JP2012041261A - Monolithic refractory for heat treatment furnace and lining structure of the furnace - Google Patents
Monolithic refractory for heat treatment furnace and lining structure of the furnace Download PDFInfo
- Publication number
- JP2012041261A JP2012041261A JP2011151600A JP2011151600A JP2012041261A JP 2012041261 A JP2012041261 A JP 2012041261A JP 2011151600 A JP2011151600 A JP 2011151600A JP 2011151600 A JP2011151600 A JP 2011151600A JP 2012041261 A JP2012041261 A JP 2012041261A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- refractory
- basic
- mass
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Ceramic Products (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、特に、リチウム複合酸化物の熱処理を行う熱処理炉に適した熱処理炉用不定形耐火物およびこれを使用した炉の内張り構造に関するものである。 The present invention particularly relates to an amorphous refractory for a heat treatment furnace suitable for a heat treatment furnace for heat treatment of a lithium composite oxide, and a furnace lining structure using the same.
金属リチウム電池、リチウムイオン電池、リチウムポリマー電池等に代表される二次電池の正極材料としては、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMnO2)、ニッケル酸リチウム(LiNiO2)、リン酸鉄リチウム(LiFePO4)等のリチウム遷移金属が挙げられる。現在用いられている正極材料としては、コバルト酸リチウムが主流である。 As positive electrode materials of secondary batteries represented by metal lithium batteries, lithium ion batteries, lithium polymer batteries, etc., lithium cobaltate (LiCoO 2 ), lithium manganate (LiMnO 2 ), lithium nickelate (LiNiO 2 ), phosphorus Examples thereof include lithium transition metals such as lithium iron oxide (LiFePO 4 ). As the positive electrode material currently used, lithium cobaltate is the mainstream.
例えば、LiCoO2 を製造する場合、原料として水酸化リチウム又は硝酸リチウムと、酸化コバルト、水酸化コバルト又は炭酸コバルトとの混合物を、容器に入れて固定炉又はトンネル炉等で焼成するか、又は直接回転炉に入れて焼成する。この焼成は、酸素雰囲気にて1000℃付近の温度で行われる。 For example, when producing LiCoO 2 , a mixture of lithium hydroxide or lithium nitrate and cobalt oxide, cobalt hydroxide or cobalt carbonate as raw materials is put in a container and fired in a fixed furnace or a tunnel furnace, or directly Place in a rotary furnace and fire. This firing is performed at a temperature around 1000 ° C. in an oxygen atmosphere.
該焼成を行う焼成炉を内張りする炉材としては、一般的に、通常工業用の耐火炉で使用されるアルミナ、ムライト、コーディエライト等の耐熱セラミックス材料からなるものが使用されている。 As a furnace material for lining a firing furnace for performing the firing, generally, a material made of a heat-resistant ceramic material such as alumina, mullite, cordierite and the like which is usually used in an industrial refractory furnace is used.
しかし、該耐熱セラミックス材料からなる炉材によって内張りされた焼成炉を使用して、前記焼成温度条件下でLiCoO2 を製造すると、その焼成中にリチウム化合物が融解し、更に、該化合物由来のリチウム元素が炉内の高温条件下で蒸発して、炉内の内張り材(以下、炉材)に浸入する現象が生じる。このため、該焼成炉の繰り返しの使用を経て、炉材にひび割れや剥離が生じ、炉材の頻繁な交換が必要であるという問題があった。 However, when LiCoO 2 is produced under the firing temperature conditions using a firing furnace lined with a furnace material made of the heat-resistant ceramic material, the lithium compound melts during the firing, and further lithium derived from the compound A phenomenon occurs in which the element evaporates under high temperature conditions in the furnace and enters the lining material in the furnace (hereinafter referred to as furnace material). For this reason, there has been a problem that cracks and peeling occur in the furnace material through repeated use of the firing furnace, and frequent replacement of the furnace material is necessary.
当該問題を解決する技術として、本願出願人は、耐リチウム反応性に優れるマグネシア質燒結体からなる炉材の製造技術を出願済みである。 As a technique for solving this problem, the applicant of the present application has already applied for a technique for manufacturing a furnace material made of a magnesia sintered body having excellent lithium resistance.
なお、焼成炉の内張りは、炉材の目地を不定形耐火物で充填しながら行われ、前記マグネシア質燒結体からなる炉材の目地を充填する不定形耐火物としては、耐リチウム反応性に優れる高純度アルミナ質不定形耐火物やマグネシア質不定形耐火物を採用することが好ましい。 The lining of the firing furnace is performed while filling the joints of the furnace material with the irregular refractory, and the amorphous refractory filling the joints of the furnace material made of the magnesia sintered body is resistant to lithium. It is preferable to employ excellent high purity alumina amorphous refractories and magnesia amorphous refractories.
