還元剤としては、例えばヒドラジン(−1.11V);水素化ホウ素ナトリウム(−1.24V)、シアノ水素化ホウ素ナトリウム(−1.24V)、水素化トリエチルホウ素リチウム(−1.24V)、水素化ホウ素リチウム(−1.24V)、水素化ホウ素亜鉛(−1.24V)、水素化トリアセトキシホウ素ナトリウム(−1.24V)等の金属水素化物;ジメチルアミンボランやジエチルアミンボラン等のアミンボラン;などが挙げられる。括弧内の数値は水素還元標準電位E0である。これらの還元剤のうち、ヒドラジンとその他の還元剤の組み合わせを用いることが好ましく、ヒドラジンと水素化ホウ素化合物との組み合わせ、又はヒドラジンとアミンボランとの組み合わせを用いることが更に好ましい。 When the first reduction process is completed, the second reduction process is continued. In this reduction process, cuprous oxide contained in the liquid is reduced to copper by adding a reducing agent while stirring the liquid. Therefore, the reducing agent used in this reduction step has an action of reducing cuprous oxide to copper. As the reducing agent, in the present invention, two or more reducing agents are used in combination. As this reducing agent, one having a hydrogen reduction standard potential E 0 of −1.11 to −1.24V is used. By using a combination of two or more such reducing agents, cuprous oxide can be reduced at an appropriate rate, and target flat copper particles, particularly hexagonal flat copper particles can be successfully obtained. As a result of the study by the present inventors, it has been found that this can be done. Examples of the reducing agent that can be used include hydrazine (−1.11 V); sodium borohydride (−1.24 V), sodium cyanoborohydride (−1.24 V), and lithium triethylborohydride (−1. 24V), metal hydrides such as lithium borohydride (-1.24V), zinc borohydride (-1.24V), sodium triacetoxyborohydride (-1.24V); dimethylamine borane, diethylamine borane, etc. Of amine borane; The numerical value in parentheses is the hydrogen reduction standard potential E 0 . Of these reducing agents, a combination of hydrazine and another reducing agent is preferably used, and a combination of hydrazine and a borohydride compound or a combination of hydrazine and an amine borane is more preferable.

第2の還元工程において用いる2種以上の還元剤のうちの1種としてヒドラジンを用いる場合、ヒドラジンは、液中に含まれる銅1モルに対して好ましくは1モル〜10モル、更に好ましくは3モル〜7モル添加する。ヒドラジン以外の還元剤に関しては、液中に含まれる銅1モルに対して、該還元剤の合計量で表して、好ましくは0.01モル〜1.1モル、更に好ましくは0.03モル〜1.0モル添加する。ヒドラジンとヒドラジン以外の1種又は2種以上の還元剤との添加の比率は、モル数で表して、ヒドラジン/ヒドラジン以外の還元剤の合計量=好ましくは1〜1000、更に好ましくは100〜700とする。これらの還元剤の使用量をこの範囲内に設定することで、目的とする扁平銅粒子、特に六角形の扁平銅粒子を一層首尾良く得ることができる。   When hydrazine is used as one of the two or more reducing agents used in the second reduction step, the hydrazine is preferably 1 mol to 10 mol, more preferably 3 mol per 1 mol of copper contained in the liquid. Mole to 7 moles are added. Regarding the reducing agent other than hydrazine, the total amount of the reducing agent is preferably 0.01 mol to 1.1 mol, more preferably 0.03 mol to 1 mol of copper contained in the liquid. Add 1.0 mole. The ratio of addition of hydrazine and one or more reducing agents other than hydrazine is expressed in moles, and the total amount of reducing agents other than hydrazine / hydrazine = preferably 1-1000, more preferably 100-700. And By setting the amount of these reducing agents used within this range, the intended flat copper particles, particularly hexagonal flat copper particles, can be obtained more successfully.