なお、マグネシア質不定形耐火物は、リチウム反応性以外にも耐食性一般に優れているため、例えば溶融金属容器の内張り煉瓦用耐火不定形耐火物等、耐食性が求められる箇所の目地としてマグネシア質不定形耐火物を用いる各種の技術が開示されている(例えば、特許文献1)。 Since magnesia amorphous refractories are generally excellent in corrosion resistance in addition to lithium reactivity, magnesia irregular shapes are used as joints for places where corrosion resistance is required, such as refractory amorphous refractories for lining bricks of molten metal containers. Various techniques using a refractory are disclosed (for example, Patent Document 1).
しかし、従来の高純度アルミナ質不定形耐火物やマグネシア質不定形耐火物は、焼結が進行する過程で焼しめて強度を発現させるものが通常であるが、リチウム蒸気が発生している焼成炉の内張りに使用した場合、焼きしまって空間が生じた目地部分にリチウム蒸気が浸入し、Liとの反応により炉材を溶解してしまう問題があった。 However, conventional high-purity alumina amorphous refractories and magnesia amorphous refractories are usually baked in the course of sintering to develop strength, but firing furnaces that generate lithium vapor When used for the inner lining, there is a problem that lithium vapor enters the joint where the space has been baked and the furnace material is melted by reaction with Li.
本発明の目的は前記問題を解決し、リチウム蒸気が発生する焼成炉の内張り炉材の目地に使用される不定形耐火物であって、不定形耐火物施工後、焼結が進行する過程において、目地の焼しまり現象と、焼しまりに起因する目地部分へのリチウム蒸気侵入現象が生じることのないリチウム複合酸化物熱処理炉用の塩基性不定形耐火物およびこれを使用した炉の内張り構造を提供することである。 The object of the present invention is to solve the above-mentioned problems, and is an amorphous refractory used for the joint of the lining furnace material of the firing furnace in which lithium vapor is generated, and in the process in which sintering proceeds after the construction of the amorphous refractory. A basic amorphous refractory for a lithium composite oxide heat treatment furnace and a lining structure of the furnace using the same without causing the joint burning phenomenon and lithium vapor intrusion into the joint caused by the burning. Is to provide.
上記課題を解決するためになされた本発明の塩基性不定形耐火物は、リチウム複合酸化物の熱処理用炉の内張り目地に使用される塩基性不定形耐火物であって、耐火粘土と耐火性骨材とを含む該塩基性不定形耐火物は、該耐火性骨材として、マグネシア原料を96〜99.5質量%含有し、該耐火粘土として、アルカリ金属酸化物含有率が1〜5質量%の粘土を含有し、該耐火性骨材は、95質量%以上が粒子径0.3mm以下であり、加熱後の常温曲げ強度が1.0MPa以上であることを特徴とするものである。 The basic amorphous refractory of the present invention made to solve the above problems is a basic amorphous refractory used for a lining joint of a furnace for heat treatment of a lithium composite oxide, which is refractory clay and refractory. The basic amorphous refractory containing aggregate contains 96 to 99.5% by mass of magnesia raw material as the refractory aggregate, and the alkali metal oxide content is 1 to 5 mass as the refractory clay. % Of clay, and 95% by mass or more has a particle diameter of 0.3 mm or less, and a normal temperature bending strength after heating is 1.0 MPa or more.
請求項2記載の発明は、請求項1記載の塩基性不定形耐火物において、該耐火粘土が、モンモリロナイト族粘土であることを特徴とするものである。 The invention described in claim 2 is the basic amorphous refractory according to claim 1, wherein the refractory clay is a montmorillonite group clay.
請求項3記載の発明は、請求項1または2記載の塩基性不定形耐火物において、該マグネシア原料は、MgO成分を95.5〜99.5質量%含有することを特徴とするものである。 The invention according to claim 3 is the basic amorphous refractory according to claim 1 or 2, wherein the magnesia raw material contains 95.5 to 99.5% by mass of the MgO component. .
請求項4記載の発明は、請求項1〜3の何れかに記載の塩基性不定形耐火物において、アルカリ金属酸化物として、Na2OまたはK2Oの少なくとも何れかを含有することを特徴とするものである。 Invention of claim 4, characterized in a basic monolithic refractory according to any one of claims 1 to 3, as an alkali metal oxide, in that it contains at least one of Na 2 O or K 2 O It is what.
請求項5記載の発明は、請求項1記載の塩基性不定形耐火物において、該粘土が、更に、TiO2およびMgO・Al2O3を含有することを特徴とするものである。 A fifth aspect of the present invention is the basic amorphous refractory according to the first aspect, wherein the clay further contains TiO 2 and MgO.Al 2 O 3 .
請求項6記載の発明は、請求項5記載の塩基性不定形耐火物において、該粘土は、主成分として、Al2O3及びSiO2を含有し、その他の残部成分としてFe2O3,CaO,MgOの少なくとも何れかを含有することを特徴とするものである。 The invention according to claim 6 is the basic amorphous refractory according to claim 5, wherein the clay contains Al 2 O 3 and SiO 2 as main components, and Fe 2 O 3 , It contains at least one of CaO and MgO.
請求項7記載の炉の内張り構造は、請求項1〜6のいずれかに記載の塩基性不定形耐火物を用いて塩基性炉材の目地を充填することを特徴とするものである。 The lining structure of the furnace according to claim 7 is characterized in that the joint of the basic furnace material is filled with the basic amorphous refractory according to any one of claims 1 to 6.
請求項8記載の発明は、請求項7記載の炉の内張り構造において、該塩基性炉材が、MgOを20〜99.5質量%含有することを特徴とするものである。 The invention described in claim 8 is characterized in that, in the furnace lining structure described in claim 7, the basic furnace material contains 20 to 99.5% by mass of MgO.
請求項9記載の発明は、請求項8記載の炉の内張り構造において、該塩基性炉材が、Co、Mn、Ni、Fe、Pから選択された1種類以上の元素とリチウムとの複合酸化物の熱処理に用いる炉の天井及び炉壁を構成する炉材であることを特徴とするものである。 The invention according to claim 9 is the furnace lining structure according to claim 8, wherein the basic furnace material is a composite oxidation of lithium with one or more elements selected from Co, Mn, Ni, Fe and P It is a furnace material that constitutes a furnace ceiling and a furnace wall used for heat treatment of an object.
請求項10記載の発明は、請求項8または9記載の炉の内張り構造において、炉材の常温圧縮強度が1.0MPa以上であることを特徴とするものである。 The invention described in claim 10 is characterized in that, in the furnace lining structure according to claim 8 or 9, the normal temperature compressive strength of the furnace material is 1.0 MPa or more.
本発明に係る塩基性不定形耐火物は、リチウム複合酸化物の熱処理用炉の内張り目地に使用される塩基性不定形耐火物であって、耐火粘土と耐火性骨材とを含む該塩基性不定形耐火物は、該耐火性骨材として、マグネシア原料を96〜99.5質量%含有し、該耐火粘土として、アルカリ金属酸化物含有率が1〜5質量%の粘土を含有し、該耐火性骨材は、95質量%以上が粒子径0.3mm以下とすることにより、不定形耐火物施工後、焼結が進行する過程における目地の焼しまり現象を回避可能としている。 A basic amorphous refractory according to the present invention is a basic amorphous refractory used for a lining joint of a furnace for heat treatment of a lithium composite oxide, the basic refractory comprising a refractory clay and a refractory aggregate. The amorphous refractory contains 96-99.5% by mass of magnesia raw material as the refractory aggregate, and contains clay having an alkali metal oxide content of 1-5% by mass as the refractory clay, By setting 95% by mass or more of the refractory aggregate to have a particle diameter of 0.3 mm or less, it is possible to avoid the joint burning phenomenon in the process of sintering after the construction of the irregular refractory.
(概説)
本発明に係る塩基性不定形耐火物は、800〜1100℃の炉内温度で、Co、Mn、Ni、Fe、Pから選択された1種類以上の元素とリチウムとの複合酸化物の熱処理に用いるのに適した炉材の目地を充填する不定形耐火物であって、主にマグネシアを構成成分とするものである。本発明に係る塩基性不定形耐火物は、焼成炉の炉材の目地に充填後(熱処理前)と、該焼成炉内を800〜1100℃とする温度条件下でリチウム複合酸化物の熱処理を行った後における強度変化が小さく、顕著な焼しまり現象は観察されないため、焼しまりに起因する目地部分へのリチウム蒸気侵入を効果的に回避することができる。
(Outline)
The basic amorphous refractory according to the present invention is used for heat treatment of a complex oxide of lithium and one or more elements selected from Co, Mn, Ni, Fe, and P at a furnace temperature of 800 to 1100 ° C. It is an amorphous refractory filling a joint of a furnace material suitable for use, and is mainly composed of magnesia. The basic amorphous refractory according to the present invention is obtained by performing heat treatment of a lithium composite oxide after filling the furnace material joints of the firing furnace (before heat treatment) and at a temperature of 800 to 1100 ° C. in the firing furnace. Since the strength change after the test is small and no remarkable burning phenomenon is observed, it is possible to effectively avoid lithium vapor intrusion into the joint due to burning.