本還元工程においては、ヒドラジンとヒドラジン以外の還元剤とを同時に液中に添加することが好ましい。また、ヒドラジン及びヒドラジン以外の還元剤は液中に一括添加してもよく、あるいは逐次添加してもよい。目的とする扁平銅粒子を一層首尾良く得る観点からは、一括添加を行うことが好ましい。いずれの添加方法であっても、液温は50℃〜90℃、特に60℃〜80℃に設定することが好ましい。液温が該範囲内にあると、一次粒子の凝集が少ない粒径の均一性の高い扁平銅粒子が得られやすいので好ましい。   In this reduction step, it is preferable to add hydrazine and a reducing agent other than hydrazine to the solution at the same time. Further, hydrazine and a reducing agent other than hydrazine may be added all at once in the solution, or may be added sequentially. From the viewpoint of obtaining the desired flat copper particles more successfully, it is preferable to perform batch addition. In any addition method, the liquid temperature is preferably set to 50 ° C to 90 ° C, particularly 60 ° C to 80 ° C. When the liquid temperature is within this range, it is preferable because flat copper particles having a high particle size with little primary particle aggregation are easily obtained.

本還元工程によって酸化第一銅が銅へ還元した後も、液の攪拌を継続させて熟成を行うことが好ましい。熟成は20分〜120分、特に40分〜90分行うことが好ましい。熟成によって還元が十分に進行し、目的とする扁平銅粒子はその一次粒子の凝集が起こりにくくなるので好ましい。   Even after cuprous oxide is reduced to copper by this reduction step, it is preferable to continue aging by agitating the liquid. Aging is preferably performed for 20 minutes to 120 minutes, particularly 40 minutes to 90 minutes. Reduction is sufficiently progressed by aging, and the intended flat copper particles are preferable because the primary particles are less likely to aggregate.

第2の還元工程において、還元剤として水素化ホウ素化合物を用いる場合には、それに起因して、還元で生成する扁平銅粒子中にはホウ素が微量含まれることになる。このホウ素の作用によって、本発明の扁平銅粒子は、先に述べたとおり、耐熱性が向上するという有利な効果を奏する。更に、その粒子サイズが均一化され、また微粒化されるという有利な効果を奏する。   In the second reduction step, when a borohydride compound is used as the reducing agent, a small amount of boron is contained in the flat copper particles produced by the reduction due to the borohydride compound. Due to the action of boron, the flat copper particles of the present invention have the advantageous effect of improving heat resistance, as described above. Furthermore, there is an advantageous effect that the particle size is made uniform and atomized.

生成した扁平銅粒子は、ヌッチェ等を用いた濾過によって液から分離される。次いで純水での洗浄を1回又は複数回行う。その後、必要に応じ、オレイン酸等の有機化合物を含むメタノール溶液等で洗浄することで表面処理を行う。   The produced flat copper particles are separated from the liquid by filtration using Nutsche or the like. Next, cleaning with pure water is performed once or a plurality of times. Then, if necessary, the surface treatment is performed by washing with a methanol solution containing an organic compound such as oleic acid.

以上の製造方法においては、いずれかの工程においてリン化合物を添加して、目的とする扁平銅粒子がリンを含有するようにしてもよい。扁平銅粒子がリンを含有することによって、該粒子の耐酸化性が向上し、また銅の結晶子径を大きくすることが容易になる。リン化合物の添加の時期としては、例えば(i)銅含有水溶液に塩基性化合物を添加する前、(ii)銅含有水溶液に塩基性化合物を添加するのと同時又はその後であって、かつ第1の還元工程の前、(iii)第1の還元工程において還元剤を添加するのと同時又はその後であって、かつ第2の還元工程の前、(iv)第2の還元工程において還元剤を添加するのと同時又はその後、のいずれか1つの時期又は2つ以上の時期が挙げられる。特に(i)の時期にリン化合物を添加すると、目的とする扁平銅粒子、特に六角形の扁平銅粒子を一層首尾良く得ることができるので好ましい。   In the above manufacturing method, a phosphorus compound may be added in any step so that the target flat copper particles contain phosphorus. When the flat copper particles contain phosphorus, the oxidation resistance of the particles is improved, and the crystallite diameter of the copper is easily increased. The timing for adding the phosphorus compound is, for example, (i) before adding the basic compound to the copper-containing aqueous solution, (ii) simultaneously with or after adding the basic compound to the copper-containing aqueous solution, and (Iii) at the same time or after the addition of the reducing agent in the first reduction step and before the second reduction step, and (iv) the reducing agent in the second reduction step. Any one time or two or more time may be mentioned at the same time as or after the addition. In particular, it is preferable to add a phosphorus compound at the time of (i) because the target flat copper particles, particularly hexagonal flat copper particles can be obtained more successfully.