本発明に係る塩基性不定形耐火物は、粒子径0.3mm以下の耐火性骨材と耐火粘土を配合してなり、耐火性骨材としてマグネシア原料を96〜99.5質量%配合し、耐火粘土としてアルカリ金属酸化物を1〜5質量%含有する。 The basic amorphous refractory according to the present invention is composed of a refractory aggregate having a particle diameter of 0.3 mm or less and a refractory clay, and 96 to 99.5% by mass of magnesia raw material as a refractory aggregate. 1-5 mass% of alkali metal oxides are contained as refractory clay.
耐火性骨材の粒子径は、れんが目地の厚み(数mm)に対し、緻密に空隙なく施工するため、全耐火性骨材の95質量%以上を粒子径0.3mm以下に調整することが望ましい。 The particle size of the refractory aggregate is set to a brick joint thickness (several mm) densely without voids, so 95% by mass or more of the total refractory aggregate can be adjusted to a particle size of 0.3 mm or less. desirable.
(耐火性骨材)
耐火性骨材としては、マグネシア原料を96〜99.5質量%配合している。該マグネシア原料は、MgO成分を95.5〜99.5質量%含有することが望ましい。これにより、塩基性不定形耐火物中のMgO成分含有量を95〜99質量%として、十分な耐リチウム反応性を確保することができる。
(Fireproof aggregate)
As the refractory aggregate, 96 to 99.5 mass% of magnesia raw material is blended. The magnesia raw material preferably contains 95.5 to 99.5% by mass of the MgO component. Thereby, MgO component content in a basic amorphous refractory can be 95-99 mass%, and sufficient lithium-resistant reactivity can be ensured.
塩基性不定形耐火物中の残部の化学成分として、TiO2およびMgO・Al2O3を含有している。これにより適度な接着強度と優れた耐リチウム反応性、耐熱衝撃性を確保することができる。 TiO 2 and MgO.Al 2 O 3 are contained as the remaining chemical components in the basic amorphous refractory. Thereby, moderate adhesive strength, excellent lithium reaction resistance, and thermal shock resistance can be ensured.
(耐火粘土)
耐火粘土は主組成分としてAl2O3及びSiO2を含有する耐火粘土であり、その他の化学成分として、1〜5質量%のアルカリ金属酸化物を含有し、更に、その他の残部成分としてFe2O3、CaO、MgOの少なくとも何れかを含有するものを使用している。具体的には、モンモリロナイト族粘土を使用することが好ましい。
(Refractory clay)
The refractory clay is a refractory clay containing Al 2 O 3 and SiO 2 as main components, contains 1 to 5% by mass of an alkali metal oxide as the other chemical component, and further contains Fe as the remaining component. A material containing at least one of 2 O 3 , CaO, and MgO is used. Specifically, it is preferable to use montmorillonite clay.
(作用)
本発明の塩基性不定形耐火物は、マグネシア原料を96〜99.5質量%配合することにより、耐リチウム反応性を確保しつつ、不定形耐火物として不可欠の粘土成分として、アルカリ金属酸化物を1〜5質量%含有する耐火粘土を採用することにより、不定形耐火物施工後、焼結が進行する過程における目地の焼しまり現象を回避可能としている。
(Function)
The basic amorphous refractory of the present invention contains 96 to 99.5% by mass of magnesia raw material to ensure lithium resistance, and an alkali metal oxide as an indispensable clay component as an amorphous refractory. By adopting a refractory clay containing 1 to 5% by mass, it is possible to avoid joint burning in the process of sintering after the construction of the irregular refractory.