リン化合物としては、水の存在下で、オルトリン酸イオン、ピロリン酸イオン、メタリン酸イオン等のリン酸イオンの生成が可能な化合物を用いることが好ましい。そのようなリン化合物として例えば、リン酸、ピロリン酸等のポリリン酸、トリメタリン酸等のメタリン酸、リン酸ナトリウム、リン酸カリウム等のリン酸塩、ピロリン酸ナトリウム、ピロリン酸カリウム等のポリリン酸塩、トリメタリン酸ナトリウム、トリメタリン酸カリウム等のメタリン酸塩等が挙げられる。これらのリン化合物のうち、リン酸三ナトリウムを用いると、角の鋭い扁平銅粒子、特に角の鋭い六角形の扁平銅粒子を首尾良く得ることができる。   As the phosphorus compound, it is preferable to use a compound capable of generating phosphate ions such as orthophosphate ions, pyrophosphate ions, and metaphosphate ions in the presence of water. Examples of such phosphorus compounds include polyphosphoric acid such as phosphoric acid and pyrophosphoric acid, metaphosphoric acid such as trimetaphosphoric acid, phosphate such as sodium phosphate and potassium phosphate, and polyphosphate such as sodium pyrophosphate and potassium pyrophosphate. And metaphosphates such as sodium trimetaphosphate and potassium trimetaphosphate. Among these phosphorus compounds, when trisodium phosphate is used, flat copper particles having sharp corners, particularly hexagonal flat copper particles having sharp corners, can be successfully obtained.

本製造方法において添加されるリン化合物の合計量は、P(リン)に換算した量で表して、銅1モルに対し好ましくは0.001モル〜3モル、更に好ましくは0.01モル〜1モルである。リン化合物の添加量がこの範囲内であると、目的とする扁平銅粒子の電気伝導性を損なわずに、その耐酸化性が高くなりやすく、かつ銅の結晶子径を大きくしやすいので好ましい。   The total amount of the phosphorus compound added in this production method is expressed in terms of P (phosphorus), and is preferably 0.001 to 3 mol, more preferably 0.01 to 1 mol per 1 mol of copper. Is a mole. It is preferable that the addition amount of the phosphorus compound be within this range because the oxidation resistance is easily increased and the crystallite diameter of the copper is easily increased without impairing the electrical conductivity of the target flat copper particles.

以上の方法によって目的とする扁平銅粒子が得られる。このようにして得られた扁平銅粒子は例えば導電性ペーストの原料として好適に用いられる。この導電性ペーストは、本発明の扁平銅粒子と樹脂とを含むものである。この樹脂としては例えば、アクリル樹脂、エポキシ樹脂、エチルセルロース、カルボキシエチルセルロース等が挙げられる。この導電性ペーストにおける銅粒子としては、本発明の扁平銅粒子のみを用いてもよく、あるいは該扁平銅粒子と球形等の他の形状の銅粒子とを組み合わせて用いてもよい。本発明の扁平銅粒子と球他の形状の銅粒子とを組み合わせて用いることで、ペーストの粘度調整を精密に行うことが容易になる。   The target flat copper particles are obtained by the above method. The flat copper particles thus obtained are suitably used as a raw material for conductive paste, for example. This conductive paste contains the flat copper particles of the present invention and a resin. Examples of this resin include acrylic resin, epoxy resin, ethyl cellulose, carboxyethyl cellulose, and the like. As the copper particles in the conductive paste, only the flat copper particles of the present invention may be used, or a combination of the flat copper particles and copper particles having other shapes such as a spherical shape may be used. By using the flat copper particles of the present invention in combination with spheres or other shapes of copper particles, it becomes easy to precisely adjust the viscosity of the paste.

このようにして得られた導電性ペーストは、例えば、プリント配線板の回路形成、セラミックコンデンサの外部電極等の電気的導通確保、EMI対策のために好適に使用される。   The conductive paste thus obtained is preferably used for, for example, circuit formation of a printed wiring board, ensuring electrical continuity of an external electrode of a ceramic capacitor, and measures against EMI.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「重量%」を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “% by weight”.

〔実施例1〕
70℃の純水6リットルに、硫酸銅五水和物4kg、アミノ酢酸120g、リン酸三ナトリウム50gを添加して攪拌を行った。これに更に純水を注いで液量を8Lに調整し、このまま30分攪拌を続け、銅含有水溶液を得た。次に、この水溶液を攪拌した状態で、該水溶液に25%の水酸化ナトリウム溶液5.8kgを添加して液中に酸化第二銅を生成させた。引き続き30分攪拌した後、グルコース1.5kgを添加して第1の還元反応を行い、酸化第二銅を酸化第一銅に還元させた。引き続き30分攪拌した後、液を攪拌した状態でヒドラジン一水和物1kg及び水素化ホウ素ナトリウム3gを一括添加して第2の還元反応を行い、酸化第一銅を銅に還元させた。引き続き1時間攪拌を行って反応を終了させた。反応終了後、得られたスラリーを、ヌッチェを用いて濾過し、次いで純水及びメタノールで洗浄し、更に乾燥して目的とする扁平銅粒子を得た。この銅粒子のSEM像を図1に示す。同図から明らかなように、得られた銅粒子は、各辺が略直線の六角板状をしていることが確認された。
[Example 1]
To 6 liters of pure water at 70 ° C., 4 kg of copper sulfate pentahydrate, 120 g of aminoacetic acid and 50 g of trisodium phosphate were added and stirred. Pure water was further poured into this to adjust the liquid volume to 8 L, and stirring was continued for 30 minutes to obtain a copper-containing aqueous solution. Next, with this aqueous solution stirred, 5.8 kg of 25% sodium hydroxide solution was added to the aqueous solution to form cupric oxide in the liquid. Subsequently, after stirring for 30 minutes, 1.5 kg of glucose was added to perform a first reduction reaction, and cupric oxide was reduced to cuprous oxide. Subsequently, after stirring for 30 minutes, 1 kg of hydrazine monohydrate and 3 g of sodium borohydride were added all at once while the liquid was stirred, and a second reduction reaction was performed to reduce cuprous oxide to copper. Subsequently, stirring was performed for 1 hour to complete the reaction. After completion of the reaction, the resulting slurry was filtered using a Nutsche, then washed with pure water and methanol, and further dried to obtain the desired flat copper particles. The SEM image of this copper particle is shown in FIG. As is clear from the figure, it was confirmed that the obtained copper particles had a hexagonal plate shape with each side being substantially straight.

〔実施例2〜4〕
以下の表1に示す条件で製造を行う以外は実施例1と同様にして銅粒子を得た。得られた銅粒子のSEM像を、図2(実施例2)、図3(実施例3)、図4(実施例4)に示す。
[Examples 2 to 4]
Copper particles were obtained in the same manner as in Example 1 except that the production was performed under the conditions shown in Table 1 below. SEM images of the obtained copper particles are shown in FIG. 2 (Example 2), FIG. 3 (Example 3), and FIG. 4 (Example 4).