通常、炉材の目地に充填された不定形耐火物は、施工後の焼成工程で液相を生じ、液相焼結を起こすことにより、焼しまりながら強度を発現している。これに対し、焼成炉内を800〜1100℃とする温度条件下で使用される本発明の塩基性不定形耐火物では、該塩基性不定形耐火物を構成する化学組成のうち、1100℃以下で共和融解あるいは非共和融解を起こす物質(すなわち他の物質と共存した場合に液相を生じる物質、あるいは、融点1100℃以下の物質)を、耐火粘土中に前記含有量で含有されるアルカリ金属酸化物に限定している。これにより、800〜1100℃で生じる液相の割合を低く抑え、該温度領域における焼しまりおよびそれに伴う強度上昇を抑制している。なお、アルカリ金属酸化物が含有量1質量%以下ではアルカリ成分が不足して強度不足となるため好ましくなく、不定形耐火物の強度確保も考慮すると、アルカリ金属酸化物の含有率が2〜5質量%の粘土を使用することが、より好ましい。 In general, an amorphous refractory filled in a joint of a furnace material generates a liquid phase in a firing process after construction, and exhibits liquid strength by causing liquid phase sintering. On the other hand, in the basic amorphous refractory of the present invention used under a temperature condition in which the inside of the firing furnace is set to 800 to 1100 ° C., the chemical composition constituting the basic amorphous refractory is 1100 ° C. or less. Alkaline metals containing substances that cause Kyowa melting or non-Kyowa melting (ie, substances that generate a liquid phase when coexisting with other substances, or substances having a melting point of 1100 ° C. or less) in refractory clay in the above-mentioned content Limited to oxides. Thereby, the ratio of the liquid phase produced at 800 to 1100 ° C. is kept low, and the burning in the temperature region and the accompanying strength increase are suppressed. In addition, when the content of the alkali metal oxide is 1% by mass or less, the alkali component is insufficient and the strength is insufficient, which is not preferable. In view of securing the strength of the amorphous refractory, the content of the alkali metal oxide is 2 to 5%. It is more preferable to use mass% clay.
本発明に係る塩基性不定形耐火物は、800〜1100℃の炉内温度でリチウム複合酸化物の熱処理を行う焼成炉の炉材の目地を充填する不定形耐火物であって、該焼成炉内ではリチウム蒸気が発生しているが、このように、目地の焼しまりを抑制することにより、焼しまりに起因する目地部分へのリチウム蒸気侵入を効果的に回避することができる。また、目地部分へのリチウム蒸気侵入を回避することにより、目地部分を透過したリチウム蒸気が目地や炉材を内部から溶解する現象、およびこれに伴う強度低下を抑制している。 A basic amorphous refractory according to the present invention is an amorphous refractory filling a joint of a furnace material of a firing furnace that performs heat treatment of a lithium composite oxide at a furnace temperature of 800 to 1100 ° C. Lithium vapor is generated in the inside, and thus, by suppressing the burning of the joint, it is possible to effectively avoid the penetration of lithium vapor into the joint due to the burning. Further, by preventing lithium vapor from entering the joint portion, the phenomenon that lithium vapor that has permeated the joint portion dissolves the joint and the furnace material from the inside, and the accompanying strength reduction are suppressed.
図1には、不定形耐火物の前記乾燥後、初回空焼き後、リチウム蒸気雰囲気暴露後で、それぞれ接着強度を調べた結果を示している。具体的には、本発明の不定形耐火物、耐リチウム反応性に優れる高純度アルミナ質不定形耐火物、成分中のアルカリ金属酸化物量を限定しない通常の耐火粘土を配合したマグネシア質不定形耐火物、のそれぞれついて施工を行い、110℃で乾燥させた後、本発明における「初回空焼き」すなわち1100℃での焼成を行い、更にリチウム蒸気雰囲気に曝した。図1に示すように、本発明によれば、施工後の不定形耐火物を焼成(初回空焼き)する際の強度上昇、および、焼成炉内で焼成処理されるリチウム蒸気との反応による強度低下を、共に3MPa以下に抑制することができる。なお、本発明の不定形耐火物では、初回空焼き後の常温曲げ強度で1.0MPa以上を確保している。 FIG. 1 shows the results of examining the adhesive strength after drying the amorphous refractory, after first baking, and after exposure to a lithium vapor atmosphere. Specifically, the amorphous refractory of the present invention, the high-purity alumina amorphous refractory excellent in lithium resistance, and the magnesia amorphous refractory blended with ordinary refractory clay that does not limit the amount of alkali metal oxide in the component. Each of the products was applied and dried at 110 ° C., followed by “first baking” in the present invention, that is, firing at 1100 ° C., and further exposed to a lithium vapor atmosphere. As shown in FIG. 1, according to the present invention, the strength is increased when firing the amorphous refractory after construction (first empty firing), and the strength due to the reaction with lithium vapor fired in the firing furnace. Both reductions can be suppressed to 3 MPa or less. In addition, in the amorphous refractory of this invention, 1.0 MPa or more is ensured by the normal temperature bending strength after the first empty baking.