〔比較例1〕
70℃の純水6Lに、硫酸銅五水和物4kg、アミノ酢酸120g、リン酸三ナトリウム50gを添加して攪拌を行った。これに更に純水を注いで液量を8Lに調整し、このまま30分攪拌を続け、銅含有水溶液を得た。次に、この水溶液を攪拌した状態で、該水溶液に25%の水酸化ナトリウム溶液5.8kgを添加して液中に酸化第二銅を生成させた。引き続き30分攪拌した後、グルコース1.5kgを添加して第1の還元反応を行い、酸化第二銅を酸化第一銅に還元させた。引き続き30分攪拌した後、液を攪拌した状態でヒドラジン一水和物を一括添加し、1時間攪拌を続けて反応を終了させた。反応終了後、得られたスラリーを、ヌッチェを用いて濾過し、次いで純水及びメタノールで洗浄し、更に乾燥して目的とする銅粒子を得た。得られた銅粒子のSEM像を、図5に示す。
[Comparative Example 1]
To 6 L of pure water at 70 ° C., 4 kg of copper sulfate pentahydrate, 120 g of aminoacetic acid, and 50 g of trisodium phosphate were added and stirred. Pure water was further poured into this to adjust the liquid volume to 8 L, and stirring was continued for 30 minutes to obtain a copper-containing aqueous solution. Next, with this aqueous solution stirred, 5.8 kg of 25% sodium hydroxide solution was added to the aqueous solution to form cupric oxide in the liquid. Subsequently, after stirring for 30 minutes, 1.5 kg of glucose was added to perform a first reduction reaction, and cupric oxide was reduced to cuprous oxide. Subsequently, after stirring for 30 minutes, hydrazine monohydrate was added all at once while the liquid was stirred, and stirring was continued for 1 hour to complete the reaction. After completion of the reaction, the obtained slurry was filtered using a Nutsche, then washed with pure water and methanol, and further dried to obtain target copper particles. An SEM image of the obtained copper particles is shown in FIG.

〔比較例2〕
本比較例では、機械的な処理によって扁平銅粒子を製造した。すなわち、平均粒径5μmの球形銅粒子(三井金属鉱業株式会社製)を用い、これを遊星ボールミルで72時間粉砕して扁平銅粒子を得た。メディアとして、直径1mmのステンレス製ビーズを用いた。溶媒にエタノールを用いて180分間粉砕を行った。得られた銅粒子のSEM像を、図6に示す。
[Comparative Example 2]
In this comparative example, flat copper particles were produced by mechanical treatment. That is, spherical copper particles having an average particle diameter of 5 μm (made by Mitsui Metal Mining Co., Ltd.) were used and pulverized with a planetary ball mill for 72 hours to obtain flat copper particles. As media, stainless steel beads having a diameter of 1 mm were used. Grinding was performed for 180 minutes using ethanol as a solvent. The SEM image of the obtained copper particle is shown in FIG.

〔比較例3〕
本比較例では、一般的な製造方法に従い球形の銅粒子を製造した。すなわち硫酸銅五水和物4kg及びアミノ酢酸120gを水に溶解し、8リットルの銅塩の水溶液を得た。これに25%の苛性ソーダを5分かけて5リットル添加し、酸化第二銅スラリーを得た。この液に、グルコース1.5kgを添加して酸化第一銅を得た。更に、水和ヒドラジン1kgを5分かけて添加し、該銅粒子を得た。得られた銅粒子のSEM像を、図7に示す。
[Comparative Example 3]
In this comparative example, spherical copper particles were produced according to a general production method. That is, 4 kg of copper sulfate pentahydrate and 120 g of aminoacetic acid were dissolved in water to obtain 8 liters of an aqueous solution of copper salt. To this was added 5 liters of 25% sodium hydroxide over 5 minutes to obtain a cupric oxide slurry. To this solution, 1.5 kg of glucose was added to obtain cuprous oxide. Further, 1 kg of hydrated hydrazine was added over 5 minutes to obtain the copper particles. The SEM image of the obtained copper particle is shown in FIG.

〔評価〕
実施例及び比較例で得られた銅粒子について、平均粒径Dia、レーザー回折散乱式粒度分布測定法による粒径D50、アスペクト比を上述の方法で測定した。また、SD/D50及びアスペクト比の分布を上述の方法で測定した。また、銅粒子の結晶子径を上述の方法で測定した。更に、銅粒子に含まれるホウ素及びリンの量を上述の方法で測定した。更に、チキソ比及び酸化開始温度を以下の方法で測定した。これらの結果を以下の表2に示す。
[Evaluation]
For copper particles obtained in Examples and Comparative Examples, the average particle diameter of Dia, the particle size D 50 by laser diffraction scattering particle size distribution measuring method, to measure the aspect ratio in the manner described above. Further, the SD / D 50 and aspect ratio distributions were measured by the methods described above. Moreover, the crystallite diameter of the copper particles was measured by the method described above. Furthermore, the amount of boron and phosphorus contained in the copper particles was measured by the method described above. Furthermore, the thixo ratio and the oxidation start temperature were measured by the following methods. These results are shown in Table 2 below.

〔チキソ比〕
E型粘度計(東機産業株式会社製)を用い、1回転/10回転での粘度の比率を求め、これをチキソ比とした。チキソ比は、その値が大きいほど粘性が高いことを示す。
[Thixo ratio]
Using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd.), the ratio of the viscosity at 1/10 rotations was determined, and this was defined as the thixo ratio. The thixo ratio indicates that the larger the value, the higher the viscosity.

〔酸化開始温度〕
熱分析装置(セイコーインスツルメンツ株式会社製)を用いて熱重量測定(TG)を行い、重量の変化温度を酸化開始温度とした。
[Oxidation start temperature]
Thermogravimetry (TG) was performed using a thermal analyzer (manufactured by Seiko Instruments Inc.), and the change temperature of the weight was defined as the oxidation start temperature.

表2及び図1〜図7に示す結果から明らかなように、各実施例で得られた銅粒子は六角板状の微粒のものであることが判る。また、結晶子径が大きいことが判る。第2の還元工程で特定の還元剤の組み合わせを用いなかった比較例1の銅粒子は、輪郭が丸みを帯びたものになった。一般的な製法で得られた比較例3の銅粒子は球状であり、図7に示すように、隣り合う辺のなす角がすべて60度以上180未満になっていない。   As is apparent from the results shown in Table 2 and FIGS. 1 to 7, it can be seen that the copper particles obtained in each example are hexagonal plate-shaped fine particles. It can also be seen that the crystallite size is large. The copper particles of Comparative Example 1 that did not use a specific reducing agent combination in the second reduction step had a rounded outline. The copper particles of Comparative Example 3 obtained by a general production method are spherical, and as shown in FIG. 7, all the angles formed by adjacent sides are not more than 60 degrees and less than 180.

Claims (8)