なお、該強度測定は、以下の方法で行ったものである。
(1)基材となる塩基性炉材を40×50×10tに切り出した。
(2)断面積が40×10となる部分に不定形耐火物を塗布し、基材同士を不定形耐火物厚み2mmとなるように接着させた。
(3)基材を接着させたサンプルを所定の温度で乾燥(110℃×24hrs)・焼成後 (1100℃×3hrs)、図2に従い3点曲げ強度(接着強度)を測定した。※測定方法はJIS R2553に準拠する
(4)1100℃焼成後のサンプルに16cm2当たりLi2CO3粉末を2g塗布した後、1100℃×5hrs反応試験を実施した。
(5)反応試験実施後、(3)と同様に3点曲げ強度を実施した。
In addition, this intensity | strength measurement was performed with the following method.
(1) The basic furnace material used as a base material was cut into 40 × 50 × 10 t.
(2) An amorphous refractory was applied to a portion having a cross-sectional area of 40 × 10, and the substrates were bonded to each other so that the thickness of the amorphous refractory was 2 mm.
(3) After drying (110 ° C. × 24 hrs) and firing (1100 ° C. × 3 hrs) at a predetermined temperature, the sample to which the substrate was bonded was measured for three-point bending strength (adhesive strength) according to FIG. * Measurement method conforms to JIS R2553
(4) After applying 2 g of Li 2 CO 3 powder per 16 cm 2 to the sample after firing at 1100 ° C., a 1100 ° C. × 5 hrs reaction test was performed.
(5) After the reaction test, a three-point bending strength was performed in the same manner as (3).
該不定形耐火物を目地部分に充填する焼成炉の炉材としては、耐リチウム反応性に優れるものであればよく、特に限定されないが、耐リチウム反応性に優れかつ軽量の炉材であることが特に好ましい。 The furnace material of the firing furnace that fills the joint portion with the irregular refractory material is not particularly limited as long as it has excellent lithium reactivity resistance, and is a lightweight furnace material that is excellent in lithium resistance resistance and lightweight. Is particularly preferred.
なお、軽量の炉材としては、MgOを20〜99.5質量%含有するものであることが好ましく、常温圧縮強度は1.0MPa以上であることが好ましい。 In addition, as a lightweight furnace material, it is preferable to contain 20-99.5 mass% of MgO, and it is preferable that normal temperature compressive strength is 1.0 Mpa or more.
本願発明はリチウム複合酸化物処理炉に適した塩基性モルタルに関するものであるが、本願発明のモルタルを、ロータリーキルンの内貼り等、他の用途にも適用できることはいうまでもない。 Although the present invention relates to a basic mortar suitable for a lithium composite oxide processing furnace, it goes without saying that the mortar of the present invention can also be applied to other uses such as internal bonding of a rotary kiln.
表1〜4には、実施例1〜6、比較例1〜8の各原料組成からなる不定形耐火物について、焼結が進行する過程において目地の焼しまり現象が生じるか否かを、「目地空間の有無」として評価(目視による観察)した結果と、上記[0034]と同様の方法で強度測定を行った結果を示している。表1〜4において、「常温曲げ強度 使用前」とは、乾燥(110℃×24hrs)後の強度を意味し、「常温曲げ強度 使用後」とは、反応試験後の強度を意味するものである。 Tables 1 to 4 show whether or not the joint burning phenomenon occurs in the process of sintering for the amorphous refractories composed of the raw material compositions of Examples 1 to 6 and Comparative Examples 1 to 8. The result of evaluation (observation by visual observation) as “presence / absence of joint space” and the result of intensity measurement by the same method as in the above [0034] are shown. In Tables 1 to 4, “before use at normal temperature bending strength” means strength after drying (110 ° C. × 24 hrs), and “after use at normal temperature bending strength” means strength after reaction test. is there.