平面視において、略直線状の複数の辺によって画定される輪郭を有し、かつ隣り合う辺のなす角がすべて60度以上180未満である扁平体からなり、
平均粒径Diaが0.05〜0.5μmであることを特徴とする扁平銅粒子。
In plan view, it has a contour defined by a plurality of substantially linear sides, and is composed of a flat body in which the angles formed by adjacent sides are all 60 degrees or more and less than 180,
Flat copper particles having an average particle diameter Dia of 0.05 to 0.5 μm.
平面視において六角形の輪郭を有する請求項1記載の扁平銅粒子。   The flat copper particle of Claim 1 which has a hexagonal outline in planar view. ホウ素を1〜50ppm含む請求項1又は2記載の扁平銅粒子。   The flat copper particle of Claim 1 or 2 containing 1-50 ppm of boron. リンを10〜200ppm含む請求項1ないし3のいずれかに記載の扁平銅粒子。   The flat copper particle in any one of Claim 1 thru | or 3 containing 10-200 ppm of phosphorus. アスペクト比(粒径/厚み)が2〜25である請求項1ないし4のいずれかに記載の扁平銅粒子。   The flat copper particles according to any one of claims 1 to 4, having an aspect ratio (particle diameter / thickness) of 2 to 25. 水溶性銅化合物を含む水溶液に還元剤を添加して銅の還元を行う還元工程を有する扁平銅粒子を製造する方法において、
還元工程が第1の還元工程と、その後に行われる第2の還元工程とを含み、
第1の還元工程において還元剤として還元糖又はヒドラジンを用い、
第2の還元工程において還元剤として、水素還元標準電位E0が−1.11〜−1.24Vである還元剤を2種以上用いることを特徴とする扁平銅粒子の製造方法。
In the method of producing flat copper particles having a reduction step of reducing copper by adding a reducing agent to an aqueous solution containing a water-soluble copper compound,
The reduction step includes a first reduction step and a second reduction step performed thereafter;
In the first reduction step, reducing sugar or hydrazine is used as a reducing agent,
A method for producing flat copper particles, wherein two or more reducing agents having a hydrogen reduction standard potential E 0 of −1.11 to −1.24 V are used as reducing agents in the second reduction step.
水溶性銅化合物を含む水溶液に塩基性化合物を添加して酸化第二銅を生成させ、次いで
生成した酸化第二銅を第1の還元工程において酸化第一銅に還元させ、
酸化第一銅を第2の還元工程において銅に還元する請求項6記載の扁平銅粒子の製造方法。
Adding a basic compound to an aqueous solution containing a water-soluble copper compound to produce cupric oxide, and then reducing the produced cupric oxide to cuprous oxide in the first reduction step;
The method for producing flat copper particles according to claim 6, wherein cuprous oxide is reduced to copper in the second reduction step.
第2の還元工程で用いる還元剤が、ヒドラジンとヒドラジン以外の還元剤の1種又は2種以上であり、これらすべての還元剤を一括添加する請求項6又は7記載の扁平銅粒子の製造方法。   The method for producing flat copper particles according to claim 6 or 7, wherein the reducing agent used in the second reduction step is one or more of hydrazine and a reducing agent other than hydrazine, and all of these reducing agents are added together. .
JP2010182494A 2010-08-17 2010-08-17 Flat copper particles Active JP5759688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010182494A JP5759688B2 (en) 2010-08-17 2010-08-17 Flat copper particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010182494A JP5759688B2 (en) 2010-08-17 2010-08-17 Flat copper particles

Publications (2)

Publication Number Publication Date
JP2012041592A true JP2012041592A (en) 2012-03-01
JP5759688B2 JP5759688B2 (en) 2015-08-05

Family

ID=45898228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010182494A Active JP5759688B2 (en) 2010-08-17 2010-08-17 Flat copper particles

Country Status (1)

Country Link
JP (1) JP5759688B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058713A (en) * 2012-09-14 2014-04-03 Dowa Electronics Materials Co Ltd Plate-like copper powder, method for producing the same, and conductive paste
JP2015071819A (en) * 2013-09-04 2015-04-16 Dowaエレクトロニクス株式会社 Flaky copper powder and production method thereof
JP2016014181A (en) * 2014-07-03 2016-01-28 株式会社ノリタケカンパニーリミテド Copper fine particle and method for producing the same
WO2016125355A1 (en) * 2015-02-06 2016-08-11 トクセン工業株式会社 Electroconductive microparticles
JP2016176146A (en) * 2016-04-21 2016-10-06 協立化学産業株式会社 Coated copper particle
CN107008896A (en) * 2017-06-16 2017-08-04 福州大学 A kind of copper particle with multi-angular structure and preparation method thereof
US9744595B2 (en) 2014-05-30 2017-08-29 Kyoritsu Chemical & Co., Ltd. Coated copper particles and method for producing the same
WO2022209267A1 (en) 2021-03-30 2022-10-06 三井金属鉱業株式会社 Copper particles and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350009A (en) * 1998-06-10 1999-12-21 Dowa Mining Co Ltd Production of plate-like copper powder
JP2005314755A (en) * 2004-04-28 2005-11-10 Mitsui Mining & Smelting Co Ltd Flake copper powder, production method therefor and conductive paste
JP2009062598A (en) * 2007-09-07 2009-03-26 Mitsui Mining & Smelting Co Ltd Method for producing copper nanoparticle
JP2009074152A (en) * 2007-09-21 2009-04-09 Mitsui Mining & Smelting Co Ltd Method for producing copper powder, and copper powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350009A (en) * 1998-06-10 1999-12-21 Dowa Mining Co Ltd Production of plate-like copper powder
JP2005314755A (en) * 2004-04-28 2005-11-10 Mitsui Mining & Smelting Co Ltd Flake copper powder, production method therefor and conductive paste
JP2009062598A (en) * 2007-09-07 2009-03-26 Mitsui Mining & Smelting Co Ltd Method for producing copper nanoparticle
JP2009074152A (en) * 2007-09-21 2009-04-09 Mitsui Mining & Smelting Co Ltd Method for producing copper powder, and copper powder