実施例1、2では、焼結が進行する過程における目地の焼しまり現象は生じず、加熱後における常温曲げ強度も1.0MPa以上確保され、反応試験前後における常温曲げ強度の変化も小さく抑制された。これに対し、比較例1,2に示すように、「耐火性骨材の95質量%以上が粒子径0.3mm以下」の構成要件を欠く場合、乾燥や焼成による加熱後における常温曲げ強度で1.0MPa以上を確保することができず、製品強度に問題が生じた。また、「マグネシア原料を96〜99.5質量%含有」の要件に関し、マグネシア原料が96質量%に満たない比較例3では、反応試験前後における常温曲げ強度の変化が大きくなる問題が生じ、マグネシア原料が99.5質量%を超える比較例4では加熱後における常温曲げ強度で1.0MPa以上を確保することができず、製品強度に問題が生じた。更に、「アルカリ金属酸化物含有率が1〜5質量%の粘土を含有」の要件に関し、アルカリ金属酸化物含有率が5質量%を超える比較例5では、焼結が進行する過程における目地の焼しまり現象が生じ、反応試験前後における常温曲げ強度の変化が非常に大きくなる問題が生じた。
In Examples 1 and 2, the joint burn-in phenomenon in the process of sintering does not occur, the room temperature bending strength after heating is ensured to be 1.0 MPa or more, and the change in room temperature bending strength before and after the reaction test is suppressed to be small. It was. On the other hand, as shown in Comparative Examples 1 and 2, when the structural requirement of “95% by mass or more of the refractory aggregate is a particle diameter of 0.3 mm or less” is required, the room temperature bending strength after heating by drying or baking is used. A pressure of 1.0 MPa or more could not be secured, resulting in a problem in product strength. Further, with respect to the requirement of “containing 96 to 99.5% by mass of magnesia raw material”, in Comparative Example 3 in which the magnesia raw material is less than 96% by mass, there is a problem that the change in room temperature bending strength before and after the reaction test increases. In Comparative Example 4 in which the raw material exceeds 99.5% by mass, the room temperature bending strength after heating cannot be ensured to be 1.0 MPa or more, resulting in a problem in product strength. Furthermore, regarding the requirement of “containing clay having an alkali metal oxide content of 1 to 5% by mass”, in Comparative Example 5 in which the alkali metal oxide content exceeds 5% by mass, the joint in the process of sintering proceeds. A burning phenomenon occurred, and the change in the normal temperature bending strength before and after the reaction test became very large.
びMgO・Al2O3を含有することを特徴とする」ことが好ましく、当該全構成要件を満たす実施例6では、反応試験前後における常温曲げ強度の変化を小さく抑制することができた。一方、TiO2およびMgO・Al2O3の何れも含有しない比較例8では、反応試験後に強度が大きく低下する問題が生じた。
Claims (10)
耐火粘土と耐火性骨材とを含む該塩基性不定形耐火物は、
該耐火性骨材として、マグネシア原料を96〜99.5質量%含有し、
該耐火粘土として、アルカリ金属酸化物含有率が1〜5質量%の粘土を含有し、
該耐火性骨材は、95質量%以上が粒子径0.3mm以下であり、
加熱後の常温曲げ強度が1.0MPa以上である
ことを特徴とするリチウム複合酸化物熱処理炉用の塩基性不定形耐火物。 It is a basic amorphous refractory used for the lining joint of a furnace for heat treatment of lithium composite oxide,
The basic amorphous refractory containing refractory clay and refractory aggregate is:
As the refractory aggregate, 96-99.5% by mass of magnesia raw material is contained,
As the refractory clay, containing an alkali metal oxide content of 1-5% by mass,
95% by mass or more of the refractory aggregate has a particle diameter of 0.3 mm or less,
A basic amorphous refractory for a lithium composite oxide heat treatment furnace characterized by having a normal temperature bending strength after heating of 1.0 MPa or more.