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058713A (en) * 2012-09-14 2014-04-03 Dowa Electronics Materials Co Ltd Plate-like copper powder, method for producing the same, and conductive paste
JP2015071819A (en) * 2013-09-04 2015-04-16 Dowaエレクトロニクス株式会社 Flaky copper powder and production method thereof
JP2015071818A (en) * 2013-09-04 2015-04-16 Dowaエレクトロニクス株式会社 Silver coat flaky copper powder and production method thereof, and conductive paste
CN108161027B (en) * 2014-05-30 2019-01-08 协立化学产业株式会社 Coating copper particle
US9744595B2 (en) 2014-05-30 2017-08-29 Kyoritsu Chemical & Co., Ltd. Coated copper particles and method for producing the same
CN108161027A (en) * 2014-05-30 2018-06-15 协立化学产业株式会社 It is coated copper particle
JP2016014181A (en) * 2014-07-03 2016-01-28 株式会社ノリタケカンパニーリミテド Copper fine particle and method for producing the same
WO2016125355A1 (en) * 2015-02-06 2016-08-11 トクセン工業株式会社 Electroconductive microparticles
JPWO2016125355A1 (en) * 2015-02-06 2017-07-27 トクセン工業株式会社 Conductive fine particles
CN107206485A (en) * 2015-02-06 2017-09-26 特线工业株式会社 The fine particle of electric conductivity
EP3248713A4 (en) * 2015-02-06 2018-09-19 Tokusen Kogyo Co., Ltd Electroconductive microparticles
CN107206485B (en) * 2015-02-06 2020-06-02 特线工业株式会社 Conductive fine particles
JP2016176146A (en) * 2016-04-21 2016-10-06 協立化学産業株式会社 Coated copper particle
CN107008896A (en) * 2017-06-16 2017-08-04 福州大学 A kind of copper particle with multi-angular structure and preparation method thereof
CN107008896B (en) * 2017-06-16 2019-03-12 福州大学 A kind of copper particle and preparation method thereof with multi-angular structure
WO2022209267A1 (en) 2021-03-30 2022-10-06 三井金属鉱業株式会社 Copper particles and method for manufacturing same

Also Published As

Publication number Publication date
JP5759688B2 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5759688B2 (en) Flat copper particles
JP4868716B2 (en) Flake copper powder and conductive paste
KR101510369B1 (en) Process for producing copper powder and copper powder
CN102811830B (en) Fine silver-plated copper powder and method for producing same
EP3187279A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
JPWO2014104032A1 (en) Method for producing copper powder, copper powder and copper paste
KR101538012B1 (en) Anisotropic conductive film used for connecting wiring and manufacturing method for the same
JP5255580B2 (en) Method for producing flake copper powder
KR20180100530A (en) silver powder and manufacturing method of the same
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
KR101506179B1 (en) Low carbon copper particle
JP2017039990A (en) Copper powder, method for producing the same, and conductive paste using the same
JP5785433B2 (en) Low carbon copper particles
JP2009052146A (en) Copper powder and its manufacturing method
JP2008121051A (en) Method for producing silver powder
WO2016027597A1 (en) Solder-coated ball and method for manufacturing same
JP5729842B2 (en) Copper powder
TWI544977B (en) Copper powder for conductive paste and method for producing same
KR20180047528A (en) silver powder and manufacturing method of the same
JP2010174348A (en) Copper powder and method for producing the same
KR20120122885A (en) Low carbon copper particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5759688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250