The furnace lining structure according to claim 8 or 9, wherein a normal temperature compressive strength of the furnace material is 1.0 MPa or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011151600A JP5436498B2 (en) | 2010-07-20 | 2011-07-08 | Amorphous refractories for heat treatment furnace and lining structure of the furnace |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010162399 | 2010-07-20 | ||
JP2010162399 | 2010-07-20 | ||
JP2011151600A JP5436498B2 (en) | 2010-07-20 | 2011-07-08 | Amorphous refractories for heat treatment furnace and lining structure of the furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012041261A true JP2012041261A (en) | 2012-03-01 |
JP5436498B2 JP5436498B2 (en) | 2014-03-05 |
Family
ID=45791779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011151600A Expired - Fee Related JP5436498B2 (en) | 2010-07-20 | 2011-07-08 | Amorphous refractories for heat treatment furnace and lining structure of the furnace |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5436498B2 (en) |
KR (1) | KR101907208B1 (en) |
CN (1) | CN102372488B (en) |
TW (1) | TWI518047B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113185307A (en) * | 2021-04-02 | 2021-07-30 | 武汉科技大学 | Rotary kiln furnace lining for roasting lithium battery anode material and preparation method thereof |
CN113200752A (en) * | 2021-04-02 | 2021-08-03 | 武汉科技大学 | Shaft kiln furnace lining for roasting lithium battery anode material and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5727978A (en) * | 1980-07-23 | 1982-02-15 | Shinagawa Refractories Co | Basic refractory mortar |
JP2003165767A (en) * | 2001-11-28 | 2003-06-10 | Noritake Co Ltd | Spinel refractory and use of the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08283074A (en) * | 1995-04-14 | 1996-10-29 | Nippon Steel Corp | Refractory mortar used to lining brick for molten metal container and use thereof |
GB9513126D0 (en) * | 1995-06-28 | 1995-08-30 | Glaverbel | A method of dressing refractory material bodies and a powder mixture for use therein |
CN1179807C (en) * | 2002-04-12 | 2004-12-15 | 朱德智 | Lining material of tundish for conticasting |
JP4744066B2 (en) * | 2003-06-20 | 2011-08-10 | 新日本製鐵株式会社 | Indefinite refractory |
CN101519311B (en) * | 2009-04-01 | 2011-08-31 | 武汉钢铁(集团)公司 | Magnesia-carbon gunning material for converter or electric furnace |
-
2011
- 2011-07-08 JP JP2011151600A patent/JP5436498B2/en not_active Expired - Fee Related
- 2011-07-14 KR KR1020110069977A patent/KR101907208B1/en active IP Right Grant
- 2011-07-14 TW TW100124875A patent/TWI518047B/en not_active IP Right Cessation
- 2011-07-20 CN CN201110208278.4A patent/CN102372488B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5727978A (en) * | 1980-07-23 | 1982-02-15 | Shinagawa Refractories Co | Basic refractory mortar |
JP2003165767A (en) * | 2001-11-28 | 2003-06-10 | Noritake Co Ltd | Spinel refractory and use of the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113185307A (en) * | 2021-04-02 | 2021-07-30 | 武汉科技大学 | Rotary kiln furnace lining for roasting lithium battery anode material and preparation method thereof |
CN113200752A (en) * | 2021-04-02 | 2021-08-03 | 武汉科技大学 | Shaft kiln furnace lining for roasting lithium battery anode material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201217299A (en) | 2012-05-01 |
TWI518047B (en) | 2016-01-21 |
CN102372488B (en) | 2014-10-15 |
CN102372488A (en) | 2012-03-14 |
JP5436498B2 (en) | 2014-03-05 |
KR101907208B1 (en) | 2018-10-11 |
KR20120009403A (en) | 2012-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5241868B2 (en) | sheath | |
CN102452836A (en) | Cement-free aluminum-magnesium castable for rapidly baking ladle | |
JP6400085B2 (en) | Batch for producing an amorphous refractory ceramic product, method for producing a fired refractory ceramic product, use of a fired refractory ceramic product and an amorphous refractory ceramic product | |
CN104177102B (en) | Furnace bottom ramming material of RH refining furnace | |
JP5110540B2 (en) | FeO resistant coating material | |
JP6499464B2 (en) | Insulated refractory | |
JP5694695B2 (en) | Insulated refractory and method for producing the same | |
JP2003165767A (en) | Spinel refractory and use of the same | |
JP5110539B2 (en) | FeO resistant coating material | |
JP5436498B2 (en) | Amorphous refractories for heat treatment furnace and lining structure of the furnace | |
JP2012072051A (en) | Powder composition for fireproof castable, and fireproof castable using the same | |
JP6420748B2 (en) | Unburned silicon carbide-containing high alumina brick used for lining of containers holding molten metal | |
JP4956044B2 (en) | Magnesia brick without lime as a mineral phase and its production method | |
JP2014024689A (en) | Magnesia monolithic refractory | |
JP5945596B2 (en) | Si-Mg based inorganic fiber and composition thereof | |
CN105669220A (en) | Recycled alumina-chrome brick for Ausmelt furnace inner liner, and making method thereof | |
CN110386825A (en) | Corundum magnesia spinel matter unburned brick and preparation method thereof | |
JPH06293556A (en) | Base resistant refractory | |
JPH07315913A (en) | Magnesia refractory brick | |
JPH01148757A (en) | Patching repairing material | |
JP7211878B2 (en) | Monolithic refractories for calcium phosphate firing furnaces and lining structure for calcium phosphate firing furnaces | |
JPH06293580A (en) | Refractory having basic resistance | |
JPH0575953B2 (en) | ||
JP2002121081A (en) | Quickly sinterable, hot baking repairing material for hot-repairing | |
JPH04342454A (en) | Magnesia-containing unburned refractory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130515 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130910 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5436498 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